ISSN 1342-2804

Research Reports on
Mathematical and
Computing Sciences

A Conversion of an SDP Having Free Variables
into the Standard Form SDP
Kazuhiro Kobayashi, Kazuhide Nakata,
and Masakazu Kojima
June 2005, B-416

Department of
Mathematical and
Computing Sciences
Tokyo Institute of Technology

ssres B: Operations Research




B-416 A Conversion of an SDP Having Free Variables into the Standard Form SDP
Kazuhiro Kobayashi*, Kazuhide Nakata! and Masakazu Kojima*, June 2005

Abstract.

This paper deals with a semidefinite program (SDP) having free variables, a minimization of
a linear objective function in a positive semidefinite matrix variable and free real variables
subject to linear equality constraints in those variables. This type of SDP often appears in
practice. To apply the primal-dual interior-point method developed for the standard form
SDP having no free variables, we need to convert our SDP into the standard from. One
simple way of conversion is to represent each free variable as a difference of two nonnegative
variables. But this conversion not only expands the size of SDP to be solved but also yields
some degeneracy in the resulting standard form SDP. We can also modify the primal-dual
interior-point method so as to adapt it to an SDP having free variables. This paper proposes
a new conversion method that eliminates all free variables. The resulting standard form SDP
is smaller in its size, and it could be more stably solved in general because the conversion
yields no degeneracy. Effectiveness of the new conversion method applied to SDPs having
free variables is reported in comparison to some other existing methods; SDPA, SeDuMi and
SDPT3 with the new conversion methods are compared to SDPA with the simple conversion
mentioned above, SeDuMi without any conversion and SDPT3 without any conversion,
respectively.

Key words.

Semidefinite Program, Primal-Dual Interior-Point Method, Equality Constraint, Standard
Form, Conversion.

* Department of Mathematical and Computing Sciences, Tokyo Institute
of Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan.
kazuhir2@is.titech.ac.jp

T Department of Industrial Engineering and Management, Tokyo Institute of Technol-
ogy, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. Research supported
by Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young
Scientists (B), 14750049, knakata@me.titech.ac.jp

T Department of Mathematical and Computing Sciences, Tokyo Institute of Tech-
nology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. Research sup-
ported by Grant-in-Aid for Scientific Research on Priority Areas 16016234. Fko-
Jjima@is.titech.ac.jp



1 Introduction

Throughout the paper, we use the notation R for the set of real numbers, R for the p-
dimensional Euclidean space, S" for the linear space of n x n real symmetric matrices
and S for the cone of positive semidefinite matrices in S", respectively. For a pair of
matrices X,Y € S", the inner product is defined as X ¢ Y = 77 3% | X;;Vi;. Let
A, €S" (i =1,2,---,m). We define the linear operator A : S* — R™ by AX = (A e
X,AyeX, -, A, eX)T for every X € S", and the adjoint linear operator A* : R™ — S"
by A*y =3 7", Ay, for every y € R™.

When we study the theory of SDPs and their computational methods, we usually deal
with a standard form semidefinite program (SDP)

(PO) minimize CeX
subject to AX =b and X € S7.

Here C € S" and b € R™ are constant, and X € S" is a variable. In fact, the duality theory
on SDPs as well as the primal-dual interior-point methods for SDPs have been presented for
this standard form SDP and its dual in many articles [7, 8, 9, 12]. In applications, however,
various different forms of SDPs are formulated.

One typical SDP which is different from the standard form involves free variables:

(P1) minimize CeoX + f'z
subject to AX +Dz=0b and X €§.

Here D € R™*? is a constant matrix, f € R? is a constant vector and z € R” is a variable.
Many practical problems are formulated as SDPs of this type, which include quantum
chemistry [11, 17] and polynomial optimization problems [15]. To apply the primal-dual
interior-point method [7, 8, 9, 12] to the SDP (P1), we need to convert it into the standard
form SDP (P0). One simple way of conversion is to represent the free variable vector
z € R? as a difference of two nonnegative variable vectors such as z = 2z, — z_, z, € R,
and z_ € RY | where RE denotes the nonnegative orthant of R”. This conversion method
is employed in the software package SeDuMi [13]. The method not only expands the size
of SDP to be solved but also yield some degeneracy such that the converted SDP has
continuum number of optimal solutions and its dual has no interior feasible solution. This
demerit would often cause it difficult to solve the converted SDP stably and/or to compute
a highly accurate optimal solution as reported in the paper [15]. We can also modify the
primal-dual interior-point method so as to process an SDP having free variables as done in
the software package SDPT3 [14]. Solving an SDP having free variable stably and accurately,
however, is still an important research subject.

This paper presents a new method for converting the SDP (P1) into a standard form
SDP. In order to compute an accurate optimal solution of the converted standard form
SDP by a general-purpose interior-point method, it is desirable that the conversion yields
no degeneracy. More specifically, it is desirable that the converted standard form SDP
and its dual would have interior-feasible solutions whenever the original primal-dual pair
of SDPs have interior-feasible solutions. Our conversion method satisfies this property.
Another important feature of our method is that as the original SDP (P1) involves more

1



free variables, the size of the converted standard form SDP becomes smaller than that of
the original SDP (P1); hence solving the converted SDP is faster than solving the original
SDP (P1) if their data matrices have similar sparsity. An important issue in our conversion
method is how we maintain the sparsity ([4, 6, 10]) of the original SDP (P1). When the
original SDP (P1) is fully dense, the converted SDP is also fully dense. Hence there is
no need to consider the sparsity of the problem. When the original SDP (P1) is sparse,
however, the converted SDP may become denser than the original SDP (P1). Due to this
worsening of the sparsity, it may be slower to solve the converted SDP than the original
SDP (P1) although the size of the converted SDP is smaller than the one of the original
SDP (P1). Therefore we need to consider how to maintain the sparsity of the original SDP
(P1) in the converted SDP.

In Section 2, we describe two methods that convert the SDP (P1) having free variables
into standard form SDPs. The one is a simple conversion method referred above, and the
other is the new conversion method. Section 3 is devoted to some technical details of the
new conversion method including its required number of arithmetic operations and a greedy
heuristic technique to make the converted standard form SDP as sparse as possible. In
Section 4, we report some numerical results.

2 Conversion of an SDP having free variables into a
standard form SDP

In this section, we present two methods for converting the SDP (P1) having free variables
into standard form SDPs.

2.1 A simple conversion by splitting free variables

The SDP (P1) can be converted into a standard form SDP by representing the variable
z € R? as a difference of two nonnegative variable vectors z, € RY and z_ € R” such that
z =z, — z_. Let diag(a) denote the p x p diagonal matrix with the diagonal components
ai, ag, . .., a, for each a = (ay,as,...,a,)" € R? and let d; (i = 1,2,...,m) denote the ith
row of the matrix D. Then the SDP (P1) can be rewritten as a standard form SDP
(P2)  minimize CeX
subject to AX =b and X € ST,

where
R cC O o)
C = | O diag(f) O ;
(0 (0] —diag(f)
~ A, o) (0]
A, = O diag(d}) o (i=1,2,...,m),
(0] O —diag(d])



. X (0] O
X = O diag(z,) O
(0] O diag(z_)

As in the case of A, Ais a linear operator defined as AX = (21 O/X\, :4\12 O/X\, ce Am.i)T.
As we mentioned in the Introduction, disadvantages of this method are (a) the size of (P2)
becomes bigger, (b) the set of optimal solutions of the SDP (P2) is unbounded if it is
nonempty and (c¢) the dual of the SDP (P2) has no interior feasible solution.

2.2 The new conversion method

We start with the dual of (P1)

(D1) maximize b’y
subject to C —A'y =2, Z €S and D'y — f=o0.

Without loss of generality, we assume that the m X p matrix D is column full rank; hence
rank(D) = p. When D is not column full rank, we remove redundant columns from D so
that the resulting matrix D’ has a smaller size and is column full rank. In this case, we use
D’ instead of D.

Since rank(D) = p, we know that p < m and that d! (i =1,2,...,m) contain p column
vectors forming a basis of R”. Let B denote the set of indices of the column vectors in the
basis and NV the set of indices of the other column vectors. For simplicity of discussions, we
may assume that B = {1,2,...,p}and N ={p+1,p+2,...,m}. We use the notation Dp
for the submatrix of D consisting of d; (i € B) and the notation Dy for the submatrix of
D consisting of d; (i € N). Similarly, we use yz, y,, bp and by for subvectors of y € R™
and b € R™ with the basis indices B and the nonbasis indices N, respectively. Note that
Dj is nonsingular. Hence we can solve the equality constraint D'y — f = 0 in yp such
that

ys = D3'f — D" Diyy.

Define the linear operators A% : R? — S™ and A% : R — S" by
BYB = Z Ay and Ajyy = Z Aiyi,
ieB €N

respectively. Now, substituting yz = D;T f- D]_S,TD]TVy y into the objective function and
the linear matrix inequality constraint of (D1), we have

b'y = bpyp+byyy

byp(D3" f — D5 Diyy) +byyy

bpDy' f + (by — bpDy' Dy)yy

Z

= C—Apyp — Ayyy

= C— A3(D3' f — D3 Dyyy) — Avyw

= (C—ARD"f) - ) (Ai— Ay(Dg"d])) u.

1EN

W

st



Thus we obtain the following primal-dual SDPs which is equivalent to the primal-dual pair
of SDPs (P1) and (D1):
(P3) minimize by + C e X
subject to AX =b and X € St
(D3) maximize by + BTyN
subject to C — A'yy =Z and Z € S.
where
by = b5DLTf, b= (by —bLD;"DY)", C=C - A3Df,
A; = A, - Ap(D"d]) (i € N),
~ ~ ~ ~ T
AX = <Ap+1 oX,Ap+20X,...,AmoX) for every X € S",
./I*yN = Z Ay; for every yy € R™P.
iEN

Let X* be an optimal solution of (P3), and (y%, Z") an optimal solution of (D3).
Then optimal solutions of (P1) and (D1) are obtained by (X,z) = (X*, Dz'bg —
DBIABX*) and (yB7 YN Z) - (DBT(f - Dz];fy*N)7 y*Nu Z*)v respeCtively‘

3 Some technical details

3.1 The number of arithmetic operations

Let Tsplit denote the number of arithmetic operations in dense computation for solving the

SDP (P2) by SDPA [16], and Thew that for solving the SDP (P3) by SDPA. These are
estimated as follows:

Tsplit

Thew = O((ng(m —p)+ nz(m - p)2 + (m —p)g)k)
+ O(p®m) + O((m — p)(p* + pn*)),

= O((n*m + n’m?* + m®)k),

where £ is the number of iterations of SDPA. Tsplit and the first term in Thew are for all

computation of SDPA to solve the SDPs (P2) and (P3), respectively. See [5]. The second
term O(p*m) in Thew is for the QR decomposition of D” to choose p linearly independent
vectors d (i € B). The third term O((m — p)(p? + pn?)) is for computing C and A.

We assume that p > 1, otherwise the original SDP (P1) is itself the standard form SDP.
If m —p = O(m) then Thew = O((n®*m + n?m? + m3)k); hence Thew is of the same order
as T, split and our conversion method does not cause serious increase of computation time in
this case.

On the other hand, when m —p = O(1), we see that Thew = O(n*k + m3 + mn?).
Table 1 shows the order of T, split and Thew for three cases on how m relates to n. In all

cases, the order of Thew becomes smaller than the one of T Hence, solving the SDP

(P3) is expected faster than solving the SDP (P2).

plit-

4



Table 1: Numbers of arithmetic operations when m —p = O(1)

case Typit Thew
m = 0(n?) | O(n°k) | O(n’k + nd)
m = O(ny/n) | O(n°k) | O(n3k + nt®)
m=0(n) | O(n'k) O(n’k)

3.2 Greedy heuristic for choosing a basis B

As we mentioned in the Introduction, maintaining the sparsity of the original SDP (P1)
is important to implement our conversion method. Each data matrix Az of the converted
SDP (P3) is computed as A; = A; — A(D3"d!) (i € N). Hence the sparsity of the matrix
A, (1 € N) is the same with the aggregate sparsity of the matrix A; and the p matrices
Ay (k € B). If all of the data matrices A; (j = 1,2,...,m) are fully dense, each matrix
A; (i € N) is also fully dense. If the data matrices A; (j =1,2,...,m) are sparse and
have different sparsity patterns, however, the sparsity of the matrix EZ becomes worse than
the matrix A; (i € N). Moreover, the sparsity of the matrix A; (i € N) depends on how
we choose p column vectors d. (1 € B) from D”. Many SDP software packages exploit
sparsity of a problem to reduce the computation time for solving the problem depending on
its sparsity. More specifically, as the sparsity of the data matrices of the problem increases,
the problem can be solved faster. See the papers [4, 6, 10]. In order to maintain the sparsity
of the original SDP (P1) as much as possible, we need to choose p column vectors d; (i € B)
from D7 so that the density of the data matrices A; = A; — As(DG'd!) (i € N) of the
converted SDP (P3) is minimized. However, choosing such column vectors is very hard.
Therefore we use the following heuristic method. Let E = {1,2,...,m}, the set of indices
of row vectors D or the set of indices of column vectors of DT, and ¢ C 27 the family of
subsets I of E such that d] (i € I) are linearly independent. Then the system (E,1)) forms
a matric matroid [1]. We call each I € ¢ an independent set. We associate a weight w; =
“the number of nonzero elements of the matrix A;” to each element ¢ € E, and we define
the weight w(S) of each subset S of E as the sum of the weights of its elements i € S;
w(S) = Y ;cqwi. Then, we consider the matroid optimization problem: Find a maximal
independent set of the system (E, 1) with the minimum weight. This problem is known to
be solved by a greedy algorithm. See [1]. As a solution of this matroid optimization problem,
we have a B € 9 such that d! € R? (i € B) forms a basis of R” and that A; (i € B) are
relatively sparse among the set of matrices A; (i = 1,2,...,m); hence the data matrices

A;= A, — A(D5"d}]) (i € N) in the resulting SDP (P3) become sparse.

3.3 Numerical evaluation of the greedy heuristic

In order to evaluate the above greedy heuristic algorithm, we executed numerical experi-
ments. We derived two SDPs of the form (P3) from the original SDP (P1). The one was
generated by using the greedy heuristic algorithm, and the other as follows. We compute
a QR factorization of the matrix D” with column pivoting by the LAPACK [2] function



dgeqp3. As an output of this function, we have a pivoting vector P. By using this pivoting
information, we choose the basis indices B. This method pays no attention to the sparsity
of the original SDP (P1) so that the resulting SDP (P3) may be much denser than the
original SDP (P1). We implemented these two conversion methods in C++ language, and
we used LAPACK [2] for dense computation of matrices and vectors.

In this experiment, we solved randomly generated sparse problems. We fixed the size n
of the variable matrix X to be 500 and the number m of constraints to be 500. The number
p of free variables is 10, 30 or 100. In addition, each problem has a sparsity parameter
g € (0,1]. By using this parameter, the problem was generated so that the number of
nonzero elements in the matrix A; (i = 1,2,...,m) becomes nearly % x n?. As a result, we
have a problem in which the sparsities of the data matrices A; (i = 1,2, ---,m) are different
each other. Each nonzero entry in the matrices was generated by a uniform random number.
Moreover, the matrix DD was generated so that the number of nonzero elements becomes
nearly ¢ x n? and each entry was generated by a uniform random number which took value
between 0 and m.

The matrix C' was taken to be the identity matrix I and each entry of the vectors f
and b was generated by a uniform random number which took a value between 0 and 1. By
generating D, C and f in this way, there exists a vector y with which C' — A*y becomes
positive semidefinite and the relation D"y = f holds in the dual problem (D1). That is,
the dual problem (D1) surely has a feasible solution.

In our numerical experiments, we ran SDPA with the default setting. When the primal
infeasibility

max{‘AioXk—bi}:i:1,2,...,m}, (1)
the dual infeasibility

max {

and the relative gap

[Z Az‘yf +2Z" - Clyq

i=1

:p,qzl,Q,...,n}, (2)

>0 biyk — C 0 X*|
max {(|>0", biyF| + |C @ X*|)/2.0,1.0}

(3)

are smaller than 1.0E-7, SDPA stops and outputs the current iterate (X", y*, Z*) as an
approximate optimal solution.

Table 2 shows the computation time per iteration of SDPA applied to the converted
SDP (P3) with and without the above heuristic algorithm for choosing the basis indices B.
As these results show, the heuristic algorithm is effective to maintain the sparsity of the
original SDP (P1) in the converted SDP (P3). In computational results reported in the
next section, we used this heuristic algorithm.

4 Computational results

As we described in the former sections, two advantages of the new conversion method are
(a) the resulting SDP has a smaller size and (b) it could be more stably solved because

6



Table 2: Effect of the greedy heuristic algorithm (time per iteration in seconds)

p | q | without heuristic | with heuristic
10 ] 0.1 1.39 1.40
10 | 0.3 1.54 1.56
10 1.0 50.77 1.93
30 | 0.1 1.41 1.41
30 | 0.3 1.53 1.52
301 1.0 12.47 1.95
100 | 0.1 1.36 1.37
100 | 0.3 1.53 1.49
100 | 1.0 5.54 1.91

m = 500, n = 500 for all of the problems

the conversion yields no degeneracy. In this section, we present computational results for
evaluating these two advantages of the new conversion method. The numerical experiment
was done on Pentium IV (Xeon) 2.4GHz with 6GB memory. In tables in this section, we use
following notations. An ”Yes” in "opt.” column denotes that the problem was solved; that
is, SDPA found an approximate optimal solution whose primal infeasibility, dual infeasibility
and relative gap are smaller than 1.0E-7. A ”No” in "opt.” column denotes that the problem
was not solved. A figure in "CPU” column denotes the total computation time (second) of
the primal-dual interior-point method, a figure in ”iter.” denotes the number of iterations
of the primal-dual interior-point method, a figure in ”C/i” or ”CPU /iter.” column denotes
the computation time (second) per iteration of the primal-dual interior-point method, and
a figure in "conv.” denotes the time (second) to convert the original SDP (P1) into the
converted SDP (P3). In case that the problem was not solved, we show the figures in
?"CPU” column, "iter.” column and ”C/i” column in the brackets. Moreover, a figure in
"p.err” column denotes the primal infeasibility defined by (1), a figure in ”d.err” column the
dual infeasibility defined by (2), and a figure in "rel.gap” column the relative gap defined
by (3) in the last iteration of SDPA.

4.1 Stability

In order to evaluate the stability of the new conversion method, we modified benchmark
test problems from SDPLIB [3]. Each problem in SDPLIB is formulated as a standard form
SDP (P0). To generate an SDP having free variables, we randomly generated a matrix
D € R™" and a vector f € RP and add them to this SDP (P0), where p was taken to be
m/2. In this way, we have a set of SDPs having free variables. Table 3 and 4 show the results
on SDPA applied to the standard form SDP (P2) and the converted SDP (P3) for solving
these problems. SDPA applied to the SDP (P2) was not able to solve any of the problems
except qap5_eq, qap6_eq and gap7-eq because of some numerical difficulties. In contrast
to this, SDPA applied to the converted SDP (P3) was able to solve all of the problems;
it found an approximate optimal solution for each problem whose primal infeasibility, dual



infeasibility and relative gap are smaller than 1.0E-7. That is, the new conversion method
with SDPA shows a good performance for solving SDPs having free variables stably.

4.2 Reduction of running time

The other advantage of the new conversion method is that the resulting standard form SDP
(P3) has a smaller size than the original SDP (P1). Hence solving the converted SDP (P3)
is faster than solving the original SDP (P1) if their data matrices have similar sparsity. In
order to evaluate this effect, we used two sets of test problems: randomly generated fully
dense problems and norm minimization problems with free variables.

For fully dense problems, we fixed the size n of the variable matrix X to be 200 and
the number m of constraints to be 100. The number p of free variables is 10, 30, 50, 70 or
90. Moreover, the matrices A; (i = 1,2,...,m) are generated by uniform random numbers.
Note that both of the original SDP (P1) and the converted SDP (P3) are fully dense. Table 5
shows the results of SDPA applied to the SDP (P2) and the results of SDPA applied to the
converted SDP (P3). Note that SDPA applied to the SDP (P3) was able to solve all of the
problems, whereas SDPA applied to the SDP (P2) was not able to solve any of the problems.
For these problems, as the p value becomes closer to the the m value, the computation time
of SDPA applied to the converted SDP (P3) becomes shorter.

In addition to the fully dense problems, we generated norm minimization problems with
free variables. The norm minimization problem is formulated as a standard form SDP (P0)
[7]. We firstly generated the norm minimization problem in the standard form SDP (P0)
whose data matrices and vectors are randomly generated. Secondly we randomly generated
a matrix D and a vector f and add them to the standard form SDP(P0). Then we have
an SDP (P1) having free variables. This problem has a favourable sparsity pattern in the
sense that the original SDP (P1) and the converted SDP (P3) have similar sparsity. Table 6
shows the results for solving these problems. As the p value becomes closer to the m value,
the computation time of SDPA applied to the converted SDP (P3) becomes shorter.

4.3 Conversion as a preprocessing of the primal-dual interior-
point method

We can consider the new conversion method as a preprocessing for an SDP software package
which implements the primal-dual interior-point method. That is, we convert an SDP having
free variables into the standard form SDP (P3) before we apply the SDP software package.
The resulting SDP (P3) is in the standard form so that it can be solved by any SDP software
package. In the previous section, we applied SDPA to solve the standard form SDP (P3).
Here we show numerical results on SeDuMi and SDPT3 applied to the converted SDP
(P3). We ran SeDuMi version 1.05 and SDPT3 version 3.02 with the default settings. An
"Yes” in "opt.” column in Table 7 and 8 denotes that SeDuMi/SDPT3 terminated with the
termination code which indicates that the problem was solved. A ”No” in ”opt.” column in
Table 7 and 8 denotes that SeDuMi/SDPT3 terminated with the termination code which
indicates that the problem was not solved because of some numerical difficulties.

SeDuMi can deal with free variables so that it can directly solve the original SDP (P1).
Table 7 shows numerical results on SeDuMi applied to the original SDP (P1) and applied to



Table 3: Results of SDPA, SDPLIB with free var.

SDPA (P2) SDPA (P3)
name opt. CPU iter. opt CPU iter. C/i  conv.
thetal_eq | No. (0.10) (11) Yes 0.26 15 0.02 0.08
theta2 eq | No (4.22) (10) Yes 851 16 0.53 2.70
theta3.eq | No  (38.36) (9) Yes 84.38 17 496  22.75
thetad_eq No (185.81) (9) Yes  409.89 18 22.77 120.77
thetabeq | No (576.28) (8) Yes 2209.10 19 116.27 449.29
gapb_eq Yes 0.14 14 Yes 0.27 14 0.02  0.150
qapb_eq Yes 1.18 15 Yes 0.47 15 0.03  0.970
qap7_eq Yes 5.65 15 Yes 2.25 15 0.15 3.10
qap8_eq No 8.77) (12) Yes 794 16 0.5 4.72
qap9_eq No  (19.07) (11) Yes 18.67 16 1.17  19.89
qapl0_eq No 57.50) (11) Yes 85.83 16 5.36  33.40
mepl24-leq | No  (0.56) (12) Yes 145 17 0.09  0.11
mepl24-2.eq | No  (0.55) (12) Yes 142 17 008  0.12
mcpl24-3_eq | No 0.55) (12) Yes 1.32 16 0.08 0.11
mcpl24-4_eq | No 0.49) (11) Yes 1.29 15 0.09 0.13
mep250-1_eq | No 3.33) (13) Yes 59.06 21 2.81 0.44
mep250-2_eq | No 3.17) (12) Yes 56.25 19 2.96 0.50
mep250-3.eq | No  (3.12) (12) Yes  49.66 18 276 0.44
mcp250-4_eq | No 2.99) (11) Yes 53.50 19 2.82 0.50
gppl24-1eq | No 0.62) (12) Yes 1.75 20 0.09 0.53
gppl24-2_ eq | No 0.63) (12) Yes 1.67 19 0.09 0.50
eppl24-3eq | No  (0.59) (12) Yes 164 18 009  0.56
gppl24-4_eq | No 0.56) (11) Yes 1.52 17 0.09 0.54
epp250-1.eq | No 3.56) (12) Yes 6473 21 3.08  4.93
gpp250-2_eq | No 3.58) (12) Yes 49.80 17 2.93 4.74
gpp250-3_eq | No 3.23) (11) Yes 51.39 17 3.02 4.94
gpp250-4_eq | No 3.17) (11) Yes 50.22 17 2.95 5.05




Table 4: Results of SDPA, SDPLIB with free var.

SDPA (P2) SDPA (P3)

name p.err d.err  rel. gap p.err d.err rel. gap
thetal_eq 6.76e-5 2.42e-8 1.12e-3 | 4.97e-9 5.50e-11  3.19e-8
theta2_eq 3.79e-4  4.98e-7 1.74e-2 | 2.69e-13 5.17e-13  2.43e-8
thetad_eq 2.89e-4  4.90e-6 1.38e-1 | 1.16e-12 2.17e-12 4.15e-8
thetad_eq 2.10e-4  3.66e-5 7.19e-2 | 1.73e-11 1.14e-11 4.22e-8
thetab_eq 5.12e-5  9.19e-5 T.4le-1 | 8.44e-12 1.13e-11  1.06e-8
qapb_eq 6.18e-10 1.82e-8 3.59e-8 | 1.40e-11 3.09e-12  4.36e-8
qapb_eq 1.99e-10 5.62e-8 1.66e-8 | 4.52e-11 1.95e-12  5.57e-8
qap7-eq 2.14e-10  5.70e-8 1.30e-8 | 4.69e-11 4.30e-12  5.01e-8
qap8-eq 8.91e-5 2.87e-8 4.70e-5 | 1.16e-10 1.21e-11 2.37e-8
qap9_eq 9.86e-6  3.03e-7 2.06e-4 | 1.54e-10 2.45e-11  3.14e-8
qapl0_eq 1.06e-4  2.24e-7 1.66e-4 | 5.38e-10 3.50e-11  8.26e-8
mcpl24-1.eq | 3.0le-3 1.37e-5 2.0le-3 | 3.81e-10 2.98e-12  5.83e-8
mcpl24-2 eq | 2.99e-3 4.43e-6 2.23e-3 | 1.06e-10 5.74e-12  2.41e-8
mcpl24-3.eq | 2.97e-3 4.78e-6 7.75e-4 | 3.06e-10 5.93e-12  4.20e-8
mcpl24-4 eq | 1.42e-3 1.93e-5 1.53e-3 | 2.15e-10 1.00e-11  7.19e-8
mcp250-1_eq | 2.58e-3 3.42e-5 5.30e-3 | 9.85e-11 9.98e-13  5.05e-8
mcp250-2_eq | 2.83e-3  2.57e-5 7.09e-3 | 1.27e-11 1.05e-12  9.30e-8
mcp250-3_eq | 1.05e-2  1.36e-5 3.19e-3 | 6.29e-12 1.26e-12 8.82¢-8
mcp250-4eq | 2.11e-3 6.60e-5 8.36e-3 | 1.51e-11 1.03e-12 1.28e-8
gppl24-1eq | 1.40e-2 1.02e-5 5.10e-3 | 3.35e-12 1.70e-12  6.40e-8
gppl24-2.eq | 9.05e-3 4.66e-6 5.88e-3 | 5.99e-12 2.19e-12 1.21e-8
gppl24-3.eq | 1.41e-2 3.25e-6 7.48e-3 | 1.49e-11 2.15e-12  3.62e-8
gppl24-4 eq | 2.05e-3 2.27e-5 2.46e-2 | 3.05e-12 1.43e-12  5.93e-8
gpp250-1_eq | 7.4be-3 1.7le-b 7.47e-3 | 5.06e-8  3.74e-8  1.54e-8
gpp250-2eq | 4.23e-3  1.40e-5 8.46e-3 | 1.48e-9 2.56e-13 7.44e-8
gpp250-3_eq | 2.55e-3 3.34e-5 4.73e-2 | 2.75e-9 3.34e-13 3.73e-8
gpp250-4eq | 3.7le-3  2.86e-5 3.69e-2 | 2.15e-9 4.38e-13 5.66e-8

Table 5: Reduction of the time ( fully dense problems )

SDPA (P2) SDPA (P3)
m n p CPU iter. CPU/iter. | CPU iter. CPU/iter.
100 200 10| (3043) (11)  (2.77) |36.36 16 2.97
100 200 30| (28.12) (11)  (256) |26.53 16 1.66
100 200 50| (25.64) (10)  (2.56) |18.11 16 1.13
100 200 70| (25.51) (10) (2.55) 10.67 16 0.67
100 200 90 | (28.09) (11) (2.55) 4.82 17 0.28

10




Table 6: SDPA norm min. problems with free var.

SDPA (P2) SDPA (P3)
m n D CPU iter. CPU/iter. CPU iter. CPU/iter.
500 500 100 | (890.13) (7)  (127.16) | 133451 16 83.41
500 500 200 | (1002.27) (8)  (125.28) | 936.48 16 58.53
500 500 300 | (1183.63) (9) (131.51) | 819.40 17 48.20
500 500 400 | (1188.12) (9) (132.01) | 526.19 17 30.95

the converted SDP (P3). From this table, we observe that SeDuMi applied to the converted
SDP (P3) was able to solve 11 problems that SeDuMi applied to the original SDP (P1) was
not able to solve. That is, SeDuMi applied to the converted SDP (P3) is more stable than
SeDuMi applied to the original SDP (P1). Moreover, the computation time per iteration
of SeDuMi applied to the original SDP (P1) is similar to that of SeDuMi applied to the
converted SDP (P3) for all of the problems.

SDPT3 can also deal with free variables so that it can directly solve the original SDP
(P1). Table 8 shows numerical results on SDPT3 applied to the original SDP (P1) and the
converted SDP (P3). SDPT3 applied to both the original SDP (P1) and applied to the
converted SDP (P3) were able to solve all of the problems stably. The computation time
per iteration of SDPT3 applied to the converted SDP (P3) is larger than the computation
time per iteration of SDPT3 applied to the original SDP (P1). The reason of this is that the
sparsity of the converted SDP (P3) is worse than the original SDP (P1). The worsening of
sparsity increased the computation time of SDPT3. However, this increase of computation
time is not so large. More specifically, the computation time per iteration of SDPT3 applied
to the converted SDP (P3) is at most four times larger than that of SDPT3 applied to the
original SDP (P1).

5 Concluding Remarks

In this paper, we described a new method to convert an SDP having free variables into
the standard form SDP. The new conversion method has two advantages (a) the resulting
SDP has a smaller size, and (b) it could be more stably solved. Through the numerical
experiments, we showed these two advantages. The conversion can be used as a prepro-
cessing so that it can be used with any SDP software package. As a topic of further study,
it would be worthwhile developing more effective algorithm to choose a basis B than the
greedy heuristic algorithm described in section 3.2 so that the resulting SDP (P3) becomes
sparser.

References

[1] R. Ahuja, T. Magnanti and J. Orlin, Network Flows — theory, algorithms, and applica-
tions, (Prentice Hall, 1993).

11



Table 7: Results of SeDuMi, SDPLIB with free var.

SeDuMi (P1)

SeDuMi (P3)

name opt. CPU iter. C/i | opt. CPU iter. C/i  conv.
thetal.eq | No (0.8) (13)  (0.06) | Yes 09 15 0.60 0.08
theta2_.eq | No (6.2) (11)  (0.56) | Yes 59 15 0.39 2.70
theta3.eq | No  (54.0) (11) (4.91) | Yes 57.0 15 3.8 2275
thetadeq | No (231.1) (10) (23.11)| Yes 2927 15 19.51 120.77
thetabeq | No (960.7) (11) (87.34) | Yes  726.8 14  51.91 449.29
qap5-eq No (0.6) (13)  (0.05) | Yes 04 15 0.03  0.150
qapb_eq No (1.6) (14) (0.11) | Yes 09 15 0.06 0.970
qap7eq | No  (2.6) (13) (0.20) | Yes 38 15 025 3.0
qap8_eq No (6.3) (12)  (0.53) | Yes 71 15 0.47 4.72
qap9-eq No  (16.9) (11) (1.54) | Yes 199 15 .33 19.89
gaploeq | No  (41.9) (11) (3.81)| No (85.83) (16) (5.36) 33.40
mcpl24-1_eq | Yes 3.1 15 0.21 | Yes 3.3 17 0.19 0.11
mcpl24-2_ eq | Yes 3.1 15 0.21 | Yes 4.6 18 0.26 0.12
mcpl24-3_eq | Yes 3.2 15 0.21 | Yes 3.3 17 0.19 0.13
mcpl24-4_eq | Yes 3.2 15 0.21 | Yes 3.8 18 0.21 0.12
mcp250-1_eq | Yes 24.3 16 1.52 | Yes 314 18 1.74 0.47
mcp250-2_eq | Yes 23.5 15 1.57 | Yes 29.6 18 1.64 0.42
mcp250-3_eq | Yes 23.7 15 1.58 | Yes 26.9 17 1.58 0.48
mcp250-4_eq | Yes 23.7 15 1.58 | Yes 25.1 16 1.57 0.54
gppl24-1_eq | Yes 5.0 17 0.29 | Yes 4.5 19 0.24 0.53
gppl24-2_eq | Yes 4.9 18 0.27 | Yes 4.3 19 0.23 0.50
gppl24-3_eq | Yes 4.5 17 0.26 | Yes 3.6 17 0.21 0.56
epp124-4 eq | Yes 50 17 0.29 | Yes 41 18 023 0.54
epp250-1eq | No  (47.3) (21) (2.25) | No  (63.6) (20) (3.18)  4.93
epp250-2.eq | No  (59.1) (21) (2.81)| No  (41.5) (18) (2.31)  4.74
gpp250-3_eq | No (61.10) (20) (3.06) | No 46.5) (21) (2.21) 4.94
gpp250-4eq | No  (77.7) (20) (3.89) | No 66.4) (24) (2.77) 5.05

12




Table 8: Results of SDPT3, SDPLIB with free var.

SDPT3 (P1) SDPT3 (P3)
name opt. CPU iter. C/i|opt. CPU iter. C/i conv.
thetal_eq Yes 0.6 13 0.05 | Yes 1.5 12 0.13 0.08
theta2_eq Yes 8.3 15  0.55 | Yes 20.6 15  1.37 2.70
thetad_eq Yes  63.1 16 3.94 | Yes 97.0 14 6.93 2275
thetad_eq Yes 296.2 17 17.42 | Yes  421.1 17 24.77 120.77
thetab_eq Yes 950.8 16 59.43 | Yes 1141.1 16 71.32 449.29
gapo_eq Yes 0.9 12 0.08 | Yes 1.2 12 0.1  0.150
qapb_eq Yes 1.6 13 0.12 ] Yes 2.7 12 0.23 0.970
qap7_eq Yes 3.8 14 0.27 | Yes 6.4 12 0.53 3.10
qap8_eq Yes 9.4 15  0.63 | Yes 15.1 12 1.26 4.72
qap9_eq Yes  22.2 15 148 | Yes 35.4 14 253 19.89
qapl0_eq Yes  49.6 15 3.31 | Yes 60.6 12 5.05 3340
mcpl24-1_eq | Yes 2.1 14 0.15 | Yes 6.9 20 0.35 0.11
mcpl24-2_ eq | Yes 2.0 13 0.15] Yes 5.7 19  0.30 0.12
mcpl24-3_eq | Yes 2.2 14 0.16 | Yes 5.9 19 0.31 0.13
mcpl24-4_ eq | Yes 2.2 13 0.17 | Yes 6.0 19 0.32 0.12
mcp250-1_eq | Yes 6.9 16 0.43 | Yes 34.8 20 1.74 0.47
mcp250-2_eq | Yes 7.4 15 0.49 | Yes 35.8 19 1.88 0.42
mcp250-3_eq | Yes 8.0 14 0.57 | Yes 26.3 18 1.46 0.48
mcp250-4_eq | Yes 7.9 14 0.56 | Yes 27.5 18  1.53 0.54
gppl24-1_eq | Yes 2.5 15 0.17 | Yes 6.1 19 0.32 0.53
gppl24-2_eq | Yes 24 14 0.17 | Yes 5.3 17 0.31 0.50
gppl24-3_eq | Yes 2.4 14 0.17 | Yes 5.0 16 0.31 0.56
gppl24-4_eq | Yes 2.2 13 0.17 | Yes 4.7 15 0.31 0.54
gpp250-1_eq | Yes 14.1 20 0.71 | Yes 42.0 25  1.68 4.93
gpp250-2eq | Yes  12.2 17 0.72 | Yes 37.0 22 1.68 4.74
gpp250-3_eq | Yes 11.8 16 0.74 | Yes 35.4 21 1.69 4.94
gpp250-4eq | Yes  12.2 17 0.72 | Yes 35.1 21 1.67 5.05

13




2]

[11]

[12]

[13]

[14]

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J .Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. Mckenney and D. Sorensen, LAPACK Users’ Guide
Third, Society for Industrial and Applied Mathematics 1999 Philadelphia, PA, ISBN
0-89871-447-8 (paperback).

B. Borchers, SDPLIB 1.2, a library of semidefinite programming test problems, Opti-
mization Methods and Software, 11 & 12 (1999) 683-690.

K. Fujisawa, M. Kojima and K. Nakata, Exploiting sparsity in primal-dual interior-
point methods for semidefinite programming, Mathematical Programming, 79 (1997)
235-253.

K. Fujisawa, M. Fukuda, M. Kojima and K. Nakata, Numerical evaluation of SDPA
(SemiDefinite Programming Algorithm), in: H. Frenk, K. Roos, T. Terlaky and S.
Zhang eds., High Performance Optimization, (Kluwer Academic Press, 2000) 267-301.

M. Fukuda, M. Kojima, K. Murota and K. Nakata, Exploiting sparsity in semidefinite
programming via matrix completion I: General framework, SIAM Journal on Opti-
mization, 11 (2000) 647-674.

C. Helmberg, F. Rendl, R. J. Vanderbei and H. Wolkowicz, An interior-point method
for semidefinite programming, STAM Journal on Optimization, 6 (1996) 342-361.

M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone semidef-
inite linear complementarity problem in symmetric matrices, SIAM Journal on Opti-
mization, 7 (1997) 86-125.

R. D. C. Monteiro, Primal-dual path-following algorithms for semidefinite program-
ming, SIAM Journal on Optimization, 7 (1997) 663-678.

K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima and K. Murota, Exploiting sparsity
in semidefinite programming via matrix completion II: Implementation and numerical
results, Mathematical Programming, 95 (2003) 303-327.

M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata and K. Fujisawa, Vari-
ational calculations of fermion second-order reduced density matrices by semidefinite
programming algorithm, Journal of Chemical Physics, 114 (2001) 8282-8292.

Yu. E. Nesterov and M. J. Todd, Primal-dual interior-point methods for self-scaled
cones, SIAM Journal on Optimization, 8 (1998) 324-364.

J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones, Optimization Methods and Software, 11 & 12 (1999) 625-653.

K. C. Toh, M. J. Todd and R. H. Titiincii, SDPT3 — a MATLAB software package
for semidefinite programming, version 1.3, Optimization Methods and Software, 11 &
12 (1999) 545-581. Available at http://www.math.nus.edu.sg/ mattohke.

14



[15]

H. Waki, S. Kim, M. Kojima and M. Muramatsu, Sums of squares and semidefinite
programming relaxations for polynomial optimization problems with structured spar-
sity, Research Report B-411, Deptartment of Mathematical and Computing Sciences,
Tokyo Institute of Technology, Meguro, Tokyo 152-8552 ( ).

M. Yamashita, K. Fujisawa and M. Kojima, Implementation and Evaluation of
SDPAG6.0 (SemiDefinite Programming Algorithm 6.0), Optimization Methods and Soft-
ware, 18 (2003) 491-505.

7. Zhao, B.J. Braams, M. Fukuda, M.L. Overton and J.K. Percus, The reduced den-
sity matrix method for electronic structure calculations and the role of three-index
representability, The Journal of Chemical Physics, 120 (2004) 2095-2104.

15



