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Abstract

In this paper, we propose a Markov model that represents size-sequences of two kinds of packets for networks
supporting reliable transmission window protocols such as TCP: 1) packets generated from messages by a sender
at the original transmission (namely, generated packets) and 2) packets contained in frames (i.e., data-link level
PDUs) transferred over data-links (referred to as transferred packets). This analytical model makes it possible to
discuss the effect of the retransmitted packet size preservation (RPSP) property, which means that all sizes of
transferred packets with the same sequence number at retransmissions are equal to that of the original transmission
(identical to the generated packet-size). The effect of RPSP is noticeable in networks where the size distribution of
generated packets has a considerable variation and transferred packets are frequently lost with a rate that depends
on the packet size as in a network environment with bit-errors. Hence, we present analytical expressions of the
mean generated packet size taking message-segmentation function into consideration and of the mean transferred
packet size representing RPSP in the environment where bit-errors occur according to the Bernoulli bit-error model.
Furthermore, we demonstrate numerical results when message sizes are exponentially distributed, where explicit
expressions can be obtained for various different bit-error rates, retransmission schemes, window sizes, and payload
sizes. Among the key findings is the the fact that RPSP cannot be negligible in the following case, where 1) selective
retransmission or go-back-N retransmission with small window sizes is performed, 2) the message-segmentation
occurrence probability is relatively small, and 3) the bit error rate is high (e.g., 1× 10−4 that is the mean bit-error
rate of a wireless link in an industrial environment).

Key words – TCP, Reliable transmission window protocol, Packet size sequence, Bernoulli bit-errors, Retransmitted
packet size preservation property, Message-segmentation

I. INTRODUCTION

Data transfers over the Internet suffer from corruption of protocol data units (PDUs) due to bit-errors and losses
caused by congestion. To provide an error-free transmission service for reliable applications like the transfer of
the Web pages by HTTP (hypertext transfer protocol) over such networks, it is necessary for each station (or host)
to use communication protocols that include flow-control and error-recovery functions. For example, each station
implements one or more reliable transmission protocols based on the sliding-window mechanism (referred to as
reliable transmission window protocols: RWPs1).

The packets (i.e., RWP-layer PDUs) corrupted/lost within the network are retransmitted by the error-recovery
function specified in the RWP. In general, such retransmitted packets with the same sequence number are equal in
size to the packet in the original transmission. We call this property retransmitted packet size preservation: RPSP.
The effect of RPSP on RWP performance will appear in some cases. In particular, this effect clearly exists when
the transferred packets, which are the packets contained in frames transferred over data-links, are frequently lost

1Typical data link protocols categorized into RWPs are HDLC (high-level data link control) [1], IrLAP (infrared link access protocol)
[2] and LLC2 (logical link control type 2) [3], and a typical transport protocol is TCP-Reno/NewReno/SACK [4]–[6].



with a rate that depends on the packet size, as in wireless link environments, and the size distribution of generated
packets, which are packets generated from a message at the original transmission, has a considerable variation,
resulting in the distribution of transferred packet sizes being markedly different from that of generated packet
sizes.

However, in previous work on RWP performance analysis over links with bit-errors, such as [7], [8] for HDLC-
based protocols and [9]–[11] for TCP, the effect of RPSP was ignored. In [7], [8], the generated packet sizes are
assumed to be constant, although message-sizes (and hence generated packet sizes) are revealed to have a significant
variation (this can be seen for example in HTTP-traffic observations reported in [12]). On the other hand, for the
performance model presented in [10], the transferred packet sizes are assumed to be independently distributed
in each transferred packet (re)transmission, regardless of RPSP. In this paper, we analyze the size-sequence of
transferred packets given by the distribution of the generated packet sizes, taking into account the effect of RPSP
caused by the error-recovery function, for network environments interconnected by links with Bernoulli bit-errors.

Some RWPs such as TCP include a message-segmentation function that allows an RWP-sender to divide a
message larger than the payload size (or maximum segment size in TCP/IP terminology) into multiple generated
packets. This function imposes constraints on the generated packet size, weakens the effect of RPSP. Here, we
propose a Markov model for the size-sequence of generated packet sizes that captures the behavior of the message
segmentation.

The rest of the paper is organized as follows. In the next section, we describe the communication system model
underlying our study. In Section III, the distribution and mean of the size-sequence of generated packets are derived
from a given distribution of message sizes. Section IV derives the distribution and mean of the size-sequence of
transferred packets using the generated packet size distribution. Section V demonstrates some numerical results
when message-sizes are assumed to be exponentially distributed. In this case, explicit expressions of the mean sizes
of the generated and transferred packets can be obtained. In this Section, we also investigate the effect of RPSP
on the ratio of the mean size of transferred packets to that of generated packets for different RWP-retransmission
schemes (i.e., selective retransmission and go-back-N retransmission), window sizes, and payload size versus
bit-error rates. Section VI summarizes the paper and mentions future work.

II. COMMUNICATION SYSTEM MODEL

In this section, we first explain the three-layered wireless communication system model under consideration.
Next, the model of PDUs exchanged between peer entities at the same layer are described. Then, we discuss the
ways to implement message-segmentation function. To model the effect of RPSP, we further explain the packet
terminology introduced in this paper. Finally, we describe the frame-loss model adopted in this paper.

A. Layer model

We consider a communication system where two stations (a sender and a receiver) are interconnected through
a link that experiences bit-errors. A conceptual representation of the communication system is shown in Fig. 1.
Each station is constructed of three layers: an RWP layer (a layer carrying out a specified RWP), a higher layer
(i.e., a layer including several RWP applications), and a lower layer pertaining to a wireless link driver.

B. PDU model

We define PDUs used throughout this paper as follows:

Messages: PDUs that are generated by a traffic source at the sending-side higher layer with a given
size-distribution, and terminated by a corresponding sink at the receiving-side higher layer.
Packets: PDUs that are created from messages and transferred from the sender-side RWP-layer to the
receiver-side RWP-layer (which corresponds to “data segments” if the RWP is assumed to be TCP).
Whenever a packet is created, a sequence-number seqNum ≥ 0 is assigned2, and recorded in the header
at each packet.
Frames: PDUs that are made from packets and transferred over data-links.

2TCP counts the packet being sent and acknowledged by its byte number not its packet number. In this paper, seqNum is assumed to
be represented in terms of packets.
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Fig. 1. Communication system model.

(Note: symbols SGM and RAS denote message segmentation and reassembly functions, respectively. Symbols XMT and RCV represents
functions for sending and receiving PDUs, respectively. Arrows � and � represent flows of PDUs carrying higher layer data, i.e., a
message, and control information, such as ACK, respectively.)

C. Message-segmentation model

Size of packet which can be transmitted is limited to the payload size �d (or maximum segment size in TCP/IP
terminology). Therefore, some RWPs that include a message-segmentation function, such as TCP, allow an RWP-
sender to divide a single message into multiple generated packets if the message size is greater than �d. There are
two ways to implement the message-segmentation function:

Message arrival basis segmentation scheme (MAS): When a message arrives at the RWP-layer, it is
divided into multiple packets if its size exceeds �d. Then, they are stored in the associated send buffer.
Packet (re)transmission basis segmentation scheme (PTS): When the RWP-layer (re-)sends a packet to
the lower layer, it creates the packet which cannot exceed �d, from the messages stored in the associated
send buffer (such as a socket buffer [13]).

For the RWPs that identify the packet being sent and acknowledged by its packet number not its byte number,
MAS is employed. On the other hand, the RWPs which provide a byte-stream transmission service (i.e., counts
in terms of bytes rather than packets) such as TCP allow a sender to implement PTS [14]. According to PTS,
the sizes of the retransmitted packets are always not equal to that at the previous transmissions (this is called
“re-packetization” [15]).

However, the packet size behavior of MAS is identical to that of PTS except in the following case: when a
packet has been lost and new messages arrive at an RWP-layer until the lost packet is retransmitted. This case
might happen when packets contain stream-type PDUs (or interactive PDUs including Telnet and Rlogin PDUs)
and the packet loss is recovered by error-recovery mechanism which requires much long loss detection time such
as timeout recovery.

In this paper, we model the message segmentation behavior according to MAS, since the population of the
interactive PDUs tends to be much smaller than bulk PDUs (HTTP, FTP and electronic mail PDUs) and from
analytical tractability. With MAS, all sizes of the retransmitted packets with the same seqNum become equal (i.e.,
according to RPSP).

D. Packet model

To model the effect of RPSP explicitly, we introduce the following packet terms:
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Fig. 2. Example of message-segmentation with MAS-scheme.

Generated packets: Packets that are generated from messages by a sender at the original transmission.
Transferred packets: Packets that are (re)transmitted encapsulated into frames, namely, packets trans-
ferred from an RWP-sender to an RWP-receiver.

Thus, due to RPSP, all the sizes of transferred packets with the same seqNum become equal to that of the
generated packet.

E. Frame loss model

Frame-losses occur between a sender and a receiver mainly due to bit-error and congestion. In particular, the
frame-loss probability due to bit-errors depends on the frame size. For example, assuming that bit-errors occur
independently (i.e., according to the Bernoulli bit-error model) with bit error rate (BER) pe, the transferred packet-
corruption probability of the bit-length equal to x can be expressed as

pb(x) = 1 − (1 − pe)x+�h , (1)

where �h is the total length of the control fields (or header and trailer) added by the RWP and lower layers3. We
note that if bit-errors occur frequently, like in wireless communication environments, and the size distribution of the
generated packets is non-deterministic, then the size distribution of the transferred packets becomes significantly
different from it in some cases, as will be described in Section V. Hence, we focus our attention on the frame-losses
due to bit-errors4 occurring at the rate given in (1).

III. MODELING OF GENERATED PACKET SIZE SEQUENCE

In this section, we first derive FXp
(·), the stationary distribution function of a size-sequence of generated packets,

given a distribution function of message-sizes FXm
(·). Next, we calculate the mean �p of the generated packet

size.

A. Derivation of stationary distribution of generated packet size sequence

Letting Xmi
denote the ith message size, we assume {Xmi

; i ∈ N0
�
= {0, 1, 2, . . .}} is a sequence of mutually

independent and identically distributed (i.i.d.) random variables with a common distribution function FXm
(·) of

mean message-size �m. Figure 2 illustrates an example of message-segmentation with MAS-scheme as discussed

3In wireless links, the bit-errors are reported to occur in bursts. As will be described in Section VI, the extension to the burst error model
(i.e., correlated error model) is an open issue.

4When the transferred packets are lost due to congestion, pb(x) is generally independent of x. In this case, the stationary distribution of
the transferred packets has a mean equal to that of the generated packets (see Example 4).
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before. As shown in Fig. 2, if Xmi
> �d, then the ith message is divided into multiple generated packets with a

size-sequence {Xpij
: j = 1, · · · , ki}, where⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ki =

⌈
Xmi

�d

⌉
, ∀i ∈ N0,

Xpij
=

{
�d, for j = 1, 2, . . . , ki − 1
Xmi

− (ki − 1)�d, for j = ki.

(2)

Here �a� represents the smallest integer that is greater than or equal to a. For the ith message, we refer to the
j (≤ ki − 1) th generated packet as a “body”-packet and the last (i.e., ki th) generated packet as an “edge”-packet
(see Fig. 2). If Xmi

≤ �d, the ith message is not segmented, and a single packet, which is identical to the original
message, is generated. We also refer to this as an “edge”-packet, because it satisfies definition (2).

We constitute a stochastic process {Xpκ
; κ ∈ N0}, replacing an epoch label ij by an in-sequence number

κ ∈ N0 for {Xpij
}. Thus, κ represents the seqNum of the packet. To analyze the behavior of {Xpκ

} through the
framework of Markov chains, we introduce an auxiliary random variable Zκ associated with Xpκ

. The random
variable Zκ is defined on the state space SZ= {B1, B2, · · · ; E1, E2, · · · }, where states Br and Es represent the
rth body-packet and the edge-packet following (s − 1) body-packets, which are generated from each message,
respectively. The stochastic process {Zκ} can be represented as a Markov chain having the following one-step
transition probability matrix P Z = [pZαβ

, α ∈ SZ , β ∈ SZ] with entries

pZαβ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ur+1

ur
, for (α, β) = (Br, Er+1) and ∀r ∈ N

ur+1

ur
, for (α, β) = (Br, Br+1) and ∀r ∈ N

1 − u1, for (α, β) = (Es, E1) and ∀s ∈ N
u1, for (α, β) = (Es, B1) and ∀s ∈ N
0, otherwise,

(3)

where N �
= {1, 2, · · · } and ur

�
=
∫∞
r�d

dFXm
(x) = 1 − FXm

(r�d), r ∈ N . For a detailed derivation of (3), see
APPENDIX I.

Let FXpα
(·) be the conditional distribution function of Xpκ

when the state of Zκ is α ∈ SZ . Then, we have:

FXpBr
(x)

�
= Pr(Xpκ

≤ x |Zκ = Br)

= 1(x − �d) = FXpB
(x), ∀r ∈ N , (4)

FXpEs
(x)

�
= Pr(Xpκ

≤ x |Zκ = Es)

=
Pr((s − 1)�d < Xmi

≤ (s − 1)�d + x)
Pr((s − 1)�d < Xmi

≤ s�d)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ 0
FXm

((s − 1)�d + x) − FXm
((s − 1)�d)

us−1 − us
, 0 < x ≤ �d

1, x > �d

∀s ∈ N . (5)

We find that the random variable Xpκ
is independent of another Xpκ′ if Zκ is given, due to the i.i.d. message

size assumption and the definition of random variables {Zκ}. Thus, we have

Pr{Xpκ
≤ xκ, Xpκ′ ≤ xκ′ , Zκ = zκ, Zκ′ = zκ′ |Zκ = zκ, Zκ′ = zκ′} =

Pr{Xpκ
≤ xκ|Zκ = zκ}Pr{Xpκ

≤ xκ′ |Zκ = zκ′}. (6)

Consequently, the two-dimensional stochastic process {(Xpκ
, Zκ) : κ ∈ N0} forms another Markov chain. In the

following, the two-dimensional Markov chain {(Xpκ
, Zκ)} is assumed to be in the steady state.
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We denote the stationary-state probabilities for the Markov chain {Zκ} by πBr
and πEs

, respectively. They are
given by

πBr

�
= Pr(Zκ = Br) = Δ−1ur, ∀r ∈ N , (7)

πEs

�
= Pr(Zκ = Es) = Δ−1(us−1 − us), ∀s ∈ N , (8)

where

Δ
�
=

∞∑
s=0

us, (9)

with u0 = 1.
Let FXp

(·) be the stationary distribution function of Xpκ
. The two-dimensional Markov chain {(Xpκ

, Zκ)} yields

FXp
(x)

�
= Pr(Xpκ

≤ x)

=
∑

α∈SZ

Pr(Xpκ
≤ x|Zκ = α) Pr(Zκ = α)

=
∞∑

r=1

πBr
FXpBr

(x) +
∞∑

s=1

πEs
FXpEs

(x)

= FXpB
(x)

∞∑
r=1

πBr
+

∞∑
s=1

πEs
FXpEs

(x),

= (1 − πE)FXpB
(x) +

∞∑
s=1

πEs
FXpEs

(x), (10)

where the edge-packet occurrence probability πE is given by

πE
�
= 1 −

∞∑
r=1

πBr
=

∞∑
s=1

πEs
. (11)

From (8) and
∑∞

s=1(us−1 − us) = u0 = 1, (11) can be re-written as

πE =
∞∑

s=1

Δ−1(us−1 − us)

= Δ−1u0 = Δ−1. (12)

B. Derivation of the mean generated packet size

From (5), (8) - (10), and (12), the mean size �p of a generated packet in the steady state can be written as

�p
�
= E[Xpκ

] =
∫ ∞

0
xdFXp

(x)

= (1 − πE)
∫ ∞

0
xdFXpB

(x) +
∞∑

s=1

πEs

∫ ∞

0
xdFXpEs

(x)

= (1 − πE)
∫ ∞

0
xδ(x − �d)dx +

∞∑
s=1

πEs

us−1 − us

∫ s�d

(s−1)�d

(x − (s − 1)�d) dFXm
(x)

= (1 − πE)�d + Δ−1
∞∑

s=1

[ ∫ s�d

(s−1)�d

xdFXm
(x) − �d(s − 1)(us−1 − us)

]
= πE�m, (13)

from
∞∑

s=1

∫ s�d

(s−1)�d

xdFXm
(x) =

∫ ∞

0
xdFXm

(x) = �m,
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and

∞∑
s=1

(s − 1)(us−1 − us) =
∞∑

s=1

us = Δ − 1.

Example 1: Assuming that the message-sizes are exponentially distributed with mean �e
m:

F e
Xm

(x) = 1 − e
− x

�e
m . (14)

In this case, we have

us =
∫ ∞

s�d

dFXm
(x) = e

− s�d

�e
m = ue s, (15)

with ue �
= u1 = e

− �d

�e
m . Then, from (8), (10) and (11), the stationary distribution function F e

Xp
(·) is given by

F e
Xp

(x) = (1 − πe
E)FXpB

(x) +
∞∑

s=1

πe
Es

F e
XpEs

(x)

= (1 − πe
E)FXpB

(x) + πe
EF e

XpE
(x), (16)

where

πe
Es

= (1 − ue)2ue s−1, (17)

πe
E =

∞∑
s=1

πe
Es

= 1 − ue, (18)

F e
XpEs

(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ 0

1 − e
− x

�e
m

1 − ue
, 0 < x ≤ �d

1, x > �d

�
= F e

XpE
(x), ∀s ∈ N . (19)

We note that (19) shows that the size distributions of edge-packets F e
XpEs

(x) for s ∈ N are independent of s

because of the memoryless property of the exponential distribution.
Hence, from (13), the mean size of generated packets �e

p is given by

�e
p = πe

E�e
m = (1 − ue)�e

m. (20)

Clearly, (20) is verified in the following:

�e
p = (1 − πe

E)
∫ ∞

0
xdFXpB

+ πe
E

∫ ∞

0
xdF e

XpE
(x) (21a)

= (1 − πe
E)
∫ ∞

0
xδ(x − �d)dx + πe

E

∫ �d

0
xdF e

XpE
(x) (21b)

= (1 − πe
E)�d + πe

E

∫ �d

0

xe
− x

�e
m

1 − ue
dx (21c)

= Eq. (20). (21d)
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Remark 1: Letting σ2
m denote the variance of message size, the variance of generated packet size σ2

p is given
by

σ2
p

�
= E[X2

pκ
] − E[Xpκ

]2

= (1 − πE)dFXpB
(x) +

∞∑
s=1

πEs

∫ ∞

0
x2dFXpEs

(x) − �2
p

= (1 − πE)
∫ ∞

0
x2δ(x − �d)dx +

∞∑
s=1

πEs

us−1 − us

∫ s�d

(s−1)�d

(x − (s − 1)�d)
2 dFXm

(x) − �2
p

= (1 − πE)�2
d

+ Δ−1
∞∑

s=1

[∫ s�d

(s−1)�d

x2dFXm
(x) − 2�d(s − 1)

∫ s�d

(s−1)�d

xdFXm
(x) + (s − 1)2�2

d

∫ s�d

(s−1)�d

dFXm
(x)

]

− �2
p

= πE(�2
m + σ2

m) + 2πE�m�d − 2πE�d

∞∑
s=0

vs + 2πE�2
d

∞∑
s=1

sus − �2
p

= πE(�2
m + σ2

m) + 2πE�m�d − 2πE�d

( ∞∑
s=0

vs − �d

∞∑
s=1

sus

)
− �2

p, (22)

from
∞∑

s=1

∫ s�d

(s−1)�d

x2dFXm
(x) =

∫ ∞

0
x2dFXm

(x) = σ2
m + �2

m,

∞∑
s=1

(s − 1)
∫ s�d

(s−1)�d

xdFXm
(x) =

∞∑
s=0

vs − �m,

∞∑
s=1

(s − 1)2
∫ s�d

(s−1)�d

dFXm
(x) = 2

∞∑
s=0

sus − Δ + 1,

with vs
�
=
∫∞
s�d

xdFXm
(x).

Example 2: Let σe
p
2 denote the variance of generated packet size when message sizes are exponentially dis-

tributed with mean �e
m, given in (14). Then, we have

σe
p
2 = 2πe

E�e
m

2 + 2πe
E�e

m�d − 2�e
m�d − πe

E
2�e

m
2, (23)

from
∞∑

s=0

ve
s − �d

∞∑
s=1

sues =
∞∑

s=0

(�dsu
es + �e

mues) − �d

∞∑
s=1

sues

= �e
m

∞∑
s=0

ues =
�e
m

πe
E

, (24)

with ve
s

�
=
∫∞
s�d

xdF e
Xm

(x) = 1
�e

m

∫∞
s�d

xe
− x

�e
m dx.

Now we vary �d for a fixed �e
m. Then, by taking the derivative of σe 2

p with respect to �d, we get

dσe 2
p

d�d
= 2�e

m
2 dπe

E

d�d
+ 2�e

m�d

dπe
E

d�d
+ 2πe

E�e
m − 2�e

m − 2πe
E�e

m
2 dπe

E

d�d

= 2e
− �d

�e
m

{
�d − �e

m

(
1 − e

− �d

�e
m

)}

≥ 2e
− �d

�e
m

{
�d − �e

m · �d

�e
m

}
= 0, (25)

since x ≥ 1 − e−x for any x > 0. Thus, the variance σe 2
p is increasing in �d.
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Next, we discuss the variance σe 2
p for two limit situations: when �d is enough small, namely �d ≈ 0 and when

�d is enough large compared to �e
m, that is �d 	 �e

m. If �d ≈ 0, then

σe 2
p =

l3d
3�e

m

+ O(
(

�d

�e
m

)4
) ≈ 0 if �d ≈ 0, (26)

since ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πe
E =

�d

�e
m

− 1
2

(
�d

�e
m

)2

+
1
6

(
�d

�e
m

)3

+ O(
(

�d

�e
m

)4
),

πe
E

2 =

(
�d

�e
m

)2

−
(

�d

�e
m

)3

+ O(
(

�d

�e
m

)4
).

(27)

Hence, in this case the variance is very small, implying that almost all generated packets are body packets. On
the other hand, if �d 	 �e

m, then
σe 2

p ≈ �e
m

2 if �d 	 �e
m, (28)

since σe 2
p = �e

m
2 − 2ue�e

m�d − ue2�e
m

2 and ue ≈ 0 in this case. Equation (28) is intuitively verified since almost
all generated packets correspond to the respective messages with size-variance equal to �e

m
2.

IV. MODELING OF TRANSFERRED PACKET SIZE SEQUENCE

Let Xqt
denote the transferred packet size of the t(≥ 0)th transmission by an RWP sender. In this section,

we derive FXq
(·), the stationary distribution function of a size-sequence of transferred packets {X̂qt

; t ∈ N0},
using the analytical expression of FXp

(·) obtained in the preceding section, and we calculate the mean size �q of
transferred packets.

A. Derivation of stationary distribution of transferred packet size sequence

For a sequence of transferred packets with seqNum = κ, we define the following random variables:

• Nbκ
: number of retransmissions caused by bit-errors in spite of transferred packet being in-sequence (i.e.,

with seqNum equal to the next expected sequence number rcvNxt maintained by the RWP receiver).
• Nosκ

: number of retransmissions caused by out-of-sequence errors.

As described below, Nbκ
is independent of the retransmission scheme (selective retransmission, SR and go-

back-N retransmission, GBR), but Nosκ
depends on it.

To derive Nosκ
for GBR, we make the following assumption:

Assumption A: The number of un-acknowledged transferred packets is always equal to W 5.

Under Assumption A with GBR, we have the following proposition:

Proposition 1: Nosκ
, which is dependent on the retransmission scheme, is given by

Nosκ
=

⎧⎪⎨
⎪⎩

0, for SR
W−1∑
i=1

Nbκ−i
, for GBR,

(29)

where W is defined as the window size given in Assumption A.

Proof: With SR, the value of Nosκ
becomes zero for any κ ∈ N0 since no out-of-sequence error occurs.

Next, consider the case of GBR. Whenever a transferred packet with seqNum equal to rcvNxt is corrupted
and discarded, transferred packets following that packet (or with seqNum greater than rcvNxt) which have been
received until a retransmitted transferred packet (i.e., seqNum equal to rcvNxt) arrives at the receiver are also
discarded due to out-of-sequence errors. Since the number of unacknowledged transferred packets is always equal
to W from Assumption A, the number of such discarded packets is given by (29).

5This assumption can be justified in the following case, where (1) “cumulated” acknowledgement scheme is employed, (2) an RWP
sender always has “at least one” message to be sent, and (3) window flow control with “fixed” window size is performed.
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Re-arranging the sequence {Xqt
}, we constitute a sequence {X̂qt

} expressed as

{X̂qt
; t ∈ N0} =

{ Nb0+Nos0+1︷ ︸︸ ︷
Xp0 , · · · , Xp0︸ ︷︷ ︸

Nb0

, Xp0 , · · · , Xp0︸ ︷︷ ︸
Nos0

, Xp0 , · · · · · · ,

Nbκ+Nosκ+1︷ ︸︸ ︷
Xpκ

, · · · , Xpκ︸ ︷︷ ︸
Nbκ

, Xpκ
, · · · , Xpκ︸ ︷︷ ︸
Nosκ

, Xpκ
, · · · · · ·

}
,

where transferred packets with the same seqNum form a group. In APPENDIX II, we explain an example of the
original size-sequence of transferred packets {Xqt

} and the re-arranged size-sequence {X̂qt
}.

We denote the stationary distribution function of the sequence {X̂qt
} by FX̂q

(·). Since the random variable Xpκ

appears Nbκ
+ Nosκ

+ 1 times consecutively in the size-subsequence of the transferred packets with seqNum = κ
due to RPSP, we have

FX̂q
(x) =

∫ x

y=0
E[Nbκ

+ Nosκ
+ 1 |Xpκ

= y]dFXp
(y)

E[Nbκ
+ Nosκ

+ 1]
. (30)

Note that the stationary distribution of X̂qt
in the sequence {X̂qt

} is equal to that of Xqt
in the sequence {Xqt

},
since a transferred packet is corrupted independently of the other transferred packets, owning to the Bernoulli
bit-error model.

Example 3: Consider when generated packets have a common size lc, i.e., FXp
(x) = 1(x − lc). From (30),

FX̂q
(x) has the same form.

B. Derivation of the mean transferred packet size

Corresponding to Xpκ
, we introduce a random variable Y

(m)
pκ as6

Y (m)
pκ

�
= (Nbκ

+ Nosκ
+ 1) · Xm

pκ
, for m = 0, 1. (31)

Then, the following proposition holds.

Proposition 2: The mean transferred packet size �q is given by

�q
�
= E[X̂qt

] = E[Xqt
] =

E[Y (1)
pκ ]

E[Y (0)
pκ ]

. (32)

Proof: From (30), we have

�q =
∫ ∞

0
xdFX̂q

(x)

=

∫ ∞

x=0
x · E[Nbκ

+ Nosκ
+ 1 |Xpκ

= x]dFXp
(x)

E[Nbκ
+ Nosκ

+ 1]

=
E[(Nbκ

+ Nosκ
+ 1)Xpκ

]
E[Nbκ

+ Nosκ
+ 1]

= Eq. (32).

Explicit expressions of E[Y (m)
pκ ] for m = 0, 1 are given in the following proposition.

6The random variables Y
(0)

pκ and Y
(1)

pκ represent the total number of times and the total number of bits that an RWP-sender transmitted
until an RWP-receiver has received the transferred packet correctly, respectively, for the size subsequence of transferred packets with
seqNum = κ.

9



Proposition 3: We have

E[Y (m)
pκ

] = E[Xm
pκ

] + Φ(m)
b + Φ(m)

os , (33)

E[Xm
pκ

] =

{
πE�m, for m = 1
1, for m = 0,

(34)

Φ(m)
b

�
= E[Nbκ

· Xm
pκ

]

= (1 − πE)ϕ(m, pb, FXpB
) +

∞∑
s=1

πEs
ϕ(m, pb, FXpEs

), (35)

Φ(m)
os

�
= E[Nosκ

· Xm
pκ

]

=
W−1∑
i=1

∑
α∈SZ

∑
β∈SZ

ϕ(0, pb, FXpα
)
∫ ∞

0
xmdFXpβ

(x)παp
(i)
Zαβ

, for GBR, (36)

where p
(i)
Zαβ

is the (α, β)th entry of the i-step transition probability matrix P i
Z , and

ϕ(m, pb, FXpτ
)
�
=
∫ ∞

0

pb(x)xm

1 − pb(x)
dFXpτ

(x) (37a)

=
∫ ∞

0

xm

1 − pb(x)
dFXpτ

(x) −
∫ ∞

0
xmdFXpτ

(x), τ ∈ SZ . (37b)

Here, the value of Φ(m)
os for SR is zero.

Proof: From (31), we have

E[Y (m)
pκ

] = E[Xm
pκ

] + E[Nbκ
· Xm

pκ
] + E[Nosκ

· Xm
pκ

]. (38)

Equation (34) can be easily derived from E[X1
pκ

] = �p and E[X0
pκ

] = E[1] = 1.
We will prove (35) and (36) as follows.

Proof of Eq. (35)
We have

Φ(m)
b = E[Nbκ

· Xm
pκ

] =
∞∑

n=0

∫ ∞

x=0
E[Nbκ

· Xm
pκ

|Nbκ
= n, Xpκ

= x] Pr(Nbκ
= n |Xpκ

= x)dFXp
(x). (39)

Due to RPSP, we obtain

E[Nbκ
· Xm

pκ
|Nbκ

= n, Xpκ
= x] = n · xm. (40)

Furthermore, the Bernoulli bit-erroneous model leads to

Pr(Nbκ
= n |Xpκ

= x) = (1 − pb(x)) pb(x)n. (41)

Substituting (40) and (41) into (39) yields

Φ(m)
b =

∞∑
n=0

∫ ∞

0
n (1 − pb(x)) pb(x)nxmdFXp

(x)

=
∫ ∞

0

pb(x)xm

1 − pb(x)
dFXp

(x). (42)

Finally, by applying (10) and (37a) to (42), we can rewrite Φ(m)
b as

Φ(m)
b = (1 − πE)

∫ ∞

0

pb(x)xm

1 − pb(x)
dFXpB

(x) +
∞∑

s=1

πEs

∫ ∞

0

pb(x)xm

1 − pb(x)
dFXpEs

(x)

= Eq. (35).
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Proof of Eq. (36)
From (29), the value of Φ(m)

os for SR is shown to be equal to zero. On the other hand, the value of Φ(m)
os for

GBR is given by

Φ(m)
os =

W−1∑
i=1

E[Nbκ−i
· Xm

pκ
] for GBR. (43)

In the following, we will show that

E[Nbκ−i
· Xm

pκ
] =

∑
α∈SZ

∑
β∈SZ

ϕ(0, pb, FXpα
)
∫ ∞

0
xmdFXpβ

(x)παp
(i)
Zαβ

, (44)

since (36) follows immediately from (43) and (44).
From the conditional independence of Xpκ−i

and Xpκ
given Zκ−i and Zκ, we obtain

E[Nbκ−i
· Xm

pκ
] = E{E[Nbκ−i

· Xm
pκ

|Zκ−i, Zκ]}
=
∑

α∈SZ

∑
β∈SZ

Pr(Zκ−i = α, Zκ = β) · E[Nbκ−i
|Zκ−i = α]E[Xm

pκ
|Zκ = β], (45)

where Pr(Zκ−i = α, Zκ = β), E[Nbκ−i
|Zκ−i = α] and E[Nbκ−i

|Zκ−i = α] are respectively given by

Pr(Zκ−i = α, Zκ = β) = Pr(Zκ−i = α) Pr(Zκ = β |Zκ−i = α)

= παp
(i)
Zαβ

, (46)

E[Nbκ−i
|Zκ−i = α] =

∞∑
n=0

∫ ∞

0
n (1 − pb(x)) pb(x)ndFXpα

(x)

=
∫ ∞

0

pb(x)
1 − pb(x)

dFXpα
(x)

= ϕ(0, pb, FXpα
), (47)

E[Xm
pκ

|Zκ = β] =
∫ ∞

0
xmdFXpβ

(x). (48)

Hence, (44) can be derived by substituting (46) - (48) into (45).

Example 4: Consider when pb(x) = c, 0 ≤ c < 1, that is, the transferred packet loss probability pb(x) is
independent of x and constant, equal to c. From (42), we have

Φ(m)
b =

∫ ∞

0

c · xm

1 − c
dFXp

(x) =
c · �m

p

1 − c
.

Furthermore, from (36) and ϕ(0, pb, FXpBα
) =

c

1 − c
, we get

Φ(m)
os =

W−1∑
i=1

∑
α∈SZ

∑
β∈SZ

c

1 − c

∫ ∞

0
xmdFXpβ

(x)παp
(i)
Zαβ

=
c

1 − c

W−1∑
i=1

∑
β∈SZ

∫ ∞

0
xmdFXpβ

(x)
∑

α∈SZ

παp
(i)
Zαβ

=
c(W − 1)�m

p

1 − c
, for GBR,

by utilizing ∑
α∈SZ

παp
(i)
Zαβ

=
∑

α∈SZ

Pr(Zκ−i = α, Zκ = β) = πβ .
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Finally, we obtain

�q =
�p +

c �p

1 − c
+

c (W − 1)�p

1 − c

1 +
c

1 − c
+

c (W − 1)
1 − c

= �p. (49)

V. EFFECT OF RPSP
In this section, we discuss the effect of RPSP when message sizes are assumed to be exponentially distributed,

since this assumption leads to concrete expressions of the mean sizes of generated and transferred packets. We use
�q/�p, the ratio of the mean size of transferred packets to that of generated packets, as a measure of the effect of
RPSP. We can conceive that a stronger effect of RPSP appears as �q/�p becomes larger, whereas the ratio is equal
to 1 for the following network environments where RPSP has no effect (i.e., FXp

(x) = FXq
(x) for any x ≥ 0):

• all generated packet sizes have the same value (see Example 3), or
• no transferred packet loss happens, or even though transferred packet loss happens, its loss probability does

not depend on the transferred packet size at all (see Example 4).

A. Mean size of transferred packets

For analytical tractability, we assume that message sizes are subject to an exponential distribution function
F e

Xm
(·) with mean �e

m as considered in Example 1. From the memoryless property of the exponential distribution,
we can obtain an explicit expression of the mean transferred packet size �e

q.

Proposition 4: �e
q is given by

�e
q =

E[Y (1)
pκ ]

E[Y (0)
pκ ]

, (50)

where

E[Y (m)
pκ

] = E[Xm
pκ

] + Φ(m)
b + Φ(m)

os , (51)

E[Xm
pκ

]
�
= �e

p
m

=

{
πe

E�e
m, for m = 1

1, for m = 0,
(52)

Φ(m)
b

�
= E[Nbκ

· Xm
pκ

]

= (1 − πe
E)ϕ(m, pb, FXpB

) + πe
Eϕ(m, pb, F

e
XpE

), (53)

Φ(m)
os

�
= E[Nosκ

· Xm
pκ

]

= (W − 1) ·
(
(1 − πe

E) ϕ(0, pb, FXpB
) + πe

E ϕ(0, pb, F
e
XpE

)
)
· �e

p
m, for GBR, (54)

ϕ(m, pb, FXpB
) =

�m
d

(1 − pe)�d+�h
− �m

d , (55)

ϕ(m, pb, F
e
XpE

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
�e
p

⎧⎨
⎩Le2(1 − e−

�d

Le ) − �dL
ee−

�d

Le

(1 − pe)�h
− πe

E�2
m + (1 − πe

E)�e
m�d

⎫⎬
⎭ , for m = 1

1
�e
p

⎧⎨
⎩Le(1 − e−

�d

Le )
(1 − pe)�h

− �e
p

⎫⎬
⎭ , for m = 0,

(56)

with Le �
=

�e
m

�e
m log(1 − pe) + 1

.
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Proof: Equations (50) and (51) are obviously derived from (32) and (33), respectively. Equation (52) can
also be obviously derived from (20) and (34). Clearly, (53) can be obtained from (20) and (35). Furthermore,
ϕ(m, pb, FXpB

) and ϕ(m, pb, F
e
XpE

) are derived from (4) and (19), respectively.
Next, we prove (54) . From (4) and (19), ϕ(0, pb, F

e
XpBr

) and ϕ(0, pb, F
e
XpEs

) can be written as

ϕ(0, pb, F
e
XpBr

) = ϕ(0, pb, FXpB
), ∀r ∈ N , (57)

ϕ(0, pb, F
e
XpEs

) = ϕ(0, pb, F
e
XpE

), ∀s ∈ N . (58)

Thus, from (57) and (58), we obtain

Φ(m)
os =

W−1∑
i=1

∑
ζ∈{B,E}

∑
η∈{B,E}

ϕ(0, pb, FXpζ
)
∫ ∞

0
xmdFXpη

(x)
∑
α∈ζ

∑
β∈η

παp
(i)
Zαβ

. (59)

where subsets B and E partitioning state space SZ (i.e., SZ = B ∪ E) represent B
�
= {B1, B2, · · · } and E

�
=

{E1, E2, · · · }, respectively.
Definitely, the transition probability matrix P Z of the Markov chain {Zκ} given in (3) is “lumpable” with

respect to a partition of SZ in a subset E (for the definition of “lumpability”, see [16]). Hence, the stochastic

process {Ẑκ} with the state space SẐ

�
= {Ê, B1, B2, · · · }, which is formed from {Zκ} by aggregating a subset

E into a macro state Ê, can also be expressed as a Markov chain. Its dynamics can easily be derived from {Zκ}
with one-step transition probability matrix P Ẑ = [pẐαβ

, α ∈ SẐ , β ∈ SẐ ] given by

pẐαβ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − u1, for (α, β) = (Ê, Ê)
u1, for (α, β) = (Ê, B1)

1 − uk+1

uk
, for (α, β) = (Bk, Ê) and ∀k ∈ N

uk+1

uk
, for (α, β) = (Bk, Bk+1) and ∀k ∈ N

0, otherwise.

(60)

In particular, if message sizes are exponentially distributed, then P Ẑ is simplified as

pẐαβ
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − ue, for (α, β) = (Ê, Ê)
ue, for (α, β) = (Ê, B1)
1 − ue, for (α, β) = (Bk, Ê) and ∀k ∈ N
ue, for (α, β) = (Bk, Bk+1) and ∀k ∈ N
0, otherwise,

(61)

from (15). Letting πÊ

�
= Pr(Ẑκ = Ê)(= πe

E), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
α∈E

∑
β∈E

παp
(i)
Zαβ

= πÊp
(i)

ẐÊÊ
= π2

Ê
,∑

α∈E

∑
β∈B

παp
(i)
Zαβ

= πÊ

∑
β∈B

p
(i)

ẐÊβ

= πÊ(1 − πÊ),∑
α∈B

∑
β∈E

παp
(i)
Zαβ

=
∑
α∈B

παp
(i)

ẐαÊ
= (1 − πÊ)πÊ,∑

α∈B

∑
β∈B

παp
(i)
Zαβ

=
∑
α∈B

πα(1 − p
(i)

ẐαÊ
) = (1 − πÊ)2 ,

(62)

since the matrix structure given in (61) yields

p
(i)

ẐEE
= πÊ ∀i ∈ N ,

p
(i)

ẐBrE
= πÊ ∀i ∈ N ,∀r ∈ N .
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Fig. 3. Ratio of the mean size of the transferred packets to that of the generated packets �e
q/�e

p

versus bit-error rate for selective retransmission scheme.

Table 1. Obtained values when pe = 1 × 10−4 for selective retransmission scheme.

Maximum Segment Size �d [bytes]
536 1460 2272

πe
E 0.12 0.30 0.43

0.23 0.51 0.67
�e
p [bytes] 503 1228 1744

472 1044 1373
σe

p [bytes] 105 422 746
502 1228 1744

�e
q/�e

p 1.02 1.09 1.18
1.03 1.17 1.34

(Note: upper column; �m = 4096 bytes, lower column; �m = 2048 bytes.)

Consequently, from (21a) and (62), (59) can be re-written as

Φ(m)
os = (W − 1) ·

(
(1 − πÊ) ϕ(0, pb, FXpB

) + πÊ ϕ(0, pb, F
e
XpE

)
)

(
(1 − πÊ)

∫ ∞

0
xmdFXpB

+ πÊ

∫ ∞

0
xmdF e

XpE

)
= Eq. (54) for GBR. (63)

B. Numerical results and discussion

In these numerical experiments, the RWP layer was assumed to be a transport (TCP) layer7.
The control field length �h, that is TCP/IP header size, is assumed to be 40 bytes.

7When the RWP is assumed to be a data-link protocol such as HDLC, messages can be identified with ones generated by a network
layer. However, the following discussion is valid for other cases if parameter values of message-size distribution FXm(x) are changed.
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Fig. 4. Ratio of the mean size of the transferred packets to that of the generated packets �e
q/�e

p

versus bit-error rate for go-back-N retransmission scheme.

Let us first investigate the effect of RPSP for selective retransmission schemes. Figure 3 shows �e
q/�e

p as a
function of BER pe for different payload sizes �d (or MSSs): 536, 1460, and 2272 bytes8 in the case of SR. In
this figure, mean message sizes of 2048 and 4096 bytes are assumed. From this figure, we find that the effect of
RPSP appears when BER pe exceeds 10−6. The reason a stronger effect of RPSP appears as the BER increases is
that a long transferred packet might be retransmitted more often, i.e., the realization of Nbκ

for a long generated
packet becomes larger. In addition, large �d values such as 1460 and 2272 bytes make the effect of RPSP stronger.

To explain the reasons for this, we show the values of πE, �e
p, σ

e
p, and �e

q/�e
p for different MSSs �d; 536, 1460,

and 2272 bytes when pe is 1× 10−4, which is the mean BER of a wireless link in an industrial environment [17],
in the case of SR, as listed in Table 1. Table 1 shows the edge-packet occurrence probability πe

E is relatively large
(i.e., the message-segmentation occurrence probability 1−πe

E is relatively small), which causes a large variance in
the generated packet size distribution (see Example 2). In particular, the effect of RPSP is significant for networks
that suffer from a high BER pe. On the other hand, when the MSS �d of 512 bytes is used, the value of �e

q/�e
p is

relatively small since the body-packets are dominant. In this case (i.e., when πe
E is enough small), the effect of

RPSP almost disappears.
Next, we discuss the effect of RPSP in the case of go-back-N retransmission scheme. Figure 4 shows �e

q/�e
p as

a function of BER pe for different payload sizes �d of 1460 and 2272 bytes and for window sizes W of 2, 4 and
16 in the case of GBR. In this figure, mean message size is used 2048 bytes. From this figure, we find that RPSP
is not negligible in the case of GBR with small window sizes if BER is high. We note that �e

q of GBR with W = 1
is equal to that of SR (see (54)). On the other hand, for GBR with large W , �e

q/�e
p is rather small (near to 1). An

intuitive explanation for this fact is that, when W is large, the number of retransmissions of corrupted transferred
packets increases but the transferred packet retransmission probability due to out-of-sequence errors caused by
GBR becomes independent of the corruption probability of the “own” transferred packets (i.e., the probability of
retransmission of short transferred packets as well as long transferred packets increases).

Proposition 5: Letting �qmax
be a finite limit of the mean transferred packet size as pe → 1, we obtain:

�qmax
=

⎧⎨
⎩

�d, for SR
�d + (W − 1)�e

p

W
, for GBR.

(64)

8The MSS values of 536, 1460, and 2272 bytes are the common default values for hosts when the path MTU (maximum transmission
unit) discovery option is not used, Ethernet MTU (that is 1500) - �h, and IEEE 802.11b MTU (that is 2312) - �h, respectively.
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Proof: From (55) and (56), we have:

lim
pe→1

Φ(1)
b ≈ (1 − πe

E)�d

(1 − pe)�d+�h
− πe

E(Le2e
− �d

�e
m + �dL

ee
− �d

�e
m )

�e
p(1 − pe)�d+�h

, (65)

lim
pe→1

Φ(0)
b ≈ 1 − πe

E

(1 − pe)�d+�h
− πe

ELee
− �d

�e
m

�e
p(1 − pe)�d+�h

. (66)

From limpe→1 Φ(1)
b 	 �e

p and limpe→1 Φ(0)
b 	 1, �qmax

for SR can be written as:

�qmax
= lim

pe→1

�e
p + Φ(1)

b

1 + Φ(0)
b

=
lim

pe→1
Φ(1)

b

lim
pe→1

Φ(0)
b

≈
(1 − πe

E)�d −
πe

E

�e
p

(Le2e
− �d

�e
m + �dL

ee
− �d

�e
m )

(1 − πe
E) − πe

E

�e
p

πe
ELee

− �d

�e
m

= �d, (Le → 0) for SR. (67)

Similarly, �qmax
for GBR can be expressed in the following:

�qmax
= lim

pe→1

�e
p + Φ(1)

b + Φ(1)
os

1 + Φ(0)
b + Φ(0)

os

=
lim

pe→1
Φ(1)

b + lim
pe→1

Φ(1)
os

lim
pe→1

Φ(0)
b + lim

pe→1
Φ(0)

os

≈
(1 − πe

E)�d −
πe

E

�e
p

(Le2e
− �d

�e
m + �dL

ee
− �d

�e
m ) + �e

p(W − 1)

{
(1 − πe

E) − πe
E

�e
p

Lee
− �d

�e
m

}

(1 − πe
E) − πe

E

�e
p

πe
ELee

− �d

�e
m + (W − 1)

{
(1 − πe

E) − πe
E

�e
p

Lee
− �d

�e
m

} ,

=
(1 − πe

E)�d + (1 − πe
E)(W − 1)�e

p

(1 − πe
E) + (1 − πe

E)(W − 1)
(Le → 0)

=
�d + (W − 1)�e

p

W
for GBR, (68)

from

lim
pe→1

Φ(1)
os ≈ �e

p(W − 1)

⎧⎪⎨
⎪⎩

1 − πe
E

(1 − pe)�d+�h
− πe

ELee
− �d

�e
m

�e
p(1 − pe)�d+�h

⎫⎪⎬
⎪⎭ , (69)

lim
pe→1

Φ(0)
os ≈ (W − 1)

⎧⎪⎨
⎪⎩

1 − πe
E

(1 − pe)�d+�h
− πe

ELee
− �d

�e
m

�e
p(1 − pe)�d+�h

⎫⎪⎬
⎪⎭ . (70)

Therefore, (64) can be derived.

Remark 2: Proposition 5 implies that �qmax
for GBR depends on window size W and it converges to �e

p as
W → ∞, as stated before.

The above observations indicate that performance models for versions of Reno/NewReno/SACK of TCP, which
neglect RPSP as described in [10], might lead to overestimations for the following reasons (the detailed discussions
can be found in [?]).

• Error recovery of the Reno/NewReno/SACK versions of TCP is based on the SR-scheme.
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• Message sizes of HTTP-traffic, which has become one of the largest consumers of Internet resources [18],
are randomly distributed [12]9,

• The mean transferred packet size �q influences TCP performance implicitly, because the factors affecting TCP
performance include the following:

– round-trip time that contains the transmission delay proportional to �q because the delay is given by the
size of the frame (containing the transferred packet) divided by the link-speed,

– transferred packet corruption probability for an SR-scheme, since it is given by E[pb(Xqt
)] =∫∞

0 pb(Xqκ
)dFX̂q

(x) = E[Nbκ ]
E[Nbκ+1] with E[Nbκ

] being a function of the size-distribution of the transferred
packet.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed the retransmitted packet size preservation (RPSP) property that all transferred packets
at retransmissions have the same size as that at the original transmission, i.e., identical to the packet generated from
a message. To analyze the effect of RPSP in an environment where message segmentation occurs, we presented
a Markov model of size-sequences of the generated and transferred packets, for which the message-segmentation
and the error-recovery functions with the RPSP-property are taken into account, respectively. Using this model,
we derived the size-distributions of the generated and transferred packets. Furthermore, we obtained analytical
expressions of the respective mean size. In addition, we analyzed the effect of RPSP by investigating the ratio
of the mean transferred packet size to the mean generated packet size, i.e., the extent of the impact of RPSP.
From numerical results when the message-sizes are exponentially distributed, we demonstrated that the effect of
RPSP cannot be negligible for networks that suffer from a high BER (e.g., 1 × 10−4, which is the mean BER of
a wireless link in an industrial environment), when the message-segmentation occurrence probability is relatively
small, such as payload sizes of 1460 and 2272 bytes for mean message size of 2048 bytes, and selective repeat
retransmission or go-back-N retransmission with small window sizes is performed.

The remaining issues include investigating the effect of RPSP in network environments with a burst bit-error
model and with an empirical message-size model.
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APPENDIX I
DERIVATION OF EQUATION (3): pZαβ

ONE-STEP TRANSITION PROBABILITIES OF

SEQUENCE {Zκ}
This appendix gives the derivation of (3). Here, we assume that the κth generated packet contains the ith message

of size Xmi
, and we calculate the one-step transition probabilities from Zκ of Es ,∀s ∈ N , or Br ,∀r ∈ N ,

respectively, to any state Zκ+1: p
(1)
Zαβ

, α ∈ Sz, β ∈ SZ .

• When Zκ = Es,∀s ∈ N (i.e., when the jth generated packet is an edge-packet)
In this case, the (κ+1)th packet is the first generated packet from the (i+1)th message. There are only two
cases:

– if the size of the (i + 1)th message is less than or equal to �d

Since the (i + 1)th message is not segmented, the (κ + 1) generated packet is identical to it. Then, from
the i.i.d. message size assumption,

Zκ+1 = E1,

pZEsE1

�
= Pr(Zκ+1 = E1|Zκ = Es)

= Pr(Xmi+1 ≤ �d|(s − 1)�d < Xmi
≤ s�d)

=
Pr((s − 1)�d < Xmi

≤ s�d, Xmi+1 ≤ �d)
Pr((s − 1)�d < Xmi

≤ s�d)
= Pr(Xmi+1 ≤ �d)

= FXm
(�d) = 1 − u1.

– if the size of the (i + 1)th message is greater than �d

Since the (i+1)th message is segmented, the (κ+1)th generated packet becomes the head body-packet.
Hence, the i.i.d. message size assumption yields

Zκ+1 = B1,

pZEsB1

�
= Pr(Zκ+1 = B1|Zκ = Es)

= Pr(Xmi+1 > �d)

= 1 − FXm
(�d) = u1.

• When Zκ = Br,∀r ∈ N (i.e., when the κth generated packet is a body-packet following r body-packets)

In this case, the (κ + 1)th generated packet is the (r + 1)th generated packet from the ith message. Again,
there are only two cases:

– if the size of the remaining part of the ith message segmented is less than or equal to �d

18



Sender

rcvNxt

0

NACK

1
2

ACK

NACK

3

seqNum
    =0

1

2

Packet

1
Loss due to
bit-error

Loss due to
out-of-sequence
error

seqNum=0

Receiver
Bit-errorneous
link

DATA

2

5

#0(xp  )

(size)

0

4 3
4

RWP layerRWP layer

3

#1(xp  )1

#2(xp  )2

#3(xp  )3

#0(xp  )0

#1(xp  )1

#2(xp  )2

4

#3(xp  )3

Packet

#4(xp  )4

#5(xp  )5

#2(xp  )2

#4(xp  )4

#3(xp  )3

#5(xp  )5

5
5

Fig. 5. Example of the transferred packet size sequence when GBR ARQ with a window size of 4 is performed.

(Note DATA: data packet, ACK: acknowledgement packet, NACK: negative acknowledgement packet)

The (κ + 1)th generated packet becomes the edge-packet made of the ith message. Then,

Zκ+1 = Er+1,

pZBrEr+1

�
= Pr(Zκ+1 = Er+1|Zκ = Br)

= Pr(r�d < Xmi
≤ (r + 1)�d|Xmi

> r�d)

=
FXm

((r + 1)�d) − FXm
(r�d)

1 − FXm
(r�d)

= 1 − ur+1

ur
.

– if the size of the remaining part of the ith message segmented is greater than �d

The (κ + 1)th generated packet becomes a consecutive body-packet. Therefore, we obtain:

Zκ+1 = Br+1,

pZBrBr+1

�
= Pr(Zκ+1 = Br+1|Zκ = Br)

= Pr((r + 1)�d < Xmi
|Xmi

> r�d)

=
1 − FXm

((r + 1)�d)
1 − FXm

(r�d)
=

ur+1

ur
.

Note that transitions to any other states do not happen. Therefore, the above discussion leads to (3).

APPENDIX II
EXAMPLE OF THE ORIGINAL TRANSFERRED PACKET SIZE SEQUENCE {Xqt

} AND THE

RE-ARRANGED SEQUENCE {X̂qt
}

This Appendix gives an example of the original size-sequence of the transferred packets {Xqt
} and the re-

arranged size-sequence {X̂qt
}. Figure 5 illustrates the sequence of the transferred packets when GBR ARQ

(automatic request repeat) with W = 4 is performed. In this figure, xpκ
for κ = 0, · · · , 5 represents the realization

of the generated packet size Xpκ
. In this example, we assume that the first transmitted transferred packet of
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seqNum = 0, the second transmitted transferred packet of seqNum = 2, and the second transmitted transferred
packet of seqNum = 3 are lost due to bit-errors (i.e., corrupted). Then, the realization of the size-sequence of
transferred packets {Xqt

; t = 0, · · · , 13} is given by

{Xqt
; t = 0, · · · , 13} = {

W︷ ︸︸ ︷
ẋp0 , ẍp1 , ẍp2 , ẍp3 , xp0 , xp1 ,

W︷ ︸︸ ︷
ẋp2 , ẍp3 , ẍp4 , ẍp5 , xp2 , xp3 , xp4 , xp5}, (71)

where ẋpκ
and ẍpκ

represent the sizes of generated packets seqNum=κ that have suffered from bit-errors and being
out of sequence, respectively. Thus, the numbers of corruptions experienced for in-sequence transferred packets
Nbκ

for κ = 0, · · · , 5 are given by

{Nbκ
; κ = 0, · · · , 5} = {1, 0, 1, 0, 0, 0}. (72)

From this illustration, the numbers of out-of-sequence errors experienced for transferred packets Nosκ
for κ =

0, · · · , 5 can be expressed as

{Nosκ
; κ = 0, · · · , 5} = {0, 1, 1, 2, 1, 1}. (73)

We note that the retransmission of the second transmitted transferred packet of seqNum = 3 increments Nos3

rather than Nb3 , since it is retransmitted because of the out-of-sequence-error even if it has been corrupted. It is
easy to find that (73) satisfies (29). Hence, the re-arranged transferred packet size sequence {X̂qt

; t = 0, · · · , 13}
can be represented as

{X̂qt
; t = 0, · · · , 13} = {

Nb0+Nos0+1︷ ︸︸ ︷
ẋp0︸︷︷︸
Nb0

, xp0 ,

Nb1+Nos1+1︷ ︸︸ ︷
ẍp1︸︷︷︸
Nos1

, xp1 ,

Nb2+Nos2+1︷ ︸︸ ︷
ẍp2︸︷︷︸
Nos2

, ẋp2︸︷︷︸
Nb2

, xp2 ,

Nb3+Nos3+1︷ ︸︸ ︷
ẍp3 , ẍp3︸ ︷︷ ︸

Nos3

, xp3 ,

Nb4+Nos4+1︷ ︸︸ ︷
ẍp4︸︷︷︸
Nos4

, xp4 ,

Nb5+Nos5+1︷ ︸︸ ︷
ẍp5︸︷︷︸
Nos5

, xp5 }.
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