
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

Dynamic Enumeration of All Mixed Cells

Tomohiko Mizutani, Akiko Takeda and

Masakazu Kojima

January 2006, B–422



B-422 Dynamic Enumeration of All Mixed Cells

Tomohiko Mizutani†1, Akiko Takeda†2 and Masakazu Kojima†3

January 2006

Abstract. The polyhedral homotopy method, which has been known as a powerful
numerical method for computing all isolated zeros of a polynomial system, requires all mixed
cells of the support of the system to construct a family of homotopy functions. Finding
the mixed cells is formulated in terms of a linear inequality system with an additional
combinatorial condition. It is essential in computational efficiency how we construct an
enumeration tree among a family of linear inequalities induced from it such that every
mixed cell corresponds to a unique feasible leaf node. This paper proposes a dynamic
construction of an enumeration tree, which branches each parent node into its child nodes
so that the number of feasible child nodes is expected to be small; hence we can prune a lot
of subtrees which do not contain any mixed cell. Numerical results exhibit that our dynamic
construction of an enumeration tree works very efficiently for large scale polynomial systems;
for example, it generated all mixed cells of the cyclic-15 problem for the first time in less
than 16 hours.

Key words.

Mixed Cell, Polyhedral Homotopy Method, Polynomial System, Dynamic Enumeration,
Linear Programming.

† Department of Mathematical and Computing Sciences, Tokyo Institute
of Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan.
†1:mizutan8@is.titech.ac.jp. †2:takeda@is.titech.ac.jp. †3:kojima@is.titech.ac.jp.



1 Introduction

The polyhedral homotopy continuation method [12], which is based on Bernshtein’s theory
[1], is known to be a powerful numerical method [5, 10, 11, 13, 14, 22] for computing all
isolated zeros of a polynomial system f(x) = (f1(x), . . . , fn(x)). Let R and C be the set of
real and complex numbers, respectively. Each fi(x) denotes a complex valued polynomial
in a variable vector x = (x1, . . . , xn) ∈ C

n. Let Z
n
+ denote the set of nonnegative integer

vectors in R
n. We represent each component polynomial fi(x) as

fi(x) =
∑

a∈Ai

ci(a) xa,

for some nonempty finite subset Ai of Z
n
+ and some nonzero ci(a) ∈ C, a ∈ Ai. Here

xa = xa1

1 xa2

2 · · ·x
an
n for a = (a1, a2 . . . , an) ∈ Z

n
+. The set Ai consists of mi elements, and

is called the support of fi(x). Also, A = (A1,A2, . . . ,An) is called the support of f(x). In
this paper we focus on a fully mixed polynomial system where all supports A1,A2, . . . ,An

are all distinct. See the papers [8, 12] for the semi-mixed case where some of them are
identical to each other.

Enumeration of all mixed cells of the supportA of a polynomial system f(x), which is the
subject of this paper, plays an essential role in the polyhedral homotopy method. Using the
mixed cells, we construct a family of polyhedral homotopy functions between start systems,
which are auxiliary polynomial systems whose zeros can be computed easily, and the target
system f(x). Starting from zeros of every start system, we then trace all curves of zeros,
so-called homotopy paths, of every polyhedral homotopy function. Some formulations were
proposed for finding all mixed cells. Among others, the formulation of finding all mixed
cells as a system of linear inequalities with a certain additional combinatorial condition
[7, 8, 15, 19] (or a family of systems of linear inequalities) is more efficient in computational
time and memory requirement than a geometric formulation used in the papers [22].

This paper is founded on the former formulation. In this formulation, an enumeration
tree is constructed among a family of systems of linear inequalities, which are induced from
the system of linear inequalities with a combinatorial condition describing all mixed cells.
The enumeration tree satisfies the following properties.

(i) A leaf node describes a mixed cell if and only if it is feasible (or more precisely the
system of linear inequalities attached to the leaf node is feasible).

(ii) Each mixed cell is corresponding to a unique feasible leaf node.

(iii) Each node different from leaf nodes is a common subsystem of its child nodes, so that
if it is infeasible then so are all of its descendant nodes.

(iv) The root node is an empty system, which is always feasible.

We then apply an enumeration method for finding all feasible leaf nodes; if a node is
determined to be infeasible then so are their descendant nodes; hence the subtree having
the node as a root can be pruned because it does not contain any mixed cell.

1



There are two important issues in efficient implementation of enumeration of all mixed
cells which are corresponding to feasible leaf nodes of an enumeration tree satisfying prop-
erties (i), (ii), (iii) and (iv). One is how we check feasibility of each node. For this purpose,
the papers [7, 8, 15, 19] utilize a linear programming (LP) problem having a linear system of
inequalities attached to each node as its constraint and check feasibility of the linear system.
The papers [7, 8, 15] applies the primal simplex method to the LP problem while the paper
[19] applies the dual simplex method to the LP problem. If we take account of effective
use of information obtained at a node for its child nodes, the dual simplex method has an
advantage. Specifically, we can easily choose a feasible solution of the dual of the child LP
from an optimal solution of the dual of the parent LP since the linear inequality constraints
of each child node are a super set of the linear inequality constraints of its parent and they
share a common linear objective function. At least, the application of the dual simplex
method is popular in the field of optimization to effectively deal with such a situation [16].
This paper also applies the dual simplex method to an LP problem attached with each
node to check its feasibility, which will be described as the application of the primal simplex
method to the dual of the LP problem.

The other important issue is how we construct enumeration trees. Enumeration trees
need to satisfy properties (i), (ii), (iii) and (iv) as we mentioned above. Specifically, the root
node is fixed to be an empty system of linear inequalities by property (iv), and properties
(i) and (ii) determine the collection of leaf nodes. There are lots of freedom in choosing
and allocating systems of linear inequalities, which are induced from the system of linear
inequalities with a combinatorial condition describing the mixed cells, for intermediate level
nodes. In the existing works [7, 8, 15, 19], the structure of enumeration trees is determined
and fixed before enumerating mixed cells. In such a static construction of an enumeration
tree, any information obtained at a node during execution of enumeration is never utilized
at all to branch the node into its child nodes because a branching rule is fixed in advance.
For numerical efficiency, however, it is ideal to branch the node into its child nodes so that a
larger portion of its child nodes are infeasible and are pruned. To pursue this idea, this paper
proposes dynamic enumeration where branching at a node is carried out with the effective
use of information which is obtained from the dual simplex method applied to some “child
LP problems” at the node; hence the dual simplex method plays an essential role in this
situation too. We note that dynamic enumeration is often utilized in the branch-and-bound
method for integer programs [16].

We now describe mixed cells in terms of systems of linear inequalities and the basic idea
of our dynamic enumeration of them. For every L ⊆ N := {1, 2, . . . , n}, define

Ω(L) =

{

C = (C1, C2, . . . , Cn) :
Ci ∈ Ai, #Ci = 2 (i ∈ L),
Cj = ∅ (j 6∈ L)

}

,

Ω = ∪L⊆NΩ(L).

The set Ω serves as candidates of nodes of enumeration trees. Specifically, ∅n ∈ Ω(∅) = {∅n}
is the root node, and Ω(N) ⊂ Ω the leaf nodes. In general, the ℓth level nodes of an
enumeration tree are chosen from ∪L⊆N, #L=ℓΩ(L). For every C ∈ Ω, let L(C) = {i ∈ N :
Ci 6= ∅}. For every C ∈ Ω and L ⊆ N , we denote the vector consisting of Ci (i ∈ L) by
CL = (Ci : i ∈ L).

2



For every i ∈ N and every a ∈ Ai, let ωi(a) denote a random number chosen from some
bounded interval of R. The number ωi(a) is called a lifting in the literature. For every
C ∈ Ω with Ci = {api, aqi} (i ∈ L(C)), we consider a linear inequality system in a variable
vector α ∈ R

n:

I(C) :

{

〈api − aqi, α〉 = ωi(a
qi)− ωi(a

pi),
〈api − a, α〉 ≤ ωi(a)− ωi(a

pi), (a ∈ Ai \ {a
pi, aqi}, i ∈ L(C)).

We say that C ∈ Ω is feasible when I(C) is feasible. Let

Ω∗(L) = {C ∈ Ω(L) : C is feasible} .

Then Ω∗(N) defines the set of all mixed cells. Note that a leaf node C ∈ Ω(N) is a mixed
cell if and only if C is feasible, so properties (i) and (ii) are satisfied. Thus, for enumeration
of all mixed cells, we need to find all elements in Ω∗(N).

For every C ∈ Ω with a proper subset L(C) of N and every t ∈ N \ L(C), define a set
of child nodes of C by

W (C, t) =
{

C̄ ∈ Ω(L(C) ∪ {t}) : C̄L(C) = CL(C)

}

.

We can build an enumeration tree if we successively choose t ∈ N \ L(C) at each node
C of the tree starting from the root node C = ∅n with L(C) = ∅ (see Algorithm 2.1 for
more details). In the static enumeration method employed in the papers [7, 8, 15, 19], we
first choose a permutation of N or a one-to-one mapping π : N → N , and restrict nodes
of enumeration trees to C ∈ Ω({π(1), . . . , π(ℓ)}) with some ℓ ∈ {0, 1, . . . , n}. Note that if
we take ℓ = 0 or ℓ = n, we have the root node ∅n ∈ Ω(∅) or the set Ω(N) of leaf nodes,
respectively. Suppose that a node C ∈ Ω({π(1), . . . , π(ℓ)}) for some ℓ < n has been found
to be feasible. Then the static enumeration method generates W (C, π(ℓ + 1)) as the set of
child nodes of C. Thus the structure of the static enumeration tree is completely determined
by a permutation π : N → N .

In the enumeration method that we propose in this paper, an enumeration tree is con-
structed dynamically as the enumeration of nodes proceeds. As in the static enumeration,
∅n ∈ Ω(∅) serves as the root node and Ω(N) as the set of leaf nodes. Suppose that a node
C with some proper subset L(C) of N has been found to be feasible. Then we try to
choose a t ∈ N \ L(C) so that only a small portion of its child nodes W (C, t) are expected
to be feasible. The important issue here is how inexpensively we estimate the number of
feasible child nodes in W (C, s) for all s ∈ N \L(C). For this purpose, we propose a simple
technique of feasibility check which applies a criterion of unboundedness detection in the
simplex method. We also utilize the relation table given in [8] to find some infeasible child
nodes in W (C, s).

Numerical results exhibit that our dynamic enumeration method works very efficiently
for finding all mixed cells in comparison to the existing static enumeration methods [6, 8, 9,
15, 22, 19]. For instance, our dynamic enumeration method solved the cyclic-14 problem (i.e.
generates all mixed cell of the cyclic-14 problem), which had been the largest one in cyclic-n
problems solved by the existing methods, in 1 hours 36 minutes, while MixedVol [8, 9],
which is known as the fastest software among the existing ones, solves the same problem

3



in 7 hours 14 minutes. Furthermore, our method solved the cyclic-15 problem for the first
time in 15 hours 45 minutes. As for noon-n and chandra-n problems, it is shown that the
speedup ratio between the computational times of our method and MixedVol increases as
the size of these problems becomes larger.

This paper is organized as follows. In Section 2 we describe a procedure for construction
of an enumeration tree satisfying properties (i), (ii),(iii) and (iv), and then outline our
dynamic enumeration algorithm. Section 3 is devoted to technical details of the algorithm.
We first show a LP formulation for checking feasibility of each node in an enumeration tree,
and discuss the size of the primal-dual pair of LP problems. Next, we mention how to choose
t ∈ N \ L(C) at a parent node C so that the number of child nodes of C is as smaller as
possible. In Section 4, we show numerical results for some benchmark polynomial systems.

2 An outline of the dynamic enumeration algorithm

for finding all mixed cells

We first explain how to construct an enumeration tree, which satisfies properties (i), (ii),
(iii) and (iv) described in the previous section, and next propose an algorithm for dynamic
enumeration of all mixed cells. To explain a procedure for construction of such a tree, we
define some notation. Let T = (V, E) be a rooted tree such that the vertex set V and edge
set E are written as V =

⋃n

ℓ=0 Vℓ and E =
⋃n

ℓ=0 Eℓ. V0 consists of the root node ∅n, and
we define E0 as an empty set for consistence with below discussions. The procedure for
construction of a tree T with allocating nodes dynamically is written as follows:

Construction of a tree T

Input: A support A = (A1,A2, . . . ,An).

Output: A tree T = (V =
⋃n

ℓ=0 Vℓ, E =
⋃n

ℓ=0 Eℓ).

Vℓ ← ∅
n (ℓ = 0, . . . , n), Eℓ ← ∅ (ℓ = 0, . . . , n) and ℓ← 0.

while ℓ 6= n do

for all C ∈ Vℓ do

Choose t from N \ L(C).
Vℓ+1 ← Vℓ+1 ∪W (C, t) and Eℓ+1 ← Eℓ+1 ∪ {(C, C̄) ∈ Vℓ × Vℓ+1 : C̄ ∈ W (C, t)}.

end for

ℓ← ℓ + 1.
end while

This procedure for the input data A produces a various type of tree T depending on a
choice of an index t from N \ L(C). For instance, a static enumeration tree proposed in
the existing algorithm [7, 8, 15, 19] is constructed when for any C ∈ Vℓ the index t is set to
π(ℓ + 1) according to the given permutation π of N .

If two nodes C ∈ Vℓ and C̄ ∈ Vℓ+1 of a tree are joined with a edge, we say that C̄ is the
child node of a parent node C. The descendant node of C is corresponding to any node on

4



all paths from C to reachable leaf nodes which are elements in Vn. Each feasible leaf nodes
are corresponding to mixed cells.

By deleting worthless nodes which do not contain any mixed cell, we can efficiently
enumerate all feasible leaf nodes of a tree. Indeed, if a node is infeasible, all of its descen-
dant nodes are infeasible, and thus, we need not to check feasibility of descendant nodes.
Furthermore, we employ a depth-first order for applying feasibility check to all nodes of an
enumeration tree in order to save memory requirement during execution of enumeration.
Taking account of these factors, the depth-first search algorithm for the enumeration of all
mixed cells is constructed.

It is convenient to use the words “list” used in this algorithm. If A is a finite set, we
denote list(A) is an ordered sequence of the elements in A, where the actual order is not
relevant in our succeeding discussions but fixed. For a pair of list(A) and list(B), where A

and B are finite sets, list(A)+list(B) stands for the list which is generated by connecting
list(B) with list(A) by “stacking” list(B) on list(A); for example, if list(A) = (a, b, c) and
list(B) = (d, e), then list(A) + list(B) = (a, b, c, d, e).

Algorithm 2.1. (A general depth-first search algorithm for all mixed cells).

Input: A support A = (A1,A2 . . . ,An).

Output: All mixed cells C ∈ Ω∗(N) and an evaluation measure ν∗.

Step 1: Let Va be the empty list of nodes, and Va = list(Va) + list(Ω(∅)), where Va serves
as the set of active nodes during the depth-first search. Let ν = 1 which serves as the
counter of nodes generated; ν is used only for evaluating the efficiency of the algorithm
but not essential in any step below.

Step 2: If Va is empty, then output ν∗ = ν and stop.

Step 3: Take out the last element C of Va and remove C from Va.

Step 4: Check whether C is feasible or infeasible. If C is infeasible (C 6∈ Ω∗(L(C)) or
I(C) is infeasible) then go to Step 2. If C is feasible (C ∈ Ω∗(L(C)) or I(C) is
feasible) and L(C) = N , then output C as a mixed cell and go to Step 2. Otherwise
go to Step 5.

Step 5: Choose a t from N \ L(C) and ν = ν + #W (C, t).

Step 6: Let Va = list(Va) + list(W (C, t)) and go to Step 2.

The total amount of works to generate all mixed cells by Algorithm 2.1 is measured by
ν∗ which represents the total number of nodes generated during execution of Algorithm 2.1;
recall that for each node C, the system of linear inequalities I(C) is solved to see whether
C is feasible or infeasible. Since the efficiency of the algorithm depends on the size of Va,
we utilize the one point test [7, 8, 15, 19] to narrow down the number of elements in Va. For

5



C ∈ Va and t ∈ N \ L(C), the one point test checks the feasibility of the system of linear
inequalities in α ∈ R

n with fixed a ∈ At,

I(C, t, a) :

{

I(C),
〈a− b, α〉 ≤ ωt(b)− ωt(a), (b ∈ At \ {a}).

(1)

If I(C, t, a) is infeasible, we can delete C̄ ∈ W (C, t) whose C̄t = {a, a′} consists of a and
any a′ ∈ At \ {a} from the set Va of solution candidates, since such I(C̄) is also infeasible.
Therefore, as solution candidates we only consider

W1(C, t) =
{

C̄ ∈ Ω(L(C) ∪ {t}) : C̄L = CL and C̄t ⊆ At(C)
}

,

where At(C) = {a ∈ At : I(C, t, a) is feasible} . After mt (= #At) feasibility checks of
linear inequality systems for constructing At(C), we have W1(C, t) satisfying

{

C̄ ∈ W (C, t) : C̄ is feasible
}

⊆ W1(C, t) ⊆ W (C, t).

Thus we can replace Step 6 by

Step 6’: Let Va = list(Va) + list(W1(C, t)) and go to Step 2.

This technique called one point test is known to be very effective to increase the computa-
tional efficiency of enumeration [7, 8, 15, 19].

Ideally we would like to choose a t ∈ N \L(C) at Step 5 so that the size of W1(C, t) is the
smallest among the sizes of W1(C, s) (s ∈ N \L(C)). Finding such a t ∈ N \L(C) exactly,
however, is expensive because all W1(C, s) (s ∈ N \ L(C)) are constructed. Therefore, we
propose to replace W1(C, s) by another set which can be obtained easily. Indeed, utilizing a
feasible solution xinit of I(C, t, a) which is generated from an solution of I(C), our method
computes Ŵ1(C, s, xinit) (s ∈ N \ L(C)) satisfying

W1(C, s) ⊆ Ŵ1(C, s, xinit) ⊆ W (C, s) (s ∈ N \ L(C)),

and chooses a t ∈ N \L(C) such that the size of Ŵ1(C, t, xinit) attains the minimum among
the sizes of Ŵ1(C, s, xinit) (s ∈ N \ L(C)). We call this method a dynamic enumeration

method. In Subsection 3.2, we explain how to generate the set Ŵ1(C, s, xinit) (s ∈ N\L(C)).
Also the relation table proposed in [8] can be used to find some infeasible child nodes in
W (C, s). In our numerical experiments, the relation table is applied to remove infeasible
child nodes from W (C, s) before Ŵ1(C, s, xinit) is constructed.

3 Technical details of the algorithm

3.1 Formulation of checking feasibility of a system of linear in-

equalities

The feasibility check of C ∈ Ω, conducted at Step 4 of Algorithm 2.1, can be formulated via
an LP problem. Namely, we test feasibility of the following problem in the vector α ∈ R

n

of decision variables:
P(C) : max. 〈γ, α〉 s. t. I(C),

6



where γ ∈ R
n is some fixed vector. For every C ∈ Ω with Ci = {api, aqi} (i ∈ L(C)), the

dual problem is written as

D(C) : min. Φ(x; C)
s. t. Ψ(x; C) = γ,

xa ≥ 0 (a ∈ Ai \ {a
pi, aqi}),

−∞ < xaqi < +∞, (i ∈ L(C)).

Here, a vector of decision variables is given by the column vector

x = (xa : a ∈ Ai \ {a
pi}, i ∈ L(C)) ∈ R

δ, where δ :=
∑

i∈L(C)

(mi − 1), (2)

and the symbol Φ(x; C) and Ψ(x; C) are linear functions in x such that

Φ(x; C) =
∑

i∈L(C)

∑

a∈Ai\{api}

(ωi(a)− ωi(a
pi)) xa

and Ψ(x; C) =
∑

i∈L(C)

∑

a∈Ai\{api}

(api − a) xa.

Any real vector γ in P(C) can be taken for the cost vector. Accordingly we set γ so that
D(C) becomes feasible. Since this primal-dual pair satisfies the duality theorem, P(C) is
feasible if and only if D(C) is bounded below, and P(C) is infeasible if and only if D(C)
is unbounded. Therefore, to determine feasibility of C, we need to see whether D(C) is
bounded or not.

Now we consider a formulation of an LP as

min. 〈c, x〉
s. t. Gx = h

xi ≥ 0, (i ∈ I),
−∞ < xj < +∞, (j ∈ J),

(3)

where a coefficient matrix G ∈ R
k×d, cost vector c ∈ R

d and constant vector h ∈ R
k are

given, and x ∈ R
d is a vector of decision variables. These index sets I and J of decision

variables satisfy I∩J = ∅ and I∪J = {1, 2, . . . , d}. Here, xi (i ∈ I) and xj (j ∈ J) are called
as a nonnegative variable and a free variable, respectively. The primal-dual pair P(C) and
D(C) can be transformed into (3) by introducing slack variables to the inequalities of P(C)
and replacing the cost vector γ of P(C) by −γ. In consequence of these transformations,
P(C) has dP variables and kP equalities such that

dP = n +
∑

i∈L(C)(mi − 2) and kP =
∑

i∈L(C)(mi − 1).

On the other hand, D(C) has dD variables and kD equalities such that

dD =
∑

i∈L(C)(mi − 1) and kD = n.

Here dD is not greater than dP for any L(C) ⊆ N . Also kD is constant whereas kP

is monotonic increasing with respect to the cardinality of L(C). When any polynomials

7



fi(x) (i ∈ N) have at least two terms, i.e., mi ≥ 2, there exists L′ ⊆ N such as kP ≥ kD.
Consequently for any L such as L′ ⊆ L ⊆ N , the number of constraints and that of variables
in D(C) are not greater than those of P(C). Therefore, it is reasonable to observe whether
D(C) is bounded for checking feasibility of C.

We formulate the one point test, stated in the previous section, via an LP problem. For
every C ∈ Ω, t ∈ N \ L(C) and a ∈ At, checking feasibility of (1) can be written as the
following LP problem in the vector α ∈ R

n of decision variables:

P1(C, t, a) : max. 〈γ, α〉 s. t. I(C, t, a),

where γ ∈ R
n is some fixed vector. As the one point test, we check feasibility of this problem

for all a ∈ At. The dual problem of P1(C, t, a) is given by

D1(C, t, a) :

min. Φ(x; C) +
∑

b∈At\{a}

(ωt(b)− ωt(a)) yb

s. t. Ψ(x; C) +
∑

b∈At\{a}

(a− b) yb = γ

xa ≥ 0 (a ∈ Ai \ {a
pi, aqi}) and −∞ < xaqi < +∞, for i ∈ L(C),

yb ≥ 0 (b ∈ At \ {a}).

Using x ∈ R
δ of (2) and the column vector y = (yb : b ∈ At \ {a

pt}) ∈ R
(mt−1), the vector

of decision variables in this problem is represented as

(

x

y

)

∈ R
δ̄, where δ̄ :=

∑

i∈L(C)∪{t}

(mi − 1).

This primal-dual pair satisfies the duality theorem because we set γ so that D1(C, t, a) is
feasible. Similar to P(C) and D(C), we can say that the size of D1(C, t, a) is not larger
than that of P1(C, t, a) for any C ∈ Ω, t ∈ N \ L(C) and a ∈ At. Therefore, we deal
with D1(C, t, a) as the one point test, and check whether this problem is bounded or not.
From the results of the one point test, we can generate the set W1(C, t) which satisfies
W1(C, t) ⊆ W (C, t).

We refer to how to fix a right-hand constant vector γ on D(C) and D1(C, t, a). For
C ∈ Ω(L) with Ci = {api, aqi} (i ∈ L(C)) and a proper subset L(C) of N , let us consider
the problem D(C). Using the arbitrary nonnegative vector x̂ ∈ R

δ, we compute

γ̂ = Ψ(x̂; C)

and set this γ̂ as a right-hand vector γ of the problem D(C) and D1(C, t, a) for some a ∈ At

and t ∈ N \ L(C). As a result, D(C) is feasible. Let us suppose that the problem D(C) is
bounded, and denote an optimal solution of this problem by x∗ ∈ R

δ. Then, the vector

xinit =

(

x∗

0

)

∈ R
δ̄ (4)

8



is feasible solution in D1(C, t, a) (a ∈ At and t ∈ N \L(C)) because D1(C, t, a) with fixed
y = (yb : b ∈ At \ {a

pt}) = 0 is equivalent to D(C). Also, we consider the problem
D(C̄) (C̄ ∈ Ω(L(C) ∪ {t})) with C̄L = CL, and use γ̂ as a right-hand vector γ of this
problem. We easily see that this problem is feasible. Furthermore, an optimal solution of
D1(C, t, a) is a feasible solution of D(C̄). Since the simplex method is suitable for solving
a lot of LP problems with a similar structure, we employ the method to solve problems
arising from checking feasibility of linear inequality systems.

3.2 How to choose an index t from N \ L(C)

Choice of a t ∈ N \ L(C) at Step 5 of Algorithm 2.1 has a major effect on computational
efficiency of this algorithm. As stated in Section 2, we want to choose a t ∈ N \ L(C)
such that the size of W1(C, s) is the smallest among s ∈ N \ L(C). However, this task is
expensive in general because we need to check feasibility of I(C, t, a) for every a ∈ At and
t ∈ N \ L(C) at Step 5 additionally. We will employ a less expensive technique to choose
a t ∈ N \ L(C) so that an evaluation measure ν∗ of efficiency of our dynamic enumeration
method becomes smaller.

To check feasibility of C ∈ Ω(L) with a proper subset L of N , we have solved the dual
problem D(C), and in Step 5 we have an optimal solution x∗ ∈ R

δ of D(C). As stated in

the previous subsection, if we set xinit ∈ R
δ̄ by (4) using x∗ of D(C), the vector xinit is a

feasible solution of D1(C, t, a) for any a ∈ At and t ∈ N \ L(C). Because the structure
of D1(C, t, a) and D(C) is similar to each other, we usually require only a few iterations
to solve D1(C, t, a) when using xinit as an initial feasible solution of the simplex method.
Thus we expect that xinit is incident to unbounded directions in cases where corresponding
problems are unbounded. Accordingly, instead of applying the simplex method to check
the feasibility of D1(C, t, a) (a ∈ At and t ∈ N \ L(C)) , we propose to test whether the
feasible solution xinit of D1(C, t, a) has unbounded directions or not.

At Step 5 we consider

Ŵ1(C, s, xinit) = {C̄ ∈ Ω(L(C) ∪ {s}) : C̄L = CL and C̄s ⊆ Âs(C, xinit)}

where

Ât(C, xinit) = {a ∈ At : xinit of D1(C, t, a) has no unbounded direction}

and choose an index t̂ ∈ N \ L(C) which attains

min
s∈N\L(C)

#Ŵ1(C, s, xinit).

In general, this index t̂ does not coincide with the index t which achieves the minimum
number of elements in W1(C, s) (s ∈ N \ L(C)). We will observe from numerical results,
however, that the evaluation measure ν∗ is much smaller for our dynamic enumeration
method than the static enumeration method, and the total computational time for finding
all mixed cells is reduced dramatically.

9



We next explain how to compute elements in Ŵ1(C, t, xinit) (t ∈ N \ L(C)) more
precisely, using an LP form of (3) instead of D1(C, t, a) for simplicity of notation. For (3),
let us assume that the number of variables d is not less than that of constraints k and the
matrix G = (g1, g2, . . . , gd) has full row rank. If this problem (3) is feasible, there exists a
vertex x ∈ R

d on the feasible region which consists of two components of the vector of basic
variables xB = G−1

B h ∈ R
k and of nonbasic variables xN = 0 ∈ R

d−k where GB ∈ R
k×k

is a basic matrix. Note that xB = (xb1 , xb2 , . . . , xbk
)T and xN = (xn1

, xn2
, . . . xnd−k

)T . In
particular, the set of basic variables and nonbasic variables are called a basis and nonbasis.
An adjacent vertex x̃ of x is represented as

x̃ = x + θd

by using a nonnegative scalar θ and a direction vector d. Let D = {1, 2, . . . , d}, and we
denote the set of basic indices B = {b1, b2, . . . , bk} ⊂ D. Note that (d − k) extreme rays
extend from a vertex x and one direction d is chosen by fixing an index j ∈ D \ B. The
direction d is composed of two components vectors dB and dN such that

dB = −G−1
B gj ∈ R

k and dN =

{

di = 1 i = j

di = 0 i ∈ D \ (B ∪ {j})
∈ R

d−k,

where di represents a component of d. When we move from x to x̃, the cost change per
unit θ is 〈c, d〉. Using a component cB of a cost vector c which corresponds to a basis B,
this amount can be written as

〈c, d〉 = cj − cT
BG−1

B gj (5)

and called a reduced cost for j ∈ D. To obtain an adjacent vertex x̃ of x so that the
value of a cost function decreases from x, we search for a direction d with j ∈ D such
that its reduced cost is negative, and determine the step size θ ≥ 0 such that a new vertex
x̃ = x+ θd satisfies its constraints; if components di of a direction vector d are nonnegative
for all i ∈ B ∩ I where I is the index set of nonnegative variables in (3), this problem is
unbounded and we say that x has an unbounded direction. Otherwise, we compute the
largest θ allowed by constraints for variables.

Now, we provide the criteria for detecting that the feasible solution xinit of D1(C, t, a) (a ∈
At and t ∈ N \ L(C)) has an unbounded direction. Notice that the optimal basic ma-
trix GB ∈ R

n×n of D(C) is equal to the basic matrix on xinit of D1(C, t, a) for any
a ∈ At and t ∈ N \ L(C)) because the number of constraints is equal to each other,
and a feasible solution xinit can be represented as (4) using an optimal solution x∗ of D(C).
Also, note that the vector (G−1

B )T cB in (5) is an optimal solution of its dual problem when
the duality theorem holds for this primal-dual pair. Let α∗ ∈ R

n be an optimal solution of
P(C). For some apt ∈ At and t ∈ N \ L(C), reduced costs on xinit of D1(C, t, apt) with
Ci = {api, aqi} (i ∈ L(C)) are written as

ωi(b)− ωi(a
pi)− 〈api − b, α∗〉, for i ∈ L(C) ∪ {t} and b ∈ Ai \ {a

pi}.

Since α∗ is an optimal solution of P(C) which has I(C) as a constraint, these reduced
costs are nonnegative for every b ∈ Ai \ {a

pi} and i ∈ L(C). Consequently, if there are
b ∈ At \ {a

pt} such that

10



(i) ωt(b)− ωt(a
pt)− 〈apt − b, α∗〉 < 0

(ii) All components of a vector −G−1
B (apt−b), which corresponds to nonnegative variables

in the basis, are nonnegative,

we see that the feasible solution xinit of D1(C, t, apt) for apt ∈ At has an unbounded
direction. Conversely, if the feasible solution xinit of D1(C, t, apt) has no such b ∈ At\{a

pt},
apt is added to Ât(C, xinit).

The problem D(C) with #L(C) = ℓ has ℓ free variables, and the optimal basis con-
tains all free variables if this problem is bounded. Therefore, since the basis on xinit of
D1(C, t, a) (a ∈ At and t ∈ N \ L(C)) has ℓ free variables, it is enough to check (n − ℓ)
components of a vector −G−1

B (apt − b) in (ii).

4 Numerical results

The proposed algorithm has been implemented and coded in C++ language. All numerical
experiments were executed on a 2.4GHz Opteron 850 with 8 GB memory, running Linux.
First, let us observe an evaluation measure ν∗ generated by the static and dynamic enumer-
ation, described in Section 2, for the cyclic-n [2] and noon-n [18] problems. In the cyclic-n
problem, one polynomial has 2 monomials and others have n monomials such as

x1 + x2 + · · ·+ xn−1 + xn,

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1,

x1x2x3 + x2x3x4 + · · ·+ xn−1xnx1 + xnx1x2,

...

x1x2 · · ·xn − 1.

In the noon-n problem, all polynomials have (n + 1) monomials such as

x1x
2
2 + x1x

2
3 + · · ·+ x1x

2
n − 1.1x1 + 1,

x2x
2
1 + x2x

2
3 + · · ·+ x2x

2
n − 1.1x2 + 1,

...

xnx2
1 + xnx2

2 + · · ·+ xnx2
n−1 − 1.1xn + 1.

For each polynomial system, we denote the support set of the ith polynomial from top as
Ai and set the support set A = (A1,A2, . . . ,An) as the input data of Algorithm 2.1.

Table 1 shows an evaluation measure ν∗ generated by the static and dynamic enumeration
(abbreviated by “Static Enum.” and “Dynamic Enum.”, respectively) for the cyclic-n and
noon-n problem, and the below row “Ratio” indicates the ratio between ν∗ given by these
two methods. For these systems, this table reveals efficiency of the dynamic enumeration
method by comparison with the static one, and we can see that the ratio increases as the
size of each system becomes larger.

11



Table 1: An evaluation measure ν∗ generated by the static and dynamic enumeration method
for the cyclic-n and noon-n problem

Cyclic-n n = 10 n = 11 n = 12 n = 13 n = 14

Static Enum. 2.46× 107 2.36× 108 1.73× 109 1.47× 1010 1.39× 1011

Dynamic Enum. 6.60× 106 5.19× 107 3.27× 108 2.69× 109 1.91× 1010

Ratio 3.75 4.55 5.29 6.46 7.29

Noon-n n = 14 n = 15 n = 16 n = 17 n = 18

Static Enum. 2.13× 109 8.85× 109 3.15× 1010 1.25× 1011 4.20× 1011

Dynamic Enum. 5.77× 107 1.88× 108 5.13× 108 1.40× 109 3.50× 109

Ratio 36.87 47.09 61.35 89.04 120.07

Next, in terms of the computational time, we compare our dynamic enumeration algo-
rithm with some existing ones. The following software packages have been developed for
enumerating all mixed cells of a polynomial equation system: MVLP [6], MixedVol [8, 9],
PHCpack [22], PHoM [19] and mvol [15]. In particular, the papers [8, 9] report the supe-
riority of MixedVol, which is coded in C++ language, in the computational time over the
other existing software packages. Therefore, we compare our algorithm with MixedVol for
the benchmark systems: the economic-n [17], chandra-n [4] and katsura-n [3] problems in
addition to the cyclic-n and noon-n problems. Here, we have omitted the description of
the economic-n, chandra-n and katsura-n problems, which are found in the web site [20].
We summarize these computational times in Table 2. The right-hand column “Speed-up
Ratio” indicates the ratio between the cpu time of our algorithm and MixedVol, and “-”
means that the software is not applied to the corresponding system. The column “Mixed
Volume” presents the mixed volume of the support A of the system, which provides an
upper bound for the number of isolated zeros of the polynomial system in (C \ {0})n. See
[1, 12] for a detail description of the mixed volume, and also [8, 14, 15] for the computa-
tion of the mixed volume. In Table 2 we can see that our dynamic enumeration method
improves cpu time necessary for finding all mixed cells considerably, and solves large scale
polynomial system such as the cyclic-15, noon-19,20,21, economic-20, chandra-20,21,22 and
katsura-15,16 problems. This table shows the first numerical results for enumerating mixed
cells of these large scale problems.

5 Concluding remarks

For finding all mixed cells of a polynomial system efficiency, the following two issues are
essential: (1) how we construct an enumeration tree among a family of linear inequalities
induced from the polynomial system, and also (2) how we check feasibility of a linear
inequality system. In this paper, we proposed a depth-first search algorithm for a dynamic
construction of an enumeration tree. At each iteration, the algorithm checks the feasibility
of a linear inequality system by solving the induced dual LP problem with effective use

12



Table 2: CPU time for some benchmark systems (2.4GHz and 8GB)

Speed-up
System Size (n) Mixed Volume Our Algorithm MixedVol Ratio

Cyclic-n 12 500,352 1m8.8s 4m43.0s 4.11
13 2,704,156 10m54.7s 49m57.4s 4.58
14 8,795,976 1h36m37.1s 7h14m24.1s 4.50
15 35,243,520 15h45m26.0s -

Noon-n 16 43,046,689 1m4.9s 33m54.8s 31.38
17 129,140,129 3m13.1s 2h25m20.8s 45.15
18 387,420,453 7m38.3s 8h23m19.6s 65.90
19 1,162,261,429 28m1.0s -
20 3,486,784,361 1h8m49.6s -
21 10,460,353,161 3h59m44.1s -

Economic-n 17 32,768 4m56.1s 20m41.8s 4.19
18 65,536 19m31.8s 1h17m56.0s 3.99
19 131,072 1h21m30.4s 4h56m4.6s 3.63
20 262,144 5h41m54.4s -

Chandra-n 17 65,536 1m14.4s 33m13.4s 26.80
18 131,072 3m37.0s 2h14m15.3s 37.13
19 262,144 10m24.3s 8h19m6.3s 47.97
20 524,288 35m24.1s -
21 1,048,576 1h30m37.5s -
22 2,097,152 4h34m18.1s -

Katsura-n 12 4,096 1m4.2s 14m3.5s 13.13
13 8,192 7m37.7s 1h21m19.4s 10.66
14 16,384 37m21.5s 7h54m29.4s 12.70
15 32,768 3h9m9.3s -
16 65,536 20h43m39.4s -

13



of information obtained at the previous iteration. Our numerical results show that the
proposed algorithm considerably decreases the number of the LP problems to be solved,
compared to the existing algorithms which utilizes a static construction of an enumeration
tree. In consequence, finding all mixed cells of large scale polynomial systems becomes
possible. Indeed, the proposed algorithm generated all mixed cells of the cyclic-15 problem
for the first time in less than 16 hours.

Enumeration of all mixed cells of a polynomial system, which is the subject of this paper,
plays an essential role in the polyhedral homotopy method, a powerful numerical method for
computing all isolated zeros of a polynomial system. We expect that the polyhedral homo-
topy method utilizing the proposed dynamic enumeration technique successfully computes
all solutions, which are not available so far, for large scale polynomial systems.

References

[1] D. N. Bernshtein, “The number of roots of a system of equations,” Functional Analysis

and Appl. 9, 183–185 (1975).

[2] G. Björk and R.Fröberg, “A faster way to count the solutions of inhomogeneous systems
of algebraic equations”, J.Symbolic Computation 12(3), 329–336 (1991).

[3] W. Boege, R. Gebauer, and H. Kredel, “Some examples for solving systems of algebraic
equations by calculating Groebner bases,” J.Symbolic Computation 2, 83–98 (1986).

[4] S. Chandrasekhar, “Radiative Transfer,” Dover, NY, 1960.

[5] Y. Dai, S. Kim and M. Kojima, “Computing all nonsingular solutions of cyclic-n
polynomial using polyhedral homotopy continuation methods”, J. Computational and

Applied Mathematics 152, 83-97 (2003).

[6] I. Z. Emiris and J. F. Canny, “Efficient incremental algorithms for the sparse resul-
tant and the mixed volume”, J.Symbolic Computation 20, 117–149 (1995). Software
available at http://cgi.di.uoa.gr/˜emiris/index-eng.html.

[7] T. Gao and T. Y. Li, “Mixed volume computation via linear programming,” Taiwan

Journal of Mathematics 4, 599–619 (2000).

[8] T. Gao and T. Y. Li, “Mixed volume computation for semi-mixed systems,” Discrete

and Computational Geometry 29, 257–277 (2003).

[9] T. Gao, T. Y. Li and M. Wu “MixedVol: A Software Package for Mixed Volume
Computation,” To appear in ACM Transactions on Math. Software 31(4), (2005).
Software available at http://www.csulb.edu/˜tgao/.

[10] T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa and T. Mizutani, “PHoM – a
Polyhedral Homotopy Continuation Method.” Computing 73, 53–77 (2004).

14



[11] T. Gunji, S. Kim, K. Fujisawa and M. Kojima, “PHoMpara – Parallel implementation
of the polyhedral homotopy continuation method”, Research Report B-419, Dept. of
Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama,
Meguro, Tokyo 152-8552, Japan, October 2005.

[12] B. Huber and B. Sturmfels, “A Polyhedral method for solving sparse polynomial
systems,” Mathematics of Computation 64, 1541–1555 (1995).

[13] S. Kim and M. Kojima, “Numerical Stability of Path Tracing in Polyhedral Homotopy
Continuation Methods”, Computing 73, 329–348 (2004).

[14] T. Y. Li, “Solving polynomial systems by polyhedral homotopies”, Taiwan Journal of

Mathematics 3, 251–279 (1999).

[15] T. Y. Li and X. Li, “Finding Mixed Cells in the Mixed Volume Computation,”
Foundation of Computational Mathematics 1, 161–181 (2001). Software available at
http://www.math.msu.edu/˜li/.

[16] J. T. Linderoth and M. W. P. Savelsbergh, “A Computational Study of Branch and
Bound Search Strategies for Mixed Integer Programming,” INFORMS Journal on

Computing 11, 173–187 (1999)

[17] A. Morgan, “Solving polynomial systems using continuation for engineering and scien-
tific problems,” Pentice-Hall, New Jersey, 1987.

[18] V. W. Noonburg, “A neural network modeled by an adaptive Lotka-Volterra system,”
SIAM J. Appl. Math. 49, 1779–1792 (1989).

[19] A. Takeda, M. Kojima, and K. Fujisawa, “Enumeration of all solutions of a combi-
natorial linear inequality system arising from the polyhedral homotopy continuation
method,” J. of Operations Society of Japan 45, 64–82 (2002). Software available at
http://www.is.titech.ac.jp/˜kojima/index.html.

[20] J. Verschelde, The database of polynomial systems is in his web site:
“http://www.math.uic.edu/˜jan/.”

[21] J. Verschelde, P. Verlinden and R. Cools, “Homotopies exploiting Newton polytopes for
solving sparse polynomial systems,” SIAM J. Numerical Analysis 31, 915–930 (1994).

[22] J. Verschelde, “Algorithm 795: PHCPACK: A general-purpose solver for polynomial
systems by homotopy continuation,” ACM Transactions on Mathematical Software 25,
251–276 (1999). Software available at http://www.math.uic.edu/˜jan/.

[23] V. Chvátal, “LINEAR PROGRAMMING,” W.H.Freeman, 1983.

15


