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Abstract.

In this report we treat nonlinear programs Pro(f, h;K) having an objective function f , a
finite number of equality constraints h(x) = (h1(x), · · · , hℓ(x)) = 0, and an abstract convex
constraint x ∈ K with its convex set K. Our particular interest is an algebraic criterion for
a locally isolated stationary solution to be strong stable, in the sense of Kojima, under a
Linear Independence Constraint Qualification condition defined to those programs. First,
we introduce a simple sufficient condition for semismoothness of the Euclidean projector ρ+

K

onto K. Semismoothness of the Euclidean projectors onto closed convex cones pointed at
0 follows directly from this sufficiency. Secondly, under the condition of semismoothness of
ρ+

K and what we call the regular boundary condition for K, we characterize strong stability
of a locally isolated stationary solution x̄+, with (x̄, λ̄) its associate stationary point, in
terms of B-subderivative ∂Bψ(x̄, λ̄; f, h) of some appropriately defined map ψ(x, λ; f, h) for
programs Pro(f, h;K). This result is a generalization of the theory that Kojima developed
in his famous paper. Thirdly, we state an explicit formula for the Jacobian of the Euclidean
projector onto any closed convex set satisfying the C2 stratification, and interpret the regular
boundary condition in terms of principal curvatures of the stratum.
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1 Introduction.

Through this study, we investigate strong stability of a locally isolated stationary solution
of the following nonlinear programs with a finite number of equality constraints and an
abstract convex constraint x ∈ K, which we refer to as NPAC:

Pro(f, h;K)

∥

∥

∥

∥

∥

∥

minimize f(x)
subject to x ∈ K

hi(x) = 0 (i = 1, · · · , ℓ)







,

where K is a closed convex set in Rn and f, hi (i = 1, · · · , ℓ) are C2 functions on Rn.
Then, x̄ ∈ K is called a stationary solution of program Pro(f, h;K) if both −Dxf(x̄) ∈
RDxh(x̄) + σK(x̄)T and hi(x̄) = 0 (i = 1, · · · , ℓ) hold. Here, Dxf(x̄) (resp. Dxhi(x̄))
denotes the Jacobian of f (resp. hi) at x̄, RDxh(x̄) denotes the affine space spanned by
{Dxhi(x̄) : i = 1, · · · , ℓ}, σK(x̄) is the normal cone of K at x̄, and σK(x̄)T denotes the
transpose of σK(x̄), i.e., σK(x̄)T = {w : wT ∈ σK(x̄)}. The stationary solution x̄ is de-
fined to be strongly stable if there exist δ > 0 such that, for any small perturbation (f ′, h′)
of (f, h), there exists a unique stationary solution x(f ′, h′) of Pro(f ′, h′;K) that satisfies
‖x(f ′, h′) − x̄‖ ≤ δ, and the correspondence (f ′, h′) 7→ x(f ′, h′) is continuous at (f, h).

Let ρ+
K denote the Euclidean projector onto K, x+ = ρ+

K(x), and x− = x−x+. Given a
map F : Rn → Rn, the variational inequality VI(K,F ) is to find a vector x ∈ Rn such that
Fnor

K (x) = 0 with Fnor

K (x) = F (x+) + x−. Under the assumption that ρ+
K is semismooth, it

follows from Theorem 3 of [6] that a locally isolated solution x̄ of VI(K,F ) is strongly stable
if and only if the coherent orientation property holds for the B-subderivative ∂BFnor

K (x̄), i.e.,
sgn detA is nonzero constant for any A ∈ ∂BFnor

K (x̄). Such a condition that is described in
terms of B-subderivative is referred to as algebraic.

For any triplet (f, h;K), there exists a map F and a closed convex set K̃ such that sta-
tionary solutions of Pro(f, h;K) and solutions of VI(K̃, F ) correspond bijectively. However,
we cannot simply derive an algebraic criterion to characterize the stability for Pro(f, h;K)
from the above criterion for VI(K̃, F ) (see Remark 4.3 for details).

In one paper [20], an analog of Kojima’s approach [14] was constructed under the Linear
Independence Constraint Qualification (abb. LICQ) condition defined to Pro(f, h;K) and
an additional condition that we call the regular boundary condition for K. As a result,
we derived that for every stongly stable stationary solution x̄+ of Pro(f, h;K) with its
associate stationary point (x̄, λ̄), the B-subdifferential ∂Bψ(x̄, λ̄; f, h) satisfies the coherent
orientation property. In this study, we deduce from the implicit function theorem of Gowda
[6] that this coherent orientation property is an algebraic criterion for stability in the case
that the Euclidean projector ρ+

K is semismooth.
We also introduce a simple sufficient condition for semismoothness of ρ+

K . Consequently,
we prove that ρ+

K is semismooth for any closed convex cone K pointed at 0, especially both
for the cone S+(n) of positive semidefinite symmetric matrices, and for any polyhedral cone
pointed at 0. On the other hand, because we know from [19] that the regular boundary
condition holds for S+(n), the above coherent orientation property determines the stabil-
ity of a locally isolated stationary solution of Pro(f, h;S+(n)). A similar result holds for
any polyhedral cone pointed at 0 because the Euclidean projector onto any polyhedron is
semismooth.

In the final section, we investigate the regular boundary condition for any closed convex
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set K ⊂ Rn such that every stratum naturally defined from convexity of K is a C2 subman-
ifold of Rn. We deduce an explicit formula of B-subderivative ∂Bρ

+
K(x̄); we also interpret

the regular boundary condition in more geometric terms, i.e., principal curvatures of the
stratum.

In section 2,

• we define stationary solutions and strong stability and prepare a series of elementary
results and facts; and

• under LICQ conditions defined to program Pro(f, h;K), we state one theorem that
provides a necessary and sufficient condition for strong stability of stationary solutions
by virtue of one-to-one maps.

In section 3,

• we prepare several kinds of derivatives for sections 4 and 5 and known results about
them;

• we propose a simple condition sufficient for the Euclidean projector ρ+
K onto K to be

semismooth; and as a result we deduce the semismoothness of ρ+
K in case of any closed

convex cone K pointed at 0.

In section 4, under LICQ condition,

• we deduce the one necessary condition, which we call the coherent semiorientation
property, for any stationary solution of Pro(f, h;K) to be strongly stable:

• in the case that the Euclidean projector ρ+
K is semismooth, we prove that the co-

herent orientation property is sufficient for a locally isolated stationary solution of
Pro(f, h;K) to be strongly stable:

• in the case that the Euclidean projector ρ+
K is semismooth and the regular boundary

condition holds for K, we prove that the coherent orientation property is an algebraic
criterion for the stability of a locally isolated stationary solution.

In section 5,

• we treat a closed convex set K ⊂ Rn such that every stratum naturally defined from
convexity of K is a C2 submanifold of Rn; we also deduce an explicit formula of
B-subderivative ∂Bρ

+
K(x̄), and

• we provide the more geometric interpretation of the regular boundary condition than
the way of its definition.

2 Preliminaries.

In this preliminary discussion we define strong stability in the sense of Kojima and we
prepare a series of elementary results and facts. For their preparation, we list notations
used throughout this report:
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R : the field of all real numbers,

Rn : the space of n dimensional real column vectors,

R+ = {t ∈ R : t ≥ 0 },

Rn
+ = {(t1, · · · , tn) ∈ Rn : ti ≥ 0 (1 ≤ i ≤ n) },

M(m,n) : the set of all m× n real matrices,

M(n) : the set of all n× n real matrices,

S(n) : the set of all n× n symmetric real matrices,

S+(n) : the set of all n× n positive semidefinite symmetric real matrices,

Sr,s(n) : the set of all n× n symmetric real matrices with r positive eigenvalues

and s negative eigenvalues,

S∗(n) : the set of all n× n nonsingular symmetric real matrices,

GL+(n) : the set of all n× n nonsingular real matrices with positive determinants,

GL−(n) : the set of all n× n nonsingular real matrices with negative determinants,

O(n) : the set of all n× n orthogonal matrices,

Ir : the r × r identity matrix, i.e., the identity map on Rr,

O : the zero matrix of an appropriate size,

〈x,y〉 : the standard inner product of x, y ∈ Rn,

0 : the zero vector of appropriate size,

xT : the transpose of the vector x,

ZT = {xT : x ∈ Z} for a set Z of vectors,

det C : the determinant of a matrix C,

sgn t =







1 (t > 0)
0 (t = 0)
−1 (t < 0)

,

conv(A) : the convex hull of a subset A of a vector space V ,

‖x‖ =

√

√

√

√

n
∑

i=1

|xi|2 for x = (x1, · · · , xn)T ∈ Rn, i.e., the Euclidean norm of Rn,

A⊥ = {u ∈ Rn : 〈u,a〉 = 0 for any a ∈ A} for any subset A of Rn,

A ⊥ B : 〈a, b〉 = 0 for any a ∈ A, b ∈ B, where A, B ⊂ Rn,

A ∐B : the disjoint union of subsets A, B ⊂ Rn,

A \B = {a ∈ A : a /∈ B} for subsets A, B ⊂ Rn,

A−B = {a − b ∈ Rn : a ∈ A, b ∈ B} for subsets A, B ⊂ Rn,

RA : the linear subspace of Rn generated by A for a subset A ⊂ Rn,

int(A) : the interior of A in Rn for a subset A ⊂ Rn,

cℓ(A) : the closure of A in Rn for a subset A ⊂ Rn,

reℓint(A) : the interior of A in RA for a subset A ⊂ Rn,

F = {(f, h) = (f, h1, · · · , hℓ) : f, h1, · · · , hℓ ∈ C2(Rn)},
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where C2(Rn) is the set of all functions on Rn of C2 class,

F |A : the restriction of a map F to a subset A of the domain where F is defined,

EF = {x ∈ U : F is differentiable at x, i.e., DxF (x) exists at x } for F : U → Rm,

where U is the domain of F.

Throughout this report, K denotes a closed convex subset of Rn that is fixed. Let σK(x)
be the normal cone of K at x ∈ K, i.e., σK(x) = {v ∈ Rn : 〈y − x,v〉 ≤ 0 (∀y ∈ K)}, and
ρ+

K : Rn → Rn be the Euclidean projector onto K. Denote x+ = ρ+
K(x) and define x− by

x− = x − x+. It is readily inferred that x− ∈ σK(x+).

Definition 2.1. Let (f, h) ∈ F . Dxf(x) and Dxh(x) respectively denote the Jacobians of
f(x) and h(x). In addition, RDxh(x) =

∑ℓ
i=1 RDxhi(x) denotes the affine space spanned

by {Dxhi(x) : i = 1, · · · , ℓ}. Then (x̄, λ̄) is called a stationary point of program Pro(f, h;K)
if both Dxf(x̄+) +

∑ℓ
i=1 λ̄iDxhi(x̄

+) + (x̄−)T = 0 and hi(x̄
+) = 0 (i = 1, · · · , ℓ) hold. If

(x̄, λ̄) is a stationary point, then x̄+ is called a stationary solution of Pro(f, h;K).

Following are some notations used in the remainder of this report. For (f, h) ∈ F , we
define L(·, ·; f, h) : Rn+ℓ → R, ψ(·, ·; f, h) : Rn+ℓ → Rn+ℓ, Ω ⊂ Rn+ℓ ×F , Ξ ⊂ Rn ×F and
χ : Ω → Ξ as follows.

L(x, λ; f, h) = f(x) +

ℓ
∑

i=1

λihi(x),

ψ(x, λ; f, h) = (DxL(x+, λ; f, h) + (x−)T , DλL(x+, λ; f, h))

= (Dxf(x+) +

ℓ
∑

i=1

λiDxhi(x
+) + (x−)T , h(x+)),

Ω = {(x, λ, f, h) ∈ Rn+ℓ ×F : (x, λ) be a stationary point of Pro(f, h;K)}

= {(x, λ, f, h) ∈ Rn+ℓ ×F : ψ(x, λ, f, h) = 0},

Ξ = {(x, f, h) ∈ Rn × F : x is a stationary solution of Pro(f, h;K)},

χ(x, λ, f, h) = (x+, f, h), i.e., χ : Ω → Ξ is a natural projection.

For f ∈ C2(Rn) and a subset B ⊂ Rn, a norm ‖f‖B is defined as

‖f‖B = sup{|f(x)|, ‖Dxf(x)‖, ‖D2
x
f(x)‖ : x ∈ B}.

For (f, h) ∈ F and a subset B ⊂ Rn, a norm ‖ · ‖B is defined as

‖(f, h)‖B = max{‖f(x)‖B , ‖hi(x)‖B : 1 ≤ i ≤ ℓ}.

We denote by FB the space F with ‖ · ‖B-topology and Bδ((f, h);B) denotes a closed
ball centered at (f, h) with radius δ in FB, i.e., Bδ((f, h);B) = {(f ′, h′) ∈ F : ‖(f ′, h′) −
(f, h)‖B ≤ δ}.

In general, given a normed vector space V with its norm ‖ ·‖, we define a closed ball and
an open ball by Bδ(x) = {y ∈ V : ‖y − x‖ ≤ δ} and int(Bδ(x)) = {y ∈ V : ‖y − x‖ < δ}
for x ∈ V and a positive real number δ > 0.
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Definition 2.2. (see [11], [14]) Let x̄ ∈ Rn be a stationary solution of Pro(f̄ , h̄;K). x̄

is said to be strongly stable if there exist neighborhoods U = Bδ(x̄) of x̄ in Rn and V
of (f̄ , h̄) in FU such that the natural projection pr : Ξ

⋂

(U × V ) → V is bijective and
pr−1 : V → Ξ

⋂

(U × V ) is continuous at (f̄ , h̄).

We refer to the following condition as the LICQ condition 2.3 because, under the condi-
tion, each stationary solution corresponds to a unique stationary point and this condition
takes a role in program Pro(f, h;K) just as the LICQ condition does in the setting of [14].

Condition 2.3.

(i) For any x ∈ Rn, Dxhi(x) (1 ≤ i ≤ ℓ) are linearly independent.

(ii) For any x ∈ K with h(x) = 0, RDxh(x)
⋂

RσK(x)T = {0}.

Under the LICQ condition 2.3, the following proposition holds.

Proposition 2.4. (see [18]) Under the LICQ condition 2.3, for any subset U ⊂ Rn,
χ : Ω

⋂

((ρ+
K)−1(U) × Rℓ × FU) → Ξ

⋂

(U ×FU) is a homeomorphism.

Definition 2.5. Under the LICQ condition 2.3, we refer to a stationary point (x, λ) of
Pro(f, h;K) as strongly stable if and only if x+ is a strongly stable stationary solution of
Pro(f, h;K).

We can prove the following theorem that gives an equivalent condition for strong stability
under the LICQ condition 2.3. This theorem plays an important role to prove the sufficiency
of a condition for stability in proof of Theorems 4.2.

Theorem 2.6. (see [20]) Suppose that the LICQ condition 2.3 holds. Let (f̄ , h̄) ∈ F and
(x̄, λ̄) ∈ Rn+ℓ be a stationary point of Pro(f̄ , h̄;K). Then the following (i) and (ii) are
equivalent.

(i) (x̄, λ̄) is strongly stable.

(ii) There exist neighborhoods U = Bδ∗(x̄
+) of x̄+ in Rn and W = Bδ((x̄, λ̄)) of (x̄, λ̄)

with W ⊂ (ρ+)−1(U) × Rℓ satisfying the following two conditions.

(a) x̄+ is a unique stationary solution in U for Pro(f̄ , h̄;K).

(b) V = {(f, h) ∈ F : ψ(·, ·; f, h) is one-to-one on W} is a neighborhood of (f̄ , h̄) in
FU .

5



3 Several Kinds of Derivatives and a Sufficient Condi-

tion for Semismoothness of Euclidean Projectors.

In this section, we introduce several kinds of derivatives and known results about them
in preparation for later sections. In the last part of this section, we introduce a simple
condition about the B-subderivative that suffices semismoothness for locally Lipschitz maps.
This condition is, in some sense, sufficiently reasonable that, in the case that K is a closed
convex cone K pointed at 0, the Euclidean projector ρ+

K satisfies the condition and therefore
follows semismoothness of ρ+

K . As an example, semismoothness of ρ+
S+(n), which is well known

by Lemma 4.12 of [24] follows immediately because S+(n) is a closed convex cone pointed
at O.

Definition 3.1. Let V1 and V2 be normed vector spaces with their norms denoted by ‖ · ‖,
U are an open subset of V1, and f : U → V2 be a map.

(i) In that case, f is called Lipschitz continuous if there exists a constant M such that
‖f(x) − f(y)‖ ≤ M‖x − y‖ for any x, y ∈ U . This constant M is called a modulus
of a Lipschitz continuous map f .

(ii) f is called locally Lipschitz continuous if for any x ∈ U there exists an open neigh-
borhood W ⊂ U of x such that f |W : W → V2 is Lipschitz continuous.

(iii) If f is Lipschitz in a neighborhood of x̄ and f−1 is Lipschitz in a neighborhood of
f(x̄), then f is called Lipschitz homeomorphic around x̄.

The operator ρ+
K is well known as Lipschitz continuous with its modulus 1. It satisfies the

inequality ‖ρ+
K(x) − ρ+

K(y)‖ ≤ ‖x − y‖ (see [4], [26]).

Definition 3.2. Let U be an open subset of Rm and f : U → Rn be locally Lipschitz con-
tinuous. f is called Bouligand-differentiable (B-differentiable) at x̄ if there exists a positively

homogeneous map f ′(x̄; ·) : Rm → Rn such that lim
x→x̄

f(x) − f(x̄) − f ′(x̄; x − x̄)

‖x − x̄‖
= 0. In

this case, f ′(x̄; ·) is revealed as locally Lipschitz continuous in the second variable and is
called the B-derivative of f at x̄.

Definition 3.3. Let U be an open subset of Rm and f : U → Rn.

(1) f is called directionally differentiable at x̄ in the direction v if lim
t→+0

f(x̄ + tv) − f(x̄)

t
exists. That limit is called the directional derivative of f at x̄ in the direction v.

(2) f is called directionally differentiable at x̄ if f is directionally differentiable at x̄

in the direction v for any v ∈ Rn. In this case, (df |x̄)(·) denotes the map v 7→

lim
t→+0

f(x̄ + tv) − f(x̄)

t
and is called the directional derivative of f at x̄.

Remark 3.4. (see [23]) Let U be an open subset of Rm and f : U → Rn be locally
Lipschitz continuous. Then it is provable with little difficulty that f is B-differentiable at
x̄ if and only if f is directionally differentiable at x̄. In this case, f ′(x̄; ·) = (df |x̄)(·) holds.
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Before we state the next definition, we remark that any locally Lipschitz continuous map
is differentiable almost everywhere in the sense of Lebesgue measure using Rademacher’s
Theorem (see [5]).

Definition 3.5. Let U be an open neighborhood of x̄ in Rn and f be a locally Lipschitz
continuous map from U to Rm. Then the B-subderivative ∂Bf(x̄) of f at x̄ is defined by
∂Bf(x̄) = { limk→∞Dxf(xk) : xk ∈ Ef , (k = 1, 2, · · ·) and limk→∞ xk = x̄ }.

The following is well known.

Fact 3.6. (see [3], [6]) If f is a locally Lipschitz map, then ∂Bf(x) is a compact set;
furthermore, x 7→ ∂Bf(x) is upper semicontinuous at every x. That is, for any ǫ > 0, there
exists δ > 0 such that ∂Bf(Bδ(x)) =

⋃

{∂Bf(x′) : x′ ∈ Bδ(x)} ⊂ ∂Bf(x) +Bǫ(0) holds.

There exists another concept of derivative which is called the generalized Jacobian in
the sense of Clarke.

Definition 3.7. The generalized Jacobian ∂f(x̄) of f at x̄ is defined to be a convex hull
of the B-subderivative, i.e., ∂f(x̄) = conv ∂Bf(x̄).

The generalized Jacobian is “blind” to sets of Lebesgue measure zero as described in the
following remark. On the other hand we do not know whether this blindness holds for the
B-subderivative.

Remark 3.8. (see [3], [25]) For any locally Lipschitz map defined on U and any subset
N ⊂ U of Lebesgue measure zero, the following equality holds:

∂f(x̄) = { lim
k→∞

Dxf(xk) : xk ∈ Ef \ N , (k = 1, 2, · · ·) and lim
k→∞

xk = x̄ }.

In the following remark, we state some corrections to our previous documents, [19] and
[20], that do not markedly affect their results.

Remark 3.9. (i) The following type of chain rule for generalized Jacobians is readily
inferred.

Let U and V be open subsets of Rn and Rm respectively, and f : V → Rℓ

and g : U → V . If f is differentiable at ȳ = g(x̄), then the chain rule
for generalized Jacobians of f and g holds at x̄. That is, ∂(f ◦ g)(x̄) =
Dyf(ȳ)∂g(x̄) holds.

(ii) In Remark 4.3 of [20] we stated that the chain rule of generalized Jacobians holds, but
that is false. Nevertheless, all assertions of [20] are still correct because some kind of
chain rule holds for generalized Jacobians, as explained in (i). Therefore, we present
the following relation

∂(x,λ)ψ(x, λ; f, h) =

{(

D2
x
L(x+, λ; f, h)C+ + C− (Dxh(x

+))T

Dxh(x
+)C+ O

)

: C ∈ ∂xρ(x)

}

because of

ψ(x, λ; f, h) = (Dxf(x+) +
∑ℓ

i=1 λiDxhi(x
+) + x−, h(x+))

= (x, 0) + (Dxf(x+) +
∑ℓ

i=1 λiDxhi(x
+) − x+, h(x+)).
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We require the concept of strict differentiability in section 5.

Definition 3.10. Let U be an open subset of Rn and F : U → Rm be a locally Lipschitz
map. Then F is called strictly differentiable at x̄ ∈ U if there exists a matrix A ∈M(m,n)

such that lim
u→0
t↓0

ρ+
K(x̄ + u + tv) − ρ+

K(x̄ + u)

t
= Av holds for any v ∈ Rn.

It is readily inferred that strict differentiability implies directional differentiability. It
follows from Proposition 2.2.4 of [3] that strict differentiability can be characterized using
the B-subderivative.

Proposition 3.11. (see [3]) Let U be an open subset of Rn, F : U → Rm be a locally
Lipschitz map, and x̄ ∈ U . Then F is strictly differentiable at x̄ if and only if ∂BF (x̄) is a
singleton, i.e., a set consisting of only one element.

The concept of degree plays an important role in study of stability.

Definition 3.12. (see [9]) Let U be an open subset of Rn and x ∈ U . For a continuous
map f : U → Rn satisfying that there exists a positive real number δ > 0 such that
Bδ(x)

⋂

f−1(f(x)) = {x}, the map degree of Brouwer deg(x; f) is definable.

The following property of degree is important.

Fact 3.13. (see pp.130-132 of [4]) Let U be an open subset of Rn, and f : U → Rn be a
continuous map, and x̄ ∈ U . Suppose that f−1(f(x̄)) = {x̄} and that f is differentiable at
x̄ and that det Dxf(x̄) 6= 0. In that case, deg(x̄; f) = sgn det Dxf(x̄) holds.

We require the concept of semismooth maps in the sense of Gowda.

Definition 3.14. (see [6]) Let U be an open subset of Rn and f : U → Rm be a locally
Lipschitz continuous map. In that situation, f is called semismooth at x̄ ∈ U if f(xk) −
f(x̄) − Ak(xk − x̄) = o(‖xk − x̄‖) holds for any sequence xk → x̄ and any Ak ∈ ∂Bf(xk).

To prove Theorem 4.2 we need the following important result of Gowda [6] for semis-
mooth maps referred to as Proposition 3.15.

Proposition 3.15. (see [6]) Let W be an open subset of Rn and x̄ ∈ W . Suppose that
f : W → Rn is semismooth and that deg(x̄; f) = 1 (or,−1) and sgn detA = deg(x̄; f) holds
for any A ∈ ∂Bf(x̄). Then f has a local semismooth inverse at x̄, i.e., there exists an open
neighborhood U ⊂ W of x̄ such that V = f(U) is an open subset of Rn, f |U : U → V is
bijective, and the inverse (f |U)−1 : V → U is semismooth on V. Moreover, ∂Bf

−1(f(x̄)) =
{A−1 : A ∈ ∂Bf(x̄)} holds.

For a locally Lipschitz map f to be semismooth, the following condition is sufficient. We
define ∂Bf(x)y as ∂Bf(x)y = {Cy : C ∈ ∂Bf(x)} and o(·) stands for Landau’s small o.

Condition 3.16. ∂Bf(x)x = {f(x)} for any x ∈ Rn.
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We can deduce the following proposition.

Proposition 3.17. Let f : Rn → Rm be a locally Lipschitz map that satisfies Condition
3.16. Then, f is semismooth on Rn.

Proof: We have the following calculation:

f(x) − f(y) − ∂Bf(x)(x − y) = f(x) − f(y) − ∂Bf(x)x + ∂Bf(x)y
= −f(y) + ∂Bf(x)y
= (∂Bf(x) − ∂Bf(y))y.

With the above identity f(x) − f(y) − ∂Bf(x)(x − y) = (∂Bf(x) − ∂Bf(y))y, semis-
moothness of f follows from upper semicontinuity of ∂Bf(x) stated in Fact 3.6.

Definition 3.18. A subset K ⊂ Rn is called a closed convex cone pointed at 0 if it is a
closed convex set satisfying the condition of tx ∈ K for any x ∈ K and t ≥ 0.

Proposition 3.19. Let K ⊂ Rn be a closed convex cone pointed at 0. Then the Euclidean
projector ρ+

K onto K satisfies Condition 3.16. Therefore, ρ+
K is semismooth on Rn.

Proof: K is a closed convex cone pointed at 0. For that reason, ρ+
K(tx) = tρ+

K(x) holds

for any x ∈ Rn and t ≥ 0. Let x̄ ∈ Eρ+
K
. Then Dxρ

+
K(x̄)x̄ = limt→+0

ρ+
K

(x̄+tx̄)−ρ+
K

(x̄)

t
=

limt→+0
ρ+

K
((1+t)x̄)−ρ+

K
(x̄)

t
= limt→+0

(1+t)ρ+
K

(x̄)−ρ+
K

(x̄)

t
= ρ+

K(x̄). Next, presume that x̄ /∈
Eρ+

K
and C+ ∈ ∂Bρ

+
K(x̄). Then, from definition of B-subderivative, there exists a sequence

xk ∈ Eρ+
K

(k = 1, 2, · · ·) converging x̄ with limk→∞Dxρ
+
K(xk) = C+. From continuity

of the matrix multiplication we can calculate C+x̄ = limk→∞Dxρ
+
K(xk) · limk→∞ xk =

limk→∞Dxρ
+
K(xk)xk = limk→∞ ρ+

K(xk) = ρ+
K(x̄). Therefore, ρ+

K satisfies Condition 3.16.
In addition, it follows from Proposition 3.17 that ρ+

K is semismooth.

S+(n) is a closed convex cone pointed at O. Therefore, it follows from Proposition 3.19
that ρ+

S+(n) is semismooth.

4 Characterization for Strong Stability of the Station-

ary Solution of Pro(f, h;K).

In this section, we investigate the relation between strong stability of a locally isolated
stationary solution of Pro(f, h;K) and B-subderivative ∂Bψ(x, λ; f, h) of ψ(·, ·; f, h) under
the LICQ condition 2.3. We deduce one necessary condition for stability of (x̄, λ̄) in terms of
∂Bψ(x̄, λ̄; f, h). On the other hand, if the Euclidean projector ρ+

K is semismooth, we deduce
another sufficient condition for the stability. Moreover, under the LICQ condition 2.3 and
an additional condition that we will call the regular boundary condition 4.4, we prove that
this sufficient condition is necessary for stability, i.e., it stands for an algebraic criterion to
the stability. In either the case where K is a polyhedral cone pointed at 0, or the case where
K = S+(n), the Euclidean projector ρ+

K is semismooth and the regular boundary condition
holds for K. Therefore, this criterion is effective for these two cases. This characterization
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is a complete generalization of Kojima’s theory stated in Theorem 3.3 and Corollary 4.3 of
[14].

Where x̄+ is a stationary solution of Pro(f̄ , h̄;K) with (x̄, λ̄) the associate stationary
point, we consider the relation between the following statements. We notice that for a locally
isolated stationary solution x̄+ of Pro(f̄ , h̄;K) and the associate stationary point (x̄, λ̄),
we can introduce deg((x̄, λ̄);ψ(·, ·; f̄ , h̄)). We abbreviate this degree as deg(x̄, λ̄; f̄ , h̄).

(a) x̄+ is a strongly stable stationary solution of Pro(f̄ , h̄;K):

(b1) sgn detA = deg(x̄, λ̄; f̄ , h̄) 6= 0 for any A ∈ ∂ψ(x̄, λ̄; f̄ , h̄):

(b2) sgn det A = deg(x̄, λ̄; f̄ , h̄) 6= 0 for any A ∈ ∂Bψ(x̄, λ̄; f̄ , h̄):

(b3) sgn detA = 0 or, = deg(x̄, λ̄; f̄ , h̄) for any A ∈ ∂Bψ(x̄, λ̄; f̄ , h̄):

(c) ψ(x, λ; f̄ , h̄) is one-to-one in the neighborhood of (x̄, λ̄):

(d) x̄+ is a locally isolated stationary solution of Pro(f̄ , h̄;K).

We refer to (b1) as the nonsingularity of ∂ψ(x̄, λ̄; f̄ , h̄), to (b2) as the coherent orien-
tation property of ∂Bψ(x̄, λ̄; f̄ , h̄), and to (b3) as the coherent semiorientation property of
∂Bψ(x̄, λ̄; f̄ , h̄).

Remark 4.1. It is readily inferred that the implications (b1)⇒(b2)⇒(b3) always hold.
The implication (b1)⇒(a) follows from the Implicit Function Theorem proved by Jongen,
Klatte, and Tammer [10]. The implication (c)⇒(d) always holds. On the other hand,
the implications (b1)⇔(b2) ( i.e., the equivalence of (b1) and (b2)) also holds in case
K = Rm

+ × Rn−m = {x ∈ Rn : xi ≥ 0 (i = 1, · · · , m)} by Theorem 3.1 of [10] or Corollary
3.5 of [11].

We use, for simplicity, the notation (b2)+(d) to the effect that both (b2) and (d) are
satisfied. Similarly, we use the notation (b3)+(c). Under the LICQ condition 2.3 the
following theorem states the relation of (a), (b2)+(d), and (b3)+(c). In the proof of the
following theorem, we deduce from Theorem 2.6 that the implication (a)⇒(b3)+(c) holds in
general. Supposing the semismoothness of ρ+

K , we also deduce the implication (b2)+(d)⇒(a)
by virtue of Proposition 3.15.

Theorem 4.2. Suppose that the LICQ condition 2.3 holds. Let (x̄, λ̄) be a stationary
point of Pro(f̄ , h̄;K). Consequently, (a)⇒(b3)+(c) always holds. On the other hand,
(b2)+(d)⇒(a) also holds under the assumption that ρ+

K (therefore, ψ(x, λ; f̄ , h̄)) is semis-
mooth.

Proof: (a)⇒(b3)+(c): We will prove this implication by deduction of a contradiction
about values of deg(x, λ; f̄ , h̄). It follows immediately from Theorem 2.6 that (a)⇒(c).
Let s = deg(x, λ; f̄ , h̄) (= ±1). Suppose that (b3) does not hold, i.e., that there exists
A ∈ ∂Bψ(x̄, λ̄; f̄ , h̄) with sgn detA = −s. If that were true, then there exists (x′, λ′)
sufficiently near (x̄, λ̄) such that sgn det Dxψ(x′, λ′; f̄ , h̄) = −s. From Fact 3.13, it follows
that deg(x′, λ′; f̄ , h̄) = −s, which contradicts that deg(x, λ; f̄ , h̄) = s.
(b2)+(d)⇒(a): It follows from (b2) that sgn detA = s for any A ∈ ∂Bψ(x̄, λ̄; f̄ , h̄). Let
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p =

{

+ (s = 1)
− (s = −1)

. Then ∂Bψ(x̄, λ̄; f̄ , h̄) ⊂ GLp(n + ℓ) holds. Because ∂Bψ(x̄, λ̄; f̄ , h̄)

is compact as a result of local Lipschitzness of ψ(x, λ; f̄ , h̄) and because GLp(n+ ℓ) is an
open set of M(n) and ∂Bψ(x̄, λ̄; f̄ , h̄) ⊂ GLp(n+ ℓ), there exists ǫ > 0 such that

∂Bψ(x̄, λ̄; f̄ , h̄) +Bǫ(0) ⊂ GLp(n + ℓ). (1)

As stated in Fact 3.6, it follows from local Lipschitzness of ψ(x, λ; f̄ , h̄) that (x, λ) 7→
∂Bψ(x, λ; f̄ , h̄) is upper semicontinuous at every (x, λ), i.e., for any ǫ > 0, there exists
δ > 0 such that ∂Bψ(Bδ((x̄, λ̄)); f̄ , h̄) ⊂ ∂Bψ(x̄, λ̄; f̄ , h̄) + B 1

2
ǫ(0) holds. Setting W =

Bδ((x̄, λ̄)) we can restate this inclusion as

∂Bψ(W ; f̄ , h̄) ⊂ ∂Bψ(x̄, λ̄; f̄ , h̄) +B 1
2
ǫ(0). (2)

Set δ∗ = δ and let U = Bδ∗(x̄
+). Then, because ρ+

K is Lipschitz continuous with
its modulus 1, ρ+

K(Bδ∗(x̄)) ⊂ U holds, from which it follows that W ⊂ (ρ+
K)−1(U) ×

Rℓ. On the other hand, it is readily inferred that (f, h) 7→ ∂Bψ(W ; f, h) is also upper
semicontinuous at every (f, h) with respect to the topology of FU , i.e., there exists δ1 > 0
such that

∂Bψ(W ;Bδ1((f̄ , h̄);U)) ⊂ ∂Bψ(W ; f̄ , h̄) +B 1
2
δ(0). (3)

With the inclusion ∂Bψ(W ;Bδ((f̄ , h̄);U)) ⊂ GLp(n+ ℓ) that is readily deduced from (1),
(2), and (3), Proposition 3.15 asserts that for any (f, h) ∈ Bδ1((f̄ , h̄);U) ψ(x, λ; f, h) has
the semismooth inverse on a neighborhood of W . By Theorem 2.6 we can conclude that
x̄+ is a strongly stable solution of Pro(f̄ , h̄;K).

One remark must be made before the description of Theorem 4.6.

Remark 4.3. (see [4]) We investigate the relation between strong stability of locally iso-
lated stationary solutions of NPAC and strong stability of locally isolated solutions of vari-
ational inequality in this remark.

Let K be a closed convex subset of Rn, x 7→ x+ a Euclidean projector onto K, and F :
Rn → Rn be a locally Lipschitz map. Define Fnor

K (x) = F (x+) + x−. Then the variational
inequality, denoted as VI(K,F ), is to find x ∈ Rn satisfying Fnor

K (x) = 0. Let SOL(K,F )
denote the set of solutions of VI(K,F ), i.e., SOL(K,F ) = {x ∈ Rn : F (x+) + x− = 0}.
From Theorem 3 of [6] it is provable without difficulty that a locally isolated solution x̄

of VI(K,F ) is strongly stable if and only if the coherent orientation property holds for
∂BFnor

K (x̄).
Let SOL(f, h;K) denote the set of stationary points of Pro(f, h;K), i.e., SOL(f, h;K) =

{(x, λ) ∈ Rn+ℓ : ψ(x, λ; f, h) = 0}. Let K̃ = K × Rℓ, F (x, λ) = DT
(x,λ)L(x, λ; f, h) =

(D(x,λ)L(x, λ; f, h))T , and y = (x, λ). Then, it is readily inferred that y+ = ρ+

K̃
(y) =

(x+, λ), y− = ρ−
K̃

(y) = (x−, 0), and ψ(x+, λ; f, h)T = F (y+) + y− because ψ(x, λ; f, h) =

(DxL(x+, λ; f, h) + (x−)T , DλL(x+, λ; f, h)) = D(x,λ)L(x+, λ; f, h) + ((x−)T , 0). This fact

implies that SOL(f, h;K) = SOL(K̃, F ).
First, consider the case of NPAC that has no equality constraints: i.e., ℓ = 0. In this

case, the concept of strong stability for SOL(f, ∅;K) is the same for SOL(K,Dx
Tf) because
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the perturbation of f that affects solutions is nothing but the perturbation of Dx
Tf . There-

fore, in this case, we have an algebraic criterion for stability of a locally isolated stationary
solution x̄+ of Pro(f, ∅;K) that the coherent orientation property holds for ∂Bψ(x̄; f).

Next, consider the case in which program NPAC has some equality constraints, i.e. ℓ 6= 0.
In this case, however the concept of strong stability for SOL(f, h;K) is weaker than that for
SOL(K̃, F ) because perturbations of (f, h) comprise only a part of the perturbations of F .
Therefore, we cannot merely apply the result of strong stability of locally isolated solutions
of variational inequality VI(K̃,DT

(x,λ)L(x, λ; f, h)) to locally isolated stationary solutions of

Pro(f, h;K).

We must construct an analog of Kojima’s approach to overcome this difference of per-
turbations stated in Remark 4.3 and to prove necessity for strong stability, i.e., to prove
(a)⇒(b2)+(c) just as Jongen et al. [10] attributed proof of necessity to a result of Kojima
[14]. We can construct an analog of Kojima’s approach for where the following condition
4.4 holds (see [19], [20]). We refer to it as the regular boundary condition 4.4 for K. In
the statement of the condition, V (C+; = 0) denotes the kernel of the operator C+, i.e.,
V (C+; = 0) = {u ∈ Rn : C+u = 0}.

Condition 4.4. V (C+; = 0) ⊂ RσK(x+) for any C+ ∈ ∂Bρ
+
K(x).

The above regular boundary condition 4.4 is equivalent to the condition that V (C+; =
0) ⊂ RσK(x+) for C+ ∈ ∂ρ+

K(x) introduced in [20], because conv(∂Bρ
+
K(x)) = ∂ρ+

K(x) and
∂ρ+

K(x) ⊂ S+(n) stated in Proposition 3.9 of [20]. Therefore, it follows from Lemma 4.15 of
[19] that the regular boundary condition 4.4 is always fulfilled in case K = S+(n).

In the remainder of this section, we assume that both the LICQ condition 2.3 and
the regular boundary condition 4.4 hold. Under these two conditions, we can prove that
(a)⇒(b2)+(c) in Proposition 4.5. In [20] antecedent to [19], we constructed an analog
of Kojima’s approach [14] for programs Pro(f, h;S+(n)) under the LICQ condition 2.3.
However, this construction is in fact applicable to Pro(f, h;K) for any closed convex set
K satisfying the LICQ condition 2.3 and the regular boundary condition 4.4 (see [20]). In
fact, the following proposition 4.5 is deduced immediately from the proof of Proposition 4.7
of [19].

Proposition 4.5. (see [20]) Presume that the LICQ condition 2.3 holds and that the reg-
ular boundary condition 4.4 holds for K. Let (x̄, λ̄) be a stationary point of Pro(f̄ , h̄;K).
Then (a)⇒(b2)+(c) holds.

Under the LICQ condition 2.3 and the regular boundary condition 4.4, the following
theorem provides several conditions that are equivalent to strong stability. We remark that
the semismoothness of ρ+

K is required only for proof of the implication (4) ⇒ (2) of the
theorem.

Theorem 4.6. Suppose that the LICQ condition 2.3 holds and that the regular boundary
condition 4.4 holds for K. Then the following (i) and (ii) hold.

(i) The following (1)–(4) are equivalent if ρ+
K is semismooth.

(1) x̄+ is a strongly stable stationary solution of Pro(f̄ , h̄;K).
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(2) ψ(·, ·; f̄ , h̄) is locally Lipschitz homeomorphism around (x̄, λ̄).

(3) (b2)+(c) holds for ψ(·, ·; f̄ , h̄) at (x̄, λ̄).

(4) (b2)+(d) holds for ψ(·, ·; f̄ , h̄) at (x̄, λ̄).

(ii) If ρ+
K is semismooth and directionally differentiable at x̄, and if the inclusion ∂Bρ

+
K(x̄) ⊂

∂B(dρ+
K |x̄)(0) holds, the above (1)–(4), and the following (5)–(7) are all equivalent.

(5) (dψ(x, λ; f̄ , h̄)|(x̄,λ̄))(·, ·) is globally Lipschitz homeomorphism.

(6) (b2)+(c) holds for (dψ(x, λ; f̄ , h̄)|(x̄,λ̄))(·, ·) at (0, 0).

(7) (b2)+(d) holds for (dψ(x, λ; f̄ , h̄)|(x̄,λ̄))(·, ·) at (0, 0).

Proof:
(i): Implication (4)⇒(2) follows from Corollary 4 of [6] for semismooth maps. Also,
(2)⇒(1) follows from Theorem 2.6. (1)⇒(3) follows from Proposition 4.5. (3)⇒(4) is
readily inferred. Therefore, (1), (2), (3), and (4) are equivalent.
(ii): (2)⇒(5) follows from Proposition 2.2 of [17] about locally Lipschitz maps that are
directionally differentiable at a point. (5)⇒(6) is a special case of (2)⇒(3) that is proved
without the assumption of semismoothness. (6)⇒(7) is readily inferred. Therefore, we
have only to prove implication (7)⇒(4).

(b2) of (4) immediately follows from (b2) of (7) because we have the inclusion
∂Bψ(x̄, λ̄; f̄ , h̄) ⊂ ∂Bdψ(x̄, λ̄; f̄ , h̄)(0, 0) from the assumption ∂Bρ

+
K(x̄) ⊂ ∂B(dρ+

K |x̄)(0).
Consider statement (d). Suppose that (d) of (4) does not hold, i.e., there exists a sequence
(xk, λk), (k = 1, 2, · · ·) such that limk→∞(xk, λk) = (x̄, λ̄) and ψ(xk, λk; f̄ , h̄) = 0 (k =

1, 2, · · ·). Taking a subsequence, we can assume that limk→∞
(xk−x̄, λk−λ̄)

‖xk−x̄‖+‖λk−λ̄‖
= (u, ξ) 6=

(0, 0). Therefore, we have

lim
k→∞

ψ(xk, λk; f̄ , h̄) − ψ(x̄, λ̄; f̄ , h̄)

‖xk − x̄‖ + ‖λk − λ̄‖
= 0.

On the other hand, because ψ(x, λ; f̄ , h̄) is directionally differentiable at (x̄, λ̄) and
ψ(x, λ; f̄ , h̄) is locally Lipschitz continuous, it is readily inferred that

lim
k→∞

ψ(xk, λk; f̄ , h̄) − ψ(x̄, λ̄; f̄ , h̄)

‖xk − x̄‖ + ‖λk − λ̄‖
= ψ′(x̄, λ̄; f̄ , h̄)(u, ξ).

Therefore, we have deduced ψ′(x̄, λ̄; f̄ , h̄)(u, ξ) = 0 for (u, ξ) 6= (0, 0), which contradicts
(b2) of (7) because ψ′(x̄, λ̄; f̄ , h̄)(tu, tξ) = 0 for any t > 0.

The following corollary readily follows from Proposition 3.19 and Theorem 4.6.

Corollary 4.7. Let K be a closed convex cone pointed at 0. Presume that the LICQ condi-
tion 2.3 holds and that the regular boundary condition 4.4 holds for K. Then the following
(i) and (ii) hold.

(i) The following (1)–(4) are equivalent.

(1) x̄+ is a strongly stable stationary solution of Pro(f̄ , h̄;K).
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(2) ψ(·, ·; f̄ , h̄) is a locally Lipschitz homeomorphism around (x̄, λ̄).

(3) (b2)+(c) holds for ψ(·, ·; f̄ , h̄) at (x̄, λ̄).

(4) (b2)+(d) holds for ψ(·, ·; f̄ , h̄) at (x̄, λ̄).

(ii) If ρ+
K is directionally differentiable at x̄, and if the inclusion ∂Bρ

+
K(x̄) ⊂ ∂B(dρ+

K |x̄)(0)
holds, the (1)–(4) above, and the following (5)–(7) are all equivalent.

(5) (dψ(x, λ; f̄ , h̄)|(x̄,λ̄))(·, ·) is a globally Lipschitz homeomorphism.

(6) (b2)+(c) holds for (dψ(x, λ; f̄ , h̄)|(x̄,λ̄))(·, ·) at (0, 0).

(7) (b2)+(d) holds for (dψ(x, λ; f̄ , h̄)|(x̄,λ̄))(·, ·) at (0, 0).

Definition 4.8. A closed convex set of Rn is called polyhedral or a polyhedron if it is
defined by a finite number of linear inequalities. A cone that is polyhedral is called a
polyhedral cone.

As already noted above, S+(n) satisfies the regular boundary condition 4.4 and ρ+
S+(n) is

semismooth from Proposition 3.19. Moreover, we know from Theorem 4.7 of [24] and Lemma
11 of [21] that ρ+

S+(n) is directionally differentiable and that ∂Bρ
+
S+(n)(x̄) = ∂B(dρ+

S+(n)|x̄)(0)
holds. Similarly, for a polyhedral cone K pointed at 0, it follows from Proposition 3.19
that the Euclidean projector ρ+

K is semismooth. It is also readily inferred that both the
regular boundary condition 4.4 and ∂Bρ

+
K(x̄) = ∂B(dρ+

K |x̄)(0) hold for any polyhedron K.
Consequently, we have the following corollary.

Corollary 4.9. Let K be either S+(n) or a polyhedral cone pointed at 0. Then under the
LICQ condition 2.3, the following (1)–(7) are equivalent.

(1) x̄+ is a strongly stable stationary solution of Pro(f̄ , h̄;K).

(2) ψ(·, ·; f̄ , h̄) is a locally Lipschitz homeomorphism around (x̄, λ̄).

(3) (b2)+(c) holds for ψ(·, ·; f̄ , h̄) at (x̄, λ̄).

(4) (b2)+(d) holds for ψ(·, ·; f̄ , h̄) at (x̄, λ̄).

(5) (dψ(x, λ; f̄ , h̄)|(x̄,λ̄))(·, ·) is a globally Lipschitz homeomorphism.

(6) (b2)+(c) holds for (dψ(x, λ; f̄ , h̄)|(x̄,λ̄))(·, ·) at (0, 0).

(7) (b2)+(d) holds for (dψ(x, λ; f̄ , h̄)|(x̄,λ̄))(·, ·) at (0, 0).

This corollary contains the result of Kojima’s theory stated in Theorem 3.3 and Corol-
lary 4.3 of [14] because the programs treated in [14] are reformulated to the programs
Pro(f̄ , h̄; Rm

+ × Rn) by transformation of a coordinate system. This indicates that the
theory Kojima had perceived in the classical setting of [14] seems to have universal validity
for more general nonlinear programs.
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5 Calculation of D
x
ρ+
K(x) and Interpretation of the Reg-

ular Boundary Condition 4.4.

This section is intended to advance an interpretation of the regular boundary condition
4.4 geometrically. We deduce an explicit formula of Dxρ

+
K(x) under the assumption that

stratification of K, which is defined naturally for any closed convex set K is of C2 class,
and interpret the regular boundary condition 4.4 in terms of principal curvatures (or radii
of principal curvature) at x̄+ of the stratum. We use the following notation.

{

Kr = {x ∈ K : dim RσK(x) = n− r}
Vr =

∐

{σK(x) : x ∈ Kr}

It is readily inferred that K =
∐n

r=0Kr. We consider this decomposition as a stratification
of K. Similarly, Rn =

∐n

r=0 Vr and int(Vr) =
∐

{reℓint(σK(x)) : x ∈ Kr} hold. We assume
the following condition throughout this section, which ensures that K =

∐n
r=0Kr is a C2

stratification.

Condition 5.1. In the case that Kr 6= ∅, Kr is an r dimensional C2 submanifold of Rn

for r = 0, 1, 2, · · · , n.

We can prove the following theorem, which provides an explicit formula of Dxρ
+
K(x̄)

under Condition 5.1.

Theorem 5.2. Suppose that a closed convex set K ⊂ Rn has C2 stratification 5.1. Then
∐n

r=0int(Vr) ⊂ Eρ+
K

holds. An explicit formula of Dxρ
+
K(x̄) for x̄ ∈ int(Vr) is given as

follows.
Let x̄ ∈ int(Vr) and T

x̄+Kr be the tangent space of Kr at x̄+, ui (1 ≤ i ≤ r) be any
orthonormal basis of T

x̄+Kr, ui (r + 1 ≤ i ≤ n) be any orthonormal basis of (T
x̄+Kr)

⊥,
P1 = (u1, · · · ,ur), P2 = (ur+1, · · · ,ur), and P = (P1 P2 ) = (u1, · · · ,ur) ∈ O(n). Let U
be an open subset of Rr of 0 and let c : U → Kr be a C2 coordinate system of Kr around
x̄ such that c(0) = x̄+ and Dtc(0) = P1.

Then Dxρ
+
K(x̄) = P

(

(

Ir − (D2
t
〈c(t), x̄−〉)(0)

)−1

O

O O

)

P T holds.

Proof: It is readily inferred that ρ+
K(x) = ρ+

Kr
(x) holds for any x ∈ int(Vr). Because Kr

is a C2 manifold, it is also inferred that ρ+
Kr

(x) is C1 on int(Vr). Therefore, ∐n
r=0int(Vr) ⊂

Eρ+
K

holds. Consequently, below we have only to prove the explicit formula stated in the
theorem.

Denote W1 = T
x̄+Kr and W2 = (T

x̄+Kr)
⊥. Then W1 ⊥ W2 holds. Let u′

i (1 ≤ i ≤ r)
be another orthonormal basis of W1 and let u′

i (r + 1 ≤ i ≤ n) be another orthonormal
basis of W2. Also let Q1 = (u′

1, · · · ,u
′
r), Q2 = (u′

r+1, · · · ,u
′
n), Q = (Q1 Q2 ) ∈ O(n),

and c′ : U ′ → Kr be a C2 coordinate system of Kr around x̄ such that c′(0) = x̄+

and Dtc
′(0) = Q1. It is readily inferred that there exist G1 ∈ O(r) and G2 ∈ O(n − r)

such that P1 = Q1G1, P2 = Q2G2, and P = QG with G =

(

G1 O

O G2

)

∈ O(n). Let
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Φ : Rr → Rr be defined around 0 such that Φ(t) = c′−1(c(t)). Then c(t) = c′(Φ(t)) and
DtΦ(0) = G1 hold. We use the following Taylor’s expansions.

c(t) = c(0) +Dtc(0)t +
1

2
tTD2

t
c(θt)t

= x̄+ + P1t +
1

2
tTD2

t
c(θt)t, (4)

c′(t) = c′(0) +Dtc
′(0)t +

1

2
tTD2

t
c′(θ′t)t

= x̄+ +Q1t +
1

2
tTD2

t
c′(θ′t)t, (5)

Φ(t) = Φ(0) +DtΦ(0)t +
1

2
tTD2

t
Φ(θ′′t)t

= G1t +
1

2
tTD2

t
Φ(θ′′t)t. (6)

Because c(t), c′(t), and Φ(t) are not necessary functions, these equalities do not hold sim-
ply. However, because each component of c(t), c′(t), and Φ(t) is a function, θ, θ′, and θ′′

(0 ≤ θ, θ′, θ′′ ≤ 1) can be taken independently for the component. In this sense,
θ, θ′, and θ′′ in the above equations are written symbolically. We remark that tTD2

t
c(θt)t,

D2
t
c′(θ′t)t, and tTD2

t
Φ(θt)t are considered as elements of M(n) ⊗ Rn.

Calculating c′(Φ(t)) from (4) and (6), and comparing the result with (5) and taking
a limit t → 0, we can deduce

D2
t
(Q1Φ)(0) +GT

1D
2
t
c′(0)G1 = D2

t
c(0). (7)

From Q1Φ(x) ∈W1 and x̄− ∈W2 it follows that 〈Q1Φ(x), x̄−〉 = 0 for any x that makes
〈D2

t
(Q1Φ)(0), x̄−〉 = 0. Therefore, after operating 〈 · , x̄−〉 to (7) we can deduce

GT
1 〈D

2
t
c′(0), x̄−〉G1 = 〈GT

1D
2
t
c′(0)G1, x̄

−〉 = 〈D2
t
c(0), x̄−〉. (8)

Here again, we remark that GT
1D

2
t
c′(0)G1 of this equation is considered in M(n) ⊗ Rn

and the inner product 〈 , 〉 is that on Rn. It follows from (8) and P1G1 = Q1 that

Q1

(

Ir − (D2
t
〈c′(t), x̄−〉)(0)

)

QT
1 = P1

(

Ir − (D2
t
〈c(t), x̄−〉)(0) −D2

t
(P1Φ)(0)

)

P T
1 . (9)

We will later prove that Ir − (D2
t
〈c(t), x̄−〉)(0) is nonsingular for some c(t). Then we

know from (9) that Ir − (D2
t
〈c(t), x̄−〉)(0) is nonsingular for any c′(t). As a result, we

can deduce that Q1

(

Ir − (D2
t
〈c′(t), x̄−〉)(0)

)−1

QT
1 = P1

(

Ir − (D2
t
〈c(t), x̄−〉)(0)

)−1

P T
1

and that

Q

(

(

Ir − (D2
t
〈c(t), x̄−〉)(0)

)−1

O

O O

)

QT = P

(

(

Ir − (D2
t
〈c(t), x̄−〉)(0)

)−1

O

O O

)

P T .(10)

Let e1, e2, · · · , en be the standard basis of Rn, i.e., ei = (0, · · · , 0, 1, 0, · · · , 0)T (1 ≤ i ≤
n) where the only nonzero entry is 1 in the i-th position. Then, from (9), we might assume
that W1 =

∑r

i=1 Rei, W2 =
∑n

i=r+1 Rei and x̄− = −‖x̄−‖en. We use the coordinate
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system (of C2 class) (c : Rr → Kr) of Kr around x̄+ such as c(t) = x̄+ +

(

t

v(t)

)

(precisely in fact, c is defined on an appropriate open neighborhood of 0 ∈ Rr). To
complete the proof of this theorem, we must prove nonsingularity of Ir−(D2

t
〈c(t), x̄−〉)(0)

and Dxρ
+
K(x̄) =

(

(

Ir −Dt
2〈c, x̄−〉(0)

)−1

O

O O

)

. Because cn(t) = 〈c(t), en〉 ≥ 0 for any

t in a neighborhood of 0 and cn(0) = 0, we can deduce that

Dt
2cn(0) = (Dt

2〈c, en〉)(0) is positive semidefinite. (11)

Let W ′
2(x

+) = RσK(x+) = (T
x+Kr)

⊥ for x+ ∈ Kr. Then there exists a positive real
number δ > 0 and a C1 map d : Rr → x̄ + W1 (precisely in fact, d is defined on an
appropriate open neighborhood of 0 ∈ Rr) such that (x̄+W1)

⋂

(c(t)+W ′
2(c(t))) = {d(t)}

holds for ‖t‖ < δ because of transversality (see [13]). Moreover, it is readily inferred that
ρ+

K(d(t)) = d(t)+ = c(t). Therefore, d(t)− ∈ W ′
2(c(t)) = (T c(t)Kr)

⊥, which engenders

〈Dtc(t),d(t)−〉 = 0. Represent d(t) as d(t) = x̄ +

(

a(t)
0

)

with ai(t) (1 ≤ i ≤ r) of

C1 class. Then d(t)− = d(t) − d+(t) = d(t) − c(t) = x̄− −

(

t − a(t)
v(t)

)

and Dtd(t)− =

−

(

Ir −Dta(t)
Dtv(t)

)

. It is readily inferred that Dtc(t) =

(

Ir

Dtv(t)

)

. We can calculate the

following:

〈Dtc(t),d(t)−〉 = 〈Dtc(t),d(t)− − x̄−〉 + 〈Dtc(t), x̄−〉

= −

(

Ir

Dtv(t)

)T (

t − a(t)
v(t)

)

+ 〈Dtc(t), x̄−〉

= − ( Ir (Dtv(t))T )

(

t − a(t)
v(t)

)

+ 〈Dtc(t), x̄−〉

= −t + a(t) − (Dtv(t))T v(t) + 〈Dtc(t), x̄−〉

= −t + a(t) − 〈Dtv(t),v(t)〉2 + 〈Dtc(t), x̄−〉

= −t + a(t) −
1

2
Dt〈v(t),v(t)〉2 +Dt〈c(t), x̄−〉,

where 〈 , 〉2 is the standard inner product on W2, which is the restriction of 〈 , 〉 to W2.
From 〈Dtc(t),d−(t)〉 = 0 and the above equation, we have

a(t) = t −Dt〈c(t), x̄−〉 +
1

2
Dt〈v(t),v(t)〉2. (12)

Differentiation of the equation (12) with respect to t leads to

Dta(t) = Ir −D2
t
〈c(t), x̄−〉 +

1

2
D2

t
〈v(t),v(t)〉2. (13)

With an equality −〈c(t), x̄−〉 = ‖x̄−‖〈c(t), en〉 and (11), it is readily inferred that

−D2
t
〈c, x̄−〉(0) is positive semidefinite. (14)
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Let π2(·) be the orthogonal projection from Rn to W2, i.e., π2(x) = P2P
T
2 x = Q2Q

T
2 x.

Then, because P T
i Pj = QT

i Qj = P T
i Qj = QT

i Pj = O (i 6= j) we can deduce from (4) that
〈π2(c(t) − x̄+), π2(c(t) − x̄+)〉2 = o(‖t‖4). It follows that

D2
t
〈π2(c − x̄+), π2(c − x̄+)〉2(0) = O. (15)

From (13), (14), (15), and π2(c(t) − x̄−) = v(t), we can conclude that

Dta(0) = Ir −D2
t
〈c, x̄−〉(0) is positive definite, (16)

and

(Dta(0))−1 = ( Ir −D2
t
〈c, x̄−〉(0) )−1. (17)

Therefore, there exists inverse a−1 : Rr → Rr of the map a(t) locally around t = 0 ∈ Rr.

Let F1 : Rr → x̄ +W1 be defined as y 7→ F1(y) = x̄ +

(

y

0

)

and F2 : Rn−r → x̄ +W2

by z 7→ F2(z) = x̄ +

(

0

z

)

. The following are readily inferred.

DyF1(y) =

(

Ir

O

)

and DzF2(z) =

(

O

In−r

)

(18)

Through simple calculation, we can deduce that c(t) = ρ+
K ◦ F1 ◦ a(t) for any t ∈ Rr

sufficiently near 0. Therefore,

ρ+
K ◦ F1(y) = c ◦ a−1(y) for any y ∈ Rr sufficiently near 0. (19)

Similarly,

ρ+
K ◦ F2(z) = x̄+ for any z ∈ Rn−r sufficiently near 0. (20)

Differentiating (19) and (20), we have Dxρ
+
K(F1(y))DyF1(y) = (Dtc)(a−1(y))(Dya

−1)(y)

and Dxρ
+
K(F2(z))DzF2(z) = O. Then, from Dtc(t) =

(

Ir

Dtv(t)

)

, (18), and (17), and

substituting y = 0 and z = 0, then we can derive















Daρ
+
K(x̄)

(

Ir

O

)

=

(

Ir

O

)

( Ir −Dt
2〈c, x̄−〉(0) )−1 =

(

( Ir −Dt
2〈c, x̄−〉(0) )−1

O

)

,

Dxρ
+
K(x̄)

(

O

In−r

)

=

(

O

O

)

.

We have proved the formula Dxρ
+
K(x̄) =

(

(

Ir −Dt
2〈 c , x̄−〉(0)

)−1

O

O O

)

.

With an explanation stated in the following remark, we can understand the geometric
meaning of the regular boundary condition 4.4.
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Remark 5.3. Let n = − x̄−

‖x̄−‖
. Suppose that λi (1 ≤ i ≤ r) is an eigenvalue of A =

−Dt
2〈c, x̄−〉(0) = ‖x̄−‖Dt

2〈c,n〉(0) and that wi (1 ≤ i ≤ r) is an eigenvector belonging to
λi satisfying ‖wi‖ = 1. Define fi(s) = 〈c(x̄+swi),n〉 = 〈ρ+

K(x̄+swi),n〉 = 〈(x̄+swi)
+,n〉

for s ∈ R sufficiently near 0. Let Hi = x̄+ + Rwi + Rn ⊂ Rn and πi : Rn → Hi be the
orthogonal projection. Then c(s) = πi(c(x̄ + swi)) = x̄+ + swi + fi(s)n ∈ Hi holds. Here,
c(x̄ + swi) is a curve on Kr, whose projection to Hi is a curve ci(s) on H . From the
representation of ci(s) = x̄+ + swi +fi(s)n, we can deduce that curvature of the curve ci at

ci(0) = x̄+ is d2fi

ds2 (0) = λi and that the curvature radius is ri = 1
λi

. The λi (1 ≤ i ≤ r) are
called principal curvatures, and ri (1 ≤ i ≤ r) are the radii of principal curvatures. Because
of ( Ir − Dt

2〈 c , x̄−〉(0) )−1 = ( Ir + ‖x̄−‖A )−1 it is readily inferred that eigenvalues of
Dxρ

+
K(x̄) are 1

1+‖x̄−‖λi

= ri

‖x̄−‖+ri

(1 ≤ i ≤ r) and (n − r) 0’s. From this relation between

eigenvalues of Dxρ
+
K(x̄) and principal curvatures, we define principal curvatures of K at x̄

as λi (1 ≤ i ≤ r) and λi = 0 (r + 1 ≤ i ≤ n). We additionally define radii of principal
curvatures of K at x̄ to be ri = 1

λi
(1 ≤ i ≤ r) and ri = ∞ (r + 1 ≤ i ≤ n).

The following corollary asserts that for each r (0 ≤ r ≤ n), (Dxρ+
K)|int(Vr) = Dx(ρ+

K |int(Vr))
expands continuously to Vr under Condition 5.1.

Corollary 5.4. Suppose that a closed convex set K ⊂ Rn has C2 stratification 5.1. Then
the following (i), (ii), and (iii) hold.

(i) Dxρ
+
K(x̄) = Dxρ

+
Kr

(x̄) holds for any x̄ ∈ Eρ+
K

⋂

Vr.

(ii) Dxρ
+
Kr

(x̄) ∈ ∂Bρ
+
K(x̄) holds for any x̄ ∈ Vr.

(iii) lim
x∈int(Vr)

x→x̄

Dxρ
+
K(x) = P

(

Ir O

O O

)

P T holds for x̄ ∈ Kr, where P = (u1, · · · ,ur) ∈

O(n) is defined such that ui (1 ≤ i ≤ r) is any orthonormal basis of T x̄Kr and
ui (r + 1 ≤ i ≤ n) is any orthonormal basis of (T x̄Kr)

⊥.

Proof: (i): Suppose that ρ+
K is differentiable at x̄ and x̄+ ∈ Kr. It is readily inferred

either differential geometrically or from the proof of Theorem 5.2 that there exists an open
neighborhood U ⊂ Rn of x̄ where the Euclidean projector ρ+

Kr
is defined and ρ+

Kr
is a C1

map from U to Kr. From ρ+
Kr
|(U

⋂

Vr) = ρ+
K |(U

⋂

Vr) and ρ+
Kr

is C1 on U , it is readily
inferred that Dxρ

+
K(x̄) = Dxρ

+
Kr

(x̄) hold.
(ii): Dxρ

+
Kr

(x) is continuous on Vr. Therefore, (ii) follows immediately from (i).
(iii): Dxρ

+
Kr

(x̄) is C1 on a neighborhood of x̄. Consequently, it follows from Theorem 5.2

that Dxρ
+
Kr

(x̄) = P

(

Ir O

O O

)

P T for x̄ ∈ Kr. Part (iii) follows directly from part (i)

and the fact that int(Vr) ⊂ Eρ+
K

⋂

Vr.

Remark 5.5. It readily follows from (i) of Corollary 5.4 that the B-subderivative ∂Bρ
+
K

of the Euclidean projector ρ+
K onto any closed convex set K with C2 stratification 5.1 is

“blind” to sets of Lebesgue measure zero as similarly as the generalized Jacobians, i.e.,
∂Bρ

+
K(x̄) = { limk→∞Dxf(xk) : xk ∈ Ef \N , (k = 1, 2, · · ·) and limk→∞ xk = x̄ } holds for

any set N of Lebesgue measure zero.
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It is known that Eρ+
S+(n)

= S∗(n) holds by Theorem 4.6 and Lemma 4.8 of [24], i.e.,

Eρ+
K

= ∐n
r=0int(Vr) holds in case of K = S+(n). Contrary to the case of K = S+(n), in the

general setting of closed convex sets with C2 stratification 5.1, we will show in Remark 5.6
an example in which Eρ+

K
⊇ ∐n

r=0int(Vr) holds and Eρ+
K
6= ∐n

r=0int(Vr).

Remark 5.6. We will make an example of K ⊂ R2 with C2 stratification 5.1 that does
not satisfy Eρ+

K
6= ∐2

r=0int(Vr).

Let α, β be 0 < α, β < 1 and f(x) = x1+α and g(x) = x
1

1+β be real valued functions of
one variable. Consider K = { (x, y) ∈ R2 : 0 ≤ x ≤ 1 and f(x) ≤ y ≤ g(x) }. Let















0 = (0, 0)
a = (1, 1)
K11 = {(x, y ∈ R2) : y = f(x) = x1+α (0 < x < 1) }

K12 = {(x, y ∈ R2) : y = g(x) = x
1

1+β (0 < x < 1) }

.

Then each stratum of K is given as







K0 = {0, a}
K1 = K11 ∐K12

K2 = {(x, y) ∈ R2 : 0 < x < 1 and f(x) < y < g(x) }

From this, it is readily inferred that K satisfies C2 stratification 5.1. Direct calculation
obtains







σK(0) = {(x, y) ∈ R2 : x ≤ 0 and y ≤ 0}

σK(a) =

{

(x, y) ∈ R2 :
(x ≤ 1 and y ≥ −(1 + β)(x− 1) + 1 )
or (x ≥ 1 and y ≤ − 1

1+α
(x− 1) + 1 )

}

.

Let














V11 =

{

(x, y) ∈ R2 :
(0 < x ≤ 1 and y ≤ f(x) )
or (x ≥ 1 and y ≤ − 1

1+α
(x− 1) + 1 )

}

V12 =

{

(x, y) ∈ R2 :
(x ≤ 0 and 0 ≤ y ≤ −(1 + β)(x− 1) + 1 )
or (0 ≤ x ≤ 1 and g(x) ≤ y ≤ −(1 + β)(x− 1) + 1 )

} .

Then the following holds:






V0 = σK(0) ∐ σK(a)
V1 = V11 ∐ V12

V2 = K2

.

First, consider the case of x+ = (x, y) = (x, f(x)) ∈ K11. The radius r(x+) of the

principal curvature of K11 at x+ is r(x+) = (1+(f ′(x))2)
3
2

f ′′(x)
= (1+((1+α)xα)2)

3
2

(1+α)αxα−1 . From this formula,
it is readily inferred that

lim
x∈K11
x→0

r(x+) = 0. (21)
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Secondly, consider the case of x+ = (x, y) = (x, g(x)) ∈ K12. In this case, we use the inverse
function h of g(x) restricted on 0 ≤ x ≤ 1, i.e., h(y) = y1+β. Then the radius r(x+) of

principal curvature of K12 at x+ = (h(y), y) is r(x+) = (1+(h′(y))2)
3
2

h′′(y)
= (1+((1+β)yβ )2)

3
2

(1+β)βyβ−1 and

lim
x∈K12
x→0

r(x+) = 0. (22)

From Theorem 5.2 and Remark 5.3 and the results of (21) and (22), it follows that
∂Bρ

+
K(x) = {O} holds for x ∈ Z = {(x, 0) ∈ R2 : x < 0} ∐ {(0, y) ∈ R2 : y < 0}.

Therefore, from Proposition 3.11 it is readily inferred that ρ+
K is differentiable at x ∈ Z,

i.e., Eρ+
K
6= ∐2

r=0int(Vr). In fact, through a tedious calculation, one can deduce that Eρ+
K

=

(∐2
r=0int(Vr)) ∐ Z.

Before ending this section we would like to make the following conjecture.

Conjecture 5.7. If a closed convex set K has C2 stratification 5.1, then the Euclidean
projector ρ+

K might be directionally differentiable and the regular boundary condition 4.4
might hold.

If the above conjecture 5.7 is proved, then Corollary 4.9 will hold for any closed convex
cone pointed at 0 having C2 stratification 5.1.

6 Conclusions.

We have investigated the relation between strong stability of a stationary solution x̄+ of
Pro(f̄ , h̄;K) with its associate stationary point (x̄, λ̄) and the B-subderivative ∂Bψ(x̄, λ̄; f̄ , h̄)
under the LICQ condition 2.3. First, we introduced a simple condition about the B-
subderivative ∂Bψ(x̄, λ̄; f̄ , h̄) such that the Euclidean projector ρ+

K is semismooth. Con-
sequently, it follows that the Euclidean projector onto any closed convex cone pointed at 0

is semismooth. Secondly, under the condition that the Euclidean projector ρ+
K is semismooth

and with the additional assumption of the regular boundary condition 4.4 for K, we proved
that a locally isolated stationary solution x̄+ of program Pro(f̄ , h̄;K) is strongly stable if
and only if the coherent orientation property holds for ∂Bψ(x̄, λ̄; f̄ , h̄). This characterization
is considered as a complete generalization of Kojima’s theory stated in Theorem 3.3 and
Corollary 4.3 of [14]. Thirdly, we treated a closed convex set K ⊂ Rn satisfying C2 strati-
fication 5.1. Furthermore, we interpreted the regular boundary condition 4.4 geometrically
in terms of principal curvatures of the stratum.
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