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Abstract. Robust optimization is one of typical approaches to optimize a system with
incomplete information and considerable uncertainty. The standard robust optimization problem
minimizes maximum cost by focusing on the considerable worst case. In some application field, it
is certainly important to consider the worst case among all considerable cases, but this min-max
criterion tends to lead an overly conservative decision.

In this paper, we regard statistical learning problems as uncertain problems, and introduce
a risk measure known as the conditional value-at-risk (CVaR) in order to dissolve overly con-
servativeness of robust optimization and depresses influence of outliers or measurement error
which may be included in assumed uncertainty set. Monte Carlo sampling is applied to obtain
an optimal solution of CVaR robust problem approximately, and convergence property of the
solution is proved by using Vapnik and Chervonenkis theory. We point out that in the context
of machine learning, CVaR robust problem is identical to ν-support vector classification or ν-
support vector regression with apt uncertainty, and show that proposed approach is useful to
deal with measurement errors in observations.
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1 Introduction

Uncertainty is an inevitable feature of decision-making environments, and many researches have

been developed for optimization under uncertainty. There are two typical approaches to optimize

a system with incomplete information and considerable uncertainty: stochastic programming

(see, e.g. [14]) and robust optimization (see [3, 4, 9, 10, 16]). For an uncertain optimization

problem whose objective function includes uncertain data, standard stochastic programming

models assume that probability distributions governing the data are known or can be estimated,

and maximize the expectation of cost function including random variables. On the other hand,

robust optimization approach assumes that the uncertain data are known only within certain

bounds, which is called uncertainty set U , and minimizes maximum cost by focusing on the

considerable worst case in U .

In some application fields such as typical technological process in chemical industry and

topology design of truss structures, it is important to consider the worst case among all consid-

erable ones, but the min-max criterion tends to lead an overly conservative solution. In fact,

tradeoff between the uncertainty set size and the level of conservativeness has been thoroughly

explored both empirically and theoretically. Ben-Tal & Nemirovski [2, 3, 4] and El-Ghaoui &

Lebret [9] proposed less conservative robust models by considering uncertain problems with el-

lipsoidal uncertainties. Also, Bertsimas & Sim [6] proposed to adjust the level of conservatism

of the robust solutions in terms of probabilistic bounds of constraint violations.

In this paper, we regard statistical learning problems as uncertain problems, and utilize

a popular risk measure in financial risk management, known as the conditional value-at-risk

(CVaR) introduced by [13], for addressing overly conservativeness of robust optimization. The

risk measure CVaR indicates the β-tail expectation of the cost function. Minimizing CVaR

regards worst 100 × (1 − β)% cases in all considerable ones as the worst class, and provides

an optimal solution which minimizes the conditional expectation of costs in the worst class. In

other words, for any decision, we consider not only the worst case but the worst class including

the worst case. The corresponding CVaR robust problem has the following properties:

(i). CVaR robust problem connects stochastic programming problem, which minimizes the

expectation of cost function, and robust optimization problem by one parameter β ∈

(0, 1). By adjusting β nicely, CVaR robust problem becomes sufficiently close to the robust

optimization and also, stochastic programming problem. Clearly, adjusting β implicitly

changes the level of conservatism of the robust solution, or the risk aversion of the decision

maker. When the best decision determined by the robust problem is too conservative,

CVaR robust problem with proper β is helpful.

(ii). The optimal decision induced from CVaR robust problem possibly depresses influence of

outliers or measurement error, and thus, fit statistical learning problems well compared to a

decision of robust optimization. CVaR robust problem may provide an appropriate decision
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even if the underlying distribution function or uncertainty set U includes some error, while

the decision of robust optimization entirely depends on the choice of uncertainty set U

and is greatly influenced by such error. The resulting CVaR robust problems induced

from statistical learning problems are almost identical to ν-support vector classification

(ν-SVC) and ν-support vector regression (ν-SVR) [15].

The problem of minimizing CVaR is a kind of stochastic programming and requires probability

distributions governing the uncertain data instead of uncertainty set U . However, we also assume

that uncertain data are within uncertainty set U in order to show the relationship between the

proposed problem and robust optimization.

CVaR risk measure has been recently used in both the robust optimization and stochastic

optimization communities. For instance, Nemirovski & Shapiro [12] use CVaR to evaluate

approximate solutions to chance-constrained problems. Recent work by Bertsimas & Brown

[5] utilizes CVaR risk measures as a means of constructing uncertainty sets U . In this paper,

we introduce CVaR risk measure to statistical learning problems in order to dissolve overly

conservativeness of robust optimization and depresses influence of outliers or measurement error

which may be included in assumed uncertainty set. Actually, we show empirically that CVaR

risk measure fit statistical learning problems well compared to the min-max criterion.

CVaR robust problem, whose CVaR risk measure is defined in the integral form, is difficult

to solve exactly when the uncertainty set U consists of infinite number of cases, while the CVaR

problem can be solved easily when the number of all considerable cases is finite, i.e., U consists of

finite scenarios. To deal with infinite U , we generate samples u1, . . . ,uN , that is, N realizations

of the random vector u ∈ U based on Monte Carlo sampling, and solve CVaR robust problem

approximately via empirical CVaR robust problem constructed from samples u1, . . . ,uN . In

this paper, we discuss how large N is necessary to ensure that the gap between the optimal

value of CVaR robust problem and that of its empirical problem becomes sufficiently small with

high probability, differently from [8] and [18]. They estimated N for a more general uncertain

problem which includes uncertainty in constraints, so that the optimal solution of the sampled

problem is feasible to the original problem with high probability.

The rest of this paper is organized as follows. In Section 2 we describe uncertain problems

and then, introduce the definition of risk measures CVaR. Section 3 discusses CVaR robust

problems for two kinds of uncertainty sets: one is finite uncertainty set U and the other is

infinite uncertainty set U . Section 4 provides the proof of the theorem related to convergence

property of empirical CVaR robust problems, presented in the previous section. In Section 5,

we apply our CVaR robust approach to statistical learning problems: linear classification and

linear regression problems. From numerical results, we see that CVaR robust problem pursues

two objectives by minimizing the conditional expectation of cost function while avoiding poor

performance for any considerable cases. Finally, we conclude the paper by adding some remarks

and a possible extension.
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2 Preliminaries

2.1 Uncertain Problem

We consider an uncertain optimization problem whose objective function f(x,u) includes un-

certain data u, where x = (x1, . . . , xn) is a decision variable vector in this problem. Feasible

set for x is denoted by X. The coefficient vector u = (u1, . . . , un) of f(x,u) is unknown at

this present moment, but we know that u of a given uncertainty set U will be revealed in the

future. The usual robust optimization problem focuses on the worst case maxu∈U f(x,u) and

minimizes maximum cost such as

min
x∈X

max
u∈U

f(x,u). (1)

Throughout this paper, we assume that the regions X of x and U of u are bounded. Also,

suppose that f(x,u) is convex in x and the feasible set X is convex.

When given uncertainty set U consists of finite elements, robust problem (1) can be solved

exactly by some existing convex optimization techniques. For an uncertainty set U generally

defined as some region (for example, a polytope defined by hyperplanes), however, the robust

problem (1) becomes difficult to be solved. Therefore, for robust optimization problems, several

kinds of uncertainty sets U are proposed in [4, 3, 10] so that the resulting problems (1) are

solvable. Here we consider robust optimization problem whose objective function is convex

quadratic such as f(x,u) := f(x, (Q, q, γ)) = x⊤Qx+q⊤x+γ. For uncertain data (Q, q, γ), [4]

assumed an uncertainty set Ũq shown below and proposed the robust problem called uncertain

QCQP problem, which is reduced to a semidefinite programming. Moreover, other kinds of

uncertainty sets such as polytopic uncertainty set Ũp and norm-constrained uncertainty set Ũn

are discussed in [10]. These uncertainty sets Ũp, Ũn and Ũq are defined as follows.

• Polytopic uncertainty set [10] :

Ũp =





(Q, q, γ) :
(Q, q, γ) =

ℓ∑

j=1

uj(Qj , qj, γj)

Qj � O, j = 1, . . . , ℓ, u ∈ Up





,

Up =



u : u ≥ 0,

ℓ∑

j=1

uj = 1



 ,

f(x,u) =
∑ℓ

j=1(x
⊤Qjx + q⊤

j x + γj)uj , x ∈ X, u ∈ Up.
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• Norm-constrained uncertainty set [10] :

Ũn =





(Q, q, γ) :
(Q, q, γ) = (Q0, q0, γ0) +

ℓ∑

j=1

uj(Qj, qj , γj)

Qj � O, j = 0, 1, . . . , ℓ, u ∈ Un





,

Un = {u : u ≥ 0, ‖u‖ ≤ 1}

f(x,u) =

ℓ∑

j=1

(x⊤Qjx + q⊤
j x + γj)uj + (x⊤Q0x + q⊤

0 x + γ0), x ∈ X, u ∈ Un.

• Quadratic uncertainty set [4] :

Ũq =





(Q, q, γ) :

Q = (R0 +

ℓ∑

j=1

ujRj)
⊤(R0 +

ℓ∑

j=1

ujRj)

(q, γ) = (q0, γ0) +
ℓ∑

j=1

uj(qj , γj)

u ∈ Uq





Uq = {u : ‖u‖ ≤ 1}

f(x,u) =

ℓ∑

i,j=1

(x⊤R⊤
i Rjx)uiuj +

ℓ∑

j=1

{
x⊤(R⊤

0 Rj + R⊤
j R0)x + q⊤

j x + γj

}
uj

+(x⊤R⊤
0 R0x + q⊤

0 x + γ0), x ∈ X, u ∈ Uq.

Our empirical CVaR robust problem, presented in Section 3, requires no particular assumption

on uncertainty set Ũ , but if a suitable uncertainty set such as described above is provided, it

is possible to ensure the convergence of the empirical CVaR robust problem to CVaR robust

problem.

2.2 A Risk Measure: Conditional Value-at-Risk

For introducing a risk measure to be minimized, we regard u as a random vector, governed by

a probability measure on U . The distribution function Φ( · |x) of f(x,u) and a threshold αβ(x)

with some confidence level β ∈ (0, 1) are defined as follows:

Φ(α |x) := Pr{ f(x,u) ≤ α },

αβ(x) := min{α : Φ(α |x) ≥ β }.

We note that αβ is well-defined because Φ(α |x) is right continuous and non-decreasing with

respect to α. αβ is known as the value-at-risk (VaR) in the context of financial risk management,

and it is expected that f exceeds αβ only in (1 − β) × 100%.

Following the discussion of [13], we introduce the β-tail distribution function to focus on the

tail part of Φ(α |x) as

Φβ(α |x) :=





0 for α < αβ(x)
Φ(α |x) − β

1 − β
for α ≥ αβ(x)

.
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Figure 1: Illustration of the β-tail expectation φ(x) of f for fixed x

Using the expectation operator Eβ[·] under the β-tail distribution Φβ, let us define the β-tail

expectation of f by

φβ(x) := Eβ [ f(x,u) ] , (2)

which is the risk measure known as the conditional value-at-risk (CVaR). Denoting the expec-

tation under the original distribution Φ by E[·], the following relation shown in [13]:

αβ(x) ≤ E[ f(x,u) | f(x,u) ≥ αβ(x) ] ≤ φβ(x) ≤ E[ f(x,u) | f(x,u) > αβ(x) ]

implies that φβ is approximately equal to the conditional expectation of f which exceeds the

threshold αβ with fixed variables x.

To minimize φβ(x), [13] introduces a simpler auxiliary function Fβ : Rn+1 → R, defined by

Fβ(x, α) := α +
1

1 − β
E
[
[f(x,u) − α]+

]
,

where [X]+ := max{X, 0}, and confirms the formula

φβ(x) = min
α∈R

Fβ(x, α).

This equality provides a shortcut to minimizing φβ(x) as

min
x∈X

φβ(x) = min
(x,α)∈X×R

Fβ(x, α), (3)

that is, the minimal value φβ(x) and an optimal solution can be achieved by minimizing Fβ(x, α)

with respect to x ∈ X and α ∈ R simultaneously. Furthermore, it is shown in [13] that, with an

optimal solution (x∗, α∗) of the right-hand side optimization problem, α∗ is almost (or sometimes

exactly) equal to αβ(x∗).

It should be noted that the optimal value of (3), i.e., min(x,α)∈X×R Fβ(x, α) is non-decreasing

with respect to β. Let its optimal solution be (x∗
β, α∗

β). For arbitrary (x̄, ᾱ) and 0 < β1 ≤ β2 < 1,

we have Fβ1(x̄, ᾱ) ≤ Fβ2(x̄, ᾱ). Therefore, we see that

min
(x,α)∈X×R

Fβ1(x, α) = Fβ1(x
∗
β1

, α∗
β1

) ≤ Fβ1(x
∗
β2

, α∗
β2

) ≤ Fβ2(x
∗
β2

, α∗
β2

) = min
(x,α)∈X×R

Fβ2(x, α)
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which prove the non-decreasingness of min(x,α)∈X×R Fβ(x, α) with respect to β.

The following proposition, which is a part of Proposition 8 of [13], evaluates the VaR for the

extreme case where discreteness of probability distribution rules entirely, as in scenario-based

optimization under uncertainty.

Proposition 2.1 (VaR for scenario models) : Suppose the probability measure is concen-

trated in finitely many points u1, . . . ,uN of U . Fixing x, let those corresponding values be or-

dered as f(x,u1) < . . . < f(x,uN ), with the probability of f(x,uk) being pk > 0. Let kβ be the

unique index such that
∑kβ

k=1 pk ≥ β >
∑kβ−1

k=1 pk. Then, the VaR is given by αβ(x) = f(x,ukβ
).

3 CVaR Robust Optimization Problem

3.1 Finite Uncertainty Set U

We consider an uncertainty set U which consists of a finite number of elements such as U =

{u1, . . . ,uN}. The elements u1, . . . ,uN are regarded as scenarios for uncertain data, and as-

sumed to have the same occurrence probability. CVaR robust problem minimizes the β-tail

expectation of f(x,u) over 100 × (1 − β)% worst cases, that is, f(x,u) > αβ(x). This problem

is described as

min
x∈X,α

α +
1

(1 − β)N

N∑

i=1

[f(x,ui) − α]+, (4)

which can be transformed into the problem:

min
x,α,z

α +
1

(1 − β)N

N∑

i=1

zi

s.t. zi ≥ f(x,ui) − α, i = 1, . . . , N

z ≥ 0, x ∈ X.

This problem is solvable since X is convex and f(x,u) is convex in x.

We explore the relation between CVaR robust problem (4) and the usual robust problem (1)

which minimizes the worst case among u ∈ U . The following theorem implies that the min-max

robust optimization problem (1) is a special case of the proposed problem (4) with β ∈ (1− 1
N , 1)

and we can say that (4) is a general robust optimization problem with a parameter β ∈ (0, 1)

which corresponds to confidence level of the conditional value-at-risk measure.

Theorem 3.1. When β is sufficiently close to 1, concretely, 1 − 1
N < β < 1, (4) is equivalent

to (1).
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Proof: Fixing x ∈ X, let an optimal solution of maxi=1,...,N f(x,ui) be uk∗ , where k∗ may

depend on x. Proposition 2.1 shows that if the probability of the worst scenario uk∗ ∈ U is

greater than 1 − β, then φβ(x) = f(x,uk∗) holds for any x ∈ X. Therefore, under uniform

distribution,

min
x∈X

φβ(x) = min
x∈X

max
i=1,...,N

f(x,ui)

holds for 1 − 1
N < β < 1.

From the above theorem and the property that the optimal value of (3) is non-decreasing

with respect to β, we see that the optimal value of (4) with parameter β < 1 is less than that

of (1), i.e.,

min
x∈X,α

α +
1

(1 − β)N

N∑

i=1

[f(x,ui) − α]+ ≤ min
x∈X

max
u∈U

f(x,u).

As β decreases from 1 to 0, the optimal value of (4) decreases. This implies that when the best

decision determined by the robust problem is too conservative, the conservativeness is eased by

CVaR robust problem with appropriate parameter β < 1.

Theorem 3.2. When β is sufficiently close to 0, (4) corresponds to a scenario-based one-stage

stochastic programming problem, minx∈X
1
N

∑N
i=1 f(x,ui).

Proof: From Proposition 2.1, we see that αβ(x) = mini=1,...,N f(x,ui) holds for β satisfying

0 < β ≤ 1
N . Therefore, the objective function of (4) is replaced by

min
i=1,...,N

f(x,ui) +
1

(1 − β)N

N∑

i=1

(
f(x,ui) − min

i=1,...,N
f(x,ui)

)
,

and CVaR robust problem (4) converge to minx∈X
1
N

∑N
i=1 f(x,ui) as β → 0.

3.2 Infinite Uncertainty Set U

Supposing that U is a bounded Lebesgue measurable set with positive volume, we provide a

probability density function g(u) over U and consider CVaR robust problem:

(P )
min

x∈X,α
Fβ(x, α) := α +

1

1 − β
E
[
[f(x,u) − α]+

]
.

= α +
1

1 − β

∫

u∈U
[f(x,u) − α]+g(u)du.

(5)

It is difficult to solve the problem (5) with a generally defined uncertainty set U , and thus, by

using a finite set U(N) := {u1, . . . ,uN} ⊂ U which consists of independently and identically

distributed random samples on U and replacing the integral with empirical mean, one has

(PN )

∣∣∣∣∣ min
x∈X,α

F̂β(x, α) := α +
1

(1 − β)N

N∑

i=1

[f(x,ui) − α]+. (6)
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Furthermore, the empirical CVaR robust problem (PN ) can be transformed into

min
x,α,z

α +
1

(1 − β)N

N∑

i=1

zi

s.t. zi ≥ f(x,ui) − α, i = 1, . . . , N

z ≥ 0, x ∈ X.

Note that (PN ) is solvable since X is convex and f(x,u) is convex in x. When the number of

samples is sufficiently large, (PN ) would be a nice approximation for (P ) while computational

tasks increase.

To elucidate the convergence property of (PN ), we need some results in the field of machine

learning [19]. The assertion related to convergence properties of (PN ) is stated below without

proof. The proof of Theorem 3.3 is provided in Section 4, together with brief reference to

Vapnik-Chervonenkis (VC) dimension h.

Theorem 3.3. Suppose that |f(x,u)| ≤ M for any x ∈ X and u ∈ U , and the VC dimension

h of function set

Fβ =

{
α +

1

1 − β
[f(x, ·) − α]+ : U → R | x ∈ X,α ∈ [−M,M ]

}
(7)

is finite. Then, inequality

∣∣∣∣ min
x∈X,α

F̂β(x, α) − min
x∈X,α

Fβ(x, α)

∣∣∣∣ ≤ Eβ(N, η)

holds with probability at least 1 − η, where

Eβ(N, η) :=
2M(3 − β)

1 − β

√
h log 2N + h − h log h − log(η/4)

N
+

1

N
. (8)

Corollary 3.4. Suppose that the VC dimension of Fβ is finite. For any ǫ > 0, the optimal

value of (PN ) converges to that of (P ) in probability, i.e.,

lim
N→∞

Pr

{∣∣∣∣ min
x∈X,α

F̂β(x, α) − min
x∈X,α

Fβ(x, α)

∣∣∣∣ > ǫ

}
= 0.

Now we show the relation between the usual robust problem (1) and the proposed CVaR

robust problem (5) (or the empirical approximation (6)).

Theorem 3.5. For an arbitrary β ∈ (0, 1), the optimal values of (5) and (6) are less than that

of (1).
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Figure 2: The constraint on x and the uncertainty set U in Example 3.6.

Proof: The definition of φβ(x), presented in (2), implies φβ(x) ≤ maxu∈U f(x,u) for any

β ∈ (0, 1). Denoting an optimal solution of minx∈X maxu∈U f(x,u) as x∗, we have

min
x∈X,α

Fβ(x, α) = min
x∈X

φβ(x) ≤ φβ(x∗) ≤ max
u∈U

f(x∗,u) = min
x∈X

max
u∈U

f(x,u).

Likewise, we have

min
x∈X,α

F̂β(x, α) ≤ min
α

F̂β(x∗, α) ≤ max
u∈U(N)

f(x∗,u) ≤ max
u∈U

f(x∗,u) = min
x∈X

max
u∈U

f(x,u).

Above inequalities prove this theorem.

It is likely that the optimal value of CVaR robust problem (5) converges to that of the robust

problem (1) as β converges to one. We show a simple example in which it is the case.

Example 3.6. Let X and U be

X = {(x1, x2) ∈ R2 | x1 − x2 = 1, x1 ≥ 0, x2 ≤ 0},

U = {(u1, u2) ∈ R2 | u1 + u2 = 1, u1 ≥ 0, u2 ≥ 0}.

The objective function f(x,u) is defined as f(x,u) = x1u1 + x2u2. The constraint X and the

uncertainty set U are depicted in Figure 2.

For any x = (x1, x2) ∈ X, x1 > x2 holds, and then, one has x2 ≤ f(x,u) ≤ x1,∀u ∈ U .

Thus the optimal value of robust problem for f(x,u) is equal to zero because

min
x∈X

max
u∈U

f(x,u) = min
x∈X

x1 · 1 + x2 · 0 = 0.

We suppose that uniform distribution is defined on U . By referring Figure 2, we find that the

distribution function of f(x,u) for fixed x ∈ X is given as

Pr

{
f(x,u)

‖x‖2
≤

x2

‖x‖2
+ z

}
=

z

L
=

z

(x1 − x2)/‖x‖2
, 0 ≤ z ≤

x1 − x2

‖x‖2

⇐⇒Pr {f(x,u) ≤ x2 + β(x1 − x2)} = β, 0 ≤ β ≤ 1.
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Figure 3: Upper bound of minx∈X maxu∈U f(x,u) − minx∈X,α Fβ(x, α) and minimizer of the
bound, β∗, are depicted.

Hence, the value-at-risk of f(x,u) is equal to αβ(x) = x2 + β(x1 − x2) = x1 + β − 1, and the

inequality

β − 1 ≤ αβ(x) ≤ φβ(x) ≤ max
u∈U

f(x,u)

holds for an arbitrary x ∈ X, and then, one has

β − 1 ≤ min
x∈X

αβ(x) ≤ min
x∈X

φβ(x) ≤ min
x∈X

max
u∈U

f(x,u) = 0.

Consequently, minx∈X,α Fβ(x, α) converges to minx∈X maxu∈U f(x,u) as β → 1, that is,

lim
β→1

min
x∈X,α

Fβ(x, α) = min
x∈X

max
u∈U

f(x,u) = 0

holds in this example. Moreover, the difference between the optimal value of robust problem

and that of empirical CVaR problem is upper bounded in probability at least 1 − η as follows,

min
x∈X

max
u∈U

f(x,u) − min
x∈X,α

F̂β(x, α)

=
{

min
x∈X

max
u∈U

f(x,u) − min
x∈X,α

Fβ(x, α)
}

+
{

min
x∈X,α

Fβ(x, α) − min
x∈X,α

F̂β(x, α)
}

≤ 1 − β + Eβ(N, η),

since minx∈X maxu∈U f(x,u) = 0 and β − 1 ≤ minx∈X,α Fβ(x, α) = minx∈X φβ(x). Note

that M in Eβ(N, η) is equal to 1, and VC dimension h is at most 3 (cf. Example 4.2). In

the machine learning literature, first term, 1 − β, in the upper bound is regarded as bias and

second term, Eβ(N, η), is deemed to be variance. As shown in Figure 3, an optimal solution β∗,

which minimize the difference minx∈X maxu∈U f(x,u) − minx∈X,α Fβ(x, α), is determined by

trade-off between bias and variance. The strategy for selecting β is similar to the structural risk

minimization principle [19]. When η = 1/N , the upper bound 1 − β + Eβ(N, 1/N) converges to

zero by putting 1 − β = O((log N/N)1/4) and the optimal value of F̂β(x,u) converges to that

of the robust problem in probability.
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4 Convergence Property for Empirical Problem

4.1 Proof of Theorem 3.3

To ensure the convergence property of (PN ), we need fundamental results in the field of machine

learning [19]. Let us define

lβ(u;x, α) := α +
1

1 − β
[f(x,u) − α]+,

then, the auxiliary function Fβ and its empirical approximation F̂β are respectively given as

Fβ(x, α) = E[lβ(u;x, α)], and F̂β(x, α) = 1
N

∑N
i=1 lβ(ui;x, α). For each (x, α), F̂β(x, α) con-

verges to Fβ(x, α) in probability as N → ∞ by the law of large numbers. However, it is rather

nontrivial whether the optimal value of (PN ) converges to that of (P ) because generally an op-

timal solution of (P ) is different from that of (PN ). Hence, instead of the law of large numbers,

we apply the uniform law of large numbers to prove convergence properties of (PN ).

Theorem of the uniform law of large numbers [19] requires the condition that lβ(u;x, α) is

bounded for any x and α. When an upper bound of |f(x,u)| is estimated such as |f(x,u)| ≤ M

for x ∈ X and u ∈ U , then, that of |lβ(u;x, α)| is also estimated with M . Recall that an optimal

solution of (P ) and that of (PN ) have the form of (x∗, αβ(x∗)), and clearly αβ(x∗) is bounded

in the interval [−M,M ] regardless of distribution on uncertainty set. Thus, boundedness of

|lβ(u;x, α)| is derived as follows:

|lβ(u;x, α)| ≤ |α| +
1

1 − β
|[f(x,u) − α]+|

≤ |α| +
1

1 − β
|f(x,u) − α|

≤ M +
2M

1 − β

=
M(3 − β)

1 − β
.

Let Fβ be function set defined as (7), that is,

Fβ = {lβ(· ;x, α) : U → R | x ∈ X,α ∈ [−M,M ]},

then, direct application of uniform law of large numbers leads to Theorem 4.1. In the theo-

rem, combinatorial complexity of Fβ called VC dimension governs the worst-case convergence

property of empirical means.

Theorem 4.1 (uniform law of large numbers [19]) : Let h be the VC dimension of Fβ ,

11



then, one has inequality,

Pr

{
sup

x∈X,α∈[−M,M ]

∣∣∣∣
1

N

N∑

i=1

lβ(ui;x, α) − E[lβ(u;x, α)]

∣∣∣∣ > ǫ

}

≤4 exp








h log 2N + h − h log h

N
−

1
(

2M(3−β)
1−β

)2

(
ǫ −

1

N

)



2

N





,

for arbitrary N such as 2N ≥ h.

The statement of Theorem 4.1 is rephrased as follows: fixing η ∈ (0, 1), with probability at least

1 − η, inequality ∣∣∣∣
1

N

N∑

i=1

lβ(ui;x, α) − E[lβ(u;x, α)]

∣∣∣∣ < Eβ(N, η) (9)

holds for any x ∈ X and α ∈ [−M,M ], where Eβ(N, η) is defined as (8). Note that the bound

Eβ(N, η) does not depend on probability distribution on U . That is, the bound is valid for any

distribution on U .

Uniform law of large numbers assures the uniform convergence of empirical means:

sup
x∈X,α∈[−M,M ]

∣∣∣∣
1

N

N∑

i=1

lβ(ui;x, α) − E[lβ(u;x, α)]

∣∣∣∣

= sup
x∈X,α∈[−M,M ]

∣∣F̂β(x, α) − Fβ(x, α)
∣∣ −→ 0 (N → ∞),

if the VC dimension of Fβ is finite.

Now we are ready to prove Theorem 3.3, which evaluates the difference between the optimal

value of (P ) and that of (PN ).

Proof of Theorem 3.3: We denote an optimal solution of (PN ) by (x̄N , ᾱN ) and

that of (P ) by (x∗, α∗). Note that Fβ(x∗, α∗) ≤ Fβ(x̄N , ᾱN ) and F̂β(x̄N , ᾱN ) ≤ F̂β(x∗, α∗)

hold. In addition, (9) ensures that inequalities −Eβ(N, η) ≤ F̂β(x̄N , ᾱN ) − Fβ(x̄N , ᾱN ) and

F̂β(x∗, α∗)−Fβ(x∗, α∗) ≤ Eβ(N, η) hold simultaneously with probability at least 1−η. Hence,

one has

−Eβ(N, η) ≤ F̂β(x̄N , ᾱN ) − Fβ(x̄N , ᾱN )

≤ F̂β(x̄N , ᾱN ) − Fβ(x̄N , ᾱN ) + Fβ(x̄N , ᾱN ) − Fβ(x∗, α∗)

= F̂β(x̄N , ᾱN ) − Fβ(x∗, α∗)

≤ F̂β(x̄N , ᾱN ) − Fβ(x∗, α∗) + F̂β(x∗, α∗) − F̂β(x̄N , ᾱN )

= F̂β(x∗, α∗) − Fβ(x∗, α∗)

≤ Eβ(N, η),
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Figure 4: Three points can be separated into two classes in all 23 possible ways using affine
functions, but not four: The points u2,u3 cannot be separated by a line from the vectors
u1,u4.

with probability at least 1 − η, and then,

∣∣∣∣ min
x∈X,α

F̂β(x, α) − min
x∈X,α

Fβ(x, α)

∣∣∣∣ ≤ Eβ(N, η)

is proved.

4.2 Estimate of VC dimension and Upper Bound for |f(x, u)|

Theorem 3.3 requires finite VC dimension h of Fβ and an estimate of upper bound M satisfying

|f(x,u)| ≤ M for any x ∈ X and u ∈ U . VC dimension is a key concept for the uniform

convergence of empirical means. For the detailed definition of VC dimension, one can refer [19].

Here, we show some examples to illustrate the definition of VC dimension.

Example 4.2. (VC dimension for set of affine functions): Let l(u; γ) be affine function

such as l(u; γ) = γ0 + γ1u1 + γ2u2, where u = (u1, u2) ∈ R2, and F be F = {l(u; γ) | γ =

(γ0, γ1, γ2) ∈ R3} which consists of all affine functions on R2. For any γ ∈ R3, l(u, γ) ≥

0 or l(u, γ) < 0 holds, and we denote l(u, γ) ≥ 0 by ’+’ and l(u, γ) < 0 by ’−’. Let

{u1,u2,u3} be a set of three points in R2, then there are eight possible ways for signs of

{l(u1, γ), l(u2, γ), l(u3, γ)}, that is, {+,+,+}, {−,+,+}, . . . , {−,−,−}. We can find three fixed

points in R2 such that all these combinations occur by varying parameter γ. However, there does

not exist four points set {u1,u2,u3,u4} in R2 such that all 24 possible ways, {+,+,+,+}, . . . , {−,−,−,−},

occur. Consequently, we find that VC dimension of F is equal to three. This is the maximum

cardinality of subset in R2 such that all possible combinations of signs occur (see Figure 4).

Example 4.3. (VC dimension for set of polynomial functions [18]): Let l(u; γ) be

polynomial function on Rm whose degree is at most two and let F be a subset of polynomials

on Rm up to degree two. Then, the VC dimension of F is less than or equal to (m+1)2

2 .
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There are various kinds of objective functions f(x,u) and uncertainty sets Ũ such that a finite

upper bound M for |f(x,u)| and finite VC dimension h are available. Here, for quadratic objec-

tive functions f(x,u) = x⊤Qx + q⊤x + γ and the uncertainty sets U described in Section 2.1,

we have actually evaluated upper bounds M and VC dimension h. Let rx be sufficiently large

number so that maxx∈X ‖x‖ ≤ rx holds, and σmax(Q) be the maximum eigenvalue of matrix

Q.

• Polytopic uncertainty set :

Mp =
√∑ℓ

j=1(σmax(Qj)r
2
x + ‖qj‖rx + γj)2,

hp ≤ ℓ + 1.

• Norm-constrained uncertainty set :

Mn =
√∑ℓ

j=1(σmax(Qj)r
2
x + ‖qj‖rx + γj)2 + σmax(Q0)r

2
x + ‖q0‖rx + γ0,

hn ≤ ℓ + 1.

• Quadratic uncertainty set :

Mq = r2
xσmax(

∑ℓ
i=1 R⊤

i Ri) +
√∑ℓ

j=1(σmax(R⊤
0 Rj + R⊤

j R0)r2
x + ‖qj‖rx + γj)2

+σmax(R
⊤
0 R0)r

2
x + ‖q0‖rx + γ0,

hq ≤ (m + 1)2/2.

We show the computation of M only for norm-constrained uncertainty set and similar discussion

holds for other sets. we have

max
x,u

x⊤Qx + q⊤x + γ

≤ max
x

∥∥∥∥∥∥∥∥




x⊤Q1x + q⊤
1 x + γ1

. . .

x⊤Qℓx + q⊤
ℓ x + γℓ




∥∥∥∥∥∥∥∥
+ max

x

{
x⊤Q0x + q⊤

0 x + γ0

}

≤
√∑ℓ

j=1(σmax(Qj)r
2
x + ‖qj‖rx + γj)2 + σmax(Q0)r

2
x + ‖q0‖rx + γ0 := Mn.

In empirical CVaR robust problem, it is possible to assume any kind of uncertainty set

Ũ . Convergence property of empirical CVaR robust problem is ensured under boundedness

of f(x,u) and finiteness of VC dimension. These conditions are enough general to deal with

practical problems, while uncertainty set of robust problems should be well-structured, such as

polytopic, norm-constrained, or quadratic uncertainty set.

5 Applications to Statistical Learning Problems

5.1 Linear Classification

In this section we consider CVaR robust problem with finite uncertainty set for binary classifi-

cation problem. We suppose that a set of training data xi ∈ Rn which are labeled with binary

14



values yi ∈ {±1} for i = 1, . . . , N :

(x1, y1), . . . , (xN , yN ) ∈ Rn × {±1},

is provided. The binary classification problem seeks to find a decision function g : Rn → {±1}

using these training data so that g will predict as accurately as possible the labels of new data

points, which are generated from the same probability distribution with training data.

If given set of training data is linearly separable, i.e., there exists (w, b) such that w 6= 0 and

yi(〈w,xi〉 + b) > 0 hold for i = 1, . . . , N , the hard margin support vector classification (HSVC)

[19] provides a most reasonable decision function g = sign(〈w∗,x〉 + b∗), where (w∗, b∗) is an

optimal solution of

(HSVC) max
w 6=0,b

min
i=1,...,N

yi ( 〈w,xi〉 + b )

‖w‖
,

and sign(ξ) is a function such that sign(ξ) = 1 if ξ ≥ 0 and −1, otherwise. (HSVC) is actually

transformed to the equivalent problem

min
w,b

1

2
‖w‖2 s.t. yi ( 〈w,xi〉 + b ) ≥ 1, i = 1, . . . , N

and solved as an convex quadratic program. It should be noted that yi ( 〈w,xi〉+b )
‖w‖ coincides

with the Euclidean distance from xi to the hyperplane 〈w,x〉 + b = 0. When we regard

U = {(x1, y1), . . . , (xN , yN )} as an uncertainty set which consists of finite elements, (HSVC)

corresponds to the robust optimization problem (1).

Recently, [11] proposed conditional geometric score optimization problem based on CVaR

risk measure:

(CGS) min
w 6=0,b,α

α +
1

(1 − β)N

N∑

i=1

[
−

yi ( 〈w,xi〉 + b )

‖w‖
− α

]+

, (10)

not only for linearly separable but for non-separable training data set. Its numerical results

imply the advantages of (CGS) over other kinds of linear classification such as ν-support vector

classification (ν-SVC) [15] and robust linear programming approach [1]. (CGS) corresponds to

CVaR robust problem (4) with a finite set U while (HSVC) does to the usual robust problem

(1).

For linearly non-separable training data set, the optimal value of (HSVC) becomes negative

and hence, (HSVC) is reduced to a difficult nonconvex problem. Similarly, for the same data

set, (CGS) is transformed to a nonconvex optimization problem when the parameter β of (CGS)

exceeds some level and its optimal value becomes positive. Hence, from a local optimum solution

(wh, bh) of (HSVC) and (wc, bc) of (CGS), we construct hyperplanes fh(x) = 〈wh,x〉 + bh and

fc(x) = 〈wc,x〉+ bc, respectively, and compare training error and test error rates between these

two problems. A local optimum solution (wh, bh) of (HSVC) is actually obtained by (CGS) with

parameter β > 1 − 1
N according to Theorem 3.1. For an local optimization algorithm to solve

(CGS), see [11].
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Figure 5: Training error and test error rates over DIABETES dataset.

To show potential superiority of our CVaR robust problem (CGS) over (HSVC), we per-

formed ten-fold cross-validation for DIABETES dataset obtained from the UCI repository of

machine learning databases [7]. We separate data into two groups: training data set and test

data set. (HSVC) and (CGS) are formulated from training data and their decision function

g = sign(〈w,x〉 + b) are tested over test data set. Figure 5 shows training error and test error

rates obtained by (CGS) for N1 = 691 training data set and N2 = 77 test data set, respectively.

For β ≥ 0.47, those error rates are measured with a local optimal solution of (CGS), while

numerical results of [11] shows that minimum error rate can be achieved at β = 0.51. Also, we

see that (HSVC) corresponds to (CGS) with β ≥ 0.999 = 1 − 1
N1

for training data. Figure 5

(right) implies that the prediction via the optimal solution of the robust problem does not hit

right very often, compared with that of CVaR robust problem with β = 0.5.

5.2 Linear Regression

In linear regression problems, the main issue is to estimate linear function of input vector x,

f(x;w, b) = 〈x,w〉 + b, x,w ∈ Rn, b ∈ R, (11)

that best approximates response values. Selection of desired function is based on a training

set of m independent and identically distributed training data, (x1, y1), . . . , (xm, ym), drawn

according to a probability distribution, where yi ∈ R, i = 1, . . . ,m denote response values.

Least square estimator is commonly used to estimate parameters w and b. It is often pointed

out that a few number of outliers, which are far away from the bulk of observations, seriously

degrade the accuracy of least square estimator. However, even if gross error occurs in response

values, L1 estimator defined as an optimal solution of

min
w,b

1

m

m∑

i=1

|yi − f(xi;w, b)|,
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depresses influence of outliers. Square regularization term is often added to objective functions

such as

min
w,b

C

m

m∑

i=1

|yi − f(xi;w, b)| +
1

2
‖w‖2, (12)

where smoothing parameter C is a constant that adjusts effect of regularization. It has been

clarified from experimental and theoretical viewpoints that square regularization term raises

generalization ability by avoiding over-fitting to training data.

When training data is contaminated and the uncertainty of observation is represented by U ,

min-max estimator defined as an optimal solution of

min
w,b

max
(x,y)∈U

C|y − f(x;w, b)| +
1

2
‖w‖2, (13)

is expected to provide conservative estimation results according to robust optimization principle.

In the following, we study CVaR robust problems derived from the min-max estimation (13)

with apt uncertainty set. Both finite and infinite uncertainty set are considered. Average error

and worst case error are computed to evaluate statistical stability of the estimated function (11).

5.2.1 Finite Uncertainty Set

First, function estimation under finite uncertainty set is studied. Here, uncertainty is defined as

a set of training data, U = {(x1, y1), . . . , (xm, ym)}. Robust optimization with square regular-

ization term is the form of

min
w,b

max
i=1,...,m

C|yi − 〈w,xi〉 − b| +
1

2
‖w‖2, (14)

and then, for uniform distribution on U , CVaR problem is given as

min
w,b,α

Cα +
C

(1 − β)m

m∑

i=1

[|yi − 〈w,xi〉 − b| − α]+ +
1

2
‖w‖2, (15)

where maximum residual is replaced by mean value of 100 × (1 − β)% largest residuals. Note

that for β = 0, CVaR problem is identical to L1 estimator with square regularization term as

shown in Theorem 3.2. That is, CVaR problem connects L1 estimation problem and robust

optimization problem by one parameter β.

CVaR problem (15) is identical to ν-support vector regression (ν-SVR) [15] with ν = 1 − β

and smoothing parameter C
ν , and Schölkoph, et al., have proved that local movements of outliers

do not influence solution of (15), where outlier denotes a sample that has worst 100 × (1 − β)%

error in whole samples. According to Theorem 3.1, when ratio of outliers in U is more than

1/m, robust optimization problem (14) would provide an unstable solution, though the optimal

solution is stable under less than 1/m outlier ratio. To deal with more than 100 × (1 − β)%
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outliers in observations, CVaR problem (15) is useful and will provides accurate prediction to

typical observations, not to worse-case observations.

In numerical experiments, we study accuracy of estimated function (11) based on observation

set U . Worst case error and average error are computed to evaluated the accuracy. Robust

optimization will provide an optimal solution that has the smallest worst-case error, but may

have large average error. On the other hand, an solution of CVaR problem is expected to have

small average error.

In the following numerical experiments, input vectors x1, . . . ,xm in observations are indepen-

dent and identically distributed from uniform distribution on [−5, 5]n, where vector dimension

is n = 3 and sample size is m = 20. Response values are prepared as yi = 〈w∗,xi〉 + b∗ + ǫi

for w∗ = (1, 1, 1) and b∗ = 1, where noise terms ǫi, i = 1, . . . ,m are independently generated

from nominal distribution with mean 0. Almost all noise terms have small variance, 1.0, and

a sample (x, y) = (0, 5) is mixed with set of observations as an outlier. Objective functions in

robust problem and CVaR problem have smoothing parameter C, and in experiments, C is fixed

to 10×m. Estimation accuracy of solution (w, b) is evaluated in two ways: one is the worst-case

error, maxi |yi − 〈w,xi〉 − b|, and the other is average error, 1
m

∑m
i=1 |yi − 〈w,xi〉 − b|. Here,

the observation set, U , is also used to evaluate estimation accuracy. 100 sets of observations are

generated with different random seed, and mean values of average errors and worst case errors

are computed over these 100 sets.

For each β, mean values of worst case errors and average errors are plotted with error bars

in Figure 6. Note that robust optimization problem corresponds to CVaR problem with β such

as 1 − 1
m < β < 1, and L1 estimation does to CVaR problem with β = 0. Robust solutions

minimize worst case errors as expected, while in average error, CVaR solutions are fairly better

than robust solutions. That is, an outlier, (x, y) = (0, 5), significantly affects robust solutions

and degrades estimation accuracy to the other typical observations. On the other hand, L1

estimation minimizes average error, but takes relatively large worst case error in comparison

with CVaR problem with β > 0.

5.2.2 Infinite Uncertainty Set

Infinite uncertainty set is useful to deal with measurement error. L1 estimator depresses influence

of outliers in response y as stated before. In addition to outliers in response values, measurement

error may mislead conclusions for inference. Typical form of measurement error is given as

(
x

y

)
=

(
x◦

i

y◦i

)
+ ũ, (16)

where measurement error, ũ, is n + 1 dimensional vector and (x◦
i , y

◦
i ) is i-th nominal data. If

there is not measurement error, observation (x, y) is identical to nominal data (x◦
i , y

◦
i ). Suppose
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Figure 6: Worst case error and average error with error bars under finite uncertainty set.

that (x, y) ∈ Ũ , where Ũ is a compact set in Rn+1 defined as

Ũ = ∪m
i=1Ũi,

Ũi =

{
(x, y)

∣∣∣∣

(
x

y

)
=

(
x◦

i

y◦i

)
+ Diu, ‖u‖ ≤ 1, u ∈ Rℓ

}
.

Matrices Di ∈ R(n+1)×ℓ are given as Di = [di1, . . . ,diℓ], and specify directions of measurement

errors. Thus, robust problem under infinite uncertainty set Ũ is constructed as

min
w,b

max
(x,y)∈Ũ

C|y − 〈w,x〉 − b| +
1

2
‖w‖2,

and one can reformulate it as a second-order cone programming problem using the technique of

[3].

For CVaR problem, let us define probability density p on Ũ as

p(x, y) =
1

m

m∑

i=1

1

Vol(U i)
1((x, y) ∈ Ũi),

where 1(·) is indicator function, and Vol(U) indicates the volume of a set U . That is, nominal

data (x◦
i , y

◦
i ) is uniformly chosen from {(x◦

1, y
◦
1), . . . , (x

◦
m, y◦m)}, and then, observation (x, y) is

generated uniformly from Ũi. CVaR problem under uncertainty set Ũ is given as

min
w,b,α

Cα +
C

1 − β
E
{
[|y − 〈w,x〉 − b| − α]+

}
+

1

2
‖w‖2, (17)

and empirical approximation of expectation is constructed as

min
w,b,α

Cα +
C

1 − β

1

N

N∑

i=1

[|yi − 〈w,xi〉 − b| − α]+ +
1

2
‖w‖2, (18)

where (xi, yi), i = 1, . . . , N are independently and identically distributed from the probability

p(x, y).
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Figure 7: Left figure: Optimal value of empirical approximation of CVaR problem with 90%
confidence interval. Right figure: width of 90% confidence interval for optimal value.

In Theorem 3.3, we have proved that optimal value of empirical approximation (18) converges

to that of CVaR problem (17). Convergence in probability is confirmed by a simple numerical

experiments as follows. Input vectors of nominal data (x◦
i , y

◦
i ) are randomly chosen from [−5, 5]n,

where n = 3 and m = 20, and response values are prepared as

y◦i = 〈w∗,x◦
i 〉 + b∗ + ǫi, i = 1, . . . , 20, (19)

for w∗ = (1, 1, 1) and b∗ = 1. The noise term ǫi is according to nominal distribution with mean

0 and variance 0.52, i.e. N(0, 0.52). All components of perturbation matrices, Di, are extracted

uniformly from [−1, 1]. To compute the distribution of optimal value (18), 100 sets of samples

on Ũ are generated by different random seeds.

For each β, optimal values of (18) with C = 1 × m = 20 are plotted in Figure 7. In Figure

7 (left), optimal values seem to distribute around a constant value for each β. On the other

hand, width of confidence interval for empirical CVaR problem decreases as N increases, as

shown in Figure 7(right). Consequently, numerical experiments indicate that optimal value of

(18) converges to a constant value. Moreover, optimal value increases as β → 1. In Section 2,

we have proved that optimal value of CVaR problem is non-decreasing function with respect to

β, and this is the case even for empirical approximation of CVaR problem. In our experiments,

this property is confirmed.

We have also provided the convergence rate of optimal value, Eβ(N, η), which is increasing

function with respect to β. Applying statistical curve fitting technique to our numerical results,

we find that the width of confidence interval approximately decreases in the order of O( 1√
N

)

which is almost same as the order of Eβ(N, η). We also find that width of confidence interval

increases as β increases. This is also similar to the property of Eβ(N, η), which is increasing

function with respect to β.

Next experiments illustrate that CVaR robust problems provide accurate estimation results

in the sense of average error, compared with robust problems under infinite uncertainty set Ũ .
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Input vectors of nominal data are uniformly distributed on [−5, 5]3 ∈ R3 and corresponding

response values y◦i , i = 1, . . . ,m are prepared by (19), where m = 20 and ǫi, i = 1, . . . ,m

are independently distributed according to N(0, 22). Matrices Di for uncertainty set Ũ are all

identical and proportional to identity matrix I.

Integration is involved in exact CVaR problem (17), and is approximated by empirical mean

such as (18). In our experiments, 100 samples are uniformly distributed on Ũi for each i =

1, . . . ,m, and then, total number of samples, N , is equal to 100×m = 2000. Solution (wr, br) of

robust problem and (wc, bc) of empirical CVaR problem are computed with smoothing parameter

C = 1 × m = 20, and estimation accuracy of parameter (w, b) under uncertainty is evaluated

by worst case error,

max
(x,y)∈Ũ

|y − 〈w,x〉 − b|,

and approximated average error,

E[|y − 〈w,x〉 − b|] =
1

m

m∑

i=1

1

Vol(U i)

∫

Ũi

|y − 〈w,x〉 − b|dxdy

∼=
1

m

m∑

i=1

1

1000

1000∑

k=1

|ỹik − 〈w, x̃ik〉 − b|,

where samples, (x̃ik, ỹik), k = 1, . . . , 1000, are uniformly distributed on Ũi. For fixed uncertainty

set U , we repeated experiments 100 times with different random seeds for scenario sampling in

empirical CVaR problem (18).

Figures 8, 9, and 10 show average error and worst case error with error bar. For each figure,

uncertainty set is defined by Di = 2I, Di = 3I, and Di = 5I, respectively. Estimation error of

“nominal” defined as an optimal solution of

min
w,b

C

m

m∑

i=1

|y◦i − 〈w,x◦
i 〉 − b| +

1

2
‖w‖2,

is also depicted in these figures. Note that nominal solution does not take into account mea-

surement error represented by the uncertainty set Ũ .

Solutions of robust problem minimize worst case error in any experiments for a certainty.

We also find that when β comes close to 1, both average error and worst case error for empirical

CVaR problem tend to converge to those for robust problem, as illustrated in Example 3.6.

For Di = 2I (Figure 8), nominal problem provides smaller average error than empirical CVaR

problem with β ≥ 0.7 and robust problem because relatively small measurement error does not

causes significant loss of information. As measurement error becomes larger, the estimation

via empirical CVaR problem outperforms the other competitors in the sense of average error.

Our experimental results indicate that empirical CVaR problem provides fairly good estimation

results in comparison with robust problem on average, especially when measurement error, u,

causes information loss for estimated function more than noise term ǫ.
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Figure 8: Estimation error plots of optimal solutions for robust problem, nominal problem, and
empirical CVaR problem with Di = 2I, i = 1, . . . ,m. Left figure: average error. Right figure:
worst case error.

6 Conclusions

We applied a robust optimization approach based on conditional value-at-risk measure to sta-

tistical learning problems whose objective functions include uncertain data. The CVaR robust

problem includes one parameter β ∈ (0, 1), and minimizes expected value of costs in the worst

class defined by β-quantile point (VaR) while the usual robust optimization minimizes cost in

the worst case. When β is close to 1, CVaR robust problem is almost same as usual robust

problem, and as β is far from 1, CVaR robust problem becomes more interested in the objective

of minimizing average cost than the objective of minimizing maximum cost. Therefore, when

the best decision determined by robust problem is too conservative, the conservativeness is eased

by CVaR robust problem with appropriate parameter β < 1.

Throughout numerical experiments, we confirmed that CVaR robust problem dissolves overly

conservativeness of robust optimization and depresses influence of outliers or measurement error

which may be included in assumed uncertainty set. Furthermore, it is shown that CVaR robust

approach is effective for linear classification problem and linear regression problem, which are

studied frequently in the field of machine learning. CVaR robust problems are closely related to

statistical learning models: ν-SVC and ν-SVR.

One of interesting research directions is to develop applications of CVaR robust optimization

technique to more wide range of statistical learning. Also, it might be possible to solve CVaR

robust problem parametrically by changing parameter β or provide some appropriate strategy

for the selection of β.
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Figure 9: Estimation error plots with Di = 3I, i = 1, . . . ,m.
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Figure 10: Estimation error plots with Di = 5I, i = 1, . . . ,m.
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