
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

SparsePOP: a Sparse Semidefinite

Programming Relaxation of

Polynomial Optimization Problems

Hayato Waki, Sunyoung Kim,

Masakazu Kojima

and Masakazu Muramatsu

March 2005, B–414

B-414 SparsePOP : a Sparse Semidefinite Programming Relaxation of Polynomial
Optimization Problems
Hayato Waki⋆, Sunyoung Kim†, Masakazu Kojima‡, Masakazu Muramatsu♯

March 2005

Abstract.

SparesPOP is a MATLAB implementation of a sparse semidefinite programming (SDP)
relaxation method proposed for polynomial optimization problems (POPs) in the recent
paper by Waki et al. The sparse SDP relaxation is based on “a hierarchy of LMI relaxations
of increasing dimensions” by Lasserre, and exploits a sparsity structure of polynomials in
POPs. The efficiency of SparsePOP to compute bounds for optimal values of POPs is
increased and larger scale POPs can be handled. The software package SparesPOP and
this manual with some numerical examples are available at

http://www.is.titech.ac.jp/∼kojima/SparsePOP

Key words.

Polynomial optimization problem, sparsity, global optimization, sums of squares optimiza-
tion, semidefinite programming relaxation, MATLAB software package

⋆ Department of Mathematical and Computing Sciences, Tokyo Institute of
Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. Hay-
ato.Waki@is.titech.ac.jp

† Department of Mathematics, Ewha Women’s University, 11-1 Dahyun-dong,
Sudaemoon-gu, Seoul 120-750 Korea. A considerable part of this work was con-
ducted while this author was visiting Tokyo Institute of Technology. Research was
supported by KRF 2004-042-C00014. skim@ewha.ac.kr

‡ Department of Mathematical and Computing Sciences, Tokyo Institute of Tech-
nology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. Research sup-
ported by Grant-in-Aid for Scientific Research on Priority Areas 16016234. ko-
jima@is.titech.ac.jp

♯ Department of Computer Science, The University of Electro-Communications,
Chofugaoka, Chofu-Shi, Tokyo 182-8585 Japan. Research supported in part by
Grant-in-Aid for Young Scientists (B) 15740054. muramatu@cs.uec.ac.jp

1 Introduction

Let R
n and Z

n
+ denote the n-dimensional Euclidean space and the set of nonnegative integer

vectors, respectively. We express a real-valued polynomial fk(x) in x = (x1, x2, . . . , xn) ∈ R
n

as
fk(x) =

∑

α∈F k

ck(α)xα, x ∈ R
n, ck(α) ∈ R, Fk ⊂ Z

n
+

(k = 0, 1, 2, . . . , m), where x
α = xα1

1 x
α2

2 · · ·xαn

n for every x = (x1, x2, . . . , xn) ∈ R
n and

every α ∈ Z
n
+. A general polynomial optimization problem (POP) is of the form

minimize f0(x)
subject to fk(x) ≥ 0 (k = 1, 2, . . . , m).

}
(1)

The software package SparsePOP is a MATLAB implementation of a sparse semidefinite
(SDP) relaxation method proposed for POPs in the paper [10]. See also [3]. Based on the
concept of Lasserre’s hierarchy of LMI relaxations of increasing dimensions [5] for POPs,
this software is designed to solve larger-sized POPs by exploiting the sparsity of polynomials
in POPs.

This paper is organized as follows. In the rest of this section, we overview the structure
of SparsePOP. In Section 2, we give a brief introduction for sparse SDP relaxation for the
POP (1). Then we explain two formats to express polynomials and POPs in Section 3.
Section 4 presents an execution example of our software. Section 5 contains details of
top-level functions, and Section 6 is devoted to explain the parameters that are passed to
those top-level functions. Section 7 includes a brief explanation of utility functions, and the
concluding remarks follow in Section 8.

The structure of the software package SparsePOP is shown in Fig.1. The functions
readGMS.m, sparsePOP.m and printSolution.m are top-level MATLAB functions. Note
that the function name is sparsePOP.m, while the package name is SparsePOP.

As will be seen in Section 3, SparsePOP accepts two formats of polynomial optimization
problems. The first one is GAMS scalar format which is more readable for humans, and the
other is the SparsePOP format which is a set of MATLAB datatypes designed exclusively for
SparsePOP. In fact, the main function sparsePOP.m only accepts the SparsePOP format,
and readGMS.m works as a filter from the GAMS scalar format to the sparsePOP format.
Once the POP (1) is solved by sparsePOP, the solution can be written with printSolution.m.

We recommend to use ‘solveGMSproblem’ for GAMS scalar format problems. Typ-
ing ‘solveGMSproblem’ in MATLAB environment invokes readGMS.m, sparsePOP.m, and
printSolution.m in this order. Small-sized example problems described in the GAMS scalar
format from [2] with lower and upper bounds added are stored in the directory gms. Any
of the problems in the directory gms can be solved by changing the value of problemName
in the function solveGMSproblem.m to the target file name using an editor.

If a user prefers providing input directly to the function sparsePOP.m, then modify
the given function solveExample.m according to the SparsePOP format. Printing solution
information after executing is also possible by calling the function printSolution.m.

1

GAMS scalar formatSparsePOP formatreadGMS.m sparsePOP.mSolutions in MATLABprintSolution.mDisplayed Solutions
Figure 1: The structure of SparsePOP

2 SDP relaxation of POPs using csp graphs

In this section we briefly explain the sparse SDP relaxation of the POP (1) used in Sparse-
POP. See [10] for more details.

LetN = {1, 2, . . . , n}. For every k = 1, 2, . . . , m, let Fk = {i ∈ N : αi ≥ 1 for some α ∈ Fk} .
Then, a graph G = (N,E) that represents the sparsity structure of the POP (1) is con-
structed as folllows. A pair {i, j} with i 6= j selected from the node set N is an edge or
{i, j} ∈ E if and only if either there is an α ∈ F0 such that αi > 0 and αj > 0 or i, j ∈ Fk
for some k = 1, 2, . . . , m. The graph G(N,E) is called a correlative sparsity pattern (csp)
graph.

By construction, each Fk is a clique of G = (N,E) (k = 1, 2, . . . , m). Then we make a
chordal extension G(N,E ′) of G = (N,E), and let C1, C2, . . . , Cp be the maximum cliques
of (N,E ′). Note that C1, C2, . . . , Cp can easily be calculated because (N,E ′) is a chordal
graph.

For every C ⊂ N and ψ ∈ Z+, define

AC
ψ =

{
α ∈ Z

n
+ : αj = 0 if j 6∈ C,

∑

i∈C

αi ≤ ψ

}
,

and let u(x,AC
ψ) denote a column vector consisting of the elements x

α (α ∈ AC
ψ). We

assume that the elements x
α (α ∈ AC

ψ) in the vector u(x,AC
ψ) are arranged according to

the increasing order of α’s lexicographically. Note that 0 ∈ AC
ψ even when C = ∅; hence

the first element of the column vector u(x,AC
ψ) is always x

0 = 1.
For every k = 1, 2, . . . , m, let ωk = ⌈deg(fk(x))/2⌉,

ωmax = max{ωk : k = 0, 1, . . . , m}, (2)

and let C̃k be the union of some of the maximal cliques C1, C2, . . . , Cp of G(N,E ′) such that

Fk ⊂ C̃k.

2

When we derive a primal SDP relaxation, we first transform the POP (1) into an equiv-
alent polynomial SDP (PSDP)

minimize f0(x)

subject to u(x,A
eCk

ω−ωk
)u(x,A

eCk

ω−ωk
)Tfk(x) � O (k = 1, 2, . . . , m),

u(x,ACℓ

ω)u(x,ACℓ

ω)T � O (ℓ = 1, 2, . . . , p).

(3)

Here B � O denotes that a real symmetric matrix B is positive semidefinite. The matrices

u(x,A
eCk

ω−ωk
)u(x,A

eCk

ω−ωk
)T (k = 1, 2, . . . , m) and u(x,ACℓ

ω)u(x,ACℓ

ω)T (ℓ = 1, 2, . . . , p) are
positive semidefinite symmetric matrices of rank one for any x ∈ R

n, and have the element
1 in their upper left corner. These ensure the equivalence between the POP (1) and the
PSDP (3) above.

Since the objective function of the PSDP (3) is a real-valued polynomial and the left
hand side of the matrix inequality constraints of the PSDP (3) are real symmetric matrix
valued polynomials, we can rewrite the PSDP (3) as

minimize
∑

α∈
fF

c̃0(α)xα subject to M(0, ω) +
∑

α∈
fF

M(α, ω)xα � O.

for some F̃ ⊂ Z
n
+, some c̃0(α) ∈ R (α ∈ F̃) and some real symmetric matrices M(α, ω)

(α ∈ F̃
⋃
{0}). Note that the size of the matrices M(α, ω) (α ∈ F̃

⋃
{0}) and the number

of variables yα (α ∈ F̃) are determined by the parameter ω. Each monomial x
α is replaced

by a single real variable yα, and we have an SDP relaxation problem of the (1):

minimize
∑

α∈
fF

c̃0(α)yα subject to M(0, ω) +
∑

α∈
fF

M(α, ω)yα � O.
(4)

The problem (4) is a SDP relaxation, which can be solved by the standard SDP solvers.
SparsePOP can call SeDuMi [7] to solve the resulting SDP (4) and/or outputs the data of
(4) in the SDPA sparse format.

Let ζ̂ω denote the optimal objective value of the SDP (4), and yω
α

(α ∈ F̃) an optimal
solution of the SDP (4). We then extract yω

α
(α ∈ {ei : i ∈ N}), which are induced from

the variable xi (i ∈ N) in the original POP (1), to form an approximate optimal solution
x
ω of the POP (1):

x
ω = (xω1 , x

ω
2 , . . . , x

ω
n), x

ω
i = yei (i ∈ N).

The relation ζω ≤ ζω′ ≤ ζ∗ ≤ f0(x) holds if ωmax ≤ ω ≤ ω′ and if x ∈ R
n is a feasible solution

of the POP (1). (Recall that ζ∗ denotes the optimal value of the POP (1)). Therefore, if
f0(x

ω)− ζω is zero (or sufficiently small) and if x
ω satisfies (or approximately satisfies) the

constraints fk(x) ≥ 0 (k = 1, 2, . . . , m), then x
ω is an optimal solution (or an approximate

optimal solution, resepctively) of the POP (1).
The parameter ω, which corresponds to the parameter param.relaxOrder used in Sparse-

POP, will determine both the quality and the size of the SDP relaxation (4) of the POP (1).
In theory, we obtain an approximate optimal solution of the POP (1) with higher quality
(more precisely, not lower quality) by solving the SDP relaxation (4) as we choose a larger

3

ω. In practice, however, the size of the SDP relaxation (4) becomes larger and the cost of
solving the SDP relaxation (4) increases very rapidly. Therefore, we usually start the SDP
relaxation (4) with ω = ωmax, and successively increase ω by 1 if the approximate solution
obtained is not accurate.

In SparsePOP, we can add polynomial equality constraints fk(x) = 0 (k = m+1, . . . , m′)
as well as lower and upper bounds for the variables xi (i ∈ N) to the POP (1). SparsePOP
also deals with an unconstrained POP that only objective polynomial f0(x) is specified.

3 Representation of polynomials

The description of polynomials in the objective function and constraints is needed for Sparse-
POP. The polynomials can be represented in two ways. The one is to use the GAMS scalar
format and convert the GAMS scalar format data into the SparsePOP format data by
the function readGMS.m. The other is to directly describe the objective and constraint
polynomials in terms of the SparsePOP format.

As an example, we consider an inequality constrained POP with three variables x1, x2

and x3:

minimize −2x1 + 3x2 − 2x3

subject to 6x2
1 + 3x2

2 − 2x2x3 + 3x2
3 − 17x1 + 8x2 − 14x3 ≥ −19,

x1 + 2x2 + x3 ≤ 5,
5x2 + 3x3 ≤ 7,
0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2, 0.5 ≤ x3 ≤ 3.

(5)

This problem is expressed in the GAMS scalar format as follows:

* example.gms

* This file contains the description of the problem specified

* in solveExample.m, and is located in the directory gms.

* See Section 2 of the manual.

* To obtain a tight bound for the optimal objective value by the function

* sparsePOP.m, set the parameter param.relaxOrder = 3.

* The description consists of 5 parts except comment lines

* starting the character ’*’. The 5 parts are:

* < List of the names variables >

* < List of the names of nonnegative variables >

* < List of the names of constraints >

* < The description of constraints >

* < Lower and upper bounds of variables >

* < List of the names variables >

Variables x1,x2,x3,objvar;

* ’objvar’ represents the value of the objective function.

4

* < List of the names of nonnegative variables >

Positive Variables x1,x2;

* < List of the names of constraints >

Equations e1,e2,e3,e4;

* < The description of constraints >

* Each line should start with the name of a constraint in the list of names

* of constraints, followed * by ’.. ’. The symbols ’*’, ’+’, ’-’, ’^’, ’=G=’

* (not less than), ’=E=’ (equal to) and ’=L=’ can be used in addition to the

* variables in the list of the names of variables and real numbers. One

* constraint can be described in more than one lines; for example,

* e2.. - 17*x1 + 8*x2 - 14*x3 +6*x1^2 + 3*x2^2 - 2*x2*x3 + 3*x3^2 =G= -19;

* is equivalent to

* e2.. - 17*x1 + 8*x2 - 14*x3 +6*x1^2

* + 3*x2^2 - 2*x2*x3 + 3*x3^2 =G= -19;

* Note that the first letter of the line can not be ’*’ except comment lines.

* minimize objvar = -2*x1 +3*x2 -2*x3

e1.. 2*x1 - 3*x2 + 2*x3 + objvar =E= 0;

* 6*x1^2 + 3*x2^2 -2*x2*x3 +3*x3^2 -17*x1 +8*x2 -14*x3 >= -19

e2.. - 17*x1 + 8*x2 - 14*x3 +6*x1^2 + 3*x2^2 - 2*x2*x3 + 3*x3^2 =G= -19;

* x1 + 2*x2 + x3 <= 5

e3.. x1 + 2*x2 + x3 =L= 5;

* 5*x2 + 2*x3 <= 7

e4.. 5*x2 + 2*x3 =L= 7;

* < Lower and upper bounds on variables >

* Each line should contain exactly one bound;

* A line such that ’x3.up = 3; x3.lo = 0.5;’ is not allowed.

x1.up = 2;

x2.up = 1;

x3.up = 3;

x3.lo = 0.5;

If polynomials in the GAMS scalar format include parentheses, we need to specify sym-
bolicMath = 1 as the second input argument of readGMS.m so that the function readGMS.m
can expand them by using the Symbolic Math Toolbox in MATLAB. When the Symbolic
Math Toolbox is not available, parentheses need to be expanded manually before applying
readGMS.m.

Alternatively, a POP can be described directly using the SparsePOP format. A polyno-
mial class is defined for this purpose as follows:

5

poly.typeCone = 1 if f(x) ∈ R[x] is used as an objective function,
= 1 if f(x) ∈ R[x] is used as an inequality constraint f(x) ≥ 0,
= -1 if f(x) ∈ R[x] is used as an equality constraint f(x) = 0.

poly.degree = the degree of f(x).
poly.dimVar = the dimension of the variable vector x.

poly.noTerms = the number of terms of f(x).
poly.supports = a set of supports of f(x),

a poly.noTerms × poly.dimVar matrix.
poly.coef = coefficients,

a poly.noTerms dimensional column vector.

We use the name “objPoly” for the objective polynomial function f0(x) and “ineqPolySys{j}”
(j = 1, 2, . . . , m) for the polynomials fj(x) (j = 1, 2, . . . , m) in the constraints. We show
how the problem (5) is described using the polynomial class.

% Input data for ’example.gms’

% objPoly

% -2*x1 +3*x2 -2*x3

objPoly.typeCone = 1;

objPoly.dimVar = 3;

objPoly.degree = 1;

objPoly.noTerms = 3;

objPoly.supports = [1,0,0; 0,1,0; 0,0,1];

objPoly.coef = [-2; 3; -2];

% ineqPolySys

% 19 -17*x1 +8*x2 -14*x3 +6*x1^2 +3*x2^2 -2*x2*x3 +3*x3^2 >= 0,

ineqPolySys{1}.typeCone = 1;

ineqPolySys{1}.dimVar = 3;

ineqPolySys{1}.degree = 2;

ineqPolySys{1}.noTerms = 8;

ineqPolySys{1}.supports = [0,0,0; 1,0,0; 0,1,0; 0,0,1; ...

2,0,0; 0,2,0; 0,1,1; 0,0,2];

ineqPolySys{1}.coef = [19; -17; 8; -14; 6; 3; -2; 3];

%

% 5 -x1 -2*x2 -x3 >= 0.

ineqPolySys{2}.typeCone = 1;

ineqPolySys{2}.dimVar = 3;

ineqPolySys{2}.degree = 1;

ineqPolySys{2}.noTerms = 4;

ineqPolySys{2}.supports = [0,0,0; 1,0,0; 0,1,0; 0,0,1];

ineqPolySys{2}.coef = [5; -1; -2; -1];

%

% 7 -5*x2 -2*x3 >= 0.

ineqPolySys{3}.typeCone = 1;

ineqPolySys{3}.dimVar = 3;

ineqPolySys{3}.degree = 1;

ineqPolySys{3}.noTerms = 3;

6

ineqPolySys{3}.supports = [0,0,0; 0,1,0; 0,0,1];

ineqPolySys{3}.coef = [7; -5; -2];

% lower bounds for variables x1, x2 and x3

lbd = [0,0,0.5];

% upper bounds for variables x1, x2 and x3

ubd = [2,1,3];

4 Sample execution of the sparsePOP.m

The sparsePOP.m can be executed by typing ‘solveExample’ in a MATLAB environment. It
provides an optimal solution of the given problem ‘example.gms’, which is described in the
function solveExample.m in the SparsePOP format. In addition, some computational data
such as the parameters used, the size of SDP relaxation, information on the approximate
solution and errors, and cpu time are printed by printSoltion.m.

>> solveExample

SeDuMi 1.05R5 by Jos F. Sturm, 1998, 2001-2003.

Alg = 2: xz-corrector, theta = 0.250, beta = 0.500

eqs m = 83, order n = 271, dim = 1461, blocks = 11

nnz(A) = 1737 + 0, nnz(ADA) = 6889, nnz(L) = 3486

it : b*y gap delta rate t/tP* t/tD* feas cg cg

0 : 3.46E+01 0.000

1 : 3.75E-01 2.30E+01 0.000 0.6648 0.9000 0.9000 3.75 1 1

2 : 7.01E-01 9.81E+00 0.000 0.4262 0.9000 0.9000 2.46 1 1

.

.

25 : 1.09E+00 1.19E-09 0.000 0.3539 0.9000 0.9000 1.00 3 3

iter seconds digits c*x b*y

25 1.0 8.9 1.0863210013e+00 1.0863209997e+00

|Ax-b| = 4.1e-10, [Ay-c]_+ = 1.5E-11, |x|= 7.2e+00, |y|= 3.0e+00

Max-norms: ||b||=1, ||c|| = 1,

Cholesky |add|=1, |skip| = 0, ||L.L|| = 500000.

Computational Results by sparsePOP.m with SeDuMi

Printed by printSolution.m

Problem File Name = example.gms

parameters:

boundSW = 1

complementaritySW = 0

detailedInfFile = 0

eqTolerance = 0.00e+00

multiCliquesFactor = 1.00e+00

perturbation = 0.00e+00

reduceMomentMatSW = 1

relaxOrder = 3

scalingSW = 1

7

sdpaDataFile =

SeDuMiSW = 1

SeDuMiOutFile = 1

sparseSW = 1

SDP solved:

size of A = [83, 1460]

no nonzeros in A = 3052

no of LP variables = 160

no of SDP blocks = 10

max size SDP block = 20

ave.size SDP block = 1.10e+01

SeDuMi information:

SeDuMiInfo.numerr = 0

SeDuMiInfo.pinf = 0

SeDuMiInfo.dinf = 0

Approximate optimal value information:

SDPobjValue = -6.517925998312e+00

POPobjValue = -6.517926002094e+00

relative obj error = +5.801e-10

POP.absError = -7.462e-08

POP.scaledError = -1.777e-09

cpu time:

cpuTime.conversion = 0.85

cpuTime.SeDuMi = 1.31

cpuTime.total = 2.18

Approximate optimal solution information:

POP.xVect =

1:+2.589630050872e-01 2:+1.260433679787e-09 3:+2.999999995960e+00

5 Main MATLAB functions

The main part of the software package SparsePOP consists of three MATLAB functions
sparsePOP.m, readGMS.m and printSolution.m as shown in Figure 1. We give a brief
description of the inputs and outputs of these functions in this section.

The input for sparsePOP.m is basically the representation of the POP (1) in the Sparse-
POP format. The function sparsePOP has the following declaration:

function [param,SDPobjValue,POP,cpuTime,SeDuMiInfo,SDPinfo] = ...

sparsePOP(param,objPoly,ineqPolySys,lbd,ubd);

The objective and constraint polynomials of a POP are expressed in objPoly and ineqPolySys
in the SparsePOP format as described in Section 3. The row vector of the lower bounds for
xi (i = 1, 2, ..., n) is denoted by lbd. Similarly, ubd indicates the row vector of the upper
bounds for xi (i = 1, 2, ..., n). If lbd and ubd are not given, the function sparsePOP.m
assigns default values which are lbd(i) = −1.0e+10 and ubd(i) = +1.0e+10 in the sparse-
POP.m. The first argument param contains a set of parameters that influence the behavior

8

of SparsePOP. The details of these parameters are described in Section 6. If a user wants to
use default values, then he or she can just give an empty MATLAB struct, namely, param
= struct([]).

In the output, user-specified or default values for the parameters are stored in param.
SDPobjValue contains a lower bound of the optimal objective value of the POP. POP has
four components:

• POP.xVect: an approximate solution for the POP (1).

• POP.objValue: the value of the objective function at POP.xVect.

• POP.absError: an absolute feasibility error.

• POP.scaledError: a scaled feasibility error.

Suppose that the constraints under consideration are

fi(x) ≥ 0 (i = 1, 2, . . . , m), fj(x) = 0 (j = m+ 1, . . . , m′).

Then the absolute feasibility error at x ∈ R
n is given by

max {min{fi(x), 0} (i = 1, 2, . . . , m), −|fj(x)| (j = m+ 1, . . . , m′)} ,

and the scaled feasibility error is given by

max {min{fi(x)/σi(x), 0} (i = 1, 2, . . . , m), −|fj(x)|/σj(x) (j = m+ 1, . . . , m′)} ,

where σi(x) denotes the maximum of the absolute values of all monomials of fi(x) evaluated
at x ∈ R

n if the maximum is greater than 1 or σi(x) = 1 otherwise (i = 1, 2, . . . , m′).
The output cpuTime reports various cpu times consumed by the execution of sparsePOP:

• cpuTime.conversion: cpu time consumed to convert the POP into its SDP relaxation.

• cpuTime.SeDuMi: cpu time consumed by SeDuMi to solve the SDP.

• cpuTime.Total: cpu time for the entire process.

SDPinfo has information of the SDP relaxation problem solved by SeDuMi.

• SDPinfo.rowSizeA: the number of rows of the coefficient matrix of the primal SDP

• SDPinfo.colSizeA: the number of columns of the coefficient matrix of the primal SDP

• SDPinfo.nonzeroInA: the number of nonzeros of the coefficient matrix A.

• SDPinfo.noOfLPvariables: the number of LP variables of the primal SDP.

• SDPinfo.SDPblock: the row vector of sizes of SDP blocks.

Finally, SeDuMiInfo contains SeDuMiInfo.numerr, SeDuMiInfo.pinf and SeDuMi.dinf, which
are equivalent to info.numerr, infor.pinf and info.dinf in SeDuMi output. See [7] for the de-
tails.

The function readGMS has the following declaration:

9

function [objPoly,ineqPolySys,lbd,ubd] = readGMS(fileName,symbolicMath);

The first argument fileName that is a string of MATLAB is the name of the file where a
problem is described in the GAMS scalar format. The second input argument symbolicMath
is optionally set to be 1 if the Symbolic Math Tool is available. The output consisting of
objPoly, ineqPolySys, lbd, and ubd is a POP data in the SparsePOP format, and can be
passed to sparsePOP.

The function printSolution for printing the result has the following declaration.

function printSolution(fileId,printLevel,dataFileName,param,SDPobjValue,...

POP,cpuTime,SeDuMiInfo,SDPinfo);

The meaning of each input is as follows.

• fileId: the fileId where output goes. If this is 1, then the result is displayed on the
screen (i.e., the standard output). If a user wants to write the result to a file, he or
she must first open it in the writable mode and give its fileId.

• printLevel: a larger value of printLevel gives more detailed description of the result. 2
for the default.

• dataFileName: the name of the problem solved.

The rest of the input arguments, i.e., param, SDPobjValue, POP, cpuTime, SeDuMiInfo, and
SDPinfo must be the outputs of sparsePOP.

6 Parameters

In addition to objPoly, ineqPolySys, lbd and ubd that describe a POP, the MATLAB function
sparsePOP.m involves param as an input argument. It is a structure consisting of many pa-
rameters that control the behavior and performance of the function. The list of parameters
is shown below.

%%%

% Default values of parameters; % some possible values;

%%%

% param.boundSW = 1; % 0;

% param.complementaritySW = 0; % 1;

% param.detailedInfFile = []; % ’details.out’;

% param.eqTolerance = 0.0; % 1.0e-6;

% param.multiCliquesFactor = 1; % objPoly.dimVar;

% param.perturbation = 0.0; % 1.0e-6;

% param.reduceMomentMatSW = 1; % 0;

% param.relaxOrder = the minilmal relaxation order;

% or any positive integer;

param.relaxOrder = 3; % to solve example.gms;

% param.scalingSW = 1; % 0;

% param.sdpaDataFile = []; % ’test.dat-s’;

10

% param.SeDuMiOutFile = 1;

% 1 for screen;

% 0 or [] for none;

% file name, e.g., ’SeDuMi.out’ for writing output to a file.

% param.SeDuMiSW = 1;

% 0 for information on the SDP without executing SeDuMi;

% param.sparseSW = 1;

% 0 for dense SDP relaxation;

%%%

These parameters can be divided into three categories:

1. parameters to control the basic relaxation scheme.

2. switches to handle numerical difficulties.

3. parameters for SDP solvers.

6.1 Parameters to control the relaxation method

We first need to specify the relaxation order param.relaxOrder = ω ≥ ωmax to excecute the
sparse and dense SDP relaxation for a POP, where ωmax is defined by (2) for a POP of the
form (1). The default is param.relaxOrder = ωmax.

The type of relaxation can be chosen by setting param.sparseSW = 0 for the dense
relaxation based on [5] or = 1 for the sparse relaxation based on [10]. The sparsity of the
sparse relaxation is varied by param.multiCliquesFactor. Suppose that param.sparseSW= 1;
otherwise this parameter is not relevant. The purpose of this parameter is to strengthen the
sparse relaxation by taking the union of some of the maximal cliques Cℓ (ℓ = 1, 2, . . . , p) of

a chordal extension G = (N,E ′) of the csp graph induced from the POP (1) for C̃k (k =
1, 2, . . . , m). Let ρmax denote the maximum over ♯Cℓ (ℓ = 1, 2, . . . , p), where ♯Cℓ denotes the
cardinality of Cℓ. Recall that Fk = {i : xi appears in fk(x) ≥ 0}. Let Jk = {ℓ : Fk ⊂ Cℓ}.

Take one clique from Cℓ (ℓ ∈ Jk) for C̃k. Add another clique from Cℓ (ℓ ∈ Jk) to C̃k

if ♯
(
C̃k

⋃
Cℓ

)
does not exceed param.multiCliquesFactor ×ρmax. Repeat this procedure to

obtain the union C̃k of some cliques from Cℓ (ℓ ∈ Jk). If param.multiCliquesFactor = 0, then

C̃k consists of a single clique Cℓ for some ℓ ∈ Jk. If param.multiCliquesFactor = n, then
C̃k consists of the union of all Cℓ (ℓ ∈ Jk). The default value is 1, which means that the

cardinality of C̃k is bounded by ρmax.

6.2 Switches for techniques to reduce numerical difficulties

Because the POP (1) is basically a hard optimization problem, we often encounter numerical
difficulties in solving its SDP relaxation, and/or have an inaccurate approximate solution.
The switches described in this subsection are intended to reduce the numerical difficulties
and improve the accuracy of an obtained solution.

With param.scalingSW= 1, the objective polynomial, constraint polynomials, lower and
upper bounds are scaled so that the maximum of {|lower bound of xj |, |upper bound of xj |} =

11

1 (j ∈ J) and that the maximum absolute value of the coefficients of all monomials in each
polynomial is 1, where J denotes the set of indices j such that the variable xj has finite
lower and upper bounds; −1.0e+10 < lbd(j) ≤ ubd(j) < 1.0e+10. This scaling technique is
very effective to improve the numerical stability when solving the resulting SDP relaxation.
The default is param.scalingSW = 1.

Appropriate bounds are added for all linearized variables yα (α ∈ F̃) if param.boundSW
= 1, otherwise, no bounds are added to yα. The default is param.boundSW= 1. In particular,
when every variable xj is scaled such that lbd(j) = 0 and ubd(j) = 1 (j = 1, 2, . . . , n), the

bounds 0 ≤ yα ≤ 1 (α ∈ F̃) are added. Empirically, we know such a bounding is very
effective to improve the numerical stability in solving the SDP relaxation. Therefore, we
recommend users to modify a POP so that every variable xj is nonnegative and has a finite

positive upper bound; then the desired scaling and bounding of variables yα (α ∈ F̃) are
performed in the function sparsePOP.m by taking param.scalingSW = 1 and param.boundSW
= 1.

The parameter param.eqTolerance is used to convert every equality constraint into two
inequaly constraints; if 1.0e-10 < param.eqTolerance, then we replace each equality constraint
f(x) = 0 by f(x) ≥ 0 and −f(x) ≥ −param.eqTolerance. When SeDuMi shows a numerical
difficulty in solving the SDP relaxation of a POP with equality constraints, this technique
with 1.0e-3 ≤ param.eqTolerance ≤ 1.0e-7 often provides a more stable SDP relaxation
problem that can be solved by SeDuMi. The default is param.eqTolerance = 0, i.e. the
equality constraints are kept as given.

Perturbing the objective polynomial to compute an optimal solution of a degenerate
POP is described in Section 5.1 of [10]. The parameter param.perturbation is used for this
purpose. If 1.0e-10 < param.perturbation, then we modify the objective polynomial f(x)
as f(x) + ptx, where 0 ≤ pi ≤ param.perturbation. Otherwise, we do not perturb. The
default value for param.perturbation is 0.0, i.e., no perturbation to the objective polynomial
is performed.

When the SDP relaxation is too large to be solved, param.reduceMomentMatSW may
help. If param.reduceMomentMatSW = 1, then sparsePOP.m eliminates redundant elements
of ACℓ

ω (ℓ = 1, 2, . . . , p) in the PSDP (3) using the method proposed in the paper [4]. See
also [10].

When the complementarity condition exists in the constraints of a POP to be solved,
we can set param.complementaritySW = 1. Suppose that xixj = 0 appears as an equality
constraint. Then any variable yα corresponding to a monomial x

α such that αi ≥ 1 and αj ≥
1 is set to zero and eliminated from the PSDP (3). The default is param.complementaritySW
= 0.

6.3 Parameters for SDP Solvers

The function sparsePOP.m can provide three kinds of output for the SDP relaxation prob-
lem: information on the problem itself such as the size and the nonzero elements of the
constraint matrix of the problem, data on an optimal solution of the problem obtained by
SeDuMi, and SDPA sparse format data of the problem. SeDuMi should be called in the
function sparsePOP.m to have information on the problem itself as well as data on the ob-
tained optimal solution, which can be done by setting param.SeDuMiSW= 1. The parameter
param.SeDuMiOutFile is used in connection with the parameter param.SeDuMiSW= 1. The

12

default value for param.SeDuMiOutFile= 1 is used to display the output from SeDuMi on
the screen. If we assign the name of a file such as param.SeDuMiOutFile = ’SeDuMi.out’,
the output from SeDuMi is written in the file. Choose param.SeDuMiOutFile = 0 to display
no information from SeDuMi. The value 0 for param.SeDuMiSW is used to have information
on the problem printed without solving the SDP relaxation problem. The default value
for param.SeDuMiSW is 1. In either of the cases param.SeDuMiSW= 1 or 0, we can store
detailed information of the POP and its SDP relaxation in a file specified by the param-
eter param.detailedInfFile; for example, param.detailedInfFile = ’details.out’. The default is
param.detailedInfFile = [], i.e., no detailed information is printed. To get SDPA sparse
format data of the SDP relaxation problem, we need to assign the name of a file for SDPA
sparse format data to the parameter param.sdpaDataFile; for example, param.sdpaDataFile
= ’test.dat-s’. Then, the SDP relaxation problem can be solved later by using some soft-
ware packages such as SDPA [9] and SDPT3 [8] with the SDPA sparse format input file
’test.dat-s’. The default is param.sdpaDataFile = [], i.e., no SDPA sparse format data is
created.

7 MATLAB functions used in the function

sparsePOP.m

In Table 7, we give a brief description of utility programs in sparseSOS.

8 Concluding Remarks

We have described how the software package SparsePOP can be used. It should be men-
tioned that the size of POPs that can be handled by the SparsePOP currently can go up to
n = 30 if the lower relaxation order such as 1 or 2 is used. It also depends on the sparsity
of polynomials in a POP to be solved. See the paper [10] for extensive numerical results.

References

[1] GAMS HomePage, http://www.gams.com/

[2] GLOBAL Library, http://www.gamsworld.org/global/globallib.htm

[3] S. Kim, M. Kojima and H. Waki, “Generalized Lagrangian duals and sums of square
relaxation of sparse polynomial optimization problems”, to appear in SIAM J. Opti-
mization.

[4] M. Kojima, S. Kim and H. Waki, “Sparsity in sums of squares of polynomials”, to
appear in Mathematical Programming.

[5] J. B. Lasserre: Global optimization with polynomials and the problems of moments.
SIAM Journal on Optimization, 11 (2001) 796–817.

[6] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic problems”,
Mathematical Programming, 96 (2003) 293-320.

13

addBoundToPOP.m Add bounds to yα (α ∈ F̃).
boundToIneqPolySys.m Include lower and upper bounds, lbd and ubd,

in ineqPolySys.
checkPOP.m Verify input data objPoly, ineqPolySys, lbd and ubd

describing a POP in the sparsePOP format.
evalPolynomials.m Evaluate a polynomial or a polynomial system.
genApproxSolution.m Compute an approximate solution of POP using the

optimal value obtained from the SDP relaxation.
genBasisIndices.m Form basisIndices used for basisSupports from clique.
genBasisSupports.m Generate basisSupports based on basisIndices

and relaxOrder.
genClique.m Generate clique based the correlative sparsity pattern of

objective and constraint polynomials of a POP.
listupAllSupports.m List up all support vectors used in the PSDP.
monomialSort.m Sort monomials.
perturbObjPoly.m Perturb objective polynomial with a given small number.
PSDPtoLSDP Generate an SDP relaxation problem in the SDPA

sparse format.
relax1EqTo2Ineqs.m Convert every equality constraint into two inequality

constraints.
saveOriginalPOP.m Save the original POP before being modified.
scalingPOP.m Scale objPoly, inEqPolySys, lbd and ubd of a POP.
SDPAtoSeDuMi.m Convert SDPA sparse format data into SeDuMi format

data.
setParameter.m Set default values for parameters not specified by the user.
simplifyPolynomial.m Simplify a polynomial or a polynomial system.
writeBasisIndices.m Print basisIndices used for basisSupports.
writeBasisSupports.m Print basisSupports.
writeClique.m Print clique.
writeParameters.m Print param.
writePolynomials.m Print a polynomial or a polynomial system

in the sparsePOP format.
writePOP.m Print a POP expressed in the sparsePOP format.
writeResults.m Print an approximate optimal solution and errors.
writeSDPAformatData.m Print SDPA sparse format data on an LSDP.
writeSeDuMiInputData.m Print SeDuMi format data on an LSDP.

14

[7] J. F. Strum, “SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones”, em Optimization Methods and Software, 11 & 12 (1999) 625-653.

[8] R. H Tutuncu, K. C. Toh, and M. J. Todd, “Solving semidefinite-quadratic-linear
programs using SDPT3”, Mathematical Programming Ser. B, 95 (2003), pp. 189–217.

[9] M. Yamashita, K. Fujisawa and M. Kojima, “Implementation and evaluation of SDPA
6.0 (SemiDefinite Programming Algorithm 6.0)”, Optimization Methods and Software,
18 (2003) 491-505.

[10] H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of Squares and Semidefi-
nite Programming Relaxations for Polynomial Optimization Problems with Structured
Sparsity”, B-411, Dept. of Mathematical and Computing Sciences, Tokyo Institute of
Technology, Oh-Okayama, Meguro, Tokyo 152-8552 Japan, October 2004.

15

