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Abstract.
The polyhedral homotopy continuation method is known to be a successful method for
finding all isolated solutions of a system of polynomial equations. PHoM, implementation
of the method in C++, finds all isolated solutions of a polynomial system by constructing a
family of polyhedral-linear homotopy functions, tracing the solution curves of the homotopy
equations, and verifying the obtained solutions. A software package PHoMpara parallelizes
PHoM to solve a polynomial system of large size. Many characteristics of the polyhedral
homotopy continuation method make parallel implementation efficient and provide excellent
scalability. Numerical results include some large polynomial systems that had not been
solved.
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1 Introduction

We consider solving a polynomial system f (x) = 0 by the polyhedral homotopy (contin-
uation) method, where f(x) = (f1(x), f2(x), . . . , fn(x)) ∈ C

n and fj(x) ∈ C denotes a
polynomial in a variable vector x = (x1, x2, . . . , xn) in the n-dimensional complex space C

n.
The polyhedral homotopy continuation method has been successful to find all isolated solu-
tions of many polynomial systems as shown in [7, 21] using software such as PHCpack [24]
and PHoM [7]. As the size of a polynomial system becomes larger, we need more computing
resources to solve the polynomial system efficiently. Parallelizing the polyhedral homotopy
method is a natural way to obtain computing resources. The polyhedral homotopy method
is well-suited to parallelization when performing each important task of the method.

The polyhedral homotopy method provides computational advantages over the linear
homotopy (continuation) method [2, 5, 10] since the number of homotopy curves to be
traced is smaller than the number of homotopy curves in the linear homotopy method.
More precisely, the number of homotopy curves in the polyhedral homotopy method is
determined by the mixed volume of the polynomial system based on the Bernshtein theory
[3, 8, 11, 18, 22], which bounds the number of the isolated solutions of f(x) = 0 tighter
than the Bézout bound for the number of homotopy curves in the linear homotopy method.

When we deal with a polyhedral or linear homotopy function h′(x, t) for a polynomial
system of equations f(x) = 0, the homotopy parameter t usually changes from 0 to 1,
and we impose the assumptions that h′(x, 0) = 0 can be easily solved and that h′(x, 1)
coincides with f (x). In the paper [9], the nonlinear scaling t ∈ (0, 1]→ s = log t ∈ (−∞, 0]
or s ∈ (−∞, 0] → t = exp(s) ∈ (0, 1] was proposed and used in the current version of
software package PHoM [7] to increase numerical stability. We utilize a homotopy function
of the form h(x, s) = h′(x, exp(s)) throughout the paper. For simplicity of notation, we
write h(x,−∞) = lims→−∞ h(x, s) = h′(x, 0). It should be noted that the scaled homotopy
system h(x, s) = 0 with the parameter s ∈ [−∞, 0] is equivalent to the original homotopy
system h′(x, t) = 0 with the parameter t ∈ [0, 1], and that if we choose a sufficiently large
positive number s0, then each solution x0 of h′(x, 0) = 0 serves as an accurate solution of
h(x,−s0) = 0. Hence, we can start tracing a solution curve of the scaled homotopy system
h(x, s) = 0 from (x0,−s0).

Implementation of the polyhedral homotopy method is carried out as follows:

(i) Compute the fine mixed cells of a given polynomial system [6, 12, 19] to construct a
family of polyhedral (or polyhedral-linear) homotopy functions

h(x, s) = (h1(x, s), h2(x, s), . . . , hn(x, s)) ∈ C
n ((x, s) ∈ C

n × (−∞, 0]).

(ii) Trace all solution curves of every homotopy system h(x, s) = 0 in the family, which
are called homotopy (solution) curves, numerically varying the homotopy parameter
s from s = −s0 to s = 0 with a sufficiently large positive number s0 [7, 9, 11, 23].

(iii) Verify the obtained solutions at s = 0 [7].

Here each homotopy function h(x, s) in the family satisfies the following three conditions:
(a) all solutions of the starting polynomial system h(x,−∞) = 0 are easy to obtain, (b)
for all s in [−∞, 0), the homotopy system h(x, s) = 0 has only nonsingular solutions (this
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ensures that the set of solutions (x, s) ∈ C
n × [−∞, 0) of h(x, s) = 0 consists of disjoint

homotopy solution curves), (c) the target polynomial system h(x, 0) = 0 coincides with
f (x) = 0. More details on these properties of the polyhedral-linear homotopy used in
PHoM is discussed in Section 2.

A polynomial system of increasing size, such as noon-n and economic-n, has an increasing
number of fine mixed cells to compute and homotopy curves to trace as n grows. The
software package PHCpack [24] or PHoM [7] has been used to solve such polynomial systems.
The size of polynomial systems that could be solved by these software packages has been
limited to, for example, noon-5 and economic-8 by PHCpack and noon-8 and economic-12
by PHoM. The main reason of not being able to extend the size of polynomial systems
further is that the numbers of fine mixed cells to compute and homotopy curves to trace
are too large to handle on a single computer.

The aim of this paper is to present the description of PHoMpara, parallel implementa-
tion of PHoM, and to show with numerical results that parallelization provides computing
resources to solve polynomial systems of larger size; it can compute the solutions of noon-12
and economic-16 as shown in Section 4.

Each stage of the polyhedral homotopy method is parallelized. In the initial stage
(i) of computing fine mixed cells to construct a family of polyhedral homotopy functions,
all possible candidates of fine mixed cells are described as solutions of linear systems of
equations. Each linear system of the collection of the linear systems provides a fine mixed
cell if and only if it has a feasible solution. With linear subsystems of the linear systems,
we construct an enumeration tree whose root node is the empty linear subsystem, and each
node represents a linear subsystem. As we go down from the root node to child nodes, the
size of linear subsystems assigned to child nodes becomes larger, and the linear systems
describing all possible candidates of fine mixed cells are located at the leaf nodes of the
tree. Under this construction of the enumeration tree, the root node with the empty linear
subsystem is feasible, and if a node (more precisely, a linear subsystem assigned to a node)
is infeasible, then so are all of its child nodes. Therefore, computing all fine mixed cell is
executed with the depth-first search applied to the enumeration tree from the root node:
for a feasible node, check the feasibility of its child node. This process is parallelized since
each node can be tested independently. The computational time required at a node for this
process is different from that of other nodes. The gap in the computational time should be
reduced for efficient parallel implementation. We propose a technique of redistributing the
nodes to handle the difference.

When a homotopy solution curve is traced successfully from s = −s0 for some large
positive number s0 to s = 0 in the stage (ii), each curve arrives at an isolated solution of
f (x) = 0 if it does not diverge. We have increasingly large number of homotopy solution
curves as we solve larger polynomial systems, and it takes longer time to compute all isolated
solutions. Parallel implementation of tracing homotopy curves can reduce the computational
time significantly.

After tracing homotopy curves, the stage (iii) of verifying the obtained solutions fol-
lows. Sorting solutions with respect to some norm is necessary at this stage and it is also
parallelized.

Thus the main three stages of the polyhedral homotopy method are all parallelized to
reduce the total computational time for solving polynomial systems of large size. A common
feature of the three stages is that each important task on a single cpu is successively sub-
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divided into multiple subtasks, which can be processed independently from others without
communicating with them. This feature of the polyhedral homotopy method fits better
to a simple master-worker type parallel computation environment, where one master cpu
communicates with all worker cpus and the communication among the workers is not al-
lowed, than message passing libraries such as MPI [14], where asynchronous communication
between the workers is allowed. PHoMpara utilizes Ninf [17], a middleware which provides
communication library functions for parallel computation in master-worker type PC clus-
ters. Ninf is easy to use and efficient for parallel implementation of the polyhedral homotopy
method satisfying the above feature.

This paper is organized as follows: In Sections 2, we introduce the polyhedral homotopy
method, and briefly describe the three modules of PHoM, StartSystem, CMPSc and Verify,
which correspond to the three stages (i), (ii) and (iii), respectively. Section 3 contains
the description of parallelization of PHoM for each of the three modules. In Section 4,
we present numerical results on economic-n, katsura-n, noon-n and reimer-n polynomial
systems. Finally, Section 5 is devoted to concluding remarks.

We introduce notation and symbols for the subsequent discussions. Let R and Z+ denote
the set of real numbers and the set of nonnegative integers, respectively. For every vector
variable x ≡ (x1, x2, . . . , xn) ∈ C

n and every a ≡ (a1, a2, . . . , an) ∈ Z
n
+, we use the notation

xa for the term xa1

1 xa2

2 · · ·x
an
n . Then we can write each component polynomial fj(x) of f(x)

as fj(x) ≡
∑

a∈Aj
cj(a) xa (j = 1, 2, . . . , n) for some finite subset Aj of Z

n
+ (j = 1, 2, . . . , n)

and some cj(a) ∈ C (a ∈ Aj , j = 1, 2, . . . , n). We call Aj the support of the polynomial
fj(x).

2 The Polyhedral Homotopy Continuation Method

PHoM employs a polyhedral-linear homotopy, a combination of the polyhedral homotopy
and the linear homotopy, which was called as the cheater’s homotopy in the paper [11].
PHoM is written in C++, and has three modules StartSystem, CMPSc, and Verify.

2.1 Polyhedral-linear homotopy functions

The fine mixed cells of the polynomial system f (x) should be computed to construct a
class of polyhedral-linear homotopy functions. We define a finite family of polyhedral-linear
homotopy functions as [9], hp : C

n × [−∞, 0]→ C
n (p = 1, 2, . . . , p∗) by

hp
j (x, s) ≡

∑

a∈Aj

(

c̃j(a) exp(ρp
j (a)s)

+(cj(a)− c̃j(a)) exp((ρp
j(a) + 1)s)

)

xa = 0 (j = 1, 2, . . . , n), (1)

where c̃j(a) (a ∈ Aj , j = 1, 2, . . . , n) are randomly chosen numbers. Positive integer p∗

and nonnegative numbers ρp
j(a) (p = 1, 2, . . . , p∗, a ∈ Aj , j = 1, 2, . . . , n) are first obtained

by computing fine mixed cells described in Section 2.2, and then ρp
j (a) is recomputed as

described in Section 2.3. We notice that hp(x, 0) = f (x) for every x ∈ C
n (p = 1, 2, . . . , p∗).

The family of polyhedral-linear homotopy functions (1) should satisfy the followings:
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(a) Each component hp
j (x,−∞) (j = 1, 2, . . . , n) is a binomial, and all solutions of the

starting polynomial system hp(x,−∞) = 0 can be computed easily.

(b) For every p = 1, 2, . . . , p∗ and every fixed s ∈ [−∞, 0), the polynomial system
hp(x, s) = 0 has only nonsingular solutions, hence, each connected component of
{(x, s) ∈ C

n×[−∞, 0) : hp(x, s) = 0} that intersects with C
n×{−∞} forms a smooth

curve {(ξ(s), s) : s ∈ [−∞, 0)}, which is called as a homotopy curve of hp(x, s) = 0.

(c) For each isolated solutions x1 of f(x) = 0, there exist an index p and a solution x0

of the starting polynomial system hp(x,−∞) = 0 such that (x0,−∞) is connected to
(x1, 0) through a homotopy curve of hp(x, s) = 0.

2.2 Computing fine mixed cells in StartSystem

The module StartSystem computes fine mixed cells, which determines the coefficients ρp
j (a)

of the continuation parameter s in (1), balances those coefficients, and solves binomial
systems to obtain starting points for tracing homotopy curves.

We first give a definition of fine mixed cells of the polynomial system f(x). Let 〈a, α〉
denote the inner product of two vectors a, α ∈ R

n and let ωj(a) be a random number,
which is called lifting, chosen from a bounded open interval of R (a ∈ Aj , j = 1, 2, . . . , n).
We consider a problem of finding all solutions (α, β) ≡ (α1, α2, . . . , αn, β1, β2, . . . , βn) ∈ R

2n

which satisfy the linear inequality system

ωj(a) + 〈a, α〉 − βj ≥ 0 (a ∈ Aj , j = 1, 2, . . . , n) (2)

and the additional condition

equalities hold in (2) with some γj ∈ Aj and δj ∈ Aj , γj 6= δj , for each j. (3)

We assume a nondegeneracy condition on the linear inequality system (2) such that at
most 2n equalities hold at any solution. This condition is satisfied generically by randomly
choosing liftings ωj(a) (a ∈ Aj , j = 1, 2, . . . , n). Then exactly two equalities hold for
each j at every solution (α, β) of (2) and (3). Let (α1, β1), (α2, β2), . . . , (αp∗ , βp∗) denote
all solutions of (2) and (3). Then the fine mixed cells Cp (p = 1, 2, . . . , p∗) and ρp

j (a)
(p = 1, 2, . . . , p∗, a ∈ Aj, j = 1, 2, . . . , n) are obtained as following.

Cp
j ≡ {a ∈ Aj : ωj(a) + 〈a, α〉 − βj = 0} (j = 1, 2, . . . , n),

Cp ≡ (Cp
1 , C

p
2 , . . . , C

p
n) ⊆ A,

ρp
j (a) ≡ ωj(a) + 〈a, αp〉 − βp

j (a ∈ Aj , j = 1, 2, . . . , n),







(4)

where A ≡ (A1,A2, . . . ,An). Note that each Cp
j consists of two elements and for every

p = 1, 2, . . . , p∗, the starting polynomial system (1) with s = −∞ turns out to be a binomial
system

hp
j (x,−∞) ≡

∑

a∈Cj

c̃j(a)xa = 0 (j = 1, 2, . . . , n),

which can be solved by a method from linear algebra.
In order to find all solutions of (2) and (3), we use the method [19], which is outlined as

follows:
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Algorithm 2.1. Step 1. Define

S(k) ≡

{

N = (N1, N2, . . . , Nn) :
Nj ⊆ Aj, #Nj = 2 (j = 1, 2, . . . , k),

Nj = φ (j = k + 1, k + 2, . . . , n)

}

(k = 0, 1, . . . , n). Here #Nj denotes the number of elements in Nj. Note that S(n)
includes all possible candidates for fine mixed cells.

Step 2. Construct an enumeration tree, which has a cell (φ, φ, . . . , φ) ∈ S(0) at the root
node and every N ∈ S(n) at leaf nodes with no child node. Any child node N ′ ∈

N0

N1 N2 N3

N11 N12 N13 N21 N22 N23 N31 N32 N33

S(0)

S(1)

S(2)

Figure 1: An enumeration tree for n = 2 and #A1 = #A2 = 3

S(k + 1) of node N ∈ S(k) has the first k sets N ′
1, N

′
2, . . . , N

′
k of N ′ equivalent to

those of N .

Step 3. Apply the depth-first search to the enumeration tree until all solutions of (2) and
(3) are enumerated. More precisely, with N ∈ S(k), check the feasibility of

βj − 〈a, α〉 = ωj(a) (a ∈ Nj, j = 1, 2, . . . , n),
βj − 〈a, α〉 ≤ ωj(a) (a ∈ Aj\Nj, j = 1, 2, . . . , n).

}

(5)

If it turn out to be infeasible, ignore the subtree whose root is N .

An enumeration tree defined in Step 2 for a polynomial system of 2 variables and 2
equations, and 3 elements in supports A1 and A2 is shown in Figure 1. The nodes represent
N 0 = (φ, φ), N1 = (N1

1 , φ), N11 = (N1
1 , N11

2 ), and so on.
In Step 3, N is a fine mixed cell if and only if N is a leaf node included in S(n) and

the system of inequalities (5) is feasible. The feasibility of the system (5) is tested for a
linear program with the constraints (5) at each node N ∈ S(k) of the enumeration tree
with k ∈ {1, 2, . . . , n}. If the system (5) is infeasible at some node N ∈ S(k), so is at any
child N ′ ∈ S(k + 1). Since the subtree whose root is N does not contain any fine mixed
cell, the subtree is ignored. See [19] for more details.

2.3 Balancing the coefficients of the continuation parameter s in

StartSystem

In the homotopy function (1), the large magnitude of the coefficients ρp
j (a) (a ∈ Aj , j =

1, 2, . . . , n) of the homotopy parameter s affects numerical stability and computational effi-
ciency when homotopy curves are traced. A technique called balancing [6] was introduced
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to reduce the magnitude of the coefficients ρp
j (a) (a ∈ Aj , j = 1, 2, . . . , n). It decreases the

ratio

max{ρp
j(a) : a ∈ Aj , j = 1, 2, . . . , n, p = 1, 2, . . . , p∗}

min{ρp
j (a) : a ∈ Aj, j = 1, 2, . . . , n, p = 1, 2, . . . , p∗}

(6)

while keeping the fine mixed cells Cp (p = 1, 2, . . . , p∗) unchanged by solving the following
linear program with variables M and ω ≡ (ωj(a) : a ∈ Aj, j = 1, 2, . . . , n) :

minimize M
subject to 1 ≤

(

ωj(a)− ωj(γ
p
j )

)

+ 〈a− γ
p
j , σ

p(ω)〉 ≤M
(a ∈ Aj \ Cp

j , j = 1, 2, . . . , n, p = 1, 2, . . . , p∗),







(7)

where Cp
i = (γp

j , δ
p
j ) and

σp(ω) = −







(δp
1 − γ

p
1)

T

...
(δp

n − γp
n)T







−1 





ω1(δ
p
1)− ω1(γ

p
1)

...
ωn(δ

p
n)− ωn(γ

p
n)






(p = 1, 2, . . . , p∗).

The linear program (7) has 2p∗
∑n

j=1
(#Aj − 2) inequality constraints, which can grow

exponentially as the dimension and/or the degree of the polynomial system f (x) becomes
larger, while the number of variables M and ωj(a) (a ∈ Aj , j = 1, 2, . . . , n), which is
1 +

∑n
j #Aj , is usually very small. Since a cutting plane method [15] can effectively solve

such a linear program, it is applied to the linear program (7).
The paper [9] proposed an additional technique to reduce the ratio (6), which was also

incorporated in PHoM. But the details are omitted here since they are not relevant to the
description of PHoMpara in Section 3.

2.4 CMPSc - Tracing homotopy curves

Homotopy continuation starts from a known approximate solution x0 of hp(x,−s0) = 0
with a sufficiently large positive s0 and traces a solution curve of hp(x, s) = 0 numerically
in the space C

n × [−s0, 0] by increasing the value of s to obtain a solution of the target
polynomial system hp(x, 0) ≡ f(x) = 0 at s = 0. In PHoM, we take s0 = 20 so that the
magnitude of exp(−s0) becomes less than 1.0e-8. We employ a predictor-corrector method
to trace the homotopy curves. See [7, 9] for more details.

2.5 Verify

After tracing all homotopy curves, it is necessary to verify that the solutions obtained cover
a correct set of all isolated solutions of the polynomial system with a given accuracy. We
test whether there is any pair of starting points leading to an equivalent zero of f (x) due
to an accidental jump while numerically tracing the homotopy curves. If there is any such
a pair of starting points, the corresponding curves are retraced with a smaller step size.

Suppose that approximate solutions x̂1, x̂2, . . . , x̂r of f(x) = 0 are obtained by tracing
the homotopy curves from starting points (x̃1,−s0), (x̃2,−s0), . . . , (x̃r,−s0), respectively.
Notice that r ≤

∑p∗

p=1
qp since not all homotopy curves traced may converge to isolated
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solutions and some curves may diverge. Here qp is the number of initial solutions from hp.
The module Verify checks whether there exists any pair of different j and k such that

‖x̂j − x̂k‖∞

max{‖x̂j‖∞ + ‖x̂k‖∞, 1}
≤ verifyAccu. (8)

If such a pair is found, then either x̂j or x̂k might have been computed incorrectly, or there
might have been a jump from one homotopy curve to another homotopy curve while tracing
them from two different starting points (x̃j ,−s0) and (x̃k,−s0). Let

J̃ ≡ {j : (8) holds for some k 6= j} .

Thus {(x̃j,−s0) : j ∈ J̃} denotes a set of the starting points of the homotopy curves which
might have been traced incorrectly. The aim of the module Verify is to find the set J̃ .

The computational work involved in finding a pair of j and k in (8) is reduced if the
computed solutions x̂i (i = 1, 2, . . . , r) are sorted according to some norm. We employ the
∞ norm and use the relation

‖x̂j − x̂k‖∞

max{‖x̂j‖∞ + ‖x̂k‖∞, 1}
> verifyAccu if

‖x̂j‖∞ − ‖x̂
k‖∞

max{‖x̂j‖∞ + ‖x̂k‖∞, 1}
> verifyAccu.

Then, we need to check whether the inequality (8) holds only when

‖x̂j‖∞ − ‖x̂
k‖∞

max{‖x̂j‖∞ + ‖x̂k‖∞, 1}
≤ verifyAccu

is satisfied. Now assume that ‖x̂1‖∞ ≥ ‖x̂
2‖∞ ≥ · · · ≥ ‖x̂

r‖∞. Then, if we find a pair of
indices j and i (j < i) such that

‖x̂j‖∞ − ‖x̂
i‖∞

max{‖x̂j‖∞ + ‖x̂i‖∞, 1}
> verifyAccu.

then (8) never holds for any k ≥ i. This considerably reduces the computational time to
obtain the set J̃ .

3 Parallel Implementation

The modules StartSystem, CMPSc, and Verify of PHoM are parallelized on parallel CPUs
(PC clusters). Ninf [17] that implements the master-worker type communication was used
to communicate among PC clusters. The advantage of using Ninf system is that it is an
easy-to-use software and implementing communication between the master and workers is
simple. After the master PC assigns a job to a worker PC, the master can not communicate
with the worker except killing the job on the worker PC until the worker finishes the job
and reports a computational result to the master.

It is obvious that more computation is necessary as the size of the polynomial system
grows since the number of fine mixed cells and the number of homotopy curves increase.
For example, with PHoM [7], while 951.7 cpu seconds were spent to find 2,173 isolated
nonsingular solutions of noon-7 [16], 4396.7 cpu seconds were consumed to compute 6,545
isolated nonsingular solutions of noon-8. We notice a sharp increase in cpu time as the
dimension of the polynomial system becomes larger. Parallelization has a clear advantage
to deal with increasingly heavy computational load.
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3.1 Parallel computation of fine mixed cells in StartSystem

The key point of parallelizing computing fine mixed cell is how the computation of fine
mixed cells are distributed to the workers. We first describe the method proposed in [19].
In the enumeration tree (see Figure 1 as an example), let N 1, N2, . . . , Nmℓ ∈ S(ℓ) be the
mℓ nodes at an ℓ level. Let w∗ denote the number of worker PC’s in the PC cluster. The
level ℓ is the starting level for distributing nodes to workers and is decided by the number
of nodes at the level and the number of worker PC’s. More precisely, we choose a level ℓ
such that #S(ℓ− 1) ≤ w∗ ≤ #S(ℓ), where #S(ℓ) indicates the number of nodes at ℓ level;
we assume that such an ℓ exists in the subsequent discussion. From the construction of the
enumeration tree, if N i and N i′ are two different nodes from S(ℓ), then there is no overlap
in the nodes between the two subtrees whose root are N i and N i′ . This makes it possible
to assign each N i in S(ℓ) (1 ≤ i ≤ mℓ) to a different worker. It assigns N 1 to Nw∗

of S(ℓ)
to worker 1 to worker w∗, respectively. Assigning N i (w∗ + 1 ≤ i ≤ mℓ) is described as
follows:

Algorithm 3.1 (Takeda et al.[19]) :

Step 1. Set i← w∗ + 1.

Step 2. Wait until one worker, say worker w, stops. The master assigns N i to worker w.

Step 3. If i < mℓ, then set i← i + 1 and go to Step 2.

In Figures 2 and 3, we illustrate Algorithm 3.1. Worker w (1 ≤ w ≤ w∗) to which the

N1

N2

Nw*-1

Nw*

Nw*+1

N i-1

N i

N i+1

worker-1

worker-2

worker-w*-1

worker-w*

…

…
…

…

Figure 2: Initial assignment of nodes in S(ℓ)

N1

N2

Nw*-1

Nw*

Nw*+1

N i-1

N i

N i+1

worker-1

worker-2

worker-w’

worker-w*

(i)

(iii)

finish (ii)

…
…

…
…

…

Figure 3: New nodes in S(ℓ) are assigned after
some workers finish their jobs.

master has assigned a node N i executes Step 3 of Algorithm 2.1 for the subtree whose root

8



is N i. If worker w finishes processing the subtree, then it notifies the master fine mixed
cells that have been found in the subtree.

Algorithm 3.1 is not necessarily efficient in parallel implementation. In particular, cpu
time required by the enumerating process of each subtree of S(ℓ) can be disparate. If one
node N i ∈ S(ℓ) (1 ≤ i ≤ mℓ) takes much longer time to enumerate its subtree than all the
other nodes N i′ ∈ S(ℓ) (i′ 6= i), then all the workers with N i′ ∈ S(ℓ)(i′ 6= i) need to wait
for the worker with node N i to finish the job, and the overall efficiency of parallelization
decreases. We need an efficient way in assigning jobs to the workers.

We propose Algorithms 3.2 and 3.3 to improve the efficiency of parallel computation of
fine mixed cells. The basic ideas of Algorithms 3.2 and 3.3 are that a worker taking long
time for checking the feasibility of the linear system (5) at the nodes of an assigned subtree
is forced to stop without completing the job, and the nodes that are not checked for the
feasibility are redistributed to other workers. In the master-worker type environment, the
master does not know whether a specific worker has a lot of job to do while the worker is
working. The master just waits for the notification of finishing jobs from the workers. For
redistribution, a number ub is sent to the workers so that the workers can notify the master
after completing the feasibility test of ub nodes. We present algorithms for the master and
workers as follows:

Algorithm 3.2 (Computing fine mixed cells in parallel at the master) :
Input: ℓ for the starting level; Output: M that contains the set of mixed mixed cells.

Step 1. Choose ub and set M ← ∅. Take out all elements N 1, N 2, . . . , Nmℓ of S(ℓ) from
the enumeration tree. Set Q← {Nw∗+1, Nw∗+2, . . . , Nmℓ} and W ← {1, 2, . . . , w∗}.

Step 2. For ∀w ∈W , send Nw and ub to worker w, and request to compute the fine mixed
cell contained in the subtree with Nw as a root.

Step 3. Wait until one worker stops. If a worker, say worker w̃, stops, then receive stack
R. and Mw̃ from worker w̃. Add the elements of stack R to Q. Set W ← W\{w̃} and
M ← M ∪Mw̃.

Step 4. If Q = ∅, then go to Step 4A. Otherwise, go to Step 4B.

Step 4A. If W = ∅, then output M and finish. Otherwise, go to Step 3.

Step 4B. If ♯W = w∗, then go to Step 3. Otherwise, go to Step 5.

Step 5. Choose one node N ′ from Q and let ℓ′ be such that N ′ ∈ S(ℓ′). Select w′ from
{1, 2, . . . , w∗}\W . Send N ′ and ub to worker w′, and request to compute the fine mixed
cell contained in the subtree whose root if N ′. Set Q← Q\{N ′} and W ←W ∪{w′}.
Go to Step 4.

Algorithm 3.3 (Computing fine mixed cells in parallel at worker w) :
Input: N and ub; Output: stack R and Mw.

Step 1. Set the counter co← 0. Let R be the empty stack, and push N to stack R.

Step 2. Set co← co + 1. Pop one node N from stack R, and let ℓ̄ be such that N ∈ S(ℓ̄).
Set R← R\{N}.
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Step 3. If the linear system (5) with N = N is feasible, then go to Step 4. Otherwise go
to Step 5.

Step 4. If N is a leaf node of the enumeration tree, i.e. ℓ̄ = n, then set Mw ←Mw ∪{N}.

Otherwise, take out all the children nodes N
1
, N

2
, . . . , N

mℓ̄+1 ∈ S(ℓ̄ + 1) of N and
stack them to R.

Step 5. If R = ∅, then send empty stack R and Mw to the master and stop. Elseif co ≥ ub,
then send stack R and Mw to the master and stop. Otherwise, go to Step 2.

A number ub is used in both Algorithms 3.2 and 3.3 for the redistribution. Algorithm 3.3
performs the depth first search for the enumeration tree using stack R.

We illustrate Algorithms 3.2 and 3.3 for the case shown in Figure 1. Suppose that a
worker receives N 0 and ub = 3 as input ((i) of Figure 4). At Step 2, co = 1 and N 0 is
popped from stack R. Assume that the linear system (5) with N = N 0 is feasible. Then,
N 1, N 2, N3 are pushed to R at Step 4 ((ii) of Figure 4). Next, at Step 2, co = 2 and N 1

is popped from R. Suppose that the linear system (5) with N = N 1 is feasible. At Step
4, N 11, N12, N 13 are pushed to R ((iii) of Figure 4). At Step 2, co = 3 and N 11 is popped
from R. If the linear system (5) with N = N 11 is infeasible, N 11 is removed from R ((iv)
of Figure 4). At Step 4, co = ub and R has {N 12, N13, N 2, N 3}. At Step 5, the worker
sends R and Mw = ∅ to the master. In Step 3 of Algorithm 3.2, the master receives R and
add it to Q.

In Algorithm 3.3, workers send stack R to the master. Instead, we can modify Al-
gorithms 3.2 and 3.3 such that only the top node of stack R is sent to the master and
then the master rebuilds all the elements of stack R. The advantage of this approach
is that the communication cost can be reduced since it does not depends on the length
of stack R. The master can retrieve stack R from its top node if the nodes at every
level S(ℓ) of the enumeration tree have been arranged according to some order when the
enumeration tree is constructed. More precisely, we know that the jth element Nj of
N = (N1, N2, . . . , Nℓ, ∅, . . . , ∅) ∈ S(ℓ) (j = 1, 2, . . . , ℓ) is determined by two elements
a, a′ ∈ Aj. If we use an ordering, for instance, the lexicographical ordering, for the family
of all pairs of two different a, a′ ∈ Aj, we have an order among the children of a node
N = (N1, N2, . . . , Nℓ, ∅, . . . , ∅). When a worker sends only the top node of stack R, the
master can construct R by examining the top node, based on the order of the nodes and
the level of the top node. Algorithms 3.2 and 3.3 are presented without rebuilding stack
R at the master with its top node, and sending only the top node of stack R at worker w,
for the simplicity of description, however, we have implemented rebuilding R using its top
node and the order of the nodes in the numerical experiments shown in Section 4.

3.2 Parallelization of balancing the coefficients of the homotopy
parameter s in StartSystem

A cutting plane method applied to (7) is implemented in parallel. Recall that the linear
program (7) has a very large number of inequality constraints and a relatively small number
of variables for polynomial systems of large size. Let the number of inequality constraints
of (7) be d∗, and gd(v) (d ∈ D∗ ≡ {1, 2, . . . , d∗}) represent the linear inequality constraints,
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Figure 4: The stack at a worker

where v denotes a variable vector consisting of the real variables M and ωj(a) (a ∈ Aj , j =
1, 2, . . . , n). Then, we rewrite the linear program (7) as

minimize g0(v) subject to gd(v) ≥ 0 (d ∈ D∗). (9)

Since (9) has a large number of constraints, the cutting plane method first selects a certain
small number of constraints. The size of the resulting subprogram with the selected con-
straints is smaller, as a result, the solution can be easily obtained. Next, the initial solution
is tested for feasibility with the constraints that have not been selected in the beginning.
We choose a set of constraints that the initial solution does not satisfy and add them to
the initial subprogram. We then solve the new subprogram to find a solution. This process
continues until a solution obtained from solving the subprogram satisfies all the constraints
of (9).

Algorithm 3.4 (Solving the linear program (9) in parallel at the master) :
Input: the linear program (9); Output: v.

Step 1. Partition D∗ into D∗
w (w = 1, 2, . . . , w∗) such that D∗

1 ∪D∗
2 ∪ · · · ∪D∗

w∗ = D∗ and
D∗

w ∩ D∗
w′ = ∅ (1 ≤ w < w′ ≤ w∗). Choose a set D0 ⊂ D∗. Set ub ≥ 1 and j ← 0.

Send D∗
w, gd (d ∈ D∗

w) and ub to worker w (w = 1, 2, . . . , w∗).

Step 2. Solve (9) with replacing D∗ by Dj to get an optimal solution vj.

Step 3. Send vj to worker w and request to find a set Dj
w of constraint indices d ∈ D∗

w of
gd that violates gd(v

j) ≥ 0 (w = 1, 2, . . . , w∗). Wait until all Dj
w (w = 1, 2, . . . , w∗)

are received from the workers.

Step 4. If Dj
w = ∅ (w = 1, 2, . . . , w∗), then output v ← vj and terminate. Otherwise, set

Dj+1 ← Dj ∪Dj
1 ∪Dj

2 ∪ · · · ∪Dj
w∗ and j ← j + 1. Go to Step 2.

Algorithm 3.5 (Solving the linear program (9) in parallel at worker w) :
Input: vj; Output a set of indices Dj

w ⊂ D∗
w. Initially, receive D∗

w, ub and gd (d ∈ D∗
w) from

the master.

Step 1. Set Dj
w ← ∅, D

′ ← D∗
w
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Step 2. Select d̄ from D′ and D′ ← D′\{d̄}. If gd̄(v
j) < 0, then Dj

w ← Dj
w ∪ {d̄}

Step 3. If #Dj
w ≥ ub or D′ = ∅, then send Dj

w to the master and stop. Otherwise go to
Step 2.

3.3 Parallelizing CMPSc

We obtain an isolated solution of the polynomial system by tracing a homotopy curve from
s = −s0 to s = 0 for some large positive number s0 if the curve does not diverge. The job of
tracing a homotopy curve is independent from tracing other curves. Hence, in parallelizing
CMPSc, we only need to consider how we distribute the information on homotopy curves
to the workers.

To trace a homotopy curve, we need the data of a polyhedral-linear function hp described
in (1) and the value of a known solution of the starting binomial system hp(x,−∞) = 0. Let
xp1, xp2, . . . , xpqp be the solutions of hp(x,−∞) = 0 (p = 1, 2, . . . , p∗). Then, with (hp, xp1),
(hp, xp2), · · · , (hp, xpqp) (p = 1, 2, . . . , p∗), we have

∑p∗

p=1
qp homotopy curves to trace. Let

G∗ = {(hp, xp1), (hp, xp2), · · · , (hp, xpqp)} (p = 1, 2, . . . , p∗). One way of distributing the
information on the homotopy curves to the workers is to assign (h1, x11) to worker 1,
(h1, x12) to worker 2, and w∗th element of G∗ to worker w∗. If we have more than w∗

elements in G∗, then a worker that has finished the assigned tracing receives an element of
G∗ that is not sent to other worker from the master. The assignment occurs in the same
way as computing fine mixed cells in parallel.

Notice that the master calls a function in Ninf communication library to send (hp, xpq)
for some q ∈ {1, 2 . . . , qp} and some p ∈ {1, 2, . . . , p∗} to a worker when it assigns the tracing
job to the worker. The more elements G∗ has, the more communication costs are needed
to send the information. For example, noon-12 has more than 500,000 elements, and we
need to call the Ninf library function to send the information more than 500,000 times. The
extensive Ninf function calls to send elements of G∗ to the workers should be avoided to
save computational time.

The communication costs, cpu time consumed by Ninf function calls, are affected by
the amount of information to send and the number of Ninf function calls. Reducing the
amount of information to send and decreasing the number of Ninf function calls save total
communication costs. We note that the master does not need to send the information of hp

repeatedly to trace the homotopy curves from the same homotopy system hp. If an element
of G∗ from the same homotopy system is to be sent to one worker, it can save communication
cost of sending the information of hp. We mention that this may not improve the efficiency
for all problems. For example, in reimer-n problems, there exists only one cell that contains
all solutions of hp(x,−∞) = 0 (p = 1), as a result, only one worker traces homotopy curves.

The inefficiency of sending the same information repeatedly can be decreased by choosing
a positive number, ub, to balance the number of Ninf function calls and dividing the elements
of G∗ into some k∗ ≤ ub groups such that the number of elements of Gk (k = 1, 2, . . . , k∗)
satisfies the order of #G1 ≥ #G2 ≥ . . . ≥ #Gk∗ . We present Algorithm 3.6 as follows:

Algorithm 3.6 (Constructing groups of homotopy functions at the master) :
Input ub; Output k∗ , G1, G2, . . . , Gk∗.
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Step 1. Construct G1, G2, . . . , Gp∗ from G∗ such that

G1 = {(h1, x11), (h1, x12), . . . , (h1, x1q1)},
G2 = {(h2, x21), (h2, x22), . . . , (h2, x2q2)},

...

Gp∗ = {(hp∗ , xp∗1), (hp∗ , xp∗2), . . . , (hp∗ , xp∗qp∗)}.

Set k∗ ← p∗.

Step 2. Sort Gk (k = 1, 2, . . . , k∗) by the number of elements in the descending order.

Step 3. If k∗ = ub or (k∗ < ub and #G1 = 1) then stop. If k∗ < ub, go to Step 4.
Otherwise go to Step 5.

Step 4. Divide G1 into two sets G1 and Gk∗+1. Set k∗ ← k∗ + 1. Go to Step 2.

Step 5. Merge Gk∗−1 and Gk∗ into Gk∗−1. Set k∗ ← k∗ − 1. Go to Step 2.

Algorithm 3.6 is based on the idea of sending similar number of elements of G∗ to w∗

workers. Now that we have G1, G2, . . . , Gk∗, the master sends G1 to worker 1, G2 to worker
2, Gw∗ to worker w∗. The remaining assignment is the same as computing fine mixed cells in
parallel. Since Gk (k = 1, 2, . . . , k∗) are sorted by the number of elements in the descending
order, G1 has the largest number of curves and it takes longer to finish tracing the curves.
We assign Gk’s from 1 to k∗ to the workers to minimize overall computing time.

3.4 Verifying solutions in parallel

In the module Verify, we compare whether the inequality (8) satisfies for ∀j, k pair. A sorted
list of the solutions x̂1, x̂2, . . . , x̂r with respect to some norm is needed to efficiently execute
the comparison. In parallel implementation, we use a parallel algorithm for quick sort. The
quick sort algorithm that we used is based on Akl’s algorithm [1], however, it differs in how
it divides the list into smaller sublists. Once a sorted list is obtained, the comparison is
performed by the master.

4 Numerical Results

We present numerical results of parallel implementation on eco-n(economic-n) [13], katsura-
n [4], noon-n [16], and reimer-n [20] polynomials. The numerical experiments were done on
the SDPA cluster in Tokyo Denki University, which provided 40 workers (each CPU is AMD
Athlon 2.0GHz). The parameters that control the performance of PHoM are described in
[7]. Table 1 shows the values of the parameters used for the numerical experiments.

The size of the problems that were solved by PHCpack, PHoM and PHoMpara is sum-
marized in Table 2. It is evident from Table 2 that PHoMpara solves larger size problems
than PHCpack and PHoM.

In Table 3, we show ‘Total’ = total cpu time (in seconds), ‘StSy’ = cpu time spent by
StartSystem, ‘Tr.all’ =

∑

6

i=1
‘Tr.i’ = cpu time by CMPSc, ‘Tr.i’ = cpu time for the ith
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parameters katsura eco noon reimer
accINfVal 1.0× 10−10 1.0× 10−10 1.0× 10−10 1.0× 10−10

accInNewtonDir 1.0× 10−8 1.0× 10−8 1.0× 10−8 1.0× 10−8

beta 1 1 1 1
divMagOFx 1.0× 1010 1.0× 1010 1.0× 1010 50
dTauMax 0.5 0.5 0.5 0.5
minEigForNonsing 1.0× 10−12 1.0× 10−12 1.0× 10−12 1.0× 10−12

NewtonDirMax 0.1 0.1 0.1 0.1
predItMax 2000 2000 2000 2000
verifyAccu 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4

dTauMaxRedRate 0.1 0.1 0.1 0.1
NewtonDirMaxRedRate 1.0 1.0 1.0 1.0
predItMaxExpRate 10 10 10 10
divMagOFxExpRate 1 1 1 1
MindTauMax 1.0× 10−5 1.0× 10−5 1.0× 10−5 1.0× 10−8

MinNewtonDirMax 1.0× 10−5 1.0× 10−5 1.0× 10−5 1.0× 10−8

MaxpredItMax 1000000 1000000 1000000 1000000
MaxVerifyIter 5 5 5 7

Table 1: Parameters

Problem PHCpack PHoM PHoMpara
katsura 10 11 15

eco 8 12 16
noon 5 8 12
reimer 5 6 7

Table 2: The maximum size of problems that can solved by PHCpack, PHoM and PHoMpara
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tracing of homotopy curves by CMPSc after (i − 1)th application of Verify, and ‘#Sol.’ =
the number of isolated solutions obtained.

Table 3 shows that noon-12 has 531,417 isolated solutions. It took 49,458 cpu seconds
and some homotopy curves were traced four times. In katsura-n problem, the number of
solutions is doubled as n grows from 11 to 15. We observe that the increase of cpu time
in StartSystem is bigger than that in CMPSc. On the other hand, cpu time spent by
StartSystem in noon-n, as n changes from 9 to 12, does not increase much while CMPSc
takes increasingly longer cpu time. Although the number of isolated solutions of reimer-7
is 2880, which is not very large compared with other problems, some of homotopy curves
were traced repeatedly as many as 6 times. From the fact that the number of homotopy
curves of reimer-n problem is larger than the number of isolated solutions, we see that many
divergent curves exist. In PHoMpara, a curve is determined to be divergent if it satisfies a
divergence criterion twice after CMPSc traces the curve repeatedly. Numerical results show
that reimer-n problem had some difficulty in curve tracing. We see that the increase in the
average and the maximum cpu time for the first iteration of curve tracing is not sharp with
growing size of the problem, for instance, 1.0 seconds of the average cpu time for noon-10,
2.1 seconds for noon-11, and 3.3 seconds for noon-12.

4.1 Scalability

We tested PHoMpara in view of scalability by varying the number of workers from 1 to 40
for katsura-11, noon-10, and economic-14. The numerical results are shown in Table 4. The
column ‘ratio’ indicates the ratio of cpu time obtained with multiple workers to that of a
single worker. Table 4 contains the ratios of total cpu time, cpu time for StartSystem and
cpu time for CMPSc. In the case of katsura-11, CMPSc shows high scalability with the
ratio 2.01, 5.02, to 38.63 as the number of workers increases from 2 to 40, while the ratio of
StartSystem does not become larger compared with that of tracing curves by CMPSc. The
total cpu time using 2 to 40 workers displays the ratio of 2.00 to 29.82.

In noon-10, curve tracing by CMPSc obtains very high scalability as shown in the ratio
from 2 to 37.66, whereas the ratio of StartSystem does not change a lot. Total cpu time
shows the ratio of 2 to 37.12 for the number of workers 2 to 40.

The curve tracing part of economic-14 achieves a great improvement as shown in the
column of the ratio from 1.95 with 2 workers to 33.58 with 40 workers. Figure 5 displays the
ratios of total cpu time, cpu time for StartSystem and cpu time for CMPSc with increasing
number of workers. We can see that cpu time for CMPSc decreases almost linearly as the
number of workers grows.

In all three problems tested, we observe that a better speedup with more workers is
accomplished in CMPSc than StartSystem. This comes from the characteristics of tracing
curves by CMPSc, that is, tracing one curve is basically independent from tracing others.

4.2 Testing effectiveness of the redistribution technique

We tested the redistribution technique described in Section 3.1 with katsura-14, katsura-
15, eco-15 and eco-16 using 40 workers.
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Prob. Total StSy CMPSc ♯Sol.

Tr.all Tr.1 Tr.2 Tr.3 Tr.4 Tr.5 Tr.6

cpu cpu cpu cpu ave. cpu cpu cpu cpu cpu

♯cur max. ♯cur ♯cur ♯cur ♯cur ♯cur

eco-14 626 388 238 238 2.1 - - - - - 4096

4096 6.7 - - - - -

eco-15 2964 2300 664 637 2.9 8 19 - - - 8192

8192 10.4 6 6 - - -

eco-16 12051 10470 1581 1566 3.6 15 - - - - 16384

16384 19.7 8 - - - -

noon-9 314 20 294 279 0.5 6 9 - - - 19665

19665 1.3 36 12 - - -

noon-10 1797 27 1770 1752 1.0 18 - - - - 59029

59029 2.6 2 - - - -

noon-11 10225 39 10186 9848 2.1 94 97 147 - - 177125

177125 5.5 180 66 12 - -

noon-12 49458 78 49380 46737 3.3 860 871 912 - - 531417

531417 9.1 333 127 26 - -

katsura-11 160 58 102 102 1.9 - - - - - 2048

2048 4.6 - - - - -

katsura-12 604 142 462 324 3.2 7 17 114 - - 4096

4096 8.2 16 8 2 - -

katsura-13 2137 531 1606 799 3.7 9 20 25 753 - 8192

8196 10.0 8 7 2 2 -

katsura-14 4187 2231 1956 1907 4.5 17 32 - - - 16384

16384 10.4 34 10 - - -

katsura-15 18964 13638 5326 5224 6.1 45 57 - - - 32768

32768 21.5 61 25 - - -

reimer-5 18 1 17 4 0.1 4 4 5 - - 144

720 0.2 577 173 1 - -

reimer-6 110 3 107 31 0.2 30 38 8 - - 576

5040 0.5 4464 1695 4 - -

reimer-7 4229 9 4220 398 0.3 399 524 1363 978 558 2880

40320 1.5 37448 15512 5299 608 8

Table 3: Cpu time in seconds for StartSystem and CMPSc and the number of isolated
solutions obtained. ♯cur: the number of curves.
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Prob. ♯wks Total StSy CMPSc
cpu.t ratio cpu.t ratio cpu.t ratio

katsura-11 1 4550 1.00 637 1.00 3923 1.00
2 2298 1.97 318 2.00 1980 1.98
5 932 4.88 140 4.45 792 4.95

10 482 9.43 87 7.32 395 9.93
20 279 16.30 68 9.36 211 18.59
40 160 28.43 58 10.98 102 38.46

noon-10 1 62672 1.00 66 1.00 62606 1.00
2 31244 2.00 35 1.88 31209 2.00
5 12379 5.06 23 2.86 12356 5.06

10 6235 10.05 24 2.75 6211 10.07
20 3195 19.61 24 2.75 3171 19.74
40 1797 34.87 27 2.44 1770 35.37

eco-14 1 22653 1.00 13620 1.00 9033 1.00
2 11317 2.00 6804 2.00 4513 2.00
5 4536 4.99 2727 4.99 1809 4.99

10 2292 9.88 1383 9.84 909 9.93
20 1178 19.23 718 18.96 460 19.63
40 626 36.18 388 35.10 238 37.95

Table 4: Cpu time and ratio with varying number of workers for katsura-11, noon-10 and
eco-14. ♯wks: the number of workers.
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Figure 5: Cpu time with varying number of workers for economic-14.
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katsura-14 eco-15
#nodes in a subtree #subtrees #subtree
[1, 1.0× 105] 13342 6214
(1.0× 105, 2.0× 105] 151 1024
(2.0× 105, 4.0× 105] 179 820
(4.0× 105, 8.0× 105] 218 596
(8.0× 105, 16.0× 105] 189 427
(16.0× 105, 32.0× 105] 194 271
(32.0× 105, 64.0× 105] 130 150
(64.0× 105, 128.0× 105] 88 37
(128.0× 105,∞) 29 16
avr.cpu.t for a node 4.36× 10−5 3.64× 10−5

Table 5: The number of subtrees classified according to the number of their nodes and the
average of computing time for a node.

When Algorithm 3.1 was applied to katsura-14 and economic-15 problems, the subtrees
of the enumeration tree were processed by the workers. Each subtree has a different number
of nodes (of the enumeration tree) where the linear system (5) is checked for feasibility. This
number is counted by co in Algorithm 3.3. Note that the number is not known in advance
when a subtree is assigned to a worker; some workers may find many nodes infeasible in the
upper levels of the assigned subtree so that a smaller number of nodes in the lower levels are
checked for feasibility, while other workers may need to check a larger number of the lower
level nodes because most of the upper level nodes are feasible. If the numbers of nodes
to be checked for feasibility in the subtrees of a problem vary in a wide range, then the
computing time needed to process a subtree can differ very much. The workers performing
the assigned job on the subtrees with relatively small numbers of the nodes to be checked
should wait for other workers processing the subtrees with large numbers of the nodes to be
examined for feasibility, increasing total computing time. This imbalance of computational
load among workers increases as the difference in the numbers of nodes for feasibility check
in the subtrees becomes large.

Table 5 shows the number of the subtrees classified according to the number of the nodes
that were checked for feasibility in the subtrees. For example, katsura-14 has 13,342 subtrees
whose number of the checked nodes are in the range of (1, 1.0× 105], and economic-15 has
1024 subtrees whose number of the checked nodes are (1.0 × 105, 2.0 × 105]. The last row
of Table 5 indicates the computational time spent by a worker devided by the number of
the checked nodes. We can estimate how much computing time was spent for a worker
processing a subtree in terms of ‘the number of the checked nodes’ × ‘the average cpu
time for checking the feasibility of a node’. As shown in Table 5, katsura-14 problem has
13,342 subtrees with at most 1.0 × 105 checked nodes and 29 subtrees with the number of
the checked nodes greater than 128.0 × 105. This large difference causes an imbalance in
computational load among the workers.

We used Algorithms 3.2 and 3.3 for katsura-14, katsura-15, economic-15, and economic-
16 to observe the effectiveness of the redistribution technique. In the algorithms, we intro-
duced a number ub to denote the maximum number of nodes to be checked, which was set
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Problem #wkr without redistribution with redistribution
Aver. Max. Min. wRatio Aver. Max. Min. wRatio

katsura-14 10 8650 8804 8577 0.982 8684 8700 8675 0.998
20 4339 4596 4251 0.944 4338 4380 4312 0.990
40 2164 2462 2087 0.878 2183 2209 2172 0.988

katsura-15 40 13459 17097 12269 0.787 13461 13536 13388 0.994
eco-15 10 8862 8919 8843 0.993 8888 8907 8881 0.997

20 4427 4506 4399 0.982 4432 4457 4411 0.994
40 2262 2446 2238 0.927 2253 2276 2247 0.990

eco-16 40 10324 10632 10257 0.971 10393 10428 10377 0.996

Table 6: Effectiveness of the redistribution technique with numerical results

to 2.00 × 106 in the numerical tests. In katsura-14, the counter co, which add up to the
total number of the checked nodes, reaches the value of ub in 87.2 seconds, computed by
(4.36× 10−5) × (2.00× 106). In economic-15, it resulted in 72.8 seconds. We observe that
each worker spends less than 100 seconds to perform the assigned job using the value of ub.

The numerical results are displayed in Table 6. The average, minimum and maximum
cpu time spent by the specified number of the workers are shown in the columns of Aver.
Max. and Min.. Note that the maximum cpu time affects overall computing time. The
column of wRatio means

∑w∗

w=1
τw

w∗ ×maxw∗

w=1 τw

where τw is cpu time consumed by worker w. Hence, the larger value of wRatio is, the
smaller number of idle workers exist. For example, if wRatio is 1, then all the workers finish
their jobs simultaneously, and there is no waiting for others to stop. If there is only one
worker working and all the others are idle, then wRatio is 1/w∗.

Table 6 shows that the redistribution technique provided better wRatio, nearly 1, for
most test problems. As a result, the maximum cpu time was decreased by 10% for katsura-14
and economic-15, in particular, katsura-15 could be solved much faster with the redistribu-
tion. We confirm that the redistribution technique is effective in achieving high scalability
by reducing the maximum cpu time.

5 Concluding remarks

The parallel implementation of polyhedral homotopy continuation methods has been pre-
sented with numerical results for selected test problems. We have shown that the isolated
solutions of large polynomial systems could be found with the parallelization of PHoM,
which otherwise was quite difficult.

PHoMpara is implemented under the master-worker type of PC clusters. Although this
type of clusters has an advantage of one master managing workers efficiently, a drawback
can be expected as the solutions of even larger polynomial systems are targeted. Since more
workers are needed to do increasing amount of computation, the work load of the master to
communicate with workers increases. This may become a bottleneck for overall efficiency.
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In order to avoid such bottleneck, we need to introduce middle-masters between master
and workers, which can distribute jobs to workers and communicate master. This will be a
future subject of study.

For the problems with many divergent homotopy curves such as reimer-n, we have
experienced some difficulties of judging whether curves diverged or not because some curves
started to diverge very near s = 0. Those curves was retraced many times with smaller step
sizes, affecting the overall efficiency. We need to develop more careful and efficient ways to
determine the divergence of homotopy curves for the problems.
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