
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

Sums of Squares and Semidefinite Programming

Relaxations for Polynomial Optimization

Problems with Structured Sparsity

Hayato Waki, Sunyoung Kim, Masakazu Kojima

and Masakazu Muramatsu

October 2004, B–411

Revised February 2005

B-411 Sums of Squares and Semidefinite Programming Relaxations for Polynomial
Optimization Problems with Structured Sparsity
Hayato Waki⋆, Sunyoung Kim†, Masakazu Kojima‡, Masakazu Muramatsu♯

October 2004. Revised February 2005

Abstract. Unconstrained and inequality constrained sparse polynomial optimization
problems (POPs) are considered. A correlative sparsity pattern graph is defined to find
a certain sparse structure in the objective and constraint polynomials of a POP. Based
on this graph, sets of supports for sums of squares (SOS) polynomials that lead to efficient
SOS and semidefinite programming (SDP) relaxations are obtained. Numerical results from
various test problems are included to show the improved performance of the SOS and SDP
relaxations.

Key words.

Polynomial optimization problem, sparsity, global optimization, Lagrangian relaxation, La-
grangian dual, sums of squares optimization, semidefinite programming relaxation

⋆ Department of Mathematical and Computing Sciences, Tokyo Institute of
Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. Hay-
ato.Waki@is.titech.ac.jp

† Department of Mathematics, Ewha Women’s University, 11-1 Dahyun-dong,
Sudaemoon-gu, Seoul 120-750 Korea. A considerable part of this work was con-
ducted while this author was visiting Tokyo Institute of Technology. Research
supported by KRF 2003-041-C00038. skim@ewha.ac.kr

‡ Department of Mathematical and Computing Sciences, Tokyo Institute of Tech-
nology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. Research sup-
ported by Grant-in-Aid for Scientific Research on Priority Areas 16016234. ko-
jima@is.titech.ac.jp

♯ Department of Computer Science, The University of Electro-Communications,
Chofugaoka, Chofu-Shi, Tokyo 182-8585 Japan. Research supported in part by
Grant-in-Aid for Young Scientists (B) 15740054. muramatu@cs.uec.ac.jp

1 Introduction

Polynomial optimization problems (POPs) arise from various applications in science and
engineering. Recent developments [11, 17, 19, 20, 23, 28, 29, 32] in semidefinite programming
(SDP) and sums of squares (SOS) relaxations for POPs have attracted a lot of research from
diverse directions. These relaxations have been extended to polynomial SDPs [13, 15, 18]
and POPs over symmetric cones [21]. In particular, SDP and SOS relaxations have been
popular for their theoretical convergence to the optimal value of a POP [23, 28]. From a
practical point of view, improving the computational efficiency of SDP and SOS relaxations
using the sparsity of polynomials in POPs has become an important issue [17, 20].

A polynomial f in real variables x1, x2, . . . , xn of a positive degree d can have all mono-
mials of the form xα1

1 x
α2

2 · · ·xαn
n with nonnegative integers αi (i = 1, 2, . . . , n) such that

αi ≥ 0 and
∑n

i=1 αi ≤ d; all monomials of different form add up to
(

n+d

d

)
. We call such

a polynomial fully dense. When we examine polynomials in POPs from applications, we
notice in many cases that they are sparse polynomials having a few or some of all possible
monomials as defined in [20]. The sparsity provides a computational edge if it is handled
properly when deriving SDP and SOS relaxations. More precisely, taking advantage of the
sparsity of POPs is essential to obtaining an optimal value of a POP by applying SDP and
SOS relaxations in practice. Without exploiting the sparsity of POPs, the size of the POPs
that can be solved is very limited.

For sparse POPs, generalized Lagrangian duals and their SOS relaxations were proposed
in [17]. The SOS relaxations are derived using SOS polynomials for the Lagrangian mul-
tipliers with similar sparsity to the associated constraint polynomials, and then converted
into equivalent SDPs. As a result, the size of the resulting SOS and SDP relaxations is
reduced and computational efficiency is improved. Theoretical convergence to the optimal
value of a POP, however, is not guaranteed. This approach is shown to have an advantage
in implementation over the SDP relaxation given in [23] whose size depends only on the de-
grees of objective and constraint polynomials of the POP. This is because SOS polynomials
can be freely chosen for Lagrangian multipliers taking account of the sparsity of objective
and constraint polynomials.

The aim of this paper is to present practical SOS and SDP relaxations for a sparse
POP and show their performance for various test problems. The framework of SOS and
SDP relaxations presented here are based on the one proposed in the paper [17]. However,
the sparsity of a POP is defined more precisely to find a structure in the polynomials
in the variables x1, x2, . . . , xn of the POP and to derive sparse SOS and SDP relaxations
accordingly. In particular, we introduce correlative sparsity, which is a special case of the
sparsity [20] mentioned above; the correlative sparsity implies the sparsity, but the converse
does not hold. The correlative sparsity is described in terms of an n×n symmetric matrix R,
which we call the correlative sparsity pattern matrix (csp matrix) of the POP. Each element
Rij of the csp matrix R is either 0 or ⋆ representing a nonzero value. We assign ⋆ to
every diagonal element Rii (i = 1, 2, . . . , n), and also to each off-diagonal element Rij = Rji

(1 ≤ i < j ≤ n) if and only if either (i) the variables xi and xj appear simultaneously in
a term of the objective function, or (ii) they appear in an inequality constraint. The csp
matrix R constructed in this way represents the sparsity pattern of the Hessian matrix of
the generalized Lagrangian function of the paper [17] (or the Hessian matrix of the objective
function in unconstrained cases) except for the diagonal elements; some diagonal elements

1

of the Hessian matrix may vanish while Rii = ⋆ (i = 1, 2, . . . , n) by definition. We say that
the POP is correlatively sparse if the csp matrix R (or the Hessian matrix of the generalized
Lagrangian function) is sparse.

From the csp matrix R, it is natural to induce graph G(N,E) with the node set N =
{1, 2, . . . , n} and the edge set E = {{i, j} : Rij = ⋆, i < j} corresponding to the nonzero off-
diagonal elements of R. We call G(N,E) the correlation sparsity pattern graph (csp graph)
of the POP. We employ some results of graph theory regarding maximal cliques of chordal
graphs [2]. A key idea in this paper is to use the maximal cliques of a chordal extension of
the csp graph G(N,E) to construct sets of supports for a sparse SOS relaxation. This idea
is motivated by the recent work [8] that proposed positive semidefinite matrix completion
techniques for exploiting sparsity in primal-dual interior-point methods for SDPs.

A simple example is a POP with a separable objective polynomial consisting of a sum of
n polynomials in a single variable xi (i = 1, 2, . . . , n) and n− 1 inequality constraints each
of which contains two variables xi and xi+1 (i = 1, 2, . . . , n−1). In this case, the csp matrix
R is represented as a tridiagonal matrix and the csp graph G(N,E) is a chordal graph with
n− 1 maximal cliques with 2 nodes, and the size of the proposed SOS and SDP relaxations
become considerably smaller than the one obtained from the dense SDP relaxation given in
[23].

The computational efficiency of the proposed sparse SOS and SDP relaxations depends
on how sparse a chordal extension of the csp graph is. We note that the following two
conditions are equivalent: (i) a chordal extension of the csp graph is sparse, (ii) a sparse
Cholesky factorization can be applied to the Hessian matrix of the generalized Lagrangian
function or the Hessian matrix of the objective function in unconstrained problems. When
we compare the condition (ii) with the standard condition of traditional numerical methods,
such as Newton’s method for convex optimization, to be efficient for large scale problems,
there exists a difference between the generalized Lagrangian function and the Lagrangian
function in the Lagrange multipliers. SOS polynomials are the Lagrangian multipliers in
the former whereas nonnegative real numbers in the latter. If a linear inequality constraint
is involved in the POP, which may be the simplest constraint, it is multiplied by a SOS
polynomial in the former. As a result, the Hessian matrix of the former can become denser
than the Hessian matrix of the latter. In this sense, the condition (ii) in the proposed sparse
SOS and SDP relaxations is a stronger requirement on the sparsity in the POP than the
standard condition for traditional numerical methods. This stronger requirement, however,
can be justified if we understand the study of nonconvex and large scale POPs in global
optimization as a more complicated issue.

Theoretically, the proposed sparse SOS and SDP relaxations are not guaranteed to
generate lower bounds of the same quality as the dense SDP relaxation [23] for general
POPs. Practical experiences, however, show us that the performance gap between the two
relaxations is small as we observe from numerical experiments presented in Section 6. In
particular, the definition of a structured sparsity based on the csp matrix R and the csp
graph G(N,E) enables us to achieve the same quality of lower bounds for quadratic opti-
mization problems (QOPs) where all polynomials in the objective function and constraints
are quadratic. More precisely, the proposed sparse SOS and SDP relaxations of order 1
obtain lower bounds of the same quality as the dense SDP relaxation of order 1, as shown
in Section 5.4. Here the latter SDP relaxation of order 1 corresponds to classical SDP relax-
ation [7, 9, etc.], which have been widely studied for QOPs including the maxcut problem.

2

This motivates the use of the csp matrix and graph for structured sparsity in the derivation
of SOS and SDP relaxations.

The remaining of the paper is organized as follows. After introducing basic notation and
symbols on polynomials, we define sums of squares polynomials in Section 2. In Section 3, we
first describe dense SOS relaxation of unconstrained POPs, and then sparse SOS relaxation.
We show how a csp matrix is defined from a given unconstrained POP, and how a sparse
SOS relaxation is constructed using the maximal cliques of a chordal extension of a csp
graph induced from the csp matrix. Section 4 contains the description of a SOS relaxation
of an inequality constrained POP with a structured sparsity characterized by a csp matrix
and a csp graph. We introduce a generalized Lagrangian dual for the inequality constrained
POP and a sparse SOS relaxation. Section 5 discusses some additional techniques which
enhance the practical performance of the sparse SOS relaxation such as computing optimal
solutions, handling equality constraints and scaling. Section 6 includes numerical results
on various test problems. We show the proposed sparse SOS and SDP relaxations exhibit
much better performance in practice. Finally, we give concluding remarks in Section 7.

2 Preliminaries

We first describe the representation of polynomials and sums of squares of polynomials in
this section.

2.1 Polynomials

Let R be the set of real numbers, and Z+ the set of nonnegative integers. We use R
n and Z

n
+

to denote the n-dimensional Euclidean space and the set of nonnegative integer vectors in
R

n. R[x] means the set of real valued polynomials in xi (i = 1, 2, . . . , n). Each polynomial
f ∈ R[x] is represented as

f(x) =
∑

α∈F
c(α)xα (∀x ∈ R

n)

for some nonempty finite subset F ⊂ Z
n
+ and some real numbers c(α) (α ∈ F). Here

xα = xα1

1 x
α2

2 · · ·xαn

n ; we assume that x0 = 1. The support of f is defined by

supp(f) = {α ∈ F : c(α) 6= 0} ⊂ Z
n
+,

and the degree of f ∈ R[x] by

deg(f) = max

{
n∑

i=1

αi : α ∈ supp(f)

}
.

For every nonempty finite set G ⊂ Z
n
+, R[x,G] denotes the set of polynomials in xi (i =

1, 2, . . . , n) whose support is included in G; R[x,G] = {f ∈ R[x] : supp(f) ⊂ G} . Let N =
{1, 2, . . . , n}. Suppose that ∅ 6= C ⊂ N and ω ∈ Z+. Consider the set

AC

ω =

{
α ∈ Z

n
+ : αi = 0 if i 6∈ C and

∑

i∈C

αi ≤ ω

}
.

In the succeeding discussions on sparse SOS relaxations, the set AC

ω serves as the support
of fully dense polynomials in xi (i ∈ C) whose degree is at most ω.

3

2.2 Sums of squares of polynomials

Let G be a nonempty finite subset of Z
n
+. We denote R[x,G]2 the set of sums of squares of

polynomials in R[x,G];

R[x,G]2 =

{
q∑

i=1

g2
i : ∃q ∈ Z+, ∃gi ∈ R[x,G] (i = 1, 2, . . . , q)

}
.

By construction, we see that supp(g) ⊂ G + G if g ∈ R[x,G]2. Here G + G denotes the
Minkovski sum of two G’s; G + G = {α + β : α ∈ G, β ∈ G} . Specifically, we observe that
AC

ω + AC
ω = AC

2ω (N ⊃ ∀C 6= ∅, ∀ω ∈ Z+).
Let R

G denote the |G|-dimensional Euclidean space whose coordinates are indexed by
α ∈ G. Each vector of R

G is denoted as w = (wα : α ∈ G). Although the order of
the coordinates of w = (wα : α ∈ G) is not relevant in the succeeding discussions, we
may assume that the coordinates are arranged according to the lexicographically increasing
order; if 0 ∈ G then w0 is the first element of w ∈ R

G. We use the symbol S(G) for the set
of |G| × |G| symmetric matrices with coordinates α ∈ G; each V ∈ S(G) has elements Vαβ

(α ∈ G, β ∈ G) such that Vαβ = Vβα. Let S+(G) denote the set of positive semidefinite
matrices in S(G);

wT V w =
∑

α∈G

∑

β∈G
Vαβwαwβ ≥ 0 for every w = (wα : α ∈ G) ∈ R

G.

The symbol u(x,G) is used for the |G|-dimensional column vector consisting of elements xα

(α ∈ G), where we may assume that the elements xα (α ∈ G) are arranged in the column
vector according to the lexicographically increasing order of α ∈ G. Then, the sets R[x,G]2

can be rewritten as

R[x,G]2 =
{
u(x,G)T V u(x,G) : V ∈ S+(G)

}
. (1)

For more details, see the papers [5, 28].

3 SOS relaxations of unconstrained polynomial opti-

mization problems

In this section, we consider a POP

minimize f0(x) over x ∈ R
n, (2)

where f0 ∈ R[x] is represented as f0(x) =
∑

α∈F 0

c0(α)xα (∀x ∈ R
n) for some nonempty

finite subset F0 of Z
n
+ and some real numbers c0(α) (α ∈ F0). We assume that c0(α) 6= 0

for every α ∈ F0; hence supp(f0) = F0. Let ζ∗ denote the optimal value of the POP
(2); ζ∗ = inf {f0(x) : x ∈ R

n} . Throughout this section, we assume that ζ∗ > −∞. Then
deg(f0) is an even integer, i.e., deg(f0) = 2ω0 for some ω0 ∈ Z+. Let ω = ω0. By Lemma
in Section 3 of [31], we also know that F0 = supp(f0) ⊂ the convex hull of F e

0, where
Fe

0 = {α ∈ F0 : αi is an even nonnegative integer (i = 1, 2, . . . , n)} .

4

3.1 SOS relaxations

In this subsection, we describe the SOS relaxation of the POP (2) and how the size of the
resulting SOS relaxation is reduced according to the papers [20, 31], which is an important
issue in practice.

In order to apply the SOS relaxation to the POP (2), we first convert the problem into
an equivalent problem

maximize ζ subject to f0(x) − ζ ≥ 0 (∀x ∈ R
n). (3)

It should be noted that only ζ ∈ R is a variable and x ∈ R
n is an index parameter to

represent a continuum number of constraints f0(x) − ζ ≥ 0 (∀x ∈ R
n); hence the problem

above is a semi-infinite programming problem.
If we replace the constraint f0(x) − ζ ≥ 0 (∀x ∈ R

n) in the problem (3) by an SOS
constraint

f0(x) − ζ ∈ R[x,AN
ω]2, (4)

then, we obtain an SOS optimization problem

maximize ζ subject to f0(x) − ζ ∈ R[x,AN
ω]2. (5)

Note that if the SOS constraint (4) is satisfied, then the constraint of (3) holds, but the
converse is not true because a polynomial which is nonnegative over R

n is not necessarily
a sum of squares of polynomials in general [14]. Hence the optimal objective value of the
SOS optimization problem does not exceed the common optimal value ζ∗ of the POPs (2)
and (3). Therefore, the SOS optimization problem (5) serves as a relaxation of the POP
(2). We call the parameter ω ∈ Z+ in (5) the (relaxation) order. We can rewrite the SOS
constraint (4) using the relation (1) as

f0(x) − ζ = u(x,AN
ω)T V u(x,AN

ω) (∀x ∈ R
n) and V ∈ S+(AN

ω). (6)

We call a polynomial f0 ∈ R[x,AN
2ω] sparse if the number of elements in its support

F0 = supp(f0) is much smaller than the number of elements in AN
2ω that forms a support of

fully dense polynomials in R[x,AN
2ω]. When the objective function f0 is a sparse polynomial

in R[x,AN
2ω], the size of the SOS constraint (5) can be reduced by eliminating redundant

elements from AN
ω . In fact, by applying Theorem 1 of [31], AN

ω in the problem (5) can be
replaced by

G0
0 =

(
the convex hull of

{α

2
: α ∈ F e

0

⋃
{0}
})

∩ Z
n
+ ⊂ AN

ω .

Note that {0} is added as the support for the real number variable ζ .
A method that can further reduce the size of the SOS optimization problem by eliminat-

ing redundant elements in G0
0 was proposed by Kojima et al in [20]. We write the resulting

SOS constraint from their method as

f0(x) − ζ ∈ R[x,G∗
0]

2, (7)

where G∗
0 ⊂ G0

0 ⊂ AN
ω denotes the set obtained by applying the method. Preliminary

numerical results were presented in [20] for the problems with |G∗
0| significantly smaller than

5

|G0
0|. However, their method is not robust in the sense that the performance of the method

is not effective for some problems as the followings, which may be considered practically
important problems. If F0 = supp(f0) ⊂ AN

2ω contains n vectors 2ωe1, 2ω0e
2, . . . , 2ωen,

or equivalently, if the objective polynomial function f0 ∈ R[x,AN
2ω] involves n monomials

x2ω
1 , x2ω

2 , . . . , x2ω
n , then G∗

0 becomes fully dense, i.e., G∗
0 = AN

ω . Specifically, even if the
objective polynomial function f0 ∈ R[x]2ω is a separable polynomial of the form

f0(x) =
n∑

i=1

hi(xi) (∀x = (x1, x2, . . . , xn) ∈ R
n), (8)

where each hi(xi) denotes a polynomial in a single variable xi ∈ R with deg(hi(xi)) = 2ω,
we have that G∗

0 = AN
ω . See Proposition 5.1 of [20]

3.2 An outline of sparse SOS relaxations

The focus of this subsection is on how we can deal with the weakness of the method in [20]
mentioned in Section 3.1. We find a certain structure from the correlative sparsity of POPs,
and propose a heuristic method for constructing smaller-sized SOS relaxations of POPs
with the correlative sparsity. Using the structure obtained from the correlative sparsity, we
generate multiple support sets G1,G2, . . . ,Gp ⊂ Z

n
+ such that

F0

⋃
{0} ⊂

p⋃

ℓ=1

(Gℓ + Gℓ) , (9)

and replace the SOS constraint (7) by

f0(x) − ζ ∈
p∑

ℓ=1

R[x,Gℓ]
2, (10)

where

p∑

ℓ=1

R[x,Gℓ]
2 =

{
p∑

ℓ=1

hℓ : hℓ ∈ R[x,Gℓ]
2 (ℓ = 1, 2, . . . , p)

}
. The support of the poly-

nomial f0(x) − ζ on the left side of the constraint above is F0

⋃{0}, while the support of

each polynomial in

p∑

ℓ=1

R[x,Gℓ]
2 on the right side is contained in

p⋃

ℓ=1

(Gℓ + Gℓ). Hence the

inclusion relation (9) is necessary for the SOS constraint (10) to be feasible although it is
not sufficient. If the size of each Gℓ is much smaller than the size of G∗

0 and if the number of
the support sets p is not large, the size of the SOS constraint (10) is smaller than the size
of the SOS constraint (5).

For the problem where the polynomial objective function f0 is given by (8), we have
p = n and Gℓ =

{
ρeℓ : ρ = 0, 1, 2, . . . , ω

}
(ℓ = 1, 2, . . . , n). Here eℓ ∈ R

n denotes the ℓth
unit vector with 1 at the ℓth coordinate and 0 elsewhere. The resulting SOS optimization
problem inherits the separability from the separable polynomial objective function f0, and
is subdivided into n independent subproblems; each subproblem forms an SOS relaxation
of the corresponding subproblem of the POP (2), minimizing hℓ(xℓ) in a single variable.

6

3.3 Correlative sparsity pattern matrix

We consider a sparsity from cross terms xixj (1 ≤ i < j ≤ n) in the objective polynomial
f0 of the unconstrained POP (2). The sparsity considered here is measured by the number
of different kinds of the cross terms in the objective polynomial f0. We will call this type of
sparsity correlative sparsity. The correlative sparsity is represented with the n×n (symbolic,
symmetric) correlative sparsity pattern matrix (abbreviated by csp matrix) R whose (i, j)th
element Rij is given by

Rij =





⋆ if i = j,
⋆ if αi ≥ 1 and αj ≥ 1 for some α ∈ F0 = supp(f0),
0 otherwise

(i = 1, 2, . . . , n, j = 1, 2, . . . , n). Here ⋆ stands for some nonzero element. If the csp
matrix R of f0 is sparse, then f0 is sparse as defined in [20]. But the converse is not true;
for example, the polynomial f0(x) = x2

1x
2
2 · · ·x2

n ∈ R[x,AN
2n] (∀x = (x1, x2, . . . , xn) ∈ R

n)
is sparse by the definition in [20] while its csp matrix is fully dense. We say that f0 is
correlatively sparse if the associated csp matrix is sparse. As was mentioned in Introduction,
the correlative sparsity of an objective function f0(x) is equivalent to the sparsity of its
Hessian matrix with some additional diagonal elements.

Let us consider a few examples. First, we observe that the csp matrix R becomes an
n× n diagonal matrix in the case of the separable polynomial (8).

Suppose that

f0(x) =
n−1∑

i=1

(
aix

4
i + bix

2
ixi+1 + cixixi+1

)
(∀x = (x1, x2, . . . , xn) ∈ R

n) (11)

where ai, bi and ci are nonzero real numbers (i = 1, 2, . . . , n − 1). Then, the csp matrix
turns out to be the n× n tridiagonal matrix

R =




⋆ ⋆ 0 0 . . . 0 0
⋆ ⋆ ⋆ 0 . . . 0 0
0 ⋆ ⋆ ⋆ . . . 0 0
...

. . .
. . .

. . .
...

0 0 ⋆ ⋆ ⋆ 0
0 0 ⋆ ⋆ ⋆
0 0 0 ⋆ ⋆




. (12)

Next, consider

f0(x) =

n−1∑

i=1

(
aix

4
i + bix

2
ixn + cixixn

)
(∀x = (x1, x2, . . . , xn) ∈ R

n), (13)

where ai, bi and ci are nonzero real numbers (i = 1, 2, . . . , n− 1). In this case, we have

R =




⋆ 0 . . . 0 ⋆
0 ⋆ . . . 0 ⋆
...

. . .
...

0 0 . . . ⋆ ⋆
⋆ ⋆ . . . ⋆ ⋆



. (14)

7

3.4 Correlative sparsity pattern graphs

We describe a method to determine the sets of supports G1,G2, . . . ,Gp for the target SOS
relaxation (10) of the unconstrained POP (2). The basic idea is to use the structure of the
csp matrix R and some results from graph theory.

From the csp matrix R, the undirected graph G(N,E) with

N = {1, 2, . . . , n} and E = {{i, j} : i, j ∈ N, i < j, Rij = ⋆}

is called the correlative sparsity pattern graph (abbreviated as csp graph). Let C1, C2, . . .,
Cp ⊂ N denote the maximal cliques of the csp graph G(N,E). Then, choose the sets of
supports G1,G2, . . . ,Gp such that Gℓ = ACℓ

ω (ℓ = 1, 2, . . . , p). We show that the relation (9)
holds. First, we observe that each Gℓ = ACℓ

ω contains 0 ∈ Z
n
+ by definition. Suppose that

α ∈ F0. Then the set C = {i ∈ N : αi ≥ 1} forms a clique of the csp graph G(N,E)
since {i, j} ∈ E for every pair i and j from the set C. Hence there exists an ℓ such that
C ⊂ Cℓ. On the other hand, we know deg(f0) = 2ω by the assumption; hence

∑
i∈C αi ≤ 2ω.

Therefore, we obtain that

α ∈ AC
2ω ⊂ ACℓ

2ω = ACℓ
ω + ACℓ

ω ⊂
p⋃

ℓ=1

(Gℓ + Gℓ) .

However, the method described above for choosing G1,G2, . . . ,Gp has a critical disad-
vantage since finding all maximal cliques of a graph is a difficult problem in general. In
fact, finding a single maximum clique is an NP hard problem. To resolve this difficulty, we
generate a chordal extension G(N,E ′) of the csp graph G(N,E) and use the extended csp
graph G(N,E ′) instead of G(N,E). See [2] for chordal graphs and their basic properties.

Consequently, we obtain a sparse SOS relaxation of the POP (2):

maximize ζ subject to f0(x) − ζ ∈
p∑

ℓ=1

R[x,ACℓ
ω]2, (15)

where Cℓ (ℓ = 1, 2, . . . , p) denote the maximal cliques of a chordal extension G(N,E ′)
of the csp graph G(N,E). Some software packages [1, 16] are available to generate a
chordal extension of a graph. One way of computing a chordal extension G(N,E ′) of the
csp graph G(N,E) and the maximal cliques of the extension is to apply the MATLAB
functions symmmd (the symmetric minimum degree ordering) or symamd (the symmetric
approximate minimum degree permutation), and chol (the Cholesky factorization) to the csp
matrix R with replacing the off-diagonal nonzero elements Rij = Rji = ⋆ by small random
numbers and the diagonal elements Rii by sufficiently large positive random numbers. We
employed the MATLAB functions symamd and chol in the numerical experiments reported
in Section 6. It should be noted that the number of the maximal cliques of G(N,E ′) does
not exceed n, which is equivalent to the number of nodes of the graph G(N,E ′) as well as
to the number of variables of the objective polynomial f0.

In the case (8), the csp graph G(N,E) has no edge, and every maximal clique consist of a
single node. Hence, we have p = n and Cℓ = {ℓ} (ℓ = 1, 2, . . . , n). Either of the csp matrices
given in (12) and (14) induces a chordal graph, and there is no need to extend. The maximal
cliques are Cℓ = {ℓ, ℓ+ 1} (ℓ = 1, 2, . . . , n − 1), and Cℓ = {ℓ, n} (ℓ = 1, 2, . . . , n − 1),
respectively.

8

3.5 Quadratic objective functions

In this subsection, we focus on the POP (2) with ω = deg(f0)/2 = 1, i.e., the unconstrained
minimization of a quadratic objective function:

f0(x) = xT Qx + 2qT x + γ (∀x ∈ R
n), (16)

where Q ∈ Sn, q ∈ R
n and γ ∈ R. In this case, we show that the proposed sparse SOS

relaxation (15) using any chordal extension of the csp graph G(N,E) attains the same
optimal value as the dense SOS relaxation (5). This demonstrates an advantage of using
the set of maximal cliques of a chordal extension of the csp graph G(N,E) instead of the
set of maximal cliques of G(N,E) itself.

Recall that (5) is equivalent to (6). Suppose that (V , ζ) ∈ S+(AN
1) × R is a feasible

solution of (6). If we rewrite (6) for the quadratic objective function (16), we have

(1,xT)

(
γ − ζ qT

q Q

)(
1
x

)
= (1,xT)V

(
1
x

)
(∀x ∈ R

n) and V ∈ S+(AN
1).

Comparing the both sides of the equality above, we know the coefficient matrices coincide:
(
γ − ζ qT

q Q

)
= V ∈ S+(AN

1).

Hence Q needs to be positive semidefinite.
Let ǫ > 0, and I denote the n × n identity matrix. Then, Q + ǫI is positive definite

and the csp matrix R for the quadratic function (16) has the same sparsity pattern as the
matrix Q + ǫI:

Rij =

{
⋆ if Qij + ǫIij 6= 0,
0 if Qij + ǫIij = 0.

Let G(N,E ′) be a chordal extension of the csp graph G(N,E) for the quadratic function
(16). Then the maximal cliques of the chordal extension G(N,E ′) determine all possible
fill-ins when the Cholesky factorization is applied to Q + ǫI under the perfect elimination
ordering induced from the chordal graph G(N,E ′). More specifically, there is an n × n
permutation matrix P corresponding to the perfect elimination ordering and an n×n lower
triangular matrix L(ǫ) such that

P (Q + ǫI) P T = L(ǫ)L(ǫ)T (the Cholesky factorization),

{i ∈ N : L(ǫ)ij 6= 0} ⊂ Cj for some maximal clique Cj of G(N,E ′)

(j = 1, 2, . . . , n).

We assume without loss of generality that P is the identity matrix, i.e., 1, 2, . . . , n itself is
the perfect elimination ordering under consideration.

Now, we show that there exist d ∈ R+, q̃ ∈ R
n, an n× n lower triangular matrix L̃ and

a (1 + n) × (1 + n) matrix M̃ such that

M̃ =

(√
d q̃T

0 L̃

)
, V =

(
γ − ζ qT

q Q

)
= M̃M̃

T
,

{i ∈ N : L̃ij 6= 0} ⊂ Cj (j = 1, 2, . . . , n).



 (17)

9

For each ǫ ∈ (0, 1], let

V (ǫ) =

(
γ − ζ qT

q Q + ǫI

)
and M(ǫ) =

(√
d(ǫ) qT L(ǫ)−T

0 L(ǫ)

)
,

where d(ǫ) = γ− ζ −qT (Q+ ǫI)−1q, which is nonnegative since the matrix V (ǫ) is positive
semidefinite for every ǫ ∈ (0, 1]. Then we observe the identity V (ǫ) = M(ǫ)M (ǫ)T for
every ǫ ∈ (0, 1]. We also see that the norm of jth row vector of the matrix M(ǫ) coincides
with the square root of the ith diagonal element of the matrix V (ǫ); hence it is bounded
uniformly for all ǫ ∈ (0, 1]. Therefore we may take a sequence of ǫ ∈ (0, 1] converging to

zero as the matrix M(ǫ) converges to some M̃ satisfying (17).
Now we obtain by (17) that

f0(x) = (1,xT)

(
γ − ζ qT

q Q

)(
1
x

)

= (1,xT)M̃M̃
T
(

1
x

)

=

n∑

ℓ=1

(
M̃

T

.ℓ+1

(
1
x

))2

+
(√

d
)2

.

Here M̃ .ℓ+1 denotes the (ℓ+ 1)st column of M̃ (ℓ = 1, 2, . . . , n). It should be noted that

each M̃
T

.ℓ+1

(
1
x

)
is an affine function whose support is contained in

ACℓ

1 =

{
α ∈ Z

n
+ : αi = 0 (i 6∈ Cℓ)

∑

i∈Cℓ

αi ≤ 1

}

as a polynomial. Therefore we have shown that the dense SOS relaxation (5) with ω = 1
is equivalent to the sparse SOS relaxation (15) with ω = 1, p = n and Cℓ (ℓ = 1, 2, . . . , p);
if two maximal cliques Ck and Cℓ with k 6= ℓ coincide, only one of them is necessary in the
sparse SOS relaxation (15).

4 SOS relaxations of inequality constrained POPs

We discuss SOS relaxations of inequality constrained POPs using the correlative sparsity
of the objective and constraint polynomials. The sets of supports that decide the SOS
relaxations are determined using the csp matrices constructed from the correlative sparsity
of inequality constrained POPs.

Let fk ∈ R[x] (k = 0, 1, 2, . . . , m). Consider the following POP:

minimize f0(x) subject to fk(x) ≥ 0 (k = 1, 2, . . . , m). (18)

Let ζ∗ denote the optimal value of this problem; ζ∗ = inf{f0(x) : fk(x) ≥ 0 (k =
1, 2, . . . , m)}. With the correlative sparsity of the POP (18), we determine the general-
ized Lagrangian function with the same sparsity and proper sets of supports in an SOS

10

relaxation. A sparse SOS relaxation is proposed in two steps. In the first step, we convert
the POP (18) into an unconstrained minimization of the generalized Lagrangian function
according to the paper [17]. In the second step, we apply the sparse SOS relaxation given
in the previous section for unconstrained POPs to the resulting minimization problem. A
key point of utilizing the correlative sparsity of the POP (18) is that the POP (18) and its
generalized Lagrangian function have the same correlative sparsity.

4.1 Correlative sparsity in inequality constrained POPs

We first investigate correlative sparsity in the POP (18). Let

Fk = {i : αi ≥ 1 for some α ∈ supp(fk)} (k = 1, 2, . . . , m).

Each Fk is regarded as the index set of variables xi’s which are involved in the polynomial
fk. For example, if n = 4 and fk(x) = x3

1 + 3x1x4 − 2x2
4, then Fk = {1, 4}. Define the n× n

(symbolic, symmetric) csp matrix R such that

Rij =





⋆ if i = j,
⋆ if αi ≥ 1 and αj ≥ 1 for some α ∈ supp(f0),
⋆ if i ∈ Fk and j ∈ Fk for some k ∈ {1, 2, . . . , m},
0 otherwise.

When the POP (18) has no inequality constraint or m = 0, the above definition of the csp
matrix R coincides with the one given in the previous section for the objective polynomial
f0. When the csp matrix R is sparse, we call that the POP (18) is correlatively sparse.

4.2 Generalized Lagrangian duals

The generalized Lagrangian function [17] is defined as

L(x,ϕ) = f0(x) −
m∑

k=1

ϕk(x)fk(x) (∀x ∈ R
n and ∀ϕ ∈ Φ),

where

Φ =

{
ϕ = (ϕ1, ϕ2, . . . , ϕm) :

ϕk ∈ R[x,AN
ω]2 for some ω ∈ Z+

(k = 1, 2, . . . , m)

}
.

Then, for each fixed ϕ ∈ Φ, the problem of minimizing L(x,ϕ) over x ∈ R
n serves as a

Lagrangian relaxation problem such that its optimal objective value, which is denoted by
L∗(ϕ) = inf{L(x,ϕ) : x ∈ R

n}, bounds the optimal objective value ζ∗ of the POP (18)
from below.

If our aim is to preserve the correlative sparsity of the POP (18) in the resulting SOS
relaxation, we need to have the Lagrangian function L that inherits the correlative sparsity
from the POP (18). Notice that ϕ can be chosen for this purpose. In [17], Kim, et al.
proposed to choose a polynomial of the same variables as the variables xi (i ∈ Fk) in the
polynomial fk for each multiplier polynomial ϕk; supp(ϕk) ⊂

{
α ∈ Z

n
+ : αi = 0 (i 6∈ Fk)

}
.

11

Let ωk = ⌈deg(fk)/2⌉ (k = 0, 1, 2, . . . , m) and ωmax = max{ωk : k = 0, 1, . . . , m}. For every
nonnegative integer ω ≥ ωmax, define

Φω =
{
ϕ = (ϕ1, ϕ2, . . . , ϕm) : ϕk ∈ R[x,AFk

ω−ωk
]2 (k = 1, 2, . . . , m)

}
.

Here the parameter ω ∈ Z+ serves as the (relaxation) order of the SOS relaxation of the
POP (18) that is derived in the next subsection. Then a generalized Lagrangian dual (with
the Lagrangian multiplier ϕ restricted to Φω) [17] is defined as

maximize ζ subject to L(x,ϕ) − ζ ≥ 0 (∀x ∈ R
n) and ϕ ∈ Φω. (19)

Let L∗
ω denote the optimal value of this problem; L∗

ω = sup {L∗(ϕ) : ϕ ∈ Φω}. Then L∗
ω ≤

ζ∗. If the POP (18) includes the box inequality constraint of the form ρ − x2
i ≥ 0 (i =

1, 2, . . . , n) for some ρ > 0, we know by Theorem 3.1 of [17] that L∗
ω converges to ζ∗ as

ω → ∞. When the feasible region of the POP (18) is bounded, we can add the box
inequality constraint above without destroying the correlative sparsity of the problem.

4.3 Sparse SOS relaxations

We show how a sparse SOS relaxation is formulated using the sets of supports constructed
from the csp matrix R. Let ω ≥ ωmax be fixed. Suppose that ϕ ∈ Φω. Then L(·,ϕ) forms
a polynomial in xi (i = 1, 2, . . . , n) with deg(L(·,ϕ)) = 2ω. We also observe from the
construction of the csp matrix R and Φω that the polynomial L(·,ϕ) has the same csp
matrix as the csp matrix R that we have constructed for the POP (18). As in Section 3.4,
the csp matrix R induces the csp graph G(N,E). By construction, we know that each Fk

forms a clique of the csp graph G(N,E). Let C1, C2, . . . , Cp be the maximal cliques of a
chordal extension G(N,E ′) of G(N,E). Then, a sparse SOS relaxation of the POP (18) is
written as

maximize ζ subject to L(x,ϕ) − ζ ∈
p∑

ℓ=1

R[x,ACℓ
ω]2 and ϕ ∈ Φω. (20)

We call the parameter ω ∈ Z+ the (relaxation) order. Let ζω denote the optimal objective
value of this SOS optimization problem. Then ζω ≤ L∗

ω ≤ ζ∗ for every ω ≥ ωmax, but the
convergence of ζω to ζ∗ as ω → ∞ is not guaranteed in theory.

4.4 Primal approach

We have formulated a sparse SOS relaxation (20) of the inequality constrained POP (18)
in the previous subsection. For numerical computation, we convert the SOS optimization
problem (20) into an SDP, which serves as an SDP relaxation of the POP (18). We may
regard this way of deriving an SDP relaxation from the POP (18) as the dual approach.
We briefly mention below the so-called primal approach to the POP (18) whose sparsity is
characterized by the csp matrix R and the csp graph G(N,E). The SDP obtained from
the primal approach plays an essential role in the Section 5.1 where we discuss how we
compute an optimal solution of the POP (18). We use the same symbols and notation as in

12

Section 4.3. Let ω ≥ ωmax. To derive a primal SDP relaxation, we first transform the POP
(18) into an equivalent polynomial SDP

minimize f0(x)

subject to u(x,AFk
ω−ωk

)u(x,AFk
ω−ωk

)Tfk(x) ∈ S+(AFk
ω−ωk

) (k = 1, 2, . . . , m),
u(x,ACℓ

ω)u(x,ACℓ
ω)T ∈ S+(ACℓ

ω) (ℓ = 1, 2, . . . , p).



 (21)

The matrices u(x,AFk
ω−ωk

)u(x,AFk
ω−ωk

)T (k = 1, 2, . . . , m) and u(x,ACℓ
ω)u(x,ACℓ

ω)T (ℓ =
1, 2, . . . , p) are positive semidefinite symmetric matrices of rank one for any x ∈ R

n, and
has 1 as the element in its upper left corner. These facts ensure the equivalence between
the POP (18) and the polynomial SDP above. Let

F̃ =

(
p⋃

ℓ=1

ACℓ
ω

)
\{0},

S̃ = S(AF1

ω−ω1
) × · · · × S(AFm

ω−ωm
) × S(AC1

ω) × · · · × S(ACp

ω)

(the set of block diagonal matrices of matrices in S(AFk
ω−ωk

)

(k = 1, . . . , m) and S(ACℓ
ω) (ℓ = 1, . . . , p) on their diagonal blocks),

S̃+ =
{
M ∈ S̃ : positive semidefinite

}
.

Then we can rewrite the polynomial SDP above as

minimize
∑

α∈
fF
c̃0(α)xα subject to M(0) +

∑

α∈
fF

M(α)xα ∈ S̃+.

for some c̃0(α) ∈ R (α ∈ F̃), M(0) ∈ S̃ and M(α) ∈ S̃ (α ∈ F̃). Now, replacing each
monomial xα by a single real variable yα, we have an SDP relaxation problem of (18):

minimize
∑

α∈
fF
c̃0(α)yα subject to M(0) +

∑

α∈
fF

M(α)yα ∈ S̃+. (22)

We denote the optimal objective value by ζ̂ω.
The SDP (22) derived above is the dual of the SDP from the SOS optimization problem

(20). We call the SDP (22) primal and the SDP induced from (20) dual. See the paper [17]
for more technical details. If we use the primal-dual interior point method, we can solve
both SDPs simultaneously.

4.5 SOS and SDP relaxations of quadratic optimization problems

with order 1

Consider a quadratic optimization problem (QOP)

minimize xT Q0x + 2qT
0 x

subject to xT Qkx + 2qT
k x + γk ≥ 0 (k = 1, 2, . . . , m).

}
(23)

Here Qk denotes an n×n symmetric matrix (k = 0, 1, 2, . . . , m), qk ∈ R
n (k = 0, 1, 2, . . . , m)

and γk ∈ R (k = 1, 2, . . . , m). Based on the discussions in Section 3.5, we show that the

13

sparse SOS and SDP relaxations with order 1 for the QOP (23) is as effective as the dense
SOS and SDP relaxations for the QOP (23). If we let

γ0 = 0 and Q̃k =

(
γk qT

k

qk Qk

)
(k = 0, 1, 2, . . . , m),

the QOP is rewritten as

minimize Q̃0 •
((

1
x

)
(1, xT)

)

subject to Q̃k •
((

1
x

)
(1, xT)

)
≥ 0 (k = 1, 2, . . . , m).

If we replace the matrix

(
1
x

)
(1, xT), which is quadratic in the vector variable x ∈ R

n,

by a positive semidefinite matrix variable X ∈ S1+n
+ with X00 = 1, we obtain an SDP

relaxation of the QOP (23)

minimize Q̃0 • X subject to Q̃k • X ≥ 0 (k = 1, 2, . . . , m), X ∈ S1+n
+ , X00 = 1.

Here S1+n
+ denotes the set of (1 + n) × (1 + n) positive semidefinite symmetric matrices.

This type of SDP relaxations is rather classical and has been studied in many literatures
[7, 9, etc.]. This is also a special case of the application of the primal SDP relaxation (22)
described in Section 5.1 to the QOP (23) where p = 1, C1 = N and ω0 = 1.

We can formulate this relaxation using sums of squares of polynomials from the dual
side as well. First, consider the Lagrangian dual problem of the QOP (23).

maximize ζ subject to L(x,ϕ) − ζ ≥ 0 (∀x ∈ R
n) and ϕ ∈ R

m
+ , (24)

where L denotes the Lagrangian function such that

L(x,ϕ) = xT

(
Q0 −

m∑

k=1

ϕkQk

)
x + 2

(
q0 −

m∑

k=1

ϕkqk

)T

x −
m∑

k=1

ϕkγk.

Then we replace the constraint L(x,ϕ) − ζ ≥ 0 (∀x ∈ R
n) by a sum of squares condition

L(x,ϕ) − ζ ∈ R[x,AN
1]2 to obtain an SOS relaxation.

maximize ζ subject to L(x,ϕ) − ζ ∈ R[x,AN
1]2 and ϕ ∈ R

m
+ . (25)

Now consider the aggregated sparsity pattern matrix R̃ over the coefficient matrices
Q0,Q1, . . . ,Qm such that

R̃ij =





⋆ if i = j,
⋆ if i 6= j and [Qk]ij 6= 0 for some k ∈ {0, 1, 2, . . . , m},
0 otherwise ,

which coincides with the csp matrix of the Lagrangian function L(·,ϕ) with ϕ ∈ R
m
+ .

It should be noted that R̃ is different from the csp matrix R of the QOP (23); we use

14

R̃ instead of R since we are interested only in sparse SOS and SDP relaxations of order
ω = 1. Let G(N,E ′) be a chordal extension of the csp graph G(N,E) from R̃, and Cℓ

(ℓ = 1, 2, . . . , p) the maximal cliques of G(N,E ′). Then we can apply the sparse relaxation
(15) to the unconstrained minimization of the Lagrangian function L(·,ϕ) with ϕ ∈ R

m
+ .

Thus, replacing R[x,AN
1]2 in the dense SOS relaxation (25) by

p∑

ℓ=1

R[x,ACℓ

1]2, we obtain a

sparse SOS relaxation:

maximize ζ

subject to L(x,ϕ) − ζ ∈
p∑

ℓ=1

R[x,ACℓ

1]2 and ϕ ∈ R
m
+ .





(26)

Note that the Lagrangian function L(·,ϕ) is a quadratic function in x ∈ R
n which results

in the same csp graph G(N,E) for each ϕ ∈ R
m
+ . In view of the discussions given in Section

3.5, the sparse relaxation (26) is equivalent to the dense relaxation (25).

5 Some technical issues

5.1 Computing optimal solutions

We present a technique to compute an optimal solution of the POP (18) that is based on
the following lemma.

Lemma 5.1. Assume that

(a) the POP (18) has an optimal solution,

(b) the SDP (22) with the parameter ω ≥ ωmax has an optimal solution (ŷα : α ∈ F̃),

(c) if (ŷ1
α : α ∈ F̃) and (ŷ2

α : α ∈ F̃) are optimal solutions of the SDP (22) then
ŷ1

ei = ŷ2
ei (i = 1, 2, . . . , n).

Define
x̂ = (x̂1, x̂2, . . . , x̂n), x̂i = ŷei (i = 1, 2, . . . , n). (27)

Then the following two assertions are equivalent.

(d) ζ̂ω = ζ∗,

(e) x̂ is a feasible solution of the POP (18) and f0(x̂) = ζ̂ω; hence x̂ is an optimal solution
of the POP (18).

Proof: Since ζ̂ω ≤ ζ∗ ≤ f0(x) for any feasible solution x of the POP (18), (e) ⇒ (d)

follows. Now suppose that (d) holds. Let (ȳα : α ∈ F̃) be such that

ȳα = x̄α (α ∈ F̃), (28)

where x̄ denotes an optimal solution of the POP (18) whose existence is ensured by (a).

Then (ȳα : α ∈ F̃) is a feasible solution of the SDP (22) having the same objective value

15

as ζ∗ = f0(x̄). Since ζ̂ω = ζ∗ is the optimal value of the SDP (22) by (d), (ȳα : α ∈ F̃)
must be an optimal solution of the SDP (22). By the assumptions (b) and (c), we see
that ŷei = ȳei (i = 1, 2, . . . , n), which together with (27) and (28) imply that x̂i = ŷei =
ȳei = x̄i (i = 1, 2, . . . , n). Hence x̂ is an optimal solution of the POP (18) and (e) follows.

If (a), (b) and (c) are satisfied, Lemma 5.1 shows how we compute an optimal solution
of the POP (18). That is, if (e) holds for x̂ given by (27), then x̂ is an optimal solution of
the POP (18). Otherwise, we have ζ̂ω < ζ∗ although ζ∗ is unknown. In the latter case, we
replace ω by ω + 1 and solve the SDP (22) with a lager relaxation order ω to compute a
tighter lower bound for the objective value of the POP (18) as well as an optimal solution
of the POP (18). Notice that (e) provides a certificate that the lower bound ζ̂ω for the
objective values of the POP (18) attains the exact optimal value ζ∗ of the POP (18).

It is fair to assume the uniqueness of optimal solutions of the POP (18) mathematically,
which implies (c) of Lemma 5.1. When the feasible region of the POP (18) is bounded,
perturbing the objective function slightly with small random numbers makes its solution
unique as we see below. In practice, however, the SDP (22) may have multiple optimal
solutions, even if the POP (18) has a unique optimal solution.

We may assume without loss of generality that the objective polynomial function f0 of
the POP (18) is linear. If f is not linear, we may replace f0(x) by a new variable x0 and
add the inequality constraint f0(x) ≤ x0. Then, for any p ∈ R

n, the problem of minimizing
the perturbed objective function f0(x) + pT x subject to the inequality constraints of the
POP (18) has a unique optimal solution if and only if the perturbed problem with a linear
objective function

minimize x0 + pT x subject to x0 − f0(x) ≥ 0, fk(x) ≥ 0 (k = 1, 2, . . . , m)

has a unique solution. Define

D =
{

(ye1 , ye2 , . . . , yen) ∈ R
n : (yα : α ∈ F̃) is a feasible solution of (22)

}
.

Note that D is a convex subset of R
n since it is a projection of the feasible region of (22)

which is convex. By construction, the SDP (22) is equivalent to the convex program

minimize f0(x) subject to x ∈ D.

We also assume that D is compact. Let ǫ > 0. Then, for almost every p ∈ {r ∈ R
n :

|rj| < ǫ (j = 1, 2, . . . , n)}, the perturbed convex minimization

minimize f0(x) + pT x subject to x ∈ D

has a unique minimizer. See the paper [6] for a proof of this assertion. Therefore, if we
replace the objective function f0(x) by f0(x) + pT x in the POP (18), the corresponding
SDP relaxation (22) satisfies the assumption (a) of Lemma 5.1.

The assumption that D is compact is not considered to be much restrictive when the
feasible region of the POP (18) is bounded. For example, if the feasible region of the POP
(18) lies in a unit box {x ∈ R

n : 0 ≤ xi ≤ 1 (i = 1, 2, . . . , n)}, we can put additional
inequality constraints 0 ≤ yei ≤ 1 (i = 1, 2, . . . , n), which ensure the boundedness of D. In

16

this case, we can further add 0 ≤ yα ≤ 1 (α ∈ F̃) so that the resulting feasible region of
the SDP (22) with these inequalities is bounded and that D is guaranteed to be compact.

In the numerical experiments in Section 6, we add a perturbation pT x, where p =
(p1, p2, . . . , pn)T ∈ R

n and each pi denotes a randomly generated and sufficiently small
number, to the objective function f0(x) of the unconstrained POP (2) and the constrained
POP (18), and apply the SOS and SDP relaxations described in Sections 3 and 4 to the
perturbed unconstrained and constrained POPs, respectively.

5.2 Equality constraints

In this subsection, we deal with a POP (18) with additional equality constraints. Consider
the POP

minimize f0(x)
subject to fk(x) ≥ 0 (k = 1, 2, . . . , m), hj(x) = 0 (j = 1, 2, . . . , q).

}
(29)

Here fk ∈ R[x] (k = 0, 1, 2, . . . , m) and hj ∈ R[x] (j = 1, 2, . . . , q). We can replace each
equality constraints hj(x) = 0 by two inequality constraints hj(x) ≥ 0 and −hj(x) ≥ 0.
Hence we reduce the POP (29) to the inequality constrained POP of the form

minimize f0(x)
subject to fk(x) ≥ 0 (k = 1, 2, . . . , m),

hj(x) ≥ 0, −hj(x) ≥ 0 (j = 1, 2, . . . , q).



 (30)

Let

ωk = ⌈deg(fk)/2⌉ (k = 0, 1, 2, . . . , m),

χj = ⌈deg(hj)/2⌉ (j = 1, 2, . . . , q),

ωmax = max{ωk (k = 0, 1, 2, . . . , m), χj (j = 1, 2, . . . , q)},
Fk = {i : αi ≥ 1 for some α ∈ supp(fk)} (k = 1, 2, . . . , m),

Hj = {i : αi ≥ 1 for some α ∈ supp(hj)} (j = 1, 2, . . . , q).

We construct the csp matrix R and the csp graphG(N,E) of the POP (30). Let C1, C2, . . . ,
Cp be the maximal cliques of a chordal extension of G(N,E), and ω ≥ ωmax. Applying the
SOS relaxation given for the inequality constrained POP (18) in Section 4 to the POP (30),
we have the SOS optimization problem

maximize ζ

subject to f0(x) −
m∑

k=1

ϕk(x)fk(x) −
q∑

j=1

(
ψ+

j (x) − ψ−
j (x)

)
hj(x) − ζ ∈

p∑

ℓ=1

R[x,ACℓ
ω]2,

ϕ ∈ Φω, ψ
+
j , ψ

−
j ∈ R[x,AHj

ω−χj
]2 (j = 1, 2, . . . , q).

Since R[x,AHj

ω−χj
]2 − R[x,AHj

ω−χj
]2 = R[x,AHj

2(ω−χj)
], this problem is equivalent to the SOS

optimization problem

maximize ζ

subject to f0(x) −
m∑

k=1

ϕk(x)fk(x) −
q∑

j=1

ψj(x)hj(x) − ζ ∈
p∑

ℓ=1

R[x,ACℓ
ω]2,

ϕ ∈ Φω, ψj ∈ R[x,AHj

2(ω−χj)
] (j = 1, 2, . . . , q).





(31)

17

We can solve the SOS optimization problem (31) as an SDP with free variables.
When we apply the primal approach to the POP (30), the polynomial SDP (21) is

replaced by

minimize f0(x)

subject to u(x,AFk
ω−ωk

)u(x,AFk
ω−ωk

)Tfk(x) ∈ S+(AFk
ω−ωk

) (k = 1, 2, . . . , m),

u(x,AHj

ω−χj
)u(x,AHj

ω−χj
)Thj(x) = O ∈ S(AHj

ω−χj
) (j = 1, 2, . . . , q),

u(x,ACℓ
ω)u(x,ACℓ

ω)T ∈ S+(ACℓ
ω) (ℓ = 1, 2, . . . , p).





(32)

Since some elements of the symmetric matrix u(x,AHj

ω−χj
)u(x,AHj

ω−χj
)T coincide, the system

of nonlinear equations u(x,AHj

ω−χj
)u(x,AHj

ω−χj
)Thj(x) = O contains multiple identical equa-

tions (j = 1, 2, . . . , q), and hence so does its linearization. To avoid the degeneracy caused
by multiplying of identical equations, we replace it by an equivalent system of nonlinear
equations

u(x,AHj

2(ω−χj)
)hj(x) = 0 (j = 1, 2, . . . , q). (33)

Linearizing the resulting polynomial SDP as in Section 5.1 provides a primal SDP relaxation
of the POP (29). This SDP relaxation problem and the SDP relaxation problem induced
from the SOS optimization problem (31) have the primal-dual relationship.

Since it is not necessary to multiply a positive semidefinite polynomial matrix
u(x,AHj

ω−χj
)u(x,AHj

ω−χj
)T to the equality constraint hj(x) = 0 as we have observed, we can

further modify the primal approach mentioned above. We replace the system of nonlinear
equations (33) by

u(x,AHj

2ω−κj
)hj(x) = 0 (j = 1, 2, . . . , q), (34)

where κj = deg(hj). By the definition of χj , we know that 2(ω−χj) = 2ω−κj −1 if deg(hj)
is odd and 2(ω − χj) = 2ω − κj if deg(hj) is even. Hence, in the former case, the system
of nonlinear equations (34) is a stronger constraint than the system of nonlinear equations
(33), and the degree of the component polynomials in (33) is bounded by 2ω − 1. Note
that the maximum degree of the component polynomials in (34) is 2ω, the same degree
as u(x,ACℓ

ω)u(x,ACℓ
ω)T (ℓ = 1, 2, . . . , p) of (32), in both odd and even cases. Thus this

modification is valid. Even when the original system of polynomial equations hj(x) = 0
(j = 1, 2, . . . , q) is linearly independent, the resulting system (34) can be linearly dependent;
hence so is its linearization. Here we say that a system of polynomial equations gj(x) = 0
(j = 1, 2, . . . , r) is linearly dependent if there exists a nonzero λ = (λ1, λ2, . . . , λr) ∈ R

r

such that
∑r

j=1 λjgj(x) = 0 for all x ∈ R
n, and linearly independent otherwise. In such

a linearly dependent case, we eliminate some redundant equations from the system (34) or
from its linearization.

In the dual approach to the POP (29) having equality constraints, we can replace the

condition ψj ∈ R[x,AHj

2(ω−χj)
] (j = 1, 2, . . . , q) by ψj ∈ R[x,AHj

2ω−κj
] (j = 1, 2, . . . , q) in its

SOS relaxation (31).

5.3 Reducing sizes of SOS relaxations

The method proposed in the paper [20] can be used to reduce the size of the dense SOS
relaxation. It consists of two phases. Let F be the support of a polynomial f . We represent
f as a sum of squares of unknown polynomials φi ∈ R[x,G] (i = 1, 2, . . . , k) with some

18

support G such that f =
∑k

i=1 φ
2. For numerical efficiency, we want to choose a smaller G.

In phase 1, we compute

G0 =
(
the convex hull of

{α

2
: α ∈ F e

})⋂
Z

n
+,

where F e = {α ∈ F : αi is even (i = 1, 2, . . . , n)}. It is known that supp(φi) ⊂ R[x,G0] (i =
1, 2, . . . , k) for any sum of squares representation of f =

∑k
i=1 φ

2
i . In phase 2, we eliminate

redundant elements from G0 that are unnecessary in any sum of squares representation of f .
In the sparse SOS relaxations (15) and (20), we can apply phase 2 of the method with

some modification to eliminate redundant elements from ACℓ
ω (ℓ = 1, 2, . . . , p). Let F denote

the support of a polynomial f which we want to represent as

f =

p∑

ℓ=1

ψℓ for some ψℓ ∈ R[x,Gℓ]
2 (ℓ = 1, 2, . . . , p). (35)

The polynomial f corresponds to f0 − ζ in the sparse SOS relaxation of the problem (3),
or equivalently, to the unconstrained POP (2), and it also corresponds to L(·,ϕ) − ζ with
ϕ ∈ Φω in the problem (19) that is equivalent to the constrained POP (18). In both cases, we
assume that the family of supports Gℓ = ACℓ

ω (ℓ = 1, 2, . . . , p) is sufficient to represent f as
in (35); hence phase 1 is not implemented. Let Fe = {α ∈ F : αi is even (i = 1, 2, . . . , n)}.
For each α ∈ ⋃p

ℓ=1 Gℓ, we check whether the following relations are true.

2α 6∈ F e and 2α 6∈
p⋃

ℓ=1

{β + γ : β ∈ Gℓ, γ ∈ Gℓ, β 6= α}

If an α ∈ Gℓ satisfies these two relations, we can eliminate α from Gℓ and continue this
process until no α ∈ ⋃p

ℓ=1 Gℓ satisfies these two relations. See the paper [20] for more
details.

5.4 Supports for Lagrange multiplier polynomials ϕk (k = 1, 2, . . . , m)

When the generalized Lagrangian dual (19) and the sparse SOS relaxation (20) are described
in Section 4, each multiplier polynomial ϕk is chosen from SOS polynomials with the support
AFk

ω−ωk
to inherit the correlative sparsity from the original constrained POP (18). We show

a way to take a larger support to strengthen the SOS relaxation (20) while maintaining
the same correlative sparsity. For each k, let Jk = {ℓ : Fk ⊂ Cℓ} (k = 1, 2, . . . , m), where
C1, C2, . . . , Cp denote the maximal cliques of a chordal extension G(N,E ′) of the csp graph
G(N,E) induced from the POP (18). We know by construction that Fk ⊂ Cℓ for some
ℓ = 1, 2, . . . , p. Hence Jk 6= ∅. Then we may replace the support AFk

ω−ωk
of SOS polynomials

for ϕk by ACℓ
ω−ωk

for some ℓ ∈ Jk in the sparse SOS relaxation (20). By this modification, we
strengthen the SOS relaxation (20) while keeping the same sparsity as the chordal extension
G(N,E ′) of the csp graph G(N,E); the csp graph of the modified Lagrangian function may
change but G(N,E ′) remains to be a chordal extension of the csp graph induced from the
modified Lagrangian function. We may replace AFk

ω−ωk
by AC

ω−ωk
for some union C of sets

Cℓ (ℓ ∈ Jk). This modification may destroy the correlative sparsity of G(N,E ′) but the
resulting SOS relaxation is still spare whenever C is a small subset of N .

19

5.5 Polynomial valid inequalities and their linearization

By adding appropriate polynomial valid inequalities to the constrained POP (18), we can
strengthen its SDP relaxation (22). This idea has been used in many convex relaxation
methods. See the paper [19] and the references therein. We consider two types of polynomial
valid inequalities that occur frequently in practice. These inequalities are used for some
test problems in the numerical experiments in Section 6. Suppose that (18) involves the
nonnegative and upper bound constraints on all variables: 0 ≤ xi ≤ ρi (i = 1, 2, . . . , n),

where ρi denotes a nonnegative number (i = 1, 2, . . . , n). In this case, 0 ≤ xα ≤ ρα (α ∈ F̃)
forms valid inequalities, where ρ = (ρ1, ρ2, . . . , ρn) ∈ R

n. Therefore we can add their
linearizations 0 ≤ yα ≤ ρα to the primal SDP relaxation (22). The complementarity
condition xixj = 0 is another example. If αi ≥ 1 and αj ≥ 1 in this case for some α ∈ Z

n
+,

then xα = 0 forms a valid equality; hence we can add yα = 0 to the primal SDP relaxation
or we can reduce the size of the primal SDP relaxation by eliminating the variable yα = 0.

5.6 Scaling

High degree of polynomials in POPs can cause numerical problems. Introducing appropriate
scaling techniques may resolve numerical difficulty. We explain how a proper scaling of
objective and constrained polynomials helps achieve numerically stability in the SOS and
SDP relaxations. Notice that the polynomial SDP (21) is equivalent to the unconstrained
POP (18) and induces the primal SDP relaxation (22). Even when the degrees of objective
and constrained polynomials are small, (21) involves high degree monomials as the order
ω gets larger; for example, monomial xα of degree 8 appears in (22) if ω = 4. Note that
each variable yα corresponds to a monomial xα. More precisely, if x is a feasible solution
of the POP (18), then (yα : α ∈ F̃) is a feasible solution of the primal SDP relaxation
(22) with the same objective value as (18). Therefore, if the magnitudes of some nonzero
components of a feasible (or optimal) solution x of (18) are much larger (or smaller) than

1, the magnitude of some components of the corresponding solution (yα : α ∈ F̃) can be
huge (or tiny). This may be the source of numerical difficulties; for example, if n = 3,
x1 = 1000, x2 = 1000, x3 = 0.1, α = (2, 2, 0) and β = (0, 0, 4) then yα = 1012 and
yβ = 10−4. To avoid such unbalanced magnitudes in the components of feasible (or optimal)
solutions of the primal SDP relaxation (22), it would be ideal to scale the POP (18) so that
the magnitudes of all nonzero components of optimal solutions of the scaled problem are
near 1. Practically such an ideal scaling is impossible unless we know optimal solutions in
advance.

Here we restrict our discussion to a POP of the form (18) with additional finite lower
and upper bound constraints on variables xi (i = 1, 2, . . . , n):

ηi ≤ xi ≤ ρi (i = 1, 2, . . .), (36)

where ηi and ρi denote real numbers such that ηi < ρi (i = 1, 2, . . . , n). In this case, we can
perform a linear transformation to the variables xi (i = 1, 2, . . . , n) such that

zi = (xi − ηi)/(ρi − ηi) (i = 1, 2, . . . , n).

Then we have objective and constrained polynomials gk ∈ R[z] (k = 0, 1, 2, . . . , m) such

20

that

gk(z1, z2, . . . , zn)

= fk((ρ1 − η1)z1 + η1, (ρ2 − η2)z2 + η2, . . . , (ρn − ηn)zn + ηn)

for every z = (z1, z2, . . . , zn) ∈ R
n.

We further normalize the coefficients of each polynomial gk ∈ R[z] such that

g′k(z) = gk(z)/νk for every z = (z1, z2, . . . , zn) ∈ R
n.

Here νk denotes the maximum magnitude of the coefficients of the polynomial gk ∈ R[z]
(k = 0, 1, 2, . . . , m). Conequently, we obtain a scaled POP which is equivalent to the POP
(18) with the additional bounding constraint (36) on variables xi (i = 1, 2, . . . , n).

minimize g′0(z)
subject to g′k(z) ≥ 0 (k = 1, 2, . . . , m), 0 ≤ zi ≤ 1 (i = 1, 2, . . . , n).

}
(37)

We note that the scaled POP (37) provides the same csp matrix as the original POP (18).

Furthermore, we can add the constraints 0 ≤ yα ≤ 1 (α ∈ F̃) to its primal SDP (22) to
strengthen the relaxation.

6 Numerical results

In this section, we present numerical results obtained from implementing the proposed
sparse relaxation for unconstrained and constrained problems. The focus is on verifying
the efficiency of the proposed sparse relaxation compared with the dense relaxation in [23].
The sparse and dense relaxations were implemented with MATLAB for constructing SDP
problems and then a software package SeDuMi was used to solve the SDP problems. All
the experiments were done on 2.4GHz Xeon cpu with 6.0 GB memory.

Various unconstrained and constrained optimization problems are used as test problems.
Unconstrained problems that we dealt with, as shown in Section 6.1, are benchmark test
problems from [4, 22, 27] and randomly generated test problems with artificial correlative
sparsity. Constrained test problems whose results are presented in Section 6.2 are some
problems from [10], optimal control problems [3], the maxcut problems, and randomly
generated problems with artificial correlative sparsity.

We employ the techniques described in Section 5.1 for finding an optimal solution when
testing the problems. In particular, we use the random perturbation techniques with the
parameter ǫ = 10−5 in all the experiments presented here. After an optimal solution ŷ of
an SDP relaxation of the POP is found by SeDuMi, the linear part x̂ is considered as a
candidate of an optimal solution of the POP based on lemma 5.1.

With regard to computing the accuracy of an obtained solution, we use the following for
an unconstrained POP with an objective function f0.

ǫobj =
|the optimal value of SDP − (f0(x̂) + pT x̂)|

max{1, |f0(x̂) + pT x̂|} .

Here p ∈ R
n denotes a randomly generated perturbation vector such that |pj| < ǫ = 10−5

(j = 1, 2, . . . , n). If this value is close to 0, we decide that an optimal solution of the original

21

unconstrained POP is obtained, and the POP is solved. For an inequality and equality
constrained POP of the form (29), we need another measure for feasibility in addition to
ǫobj defined above. The following feasibility measure is used.

ǫfeas = min {fk(x̂) (k = 1, . . . , m), −|hj(x̂) (j = 1, . . . , q)|} .
We regard x̂ as feasible for the original POP if this value is nonnegative, or close to 0.

We use the technique given in Section 5.2 for equality constraints and the technique in
Section 5.3 for reducing the size of an SOS relaxation in all test problems. In addtion, we
apply the rest of the techniques presented in Sections 5.4, 5.5 and 5.6 to constrained test
problems from the literature [10]. Some of the problems are badly scaled, and some others
involve the complementarity condition in their constraints. The techniques in Sections 5.4,
5.5 and 5.6 are actually motivated by resolving severe numerical difficulties arised from
solving the dense and sparse relaxations of those problems.

Table 1 shows notation used in the description of numerical experiments in the following
subsections. The notation cl.str shows the structure of the maximal cliques obtained by
applying MATLAB functions ’symamd’ and ’chol’ to the csp matrix. For example, 4*3+5*2
means three cliques of size 4 and two cliques of size 5.

n the number of variables of a POP
d the degree of a POP

sparse cpu time in seconds consumed by the proposed sparse relaxation
dense cpu time in seconds consumed by the dense relaxation [23]
cl.str the structure of the maximal cliques

#clique the average number of cliques found in randomly generated problems
#solved the number of problems that could be solved among randomly generated

problems
#notSol the number of problems that could not be solved among randomly generated

problems
max.cl the number of the maximal cliques
max the maximum of cpu time consumed by randomly generated problems
avr the average of cpu time consumed by randomly generated problems
min the minimum of cpu time consumed by randomly generated problems
cpu cpu time in seconds
ω the relaxation order

Table 1: Notation

6.1 Unconstrained cases

We show the numerical results for unconstrained problems. The problems presented here
are from the literatures [4, 22, 27] and randomly generated problems.

Table 2 displays the numerical results of the following two functions.

• The chained singular function [4]:

fcs(x) =
∑

i∈J

(
(xi + 10xi+1)

2 + 5(xi+2 − xi+3)
2 + (xi+1 − 2xi+2)

4 + 10(xi − 10xi+3)
4
)

22

where J = {1, 3, 5, . . . , n− 3} and n is a multiple of 4.

• The Broyden banded function [22]:

fBb(x) =
n∑

i=1

(
xi(2 + 5x2

i) + 1 −
∑

j∈Ji

(1 + xj)xj

)2

where Ji = {j | j 6= i,max(1, i− 5) ≤ j ≤ min(n, i+ 1)}.
The above two problems of relatively small size could be solved by the dense relaxation

as shown in Table 2, and their results can be used for the comparison of the performance
of the sparse and dense relaxations. In the case of the chained singular function fcs, its csp
matrix R has nonzero elements near the diagonal, i.e., Rij = 0 if |j − i| > 3. This means
that fcs is correlatively sparse. The ‘cl.str’ column of Table 2 proves that the sparsity can
be detected correctly. As a result, the sparse relaxation is much more efficient than the
dense relaxation. We could successfully solve the problem of 100 variables in a few seconds,
while the dense relaxation could not handle the problem of 20 variables.

If we look at the result of the Broyden banded function fBb in Table 2, we observe
that there is virtually no difference in performance between the proposed sparse and dense
relaxations for n = 6 and n = 7. Because the csp matrix of this function has the band-
width 7, it is fully dense when n = 6 and n = 7; the sparse relaxation is identical to the
dense relaxation in these cases.

As n increases, however, a sparse structure such as 7*2 for n = 8 can be found and the
sparse relaxation takes advantage of the structured sparsity providing an optimal solution
faster than the dense relaxation. We could not obtain an optimal solution for n = 9, 10
since SeDuMi failed to solve the SDP problem of the sparse relaxation. In this case, we
applied SDPA to the SDP problem and obtained an optimal solution in 200 and 600 seconds,
respectively. The reason of failure in SeDuMi is unknown. SeDuMi also failed to solve the
dense relaxation for n = 10 as a result of out of memory.

chained singular Broyden banded
n cl.str ǫobj sparse dense n cl.str ǫobj sparse dense

12 3*10 1.1e-09 0.7 404.2 6 6*1 9.1e-10 20.5 20.4
16 3*14 9.0e-10 0.9 7523.1 7 7*1 2.4e-09 127.7 127.5
40 3*38 1.7e-09 2.1 — 8 7*2 4.2e-09 255.1 620.4
80 3*78 2.9e-04 1.8 — 9 7*3 1.0e+00 117.3. 3408.2

100 3*98 3.6e-04 2.2 — 10 7*4 1.0e+00 155.4 —

Table 2: Numerical results of the chained singular function and the Broyden banded function

In Tables 3, we present the numerical results of the following functions:

• The Broyden tridiagonal function [22]

fBt(x) = ((3 − 2x1)x1 − 2x2 + 1)2 +
n−1∑

i=2

((3 − 2xi)xi − xi−1 − 2xi+1 + 1)2

+ ((3 − 2xn)xn − xn−1 + 1)2 .

23

• The chained wood function [4]:

fcw(x) = 1 +
∑

i∈J

(
100(xi+1 − x2

i)
2 + (1 − xi)

2 + 90(xi+3 − x2
i+2)

2 + (1 − xi+2)
2

+10(xi+1 + xi+3 − 2)2 + 0.1(xi+1 − xi+3)
2
)
,

where J = {1, 3, 5, . . . , n− 3} and n is a multiple of 4.

• The generalized Rosenbrock function [27]:

fgR(x) = 1 +

n∑

i=2

{
100

(
xi − x2

i−1

)2
+ (1 − xi)

2
}
.

Each of the above three functions has a band structure in its csp matrix, and therefore,
the problems of large sizes can be handled efficiently. For example, the Broyden tridiagonal
function fBt with 500 variables could be solved in 11.2 seconds with the accuracy of 6.3e-
09. Without utilizing the correlative sparsity of the functions, it is not possible to obtain
optimal solutions of the smallest-sized problem in Table 3, as we experienced with the dense
relaxation in the previous two problems. Note that the solutions are accurate in all tested
cases.

Broyden tridiagonal chained wood generalized Rosenbrock
n cl.str ǫobj sparse cl.str ǫobj sparse cl.str ǫobj sparse

100 3*98 4.1e-9 2.4 2*99 3.9e-7 0.4 2*99 2.6e-5 0.9
200 3*198 5.4e-6 4.7 2*199 8.1e-7 0.7 2*199 1.6e-5 1.8
300 3*298 5.0e-9 6.6 2*299 1.2e-6 1.1 2*299 3.0e-5 2.5
400 3*398 1.1e-8 11.0 2*399 1.6e-06 1.4 2*399 1.2e-4 3.3
500 3*498 6.3e-9 10.2 2*499 2.1e-6 1.7 2*499 4.3e-5 4.5

Table 3: Numerical results of Broyden tridiagonal function, the chained wood function and
the generalized Rosenbrock function

Next, we present the numerical results of randomly generated problems. The aim of the
test using randomly generated problems is to observe the effects of increasing the number
of variables, the degree of the polynomials as well as the maximal size of cliques of the csp
graph of a POP. The dense relaxation could not handle the randomly generated problems of
the sizes reported here, and we include only the numerical results from the sparse relaxation.

Let us describe how an unconstrained problem with artificial correlative sparsity is gen-
erated randomly. We begin by constructing a chordal graph randomly such that the size of
every maximal clique is not less than 2 and not greater than max.cl. From the chordal graph,
we derive the set of maximal cliques {C1, . . . , Cℓ} with 2 ≤ |Ci| ≤ max.cl (i = 1, . . . , ℓ). We
let vCi

(x) = (xd
k: k ∈ Ci) where 2d is the degree of the polynomial, and generate a positive

definite matrix V i ∈ S++(Ci) and a vector gi ∈ [−1, 1]#A
Ci
2d−1 (i = 1, 2, . . . , ℓ) randomly

such that the minimum eigenvalue σ of V 1, . . . ,V ℓ satisfies the following relation:

σ ≥
ℓ∑

i=1

(
‖gi‖2

√
#ACi

2d−1

)
.

24

By using V i and gi, we define the objective function:

frand(x) =
ℓ∑

i=1

(
vCi

(x)T V ivCi
(x) + gT

i u(x,ACi

2d−1)
)
.

It is easy to see that this unconstrained POP is guaranteed to have an optimal solution in
the compact set {x = (x1, . . . , xn) ∈ R

n | maxi=1,...,n |xi| ≤ 1}. A scaling with the maximum
of the absolute values of the coefficients of frand(x) is used in numerical experiments.

The numerical results are shown in Tables 4, 5 and 6. Table 4 exhibits how the sparse
relaxation performs for varying number of variables, Table 5 for raising the degree of the
unconstrained problems, and Table 6 for increasing bounds of sizes of the cliques. For each
choice of n, d and max.cl, we generated 50 problems. Each column of #solved indicates the
number of the problems whose optimal solutions were obtained with ǫobj ≤ 10−5 out of 50
problems. We mention that all problems tested were solved.

n #clique max avr min #solved
20 14.0 1.4 0.5 0.3 50/50
40 28.7 3.1 1.3 0.7 50/50
60 43.0 6.0 2.5 1.2 50/50
80 57.1 30.4 6.1 2.0 50/50

100 71.7 19.1 6.5 2.7 50/50

Table 4: Randomly generated polynomials with max.cl= 4 and d = 4

d #clique max avr min #solved
4 21.3 2.0 0.9 0.5 50/50
6 21.0 168.4 15.2 1.9 50/50
8 21.4 1693.4 128.9 3.0 50/50

Table 5: Randomly generated polynomials with max.cl= 4, and n = 30

max.cl #clique max avr min #solved
4 21.3 2.0 0.9 0.5 50/50
6 18.3 91.1 8.4 1.3 50/50
8 16.9 825.8 121.4 4.4 50/50

Table 6: Randomly generated polynomials with d = 4 and n = 30

In Table 4, we notice that the number of cliques increases with n. For problems of
large numbers of variables and cliques such as n = 100 and #clique= 71.74, the sparse
relaxation provides optimal solutions in most cases. The rate of success in obtaining an
optimal solution remains relatively unchanged for increasing n.

The numerical results in Table 5 displays the performance of the sparse relaxation for
the problem of n = 30 with degrees up to 8. The maximum size of cliques is fixed to 4. As

25

mentioned before, the size of the SDP relaxation of the POP of increasing degree becomes
large rapidly even if the POP remains correlatively sparse. When d = 8, the average cpu
time is 128.9 and the maximum is 1693.4.

A large size of cliques used when a problem is generated also increases the complexity
of the problem as shown in Table 6. We tested with the maximum size of cliques 4, 6, and
8, and observe that cpu time to solve the corresponding problems grows very rapidly, e.g.
121.4 average cpu seconds, 825.8 maximum cpu seconds for max.cl = 8. From the increase
of work measured by cpu time, we mention that the impact of the maximum size of cliques
is comparable to that of degree, and bigger than that of the number of variables.

6.2 Constrained cases

In this subsection, we deal with the following constrained POPs:

• Small-sized POPs from the literature [10].

• Optimal control problems.

• Randomly generated maxcut problems.

• Randomly generated POPs.

The numerical results are presented in Tables 7 and 8. All the problems are quadratic
optimization problems (QOPs) except ’alkyl’ which involves polynomials of degree 3 in its
equality constraints. In preliminary numerical experiment for some of the test problems, we
encountered severe numerical difficulties for badly-scaled problems and/or problems with
the complementarity condition. We incorporate all the techniques in Sections 5.4, 5.5
and 5.6 into the dense and sparse relaxations for these problems. Specifically, we replaced
each support AFk

ω−ωk
for the Lagange multiplier polynomial ϕk by the union C of all cliques

Cℓ containing Fk as mentioned in Section 5.5, and added finite lower and upper bounds to
all the variables of each problem so that the scaling technique and the valid inequalities of
the form 0 ≤ yα ≤ 1 given in Section 5.6 can work effectively. In addition, all the equality
constraints were converted to two inequality constraints such that

f(x) = 0 =⇒ f(x) ≥ 0 and − f(x) + κ ≥ 0,

where κ = 10−5. Without these techniques, we could not solve many of the problems in
Tables 7 and 8.

The problems in Table 7 have known optimal values, hence, we compare the lower
bounds obtained by the sparse or dense relaxation to their optimal value in column ǫopt,
which denotes

ǫopt =
|the optimal value of SDP − the known optimal value of POP|

max{1, |the optimal value of POP|} .

In all cases, the sparse and dense relaxations attain reasonable accuracy with ǫopt ≤ 5.0e-2.
ǫ′feas denotes the feasibility for the scaled problems at the approximate optimal solutions
obtained by the sparse and dense relaxations. We see that ǫ′feas is small in most of the
problems while the feasibility ǫfeas for the original problems at the approximate optimal

26

solutions becomes larger. The lower bounds obtained by the sparse relaxation are as good
as the ones by the dense relaxation except the four problems ex5 2 2 cases1, 2, 3 and ex5 3 2.
In the former three cases, the dense relaxation succeeds in computing accurate bounds while
the sparse relaxation with order ω = 3 computes accurate bounds with the same quality.

The problems in Table 8 have no known optimal value or their best known optimal values
are turned out to be inaccurate. The column SDPval denotes the lower bounds obtained by
the sparse or dense relaxation. In all cases, the attained accuracy ǫobj and feasibility ǫ′feas
for the scaled problems are very small. Hence we can conclude that the column SDPval
provides tight lower bounds for the optimal values of the test problems.

When we compare the performance of the sparse relaxation with the dense relaxation
using these problems in Tables 7 and 8, we observe that the sparse relaxation are much
faster than the dense relaxation in large dimensional problems.

We should also mention that the technique given in Section 5.3 for reducing sizes of
relaxations worked very effectively. For example, the sparse and dense relaxations of ex2 1 3
without incorporating this technique took 2.6 and 351.6 seconds, respectively, while 0.9 and
13.6 seconds were consumed with this technique, respectively, as shown in Table 7.

We present numerical results from the discrete-time optimal control problems in [3]. The
problem tested first (5 of [3]) is

min

M−1∑

i=1

(
ny∑

j=1

(
yi,j +

1

4

)4

+

nx∑

j=1

(
xi,j +

1

4

)4
)

+

ny∑

j=1

(
yM,j +

1

4

)4

subject to yi+1 = Ayi + Bxi + (yT
i Cxi)e (i = 1, . . . ,M − 1), y1 = 0

yi ∈ R
ny , (i = 1, . . . ,M), xi ∈ R

nx , (i = 1, . . . ,M − 1)





(38)

where A ∈ny×ny , B ∈ R
ny×nx , and C ∈ R

ny×nx are given by:

Ai,j =





0.5 if j = i,
0.25 if j = i+ 1,
−0.25 if j = i− 1,

Bi,j =
i− j

ny + nx

Ci,j = µ
i+ j

ny + nx

,

respectively. Here, e denotes a vector of ones in R
ny .

The numerical results of the problem (38) are shown in Table 9, 10 and 11, which
display the results of the problem (38) with (nx, ny, µ) = (2, 4, 0), the problem (38) with
(nx, ny, µ) = (2, 4, 0.5) and the problem (38) with (nx, ny, µ) = (1, 2, 1), respectively. The
values of nx, ny and M determine the size of the problem and µ is a parameter in Ci,j. The
relaxation order 2 was used for all cases. As we increase M from 6 to 30, the number of
variables becomes bigger as indicated in the column of n. In all cases, the optimal solutions
are obtained with good accuracy.

Depending on the choice of µ, it results in different clique structures and the size of
the resulting SDP varies. This size can affect greatly the performance of the relaxations.
When we take µ = 0 in (38), the constraints are linear since C = O. Then, the cliques has
smaller number of elements than the ones from the constraints with nonlinear terms, which
enables the sparse relaxation to perform better in terms of cpu time. To see this, compare
the column of cl.str of Table 9 with that of Table 10. For example, when M = 30 in Table
9, it took 135.9 cpu seconds to have an optimal solution whereas 712.0 seconds in Table 10.
Similarly, if we compare Table 10 and 11, we notice that the size of the cliques in Table 11
is half the size in Table 10, while the cpu time of Table 11 is less than 1/100 times than the

27

sp
ar

se
d
en

se
p
ro

b
le

m
n

ω
ǫ o

p
t

ǫ o
b
j

ǫ f
ea

s
ǫ′ fe

a
s

cp
u

ǫ o
p
t

ǫ o
b
j

ǫ f
ea

s
ǫ′ fe

a
s

cp
u

ex
2

1
1

5
2

0.
5e

-0
1

1.
9e

+
00

0.
0e

+
00

0.
0e

+
00

0.
2

0.
5e

-0
1

1.
9e

+
00

0.
0e

+
00

0.
0e

+
00

0.
2

ex
2

1
1

5
3

9.
3e

-1
0

3.
0e

-0
6

0.
0e

+
00

0.
0e

+
00

1.
8

6.
6e

-0
6

3.
0e

-0
6

0.
0e

+
00

0.
0e

+
00

1.
9

ex
2

1
2

6
2

4.
6e

-0
6

3.
3e

-1
1

-3
.2

e-
10

1.
6e

-1
1

0.
2

4.
6e

-0
6

4.
4e

-1
1

0.
0e

+
00

0.
0e

+
00

0.
3

ex
2

1
3

13
2

1.
3e

-0
6

5.
1e

-0
9

-3
.5

e-
09

-4
.4

e-
10

0.
5

1.
3e

-0
6

1.
6e

-0
9

-1
.5

e-
09

-1
.8

e-
10

7.
7

ex
2

1
4

6
2

2.
2e

-0
6

2.
4e

-1
2

-4
.7

e-
11

-2
.9

e-
12

0.
3

2.
2e

-0
6

2.
4e

-1
2

-4
.6

e-
11

-2
.9

e-
12

0.
3

ex
2

1
5

10
2

3.
7e

-0
9

4.
4e

-1
1

-5
.4

e-
10

-6
.2

e-
11

1.
9

3.
7e

-0
9

4.
4e

-1
1

-5
.4

e-
10

-6
.2

e-
11

1.
8

ex
3

1
1

8
2

0.
7e

-0
1

0.
0e

+
00

-4
.7

e+
04

-5
.8

e-
02

0.
6

0.
7e

-0
1

0.
0e

+
00

-4
.6

e+
04

-5
.8

e-
02

2.
6

ex
3

1
1

8
3

6.
3e

-0
9

0.
0e

+
00

-6
.5

e-
02

-2
.2

e-
08

5.
5

2.
2e

-0
7

0.
0e

+
00

-2
.0

e-
01

-6
.9

e-
08

59
7.

8
ex

3
1

2
5

2
3.

0e
-0

6
9.

9e
-1

1
-1

.4
e-

07
-4

.6
e-

09
0.

7
3.

0e
-0

6
9.

9e
-1

1
-1

.4
e-

07
-4

.6
e-

09
0.

7
ex

5
2

2
ca

se
1

9
2

0.
1e

-0
1

0.
0e

+
00

-3
.2

e+
01

-1
.3

e-
04

1.
8

1.
6e

-0
5

0.
0e

+
00

-2
.1

e-
01

-8
.4

e-
07

3.
4

ex
5

2
2

ca
se

1
9

3
6.

6e
-0

4
0.

0e
+

00
-2

.3
e-

01
-9

.1
e-

07
29

5.
9

—
—

—
—

—
ex

5
2

2
ca

se
2

9
2

0.
1e

-0
1

0.
0e

+
00

-7
.2

e+
01

-2
.9

e-
04

2.
1

1.
3e

-0
4

0.
0e

+
00

-2
.7

e-
01

-1
.1

e-
06

3.
5

ex
5

2
2

ca
se

2
9

3
5.

8e
-0

4
0.

0e
+

00
-8

.9
e-

01
-3

.6
e-

06
33

2.
9

—
—

—
—

—
ex

5
2

2
ca

se
3

9
2

0.
3e

-0
1

0.
0e

+
00

-6
.7

e+
01

-2
.7

e-
04

1.
9

1.
6e

-0
5

0.
0e

+
00

-1
.1

e-
01

-4
.4

e-
07

2.
6

ex
5

2
2

ca
se

3
9

3
2.

8e
-0

4
0.

0e
+

00
-6

.0
e+

00
-2

.4
e-

05
33

6.
5

—
—

—
—

—
ex

5
3

2
22

2
0.

3e
-0

1
0.

0e
+

00
-4

.1
e+

00
-1

.4
e-

02
53

.2
2.

7e
-0

5
0.

0e
+

00
-1

.7
e-

06
-5

.7
e-

09
21

20
.6

ex
5

4
2

8
2

0.
5e

+
00

0.
0e

+
00

-4
.3

e+
05

-4
.3

e-
02

0.
6

0.
5e

+
00

0.
0e

+
00

-4
.3

e+
05

-4
.3

e-
02

2.
4

ex
5

4
2

8
3

5.
2e

-0
6

0.
0e

+
00

-3
.2

e-
01

-3
.2

e-
08

8.
3

5.
8e

-0
6

0.
0e

+
00

-8
.1

e-
01

-8
.1

e-
08

75
7.

42
ex

9
1

1
13

2
6.

2e
-0

6
0.

0e
+

00
-4

.5
e-

06
-1

.1
e-

08
1.

5
6.

2e
-0

6
0.

0e
+

00
-9

.2
e-

07
-2

.3
e-

09
7.

7
ex

9
1

2
10

2
5.

6e
-0

6
0.

0e
+

00
-4

.1
e-

06
-1

.7
e-

07
2.

8
5.

6e
-0

6
0.

0e
+

00
-2

.6
e-

07
-1

.0
e-

08
2.

1
ex

9
1

5
13

2
2.

3e
-0

4
0.

0e
+

00
-7

.2
e-

05
-2

.9
e-

06
1.

0
2.

3e
-0

4
0.

0e
+

00
-5

.0
e-

05
-2

.0
e-

06
7.

6
ex

9
1

8
14

2
7.

9e
-0

6
0.

0e
+

00
-4

.1
e-

01
-4

.1
e-

02
1.

3
7.

9e
-0

6
0.

0e
+

00
-4

.1
e-

01
-4

.1
e-

02
20

.2
ex

9
2

1
10

2
2.

2e
-0

5
1.

3e
-0

6
-4

.9
e-

05
-3

.5
e-

07
1.

2
2.

2e
-0

5
6.

8e
-0

8
-3

.2
e-

06
-2

.1
e-

08
2.

5
ex

9
2

2
10

2
3.

0e
-0

4
1.

0e
-0

5
-5

.2
e+

00
-1

.3
e-

02
1.

6
2.

5e
-0

4
8.

6e
-0

6
-3

.2
e+

01
-7

.9
e-

02
6.

0
ex

9
2

2
10

3
2.

1e
-0

4
5.

3e
-0

6
-8

.0
e-

01
-2

.0
e-

03
36

.0
2.

9e
-0

4
7.

6e
-0

6
-2

.5
e+

01
-6

.4
e-

02
15

92
.4

ex
9

2
5

8
2

2.
3e

-0
6

6.
2e

-0
7

-8
.0

e-
06

-8
.0

e-
08

0.
6

2.
5e

-0
6

7.
2e

-0
8

-1
.2

e-
06

-1
.2

e-
08

0.
9

ex
9

2
6

16
2

2.
0e

-0
4

1.
2e

-0
5

-1
.6

e+
03

-4
.1

e-
02

0.
9

2.
0e

-0
4

7.
2e

-0
6

-3
.8

e+
03

-9
.5

e-
02

69
.1

ex
9

2
6

16
3

2.
0e

-0
4

9.
8e

-0
6

-9
.3

e+
02

-2
.3

e-
02

8.
6

—
—

—
—

—
ex

9
2

7
10

2
2.

3e
-0

5
4.

7e
-0

7
-2

.0
e-

05
-1

.3
e-

07
1.

3
2.

2e
-0

5
2.

2e
-0

9
-4

.0
e-

07
-2

.7
e-

09
2.

6
ex

9
2

8
6

2
7.

7e
-0

6
7.

9e
-0

7
-4

.2
e-

06
-1

.0
e-

08
0.

4
8.

2e
-0

6
2.

5e
-0

7
-3

.6
e-

06
-9

.0
e-

09
0.

4

T
ab

le
7:

T
h
e

re
su

lt
s

on
so

m
e

p
ro

b
le

m
s

in
[1

0]
w

h
os

e
op

ti
m

al
va

lu
e

is
k
n
ow

n
.

28

sp
ar

se
d
en

se
p
ro

b
le

m
n

ω
S
D

P
va

l
ǫ o

b
j

ǫ f
ea

s
ǫ′ fe

a
s

cp
u

S
D

P
va

l
ǫ o

b
j

ǫ f
ea

s
ǫ′ fe

a
s

cp
u

al
k
y
l

14
2

-2
.4

2e
+

00
2.

0e
-0

3
-2

.5
e-

01
-1

.1
e-

02
6.

7
-2

.4
1e

+
00

7.
3e

-0
6

-3
.2

e-
02

-1
.3

e-
03

65
.7

al
k
y
l

14
3

-2
.4

1e
+

00
9.

0e
-0

9
-3

.0
e-

08
-8

.3
e-

10
52

16
.2

—
—

—
—

—
ex

2
1

8
24

2
1.

56
e+

04
1.

0e
-0

5
0.

0e
+

00
0.

0e
+

00
30

4.
6

1.
56

e+
04

3.
4e

-0
6

0.
0e

+
00

0.
0e

+
00

19
46

.6
ex

9
2

3
16

2
1.

85
e+

01
0.

0e
+

00
-5

.7
e-

06
-9

.6
e-

10
2.

3
1.

85
e+

01
0.

0e
+

00
-7

.5
e-

06
-1

.2
e-

09
49

.7
ex

9
2

4
8

2
3.

96
e+

00
7.

5e
-0

4
-3

.1
e-

02
-7

.8
e-

07
1.

5
3.

97
e+

00
2.

7e
-0

4
-1

.6
e-

02
-4

.0
e-

07
1.

8
st

b
p
af

1a
10

2
-4

.5
4e

+
01

5.
5e

-0
8

-8
.5

e-
09

-4
.7

e-
11

1.
4

-4
.5

4e
+

01
7.

6e
-0

9
-2

.8
e-

09
-1

.5
e-

11
1.

9
st

b
p
af

1b
10

2
-4

.3
0e

+
01

3.
8e

-0
8

-2
.8

e-
08

-2
.0

e-
10

1.
0

-4
.3

0e
+

01
4.

6e
-0

9
-7

.2
e-

10
-1

.7
e-

11
1.

7
st

e0
5

5
2

7.
05

e+
03

0.
0e

+
00

-2
.2

e+
00

-1
.9

e-
09

0.
3

7.
05

e+
03

0.
0e

+
00

-2
.3

e-
01

-2
.0

e-
10

0.
4

st
e0

7
10

2
-1

.8
1e

+
03

0.
0e

+
00

-8
.1

e-
05

-4
.0

e-
09

0.
4

-1
.8

1e
+

03
0.

0e
+

00
-8

.8
e-

06
-4

.4
e-

10
3.

0
st

jc
b
p
af

2
10

2
-7

.9
5e

+
02

1.
1e

-0
7

0.
0e

+
00

0.
0e

+
00

2.
1

-7
.9

5e
+

02
1.

1e
-0

7
0.

0e
+

00
0.

0e
+

00
2.

0

T
ab

le
8:

N
u
m

er
ic

al
re

su
lt

s
fo

r
sm

al
l-
si

ze
d

p
ro

b
le

m
s

w
it

h
u
n
k
n
ow

n
op

ti
m

al
va

lu
es

fr
om

th
e

li
te

ra
tu

re
s

[1
0]

.

29

cpu time of Table 10. This shows how much efficiency can be improved using appropriate
clique structures.

M n cl.str ǫobj ǫfeas cpu
6 30 4*1+5*4+6*2+7*3+8*6 2.5e-10 -6.9e-11 15.7

12 66 4*1+5*4+6*2+7*9+8*18 9.0e-10 -8.2e-11 45.4
18 102 4*1+5*4+6*2+7*15+8*30 5.0e-09 -2.1e-10 73.6
24 138 4*1+5*4+6*2+7*21+8*42 1.0e-08 -2.8e-10 96.1
30 174 4*1+5*4+6*2+7*27+8*54 7.9e-09 -1.2e-10 135.7

Table 9: Numerical results for the problem (38) with (nx, ny, µ) = (2, 4, 0). The relaxation
order ω = 2.

M n cl.str ǫobj ǫfeas cpu
6 30 5*2+7*4+10*3 1.8e-09 -6.3e-10 76.7

12 66 5*2+7*4+10*9 2.9e-09 -7.7e-10 223.5
18 102 5*2+7*4+10*15 1.1e-09 -3.5e-10 369.4
24 138 5*2+7*4+10*21 3.2e-09 -1.0e-09 518.0
30 174 5*2+7*4+10*27 3.5e-09 -8.1e-10 663.7

Table 10: Numerical results for the problem (38) with (nx, ny, µ) = (2, 4, 0.5). The relaxation
order ω = 2.

The second problem (5 of [3]) is

min
1

M

M−1∑

i=1

(
y2

i + x2
i

)

subject to yi+1 = yi + 1
M

(y2
i − xi), (i = 1, . . . ,M − 1), y1 = 1.





(39)

Table 12 shows the results of (39) for various M . From the column cl.str, we notice that the

M n cl.str ǫobj ǫfeas cpu
6 15 2*1+4*2+5*3 1.3e-09 -3.9e-11 0.5

12 33 2*1+4*2+5*9 1.8e-09 -3.0e-11 1.1
18 51 2*1+4*2+5*15 6.9e-09 -7.2e-11 1.7
24 69 2*1+4*2+5*21 1.0e-08 -1.1e-10 2.4
30 87 2*1+4*2+5*27 1.2e-08 -9.9e-11 3.0

Table 11: Numerical results for the problem (38) with (nx, ny, µ) = (1, 2, 1). The relaxation
order ω = 2.

set of cliques has very few elements. The sparse relaxation can solve large-sized problems
since they have plenty of correlative sparsity. In fact, the sparse relaxation provides an
optimal solutions for the problems with almost 2000 variables, where the size of clique is 2

30

or 3. It should be noted that the problem (39) is a QOP and that the relaxation order 1 was
used. In view of the discussion given in Section 5.4, the sparse relaxation is theoretically
guaranteed to provide bounds with the same quality as the dense relaxation in all the cases
of Table 12.

M n cl.str ǫobj ǫfeas cpu
600 1198 2*1+3*598 3.4e-08 -2.2e-10 3.4
700 1398 2*1+3*698 2.5e-08 -8.1e-10 3.3
800 1598 2*1+3*798 5.9e-08 -1.6e-10 3.8
900 1798 2*1+3*898 1.4e-07 -6.8e-10 4.5

1000 1998 2*1+3*998 6.3e-08 -2.7e-10 5.0

Table 12: Numerical results from problem (39). The relaxation order ω = 1.

We now consider the maxcut problem. Suppose that an undirected graph G = (V,E) is
given, where V = {1, . . . , n} is the set of nodes and E is the set of edges, respectively. For
a subset S ⊆ V , a set of edges {{i, j} ∈ E|i ∈ S, j 6∈ S} is called a cut. Then the maxcut
problem is to find a cut that has the maximum number of edges. We formulate the maxcut
problem as an equality constrained POP:

maximize
∑

i∈V,j∈V

(1 − xixj)/2

subject to x2
i = 1 (i ∈ V).



 (40)

See [9] or [26] for details of this formulation.
In [24] and [25], it is shown that a further reduction of the variables is possible in the

SOS relaxation if we deal with the integer equality constraints directly. However, we do not
use this technique because the purpose of this experiment is to estimate the effect of using
correlative sparsity of POPs. To incorporate techniques only useful for integer programming
is not the subject of this paper.

The csp matrix of (40) has the same sparsity pattern as the adjacency matrix of G with
the diagonal. Therefore, the sparse relaxation can be applied efficiently when the chordal
extension of the graph is sparse. To obtain such a sparse graph, we generate edges in a band
of the matrix. Specifically, we use two parameters, band-width b and rate r to generate a
random graph. We first connect nodes i and i + 1 (i = 1, 2, . . . , n − 1), and then nodes i
and j such that 1 < |i− j| ≤ b with probability r. In this experiment, we choose b = 7, and
r = 0.3333. Each node has about six edges on average with this parameter selection.

Notice that in Tables 13 and 14, n, the number of variables of POP, is equal to the size of
nodes. For each size of nodes, we performed 10 trials. A problem is considered to be solved
when ǫobj < 10−3 and ǫfeas < 10−3. The relaxation order is fixed to 2, which was decided by
some preliminary experiments on what value of relaxation order should be used to obtain
solutions. Most of the small-sized problems in Table 13 could be solved to the optimum
with the relaxation order 2 and none of the problems was solved with the relaxation order 1.

We observe in Table 13 that the cpu time is significantly reduced for the sparse relaxation
compared with the dense relaxation. In all problems, the optimal values of the dense and
sparse relaxations coincide up to 9 digits, although theoretically this is not ensured for the
sparse relaxation with the relaxation order 2.

31

We can also see that the sparse relaxation is less influenced by the size of the graph,
while in the dense relaxation, the difference in the size of nodes by just one is critical to the
cpu time.

sparse dense
n #clique max ave min max ave min #solved #notSol

10 5.9 1.3 0.7 0.3 32.9 28.4 20.8 10/10 0/10
11 6.5 2.8 1.1 0.4 136.7 84.3 50.8 9/10 1/10
12 7.4 2.0 1.1 0.3 305.4 181.8 127.4 10/10 0/10
13 7.8 4.6 1.8 0.8 863.7 443.3 257.6 9/10 1/10
14 8.9 3.0 1.8 0.8 1627.7 1003.7 540.9 9/10 1/10
15 9.6 4.0 2.3 0.9 2456.3 1975.4 1274.0 10/10 0/10

Table 13: Numerical results from the maxcut problem. The relaxation order ω = 2.

Table 14 shows the results of the sparse relaxation with larger size of nodes. The problem
with 120 nodes can be solved in less than 300 seconds on average. The average cpu time
increases by O(n1.6) approximately. However, the accuracy of the solution deteriorates as
the size of nodes increases.

n #clique max avr min #solved #notSol
60 47.2 15.9 41.5 15.9 7/10 3/10
80 64.0 136.3 71.6 29.6 2/10 8/10

100 79.5 213.2 96.1 49.2 1/10 9/10
120 95.3 218.0 134.4 75.8 1/10 9/10

Table 14: Sparse relaxation with increasing number of nodes in the maxcut problem. The
relaxation order ω = 2.

Finally, we present the numerical results from randomly generated constrained problems:

min
ℓ∑

j=1

fT
j u(x,ACj

2d)

subject to vCj
(x)T V jvCj

(x) + gT
j u(x,ACj

2d−1) ≤ 0 (j = 1, . . . , ℓ),





(41)

where the set {C1, . . . , Cℓ} is a set of maximal cliques generated in the same way as randomly
generated unconstrained test problems, vCj

(x) = (xd
k: k ∈ Cj), f j are randomly generated in

[−1, 1]#A
Cj
2d , and positive definite matrices V j ∈ S++(Cj) and gj (j = 1, . . . , ℓ) are randomly

generated such that the minimum eigenvalue of V j is greater than ‖gj‖ ×
√

#ACj

2d−1.

The value of the relaxation order needs to be chosen prior to solving a problem. However,
its proper value is not known in many problems. As mentioned in Secion 5.2, raising the
relaxation order gradually provides more accurate solutions, but it takes increasingly longer
to solve. In this experiment, the problem is solved with an initial relaxation order, and if it
is successful to get a solution within required accuracy, it is regarded as solved. Otherwise,

32

the relaxation order is raised by 1 and the problem is tried again. We generated 10 problems
for each choice of n. In every experiment, the tolerance for both ǫobj and ǫfeas is set to 10−5,
and the initial relaxation order 2. For the problems that could not be solved, we increase
the relaxation order by 1, and apply the sparse relaxation again. As shown in Table 17,
for n = 10, 7 out of 10 problems were tried again with increased relaxation order 3. It is
important to solve the problem with low relaxation order because increasing the relaxation
order by 1 needs a great deal of additional cpu time. This repetitive strategy is appropriate
when proper relaxation order is not known in advance.

n ω #clique max avr min #solved #notSol
10 2 6.4 0.5 0.3 0.2 4/10 6/10

3 1.1 0.7 0.3 6/6 0/6
20 2 14.0 1.1 0.7 0.5 0/10 10/10

3 4.7 3.0 1.8 9/10 1/10
4 37.3 37.3 37.3 0/1 1/1

30 2 21.6 1.7 1.0 0.6 0/10 10/10
3 30.1 8.7 2.6 8/10 2/10
4 67.7 58.1 48.5 0/2 2/2

40 2 28.7 2.1 1.5 0.9 0/10 10/10
3 43.6 17.2 4.1 9/10 1/10
4 595.8 595.8 595.8 1/1 0/1

50 2 36.5 3.5 2.0 1.4 0/10 10/10
3 151.1 40.5 8.0 7/10 3/10
4 4320.2 3101.3 677.3 1/3 2/3

Table 15: Problem (41) with max.cl = 4 and d = 4

It is shown in Tables 15, 16, and 17 that approximately 80 % of the problems were solved
by raising the relaxation order except the case n = 50 in Table 15. There remained some
problems that could not be solved by the sparse relaxation. The main reason of the failure
is that the obtained optimal solutions were not within the required accuracy. For example,
for n = 50 in Table 15, six problems could not be solved with the accuracy 1.0e-5. However,
the worst accuracy obtained among the six problems was 4.5e-4. This leads us to say that
the sparse relaxation gives at least good lower bounds for these problems.

From all numerical experiments in the previous and this subsections, we have observed
that the sparse relaxation is much faster than the dense relaxation while giving relatively
accurate solutions. The sparse relaxation can handle large POPs with more than hundred
variables, which is not possible for the dense relaxation. The correlative sparsity has been
the key to solve such large problems.

7 Concluding discussions

Solving POPs has been investigated by focusing on the sparsity of the POPs. The struc-
tured sparsity called correlative sparsity of POPs has been defined as a special type of

33

cpu time
d ω #clique max avr min #solved #notSol
4 2 10.4 0.5 0.4 0.2 2/10 8/10

3 3.1 1.5 0.6 7/8 1/8
4 24.5 24.5 24.5 1/1 0/1

6 3 9.7 8.7 2.7 1.1 0/10 10/10
4 137.9 28.7 4.8 9/10 1/10
5 86.7 86.7 86.7 0/1 1/1

Table 16: Problem (41) with max.cl = 4 and n = 15

max.cl ω #clique max avr min #solved #notSol
4 2 10.4 0.5 0.4 0.2 2/10 8/10

3 3.1 1.5 0.6 7/8 1/8
4 24.5 24.5 24.5 1/1 0/1

6 3 8.3 6.1 2.8 0.6 2/10 8/10
4 870.5 344.6 4.2 8/8 0/8

Table 17: Problem (41) with d = 4 and n = 15

sparsity and utilized to propose efficient sparse SOS and SDP relaxations. Specifically, it is
shown that the sparse relaxation of order 1 approximates the optimal value of QOPs with
correlative sparsity with the same accuracy as the dense relaxation of order 1. We have
also addressed some technical issues such as computing optimal solutions from an attained
optimal solutions of the sparse SDP relaxation and how to formulate SDP relaxations for
POPs with equality constraints. The performance of the proposed sparse SDP relaxation
has been tested with various unconstrained and constrained problems and proved to have
computational advantage over the dense relaxation. In particular, the proposed sparse re-
laxation was successful to efficiently handle some unconstrained and constrained problems
that were impossible to obtain optimal solutions with the dense relaxation, e.g. the gener-
alized Rosenblock function with dimension n = 500 and a QOP with dimension n = 1998
arising from discrete optimal control. This demonstrates the efficiency and effectiveness of
the proposed sparse relaxation for POPs with correlative sparsity.

The proposed sparse relaxation for a correlative sparse POP leads to an SDP that can
maintain the sparsity for primal-dual interior-point methods. This is based on the fact
that if a POP to be solved is correlatively sparse, the resulting SDP relaxation inherits
the structured sparsity. In each iteration of a primal-dual interior-point method for solving
an SDP, a square system of linear equations, which is often called the Schur complement
equation, is solved to compute a search direction. The coefficient matrix of this system
is positive definite and fully dense in general even when all data matrices of an SDP to
be solved are sparse. However, the sparse SDP relaxation of a correlatively sparse POP
possesses sparsity in the coefficient matrix. This is an important advantage of the proposed
sparse relaxation. Indeed, the coefficient matrix of the Schur complement equation in most
of SDPs solved in Section 6 is sparse. Among software packages implementing primal-

34

dual interior-point methods, SeDuMi [33] handles SDPs with this sparsity in the coefficient
matrix of the Schur complement equation and provides solutions with efficiency while the
current version of SDPA [34] developed by the authors’ group is not equipped with the sparse
Cholesky factorization for the Schur complement equation, showing slow performance for
POPs with the correlative sparsity. This is the main reason that SeDuMi has been a choice
of the numerical experiments instead of SDPA.

We encountered severe numerical difficulties during preliminary numerical experiments.
The techniques presented in Section 5 were very effective to overcome the difficulties and to
enhance the performance of the sparse and dense relaxations. The three problems ex9 1 4,
‘haverly’ and ‘house’ from [10], however, could not be solved because of numerical troubles
resulted from SeDuMi. The failure has to be investigated more rigorously, but some SDPs
generated as relaxations of POPs may be very difficult to solve. Additional techniques
to resolve this difficulty are to be developed. The size of the SDP relaxation of a POP
continue to play an an important role to obtain a solution successfully, although applying
the sparse relaxation reduces the size of the resulting SDP significantly compared with that
of the dense relaxation. As mentioned, increasing the dimension n and/or the degree d of
polynomials in a POP makes the size of the resulting SDP larger. Furthermore, even when
n and d are small, the relaxation order and/or the size of the maximum cliques can increase
the size of the SDP significantly. Reducing the size of the SDP further is a key remaining
issue to solve more challenging POPs.

References

[1] C. Ashcraft, D. Pierce, D. K. Wah and J. Wu, “The reference manual for SPOOLES,
release 2.3: An object oriented software library for solving linear systems of equations,”
Boeing Shared Services Group, Seattle, WA, January 1999.

[2] J. R. S. Blair and B. Peyton, “An introduction to chordal graphs and lieque trees,”
In: A. George, J. R. Gilbert and J. W. H. Liu des, Graph Theory and Sparse Matrix
Computation, Springer, New York, pp.1-29, 1993.

[3] T. F. Coleman and A. Liao, “An efficient trust region method for unconstrained
discrete-time optimal control problems”, Comp.Opt.Appl., 4 (1995) 47–66

[4] A. R. Conn, N. I. M. Gould and P. L. Toint, “Testing a class of methods for solving
minimization problems with simple bounds on the variables”, Math.Comp., 50 (1988)
399–430

[5] M. D. Choi, T. Y. Lam, and B. Reznick, “Sums of squares of real polynomials”,
Proceedings of Symposia in Pure Mathematics, 58 (1995) 103-126.

[6] G.Ewald, D.G.Larman and C.A.Rogers, “The directions of the line segments and of the
r-dimensional balls on the boundary of a convex body in Euclidean space”, Mathematica
17 (1970) 1-20.

[7] T. Fujie and M. Kojima, “Semidefinite programming relaxation for nonconvex
quadratic programming”, Journal of Global Optimization, 10 (1997) 367-380.

35

[8] M. Fukuda, M. Kojima, K. Murota and K. Nakata, “Exploiting sparsity in semidef-
inite programming via matrix completion I: General framework,” SIAM Journal on
Optimization, 11 (2000) 647-674.

[9] M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming”, Journal of
Assoc. Compute. Mach., 42 (1995) 1115-1145.

[10] GLOBAL Library, http://www.gamsworld.org/global/globallib.htm

[11] D. Henrion and J. B. Lasserre, “GloptiPoly: Global optimization over polynomials with
Matlab and SeDuMi”, Laboratoire d’Analyse et d’Architecture des Syst‘emes, Centre
National de la Recherche Scientifique, 7 Avenue du Colonel Roche, 31 077 Toulouse,
cedex 4, France, February 2002.

[12] D. Henrion and J. B. Lasserre, “Detecting global optimality and extracting solutions in
GloptiPoly”, LAAS-CNRS Research Report No. 93541, October 2003. (To appear as a
contributed chapter in the book D. Henrion, A. Garulli(Editors). Positive polynomials
in control. Lecture Notes on Control and Information Sciences, Springer Verlag, to
appear in 2004.)

[13] D. Henrion and J. B. Lasserre, “A convergence hierarchy of LMI relaxations for poly-
nomial matrix inequalities”, Laboratoire d’Analyse et d’Architecture des Syst‘emes,
Centre National de la Recherche Scientifique, 7 Avenue du Colonel Roche, 31 077
Toulouse, cedex 4, France, August 2004.

[14] D. Hilbert, “Über die Darstellung definiter Formen als Summe von Formenquadraten”,
em Math. Ann., 32 (1888) 342-350; see Ges. Abh., 2 (1933) 154-161, Springer, Berlin,
reprinted by Chelsea, New York, 1981.

[15] C.W. J. Hol and C.W. Scherer, Sumof squares relaxations for polynomial semidefinite
programming, Proc. Symp. onMathematical Theory of Networks and Systems (MTNS),
Leuven, Belgium, 2004.

[16] G. Karypis and V. Kumar, “METIS — A software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing ordering of sparse ma-
trices, version 4.0 —,” Department of Computer Science/Army HPC Research Center,
University of Minnesota, Minneapolis, MN, September, 1998.

[17] S. Kim, M. Kojima and H. Waki, “Generalized Lagrangian duals and sums of squares
relaxations of sparse polynomial optimization problems”, Research Report B-395,
Dept. of Mathematical and computing Sciences, Tokyo Institute of Technology, Me-
guro, Tokyo 152-8552, September 2003. Revised July 2004. To appear in SIAM Journal
on Optimization.

[18] M. Kojima, “Sums of squares relaxations of polynomial semidefinite programs,” Re-
search Report B-397, Dept. of Mathematical and computing Sciences, Tokyo Institute
of Technology, Meguro, Tokyo 152-8552, November 2003.

36

[19] M. Kojima, S. Kim and H. Waki, “A general framework for convex relaxation of
polynomial optimization problems over cones”, Journal of Operations Research Society
of Japan, 46 2 (2003) 125-144.

[20] M. Kojima, S. Kim and H. Waki, “Sparsity in sums of squares of polynomials”, Re-
search Report B-391, Dept. of Mathematical and computing Sciences, Tokyo Institute
of Technology, Meguro, Tokyo 152-8552, June 2003. Revised June 2004. To appear in
Mathematical Programming.

[21] M. Kojima and M. Muramatsu, “An extension of sums of squares relaxations to poly-
nomial optimization problems over symmetric cones,” Research Report B-406, Dept. of
Mathematical and computing Sciences, Tokyo Institute of Technology, Meguro, Tokyo
152-8552, April 2004.

[22] J. J. More, B. S. Garbow and K. E. Hillstrom, “Testing Unconstrained Optimization
Software”, ACM Trans. Math. Soft., 7, (1981) 17–41

[23] J. B. Lasserre, “Global optimization with polynomials and the problems of moments”,
SIAM Journal on Optimization, 11 (2001) 796–817.

[24] J. B. Lasserre, “An explicit equivalent positive semidefinite program for nonlinear 0-1
programs”, SIAM Journal on Optimization, 12 (2002) 756–769.

[25] M. Laurent, “A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relax-
ations for 0-1 programming”, Mathematics of Operations Research, 28 (2003) 470–496.

[26] M. Muramatsu and T. Suzuki, “A New Second-Order Cone Programming Relaxation
for MAX-CUT Problems”, Journal of Operations Research of Japan ,46 (2003) 164–
177.

[27] S. G. Nash, “Newton-Type Minimization via the Lanczos method”, SIAM J.Numer.
Anal.,21 (1984) 770–788.

[28] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic problems”,
Mathematical Programming, 96 (2003) 293-320.

[29] S. Prajna, A. Papachristodoulou and P. A. Parrilo, “SOSTOOLS: Sum of Squares
Optimization Toolbox for MATLAB – User’s Guide”, Control and Dynamical Systems,
California Institute of Technology, Pasadena, CA 91125 USA, 2002.

[30] M. Putinar, “Positive polynomials on compact semi-algebraic sets”, Indiana University
Mathematics Journal, 42 (1993) 969–984.

[31] B. Reznick, “Extremal psd forms with few terms”, Duke Mathematical Journal, 45

(1978) 363-374.

[32] M. Schweighofer, “Optimizationof polynomials on compact semialgebraic sets”, Work-
ing paper, Universitat Konstanz, Fachbereich Mathematik und Statstik, 78457 Kon-
stanz, Allemagne, Germany, April 2004.

37

[33] J. F. Strum, “SeDuMi 1.02, a MATLAB toolbox for optimizatin over symmetric cones”,
em Optimization Methods and Software, 11 & 12 (1999) 625-653.

[34] M. Yamashita, K. Fujisawa and M. Kojima, “Implementation and evaluation of SDPA
6.0 (SemiDefinite Programming Algorithm 6.0)”, Optimization Methods and Software,
18 (2003) 491-505.

38

