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Abstract. The MVE estimator is an important estimator in robust statistics and characterized
by an ellipsoid which contains inside 100β percent of given points in IRn and attains the minimal
volume, where β ∈ [0.5, 1.0) is of usual interest. The associated minimal ellipsoid can be
considered as a generalization of the minimum volume covering ellipsoid which covers all the
given points since the latter ellipsoid corresponds to the former one with β = 1.0. Though
the computation of the minimal covering ellipsoid is tractable, that of the MVE estimator or,
equivalently, the associated minimal ellipsoid is cumbersome since it has a nonconvex structure
in general.

In this paper, we present a new formulation for constructing an ellipsoid which also general-
izes the notion of the minimum volume covering ellipsoid on the basis of the CVaR minimization
technique which is proposed by Rockafellar and Uryasev [13]. In contrast to computing the MVE
estimator, the proposed ellipsoid construction is formulated as a convex optimization and an
interior point algorithm for the solution can be developed. In addition, the optimization gives
an upper bound of the volume of the ellipsoid associated with the MVE estimator, which fact
can be exploited for approximate computations of the estimator.

Also, potential applicability of the new ellipsoid construction is discussed through two statis-
tical problems: 1) robust statistics computations including outlier detection and the computation
of the MVE estimator; 2) a multiclass discrimination problem, where the maximization of the
normal likelihood function is characterized in the context of the ellipsoid construction. Numer-
ical results are given, showing the nice computational efficiency of the proposed interior point
algorithm and the capability of the proposed generalization.
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1 Introduction

In various contexts concerned with statistics and multivariate analysis, there are several impor-
tant estimators associated with an n-dimensional ellipsoid of the form

E(Q,γ) := {x ∈ IRn : ‖Qx− γ‖2 ≤ n }, (1)

where Q is an n× n real symmetric positive definite matrix and γ is a vector in IRn. Clearly,
there is a one-to-one relation between E(Q,γ) and another ellipsoid of the form

Ê(D, c) := {x ∈ IRn : 〈x− c,D(x− c)〉 ≤ n }, (2)

with change of variables as D = Q2 and c = Q−1γ, where c ∈ IRn represents the center or,
equivalently, location of the ellipsoid and the positive definite matrix D represents the covariate
structure. The volume of these ellipsoids is then given by

(nπ)n/2

Γ(n/2 + 1)

1

det[Q]
=

(nπ)n/2

Γ(n/2 + 1)

1√
det[D]

, (3)

where Γ is the gamma function.
An example of such an ellipsoid is the one satisfying the conditions:

i) for a designated value β ∈ (0, 1], it contains (at least) 100β percent of given n-dimensional
points {xi : i ∈ I := {1, . . . ,m}};

ii) it attains the minimal volume.

This ellipsoid is known as the minimum volume ellipsoid with parameter β, denoted by β-
MVE, and is characterized by an optimal solution of the following optimization problem with a
combinatorial constraint:

(MVE(β))

minimize
Q, γ

− ln det [Q]

subject to
∣∣{ i ∈ I : ‖Qxi − γ‖2 ≤ n

}∣∣ ≥ ⌈βm⌉

Q ≻ O,

(4)

where ⌈w⌉ denotes the minimum integer greater than or equal to w, and Q ≻ O means that Q is
positive definite. When β is set to be less than 1, the β-MVE E(Q,γ) provides robust estimators
on the location of the data cloud as Q−1γ and the related scatter matrix as Q2. In particular,
when β is set to be 0.5, the resulting estimator is shown to have the highest breakdown point,
which implies that the resulting ellipsoid is immune against outliers consisting of at most a
half of the data set (see [14] for detail). In order to obtain such estimates, many algorithms for
approaching a solution of Problem (4) have been developed. Global optimality of the problem is,
however, hard to be assured because the combinatorial constraint in (4) possesses nonconvexity
in general. Most of researches including [19] applied heuristic algorithms for solving this problem
since enumeration algorithms such as Cook et al.[5] are computationally impractical. Hawkins [7]
proposes a two-phase framework for obtaining an ellipsoid which satisfies a necessary condition
to be the β-MVE. Though this framework may work better than the enumeration algorithms,
it will also be caught in a bind of the explosive increase of the computation time as the size of
the data set grows.

On the other hand, when β is set to be 1.0, Problem (4) is equivalently reformulated as the
following convex optimization problem

minimize
Q, γ

− ln det [Q]

subject to
∥∥Qxi − γ

∥∥2
≤ n, (i ∈ I),

Q ≻ O,

(5)
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and the resulting ellipsoid is sometimes called the minimum volume covering ellipsoid. This
ellipsoid is known to be very useful in various contexts. For example, it is encountered in an
experimental design problem (e.g., [4, 16]) and computational geometry (e.g., [2]). In contrast to
Problem (4), this problem has a convex structure, and numerous algorithms have been developed.
Among such algorithms are those of Barnes [1], Khachiyan and Todd [8], Sun and Freund [15],
Zhang and Gao [20], Welzl [18], and Gärtner and Schönherr [6]. Titterington [16] also provides
an algorithm based on the dual form of Problem (5) and it is employed as a subroutine in
the implementation of the algorithms of Cook et al.[5] and Hawkins [7] so as to approach the
β-MVE.

Associated with another important ellipsoid construction is a parameter estimation of ellipti-
cal distributions including the normal distribution which plays a significant role in statistics, and
they are characterized by a simultaneous density function of the form p(x) := c det[Q]h(‖Qx−
γ‖2), where c > 0 is a constant, and h is a function on IR. Clearly, its contour is concentric
with E(Q,γ), where parameters Q and γ are often determined through the maximization of
the likelihood function. For the normal distribution, h(x) = exp{−x/2} is adopted, and the
analytical estimators Q and γ can be obtained explicitly by using the covariance matrix and
mean vector, respectively, of the given data points.

In this paper, we present a new formulation for constructing an ellipsoid which is achieved
via a convex optimization. This formulation is based on the conditional value-at-risk (CVaR)
minimization technique which is developed by Rockafellar and Uryasev [13] and prevailing in
the area of financial risk management. The CVaR of a random variable can be approximately
viewed as a conditional expectation of the upper 100(1−β) percent of the variable. By using this
property, the proposed ellipsoid is shown to give a generalization of the minimum volume covering
ellipsoid through a parameterization with β. Though the β-MVE can also be considered to
provide such a similar generalization of the minimum volume covering ellipsoid through another
parameterization, its exact computation is intractable as mentioned above. On the other hand,
the generalized ellipsoid proposed in this paper is achieved via a solution of convex optimization
problem and an interior point algorithm can be applied. In addition, the formulation also
generates the ellipsoid which is determined by the covariance matrix and mean vector of the
data points xi, i ∈ I as a special case with β = 0, while the β-MVE does not.

The structure of this paper is as follows. In Section 2, we set forth an optimization formula-
tion for computing the generalized minimum volume covering ellipsoid. Section 3 is devoted to
developing an interior point algorithm for solving the optimization problem, by following Sun
and Freund [15]. In the two succeeding sections, we discuss the potential of the generalization by
applying the proposed ellipsoid construction to two statistical problems. The first application
discussed in Section 4 is associated with computation of the β-MVE. To approach a good robust
estimator, we employ the proposed formulation for selecting a good subset of the data points.
On the other hand, the second application discussed in Section 5 is a multiclass discrimination
problem. It is shown that the proposed formulation also gives a generalization of the maximum
likelihood estimation with the normal density. For both of the applications, numerical results
are presented, showing the potential of the proposed formulation. Finally, Section 6 concludes
the paper with some remarks.

2 Formulation of Conditional Minimum Volume Ellipsoid

In this section, we introduce a generalized minimum volume ellipsoid by extending the problem
formulation (5) of the usual minimum volume covering ellipsoid. Let

{
x1, ...,xm

}
be a given set

of points in n-dimensional Euclidean space, and let us denote its index set by I := { 1, ...,m }.
As in [15], we suppose the following assumption throughout the paper.
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Assumption 2.1 The affine hull of x1, . . . ,xm spans IRn.

The ellipsoid proposed in this paper is defined by an optimal solution of a nonlinear, but convex
optimization problem formulated as follows:

(CMVE(β))

minimize
Q, γ

− ln det [Q]

subject to φβ(Q,γ) ≤ n,

Q ≻ O,

(6)

where β ∈ [0, 1) is a constant,

φβ(Q,γ) := min
α

{
Fβ(Q,γ, α) := α +

1

(1− β)m

∑

i∈I

[∥∥Qxi − γ
∥∥2
− α

]+
}

, (7)

and [w]+ := max{w, 0}. For an optimal solution (Q,γ) of Problem (CMVE(β)), we define the
β-conditional minimum volume ellipsoid (β-CMVE) as E(Q,γ). The objective of Problem (6)
implies minimization of the volume (3) of ellipsoid E(Q,γ), and φβ(Q,γ) in the left-hand side
of the inequality constraint corresponds to the β-conditional value-at-risk (β-CVaR) proposed
by Rockafellar & Uryasev [13] in the context of financial risk management. In the following, let
us first explain the meaning of this quantity in a brief manner by reviewing several results of
[13].

Let us first define the ellipsoidal score of data point i with respect to E(Q,γ) by

f i(Q,γ) := f(xi|Q,γ) := ‖Qxi − γ‖2, i ∈ I.

For given Q and γ, we introduce an empirical distribution function of the score f(x|Q,γ) as

Φ(α |Q,γ) :=
1

m

∣∣{ i ∈ I : f i(Q,γ) ≤ α
}∣∣ ,

and the β-quantile of the scores for β ∈ [0, 1) by

αβ(Q,γ) := min
{

α ≥ 0 :
∣∣{ i ∈ I : f i(Q,γ) ≤ α

}∣∣ ≥ ⌈βm⌉
}

.

It should be noted that α0 can be defined by this definition since f i(Q,γ) ≥ 0, i ∈ I for any
(Q,γ).

According to [13], φβ is then shown to be equal to the mean of the ellipsoidal score under
the β-tail distribution Φβ which is defined by

Φβ(η|Q,γ) :=





0 for η < αβ(Q,γ),

(Φ(η|Q,γ)− β)/(1 − β) for η ≥ αβ(Q,γ),

and the following relation holds:

0 ≤ αβ ≤ E [ f | f ≥ αβ ] ≤ φβ ≤ E [ f | f > αβ ] , (8)

where E[·] denotes expectation operator under Φ, and (Q,γ) is abbreviated for notational sim-
plicity. From these facts, we can see that the quantity φβ is approximately equal to the expected
value of the scores on the subset of data points whose score f i ranks in the top 100(1− β) per-
cent of all. Therefore, the ellipsoid obtained by solving (6) is the minimum volume ellipsoid
determined so that the mean ellipsoidal score of the higher 100(1− β) percent of the given data
points will be set to n.
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β-CMVE with β = 0.5

Figure 1: Geometric Interpretation of the Ellipsoid Construction

Figure 2(a) shows two-dimensional examples of the minimum volume ellipsoid covering fifty
points and the β-CMVE with β = 0.5, and we see that an outlying data can affect the shape
and the location of these two ellipsoids in a different manner. Figure 2(b) shows the histogram
of the ellipsoidal scores of the points for the 0.5-CMVE. In this figure, the boundary of the
ellipsoid corresponds to the φβ(Q,γ) which is approximately equal to the expected value of the
ellipsoidal scores larger than the β-quantile αβ(Q,γ).

The following proposition clarifies an interpretation of the formulation (CMVE(β)).

Proposition 2.2 For β > 1 − 1
m , Problem (6) is equivalent to the minimum volume covering

ellipsoid problem formulated as Problem (5). For β = 0, Problem (6) is equivalent to the
following problem:

minimize
Q, γ

− ln det [Q]

subject to
1

m

∑

i∈I

∥∥Qxi − γ
∥∥2
≤ n,

Q ≻ O.

(9)

Since the left-hand side of the inequality constraint in (9) means the mean ellipsoidal score, we
can view that when β = 0, Problem (CMVE(β)) determines the minimum volume ellipsoid so
that the isoquant surface of the mean ellipsoidal score will form the boundary of the ellipsoid.
In addition, by exploring the optimality condition, the unique solution (Q∗,γ∗) is obtained via
covariance matrix and mean vector as

Q∗ =

(
1

m

∑

i∈I

(xi − x̄)(xi − x̄)⊤

)−1/2

; γ∗ = Q∗x̄, where x̄ :=
1

m

∑

i∈I

xi. (10)
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Theorem 16 of [13] ensures that under the existence of a solution, Problem (6) is equivalent
to the following convex optimization problem:

(CMVE(β))

minimize
Q, γ, α

− ln det [Q]

subject to α +
1

(1− β)m

∑

i∈I

[∥∥Qxi − γ
∥∥2
− α

]+
≤ n,

Q ≻ O

(11)

in terms of that (Q∗,γ∗, α∗) solves (11) if and only if (Q∗,γ∗) solves (6) and the inequality
Fβ(Q∗,γ∗, α∗) ≤ n holds. The existence of a solution to Problem (11) is ensured via the
following theorem, which is shown in Appendix A.

Theorem 2.3 Suppose that Assumption 2.1 holds. Problem (11) has a solution, and the in-
equality constraint Fβ(Q,γ, α) ≤ n of (11) is satisfied with equality at optimality.

By combining Theorem 2.3 and the result of [13], Fβ(Q∗,γ∗, α∗) = φβ(Q∗,γ∗) = n holds
at optimality, which implies that α∗ is in argminαFβ(Q∗,γ∗, α). For another properties from
optimization viewpoints, readers are referred to [13].

3 An Algorithm for Solving Problem (CMVE(β))

It is clear that Problem (11) is rewritten as the following convex problem:

(CMVE(β))

minimize
Q, γ, α, z

− ln det [Q]

subject to α +
e⊤z

(1− β)m
≤ n,

zi ≥
∥∥Qxi − γ

∥∥2
− α, (i ∈ I),

z ≥ 0, Q ≻ O,

(12)

where e = (1, . . . , 1)⊤ denotes the vector which consists of ones. Furthermore, the problem is
transformed into

(CMVE(β))

minimize
Q, γ, z

− ln det [Q]

subject to zi ≥
∥∥Qxi − γ

∥∥2
+

e⊤z

(1− β)m
− n, (i ∈ I),

z ≥ 0, Q ≻ O,

(13)

since Theorem 2.3 implies that the variable α can be deleted from (12) via α = n − e⊤z
(1−β)m .

Sun and Freund [15] have proposed the “dual reduced Newton algorithm” for solving Problem
(5), while they also utilized SDPT3 solver (see [17]) to solve the same problem and verified
that the computational burden induced from the input form requirement of SDPT3 becomes
prohibitive. Therefore, we propose in this section a Newton method to solve Problem (13) in a
similar manner to [15]. In order to apply the method, we add a logarithmic barrier function to
(13) and obtain the formulation

minimize
Q, γ, z, t

− ln det [Q]− θt

∑

i∈I

ln ti − θz

∑

i∈I

ln zi

subject to
∥∥Qxi − γ

∥∥2
− zi +

e⊤z

(1− β)m
+ ti = n, (i ∈ I),

z > 0, t > 0, Q ≻ O.

(14)
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We set positive values on the parameters θt and θz, and parameterized solutions to Problem
(14) varying over θt ∈ (0,∞) and θz ∈ (0,∞) form the central trajectory of (14). Introducing
Lagrange multipliers λ ∈ IRm

+ for the equality constraints in (14), the optimality conditions of
(14) are as follows:

∑

i∈I

λi{(Qxi − γ)xi⊤ + xi(Qxi − γ)⊤} = Q−1, (15)

∑

i∈I

λi(γ −Qxi) = 0, (16)

(Qxi − γ)⊤(Qxi − γ)− zi +
e⊤z

(1− β)m
+ ti = n, (i ∈ I), (17)

Λt = θte, (18)

{
e⊤λ

(1 − β)m
E −Λ}z = θze, (19)

z ≥ 0, t ≥ 0, 0 ≤ λ ≤
e⊤λ

(1− β)m
e, Q ≻ O, (20)

where E indicates m × m identity matrix and Λ is m × m diagonal matrix with diagonal

elements λ. The constraint λ ≤ e⊤λ
(1−β)me is sometimes described as

{
1

(1−β)mU −E
}

λ ≥ 0

where U := ee⊤ is the m×m matrix of ones.
Sun and Freund [15] have introduced a logarithmic barrier function concerning slack variables

t where ti = n −
∥∥Qxi − γ

∥∥2
, into Problem (5) and have shown the optimality conditions as

(15) through (18) with z = 0. The conditions related to the variables z, that is, (19) and

λ ≤ e⊤λ
(1−β)me are additionally introduced.

The paper [15] proved that if λ > 0, the matrix Q and vector γ are described with λ from
(15) and (16), respectively, as

Q =

[
2(XΛX⊤ −

Xλλ⊤X⊤

e⊤λ
)

]−1/2

; γ =
QXλ

e⊤λ
, (21)

where X :=
[
x1, . . . ,xm

]
denotes an n × m matrix which consists of a given set of vectors

x1, . . . ,xm. Therefore, Q and γ are deleted from the above optimality conditions, and (17) is
rewritten as

hi(λ)− zi +
e⊤z

(1− β)m
+ ti = n, (i ∈ I), (22)

where

hi(λ) := (xi −
Xλ

e⊤λ
)⊤

[
2

(
XΛX⊤ −

Xλλ⊤X⊤

e⊤λ

)]−1

(xi −
Xλ

e⊤λ
).

Now we consider (18), (19), (20) and (22) as the optimality conditions for Problem (14). Note
that the equation (22) indicates the feasibility of Problem (14) while (18) and (19) correspond
to complementarity conditions for optimality. The Newton direction (∆λ,∆t,∆z) for (18), (19)
and (22) at a feasible solution (λ̄, t̄, z̄) is obtained by solving





∇λh(λ̄)∆λ +
{

1
(1−β)mU −E

}
∆z + ∆t = r1 := ne− h(λ̄)−

{
1

(1−β)mU −E
}

z̄ − t̄,

Λ̄∆t + T̄∆λ = r2 := θte− Λ̄t̄,
{

e⊤ ¯λ
(1−β)mE − Λ̄

}
∆z + Z̄

{
1

(1−β)mU −E
}

∆λ = r3 := θze−
e⊤ ¯λ

(1−β)m z̄ + Λ̄z̄,

(23)
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where Λ̄, T̄ and Z̄ are m×m diagonal matrices with diagonal elements λ̄, t̄ and z̄, respectively.
The formula to compute ∇λh(λ̄) is described in Proposition 5 of [15] as

∇λh(λ) = −2

(
Σ(λ)

e⊤λ
+ Σ(λ) ◦ Σ(λ)

)
,

where A ◦B denotes the Hadamard product of matrices A and B, i.e., (A ◦B)ij := AijBij for
all i, j, and Σ(λ) is defined by

Σ(λ) := (X −
Xλe⊤

e⊤λ
)⊤

[
2

(
XΛX⊤ −

Xλλ⊤X⊤

e⊤λ

)]−1

(X −
Xλe⊤

e⊤λ
).

The last two equalities of (23) lead to




∆t = Λ̄
−1

r2 − Λ̄
−1

T̄∆λ,

∆z =
{

e⊤ ¯λ
(1−β)mE − Λ̄

}−1
r3 −

{
e⊤ ¯λ

(1−β)mE − Λ̄
}−1

Z̄
(

1
(1−β)mU −E

)
∆λ

(24)

since the inverse matrices Λ̄
−1

and { e⊤ ¯λ
(1−β)mE − Λ̄}−1 exist when we set θt > 0 and θz > 0.

Then, by using (24), the first equality of (23) is transformed into

∆λ = R−1

[
r1 −

{
1

(1− β)m
U −E

}{
e⊤λ̄

(1− β)m
E − Λ̄

}−1

r3 − Λ̄
−1

r2

]
, (25)

when the inverse matrix of

R :=

[
∇λh(λ̄)− Λ̄

−1
T̄ −

{
1

(1− β)m
U −E

}{
e⊤λ̄

(1− β)m
E − Λ̄

}−1

Z̄

{
1

(1− β)m
U −E

}]

exists. Indeed, we have the inverse matrix R−1. (∇λh(λ̄)−Λ̄
−1

T̄ ) ≺ O is ensured by Corollary
6 of [15], and for the remaining part of R, the positive definiteness such as

{
1

(1− β)m
U −E

}{
e⊤λ̄

(1− β)m
E − Λ̄

}−1

Z̄

{
1

(1− β)m
U −E

}
≻ O

is proved since Z̄ ≻ O and { e⊤ ¯λ
(1−β)mE − Λ̄} ≻ O. Therefore, we see that R is negative definite.

We are now in a position to describe the modified dual reduced Newton algorithm.

Algorithm 3.1 A Modified Version of the Dual Reduced Newton Algorithm (DRN) [15]

Step 0: (Initialization) Choose initial values of (z, t,λ) > 0 satisfying { 1
(1−β)mU−E}λ > 0.

Step 1: (Stopping Criteria) Compute OBJ := − ln det[Q] using (21). If the following in-
equalities

‖ne− h(λ)−
{

1
(1−β)mU −E

}
z − t ‖ ≤ ǫ1;

λ
⊤
t

OBJ ≤ ǫ2;
{ e⊤λ

(1−β)m
e−λ}⊤z

OBJ ≤ ǫ3

are satisfied, terminate with an optimal solution (Q,γ,z, t) of (14).

Step 2: (Newton Direction) Set θt ←
λ

⊤
t

10m and θz ←
{ e⊤λ

(1−β)m
e−λ}⊤z

10m . Compute (∆z,∆t,∆λ)
using (24) and (25).

Step 3: (Step-Size Computation) Compute

β̄ ← max

{
β : (z, t,λ) + β(∆z,∆t,∆λ) ≥ 0, {

1

(1 − β)m
U −E}(λ + β∆λ) ≥ 0

}

and β̃ ← min{0.99β̄, 1}. Set (z, t,λ)← (z, t,λ) + β̃(∆z,∆t,∆λ) and go to Step 1.
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The Newton method presented above can be started from any point (z, t,λ) satisfying
(z, t,λ) > 0 and { 1

(1−β)mU−E}λ > 0. However, the paper [15] pointed out that it is preferable

to choose an initial point which guarantees the feasibility of Problem (14), that is, the point
(z, t,λ) satisfying (22). Such a point can be obtained as follows: Let z̄ > 0 be any positive
vector and λ̄ be some positive vector satisfying { 1

(1−β)mU − E}λ̄ > 0, for example, λ̄ = 1
me.

From (22), we compute

t̄ = ne− h(λ̄)−

{
1

(1− β)m
U −E

}
z̄.

If h(λ̄) +
{

1
(1−β)mU −E

}
z̄ ≤ (0.95)ne, we set z = z̄, t = t̄ and λ = λ̄ as an initial point for

Algorithm 3.1. Otherwise, we see that some element of the vector h(λ̄) +
{

1
(1−β)mU −E

}
z̄

exceeds 0.95n, and using a scaling parameter γ (> 1) defined by

γ :=
maxi∈I{hi(λ̄) + e⊤z̄

(1−β)m − z̄i}

0.95n
,

we obtain a strictly feasible solution of Problem (14) as

z =
1

γ
z̄, λ = γλ̄, t = ne− h(λ)−

{
1

(1− β)m
U −E

}
z.

Noting that h(γλ̄) = 1
γ h(λ̄) holds, t = ne− 1

γ

[
h(λ̄) +

{
1

(1−β)mU −E
}

z̄
]
≥ (0.05)ne follows.

4 Application 1: Outlier Detection and Subset Selection for
Computing β-MVE Estimator

In this and next sections, applications of the β-CMVE to problems arising from robust statistics
and multiclass discrimination are presented. First of all, let us begin with a direct application
to outlier detection problem.

Ellipsoidal peeling is one of the fundamental approaches for removing outliers (see [14]). This
method first computes the ordinary minimum volume covering ellipsoid by solving Problem (5)
for an n-dimensional data set, and then removes the points located on the boundary of the
ellipsoid as outliers. By replacing the ellipsoid by the β-CMVE, another simple approach for
outlier detection can be constructed in a straightforward manner.

Algorithm: Simple Outlier Detection

0. Choose β ∈ [0, 1).

1. Solve Problem (CMVE(β)), and let (Q∗,γ∗, α∗) be an optimal solution.

2. Remove a set of points whose ellipsoidal score fi(Q∗,γ∗) is the largest as outliers.

A drawback of the original ellipsoidal peeling based on the ordinary minimum volume covering
ellipsoid is that data points which are not outlying are removed unnecessarily because at least
n+1 points lie on the boundary of the ellipsoid. However, the points to be removed by the above
algorithm are expected to be fewer since the boundary of the optimal ellipsoid is determined by
the mean value of ellipsoidal scores which are approximately greater than α∗, and only points
with the largest score are to be deleted. Thus, the drawback of the original ellipsoidal peeling
can be relaxed by introducing the β-CMVE.

The removal criterion in Step 2 of the above algorithm can be replaced by the other ones.
For example, if we consider the data points with scores larger than φβ(Q∗,γ∗) = n as outliers,
we can adopt the following step in place of the Step 2:
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2’. Remove a set of points defined by
{

i : f i(Q∗,γ∗) > φβ(Q∗,γ∗) = n
}
, as outliers.

The number of points to be deleted by the revised algorithm with Step 2’ is larger than or equal
to that by the above algorithm with Step 2. If we intend to remove (approximately) 100(1− β)
percent of data points as outliers, the deleted subset may be defined as

{
i : f i(Q∗,γ∗) > α∗

}

since α∗ gives a good approximate of the β-quantile of the ellipsoidal score.
Another interesting robust procedure is constructing the β-MVE estimator. As mentioned

in Section 1, the exact computation of the β-MVE estimator is very hard, and many heuristic
algorithms are proposed. Hawkins [7] decomposes the problem into two phases: The first is
selecting a subset of the data points, and the second is computing the minimum volume ellipsoid
covering the selected subset of points. As listed in Section 1, numerous algorithms are proposed
for the second phase problem. On the contrary, for the first phase subset selection problem, the
number of researches are limited except random sampling algorithms.

In the remaining part of this section, we present three deterministic algorithms of the subset
selection for approaching the β-MVE estimator by exploiting the β-CMVE computation. In
order to obtain the β-MVE estimator with the highest breakdown point, we have to solve
Problem (4) with β = 0.5. To consolidate the relation between the β-MVE and the β-CMVE,
we introduce the following relation.

Lemma 4.1
{

(Q,γ) :
∣∣{ i ∈ I : f i(Q,γ) ≤ n}

∣∣ ≥ ⌈βm⌉
}

= { (Q,γ) : αβ(Q,γ) ≤ n } .

This equivalence is obvious from the definition of αβ(Q,γ). From Lemma 4.1, Problem (MVE(β))
is equivalently rewritten as follows:

(MVE(β))

minimize
Q, γ

− ln det [Q]

subject to αβ(Q,γ) ≤ n,

Q ≻ O.

(26)

Though the expression has now become simpler, the difficulty of the problem remains almost
the same. It is worthwhile that a solution of Problem (CMVE(β)) provides a feasible solution of
Problem (26) and, accordingly, the optimal value is an upper bound of the volume of the β-MVE
by noting the relation (8). In addition, an ellipsoid obtained by solving Problem (CMVE(β)) is
intuitively a good approximate of the β-MVE when β is close to 1. Motivated by these facts,
we describe three algorithms in which Problem (CMVE(β)) is iteratively optimized.

The basic strategy of the first algorithm is to obtain a set of points according to the optimal
scores based on an ellipsoid E(Q,γ) obtained by solving Problem (CMVE(β′)) once. The first
algorithm, denoted as SS1, is described as follows:

Algorithm SS1.

Input: β, β′ ∈ [0, 1), the set of data points {x1, ...,xm} and its index set I = {1, ...,m}.

Output: G ⊂ I

Step 0. Set G← φ.

Step 1. Compute the β′-CMVE by solving (CMVE(β′)), and let (Q̂, γ̂, α̂, ẑ) be its optimal
solution.

Step 2. Sort the ellipsoid scores of all the points in ascending order as f i1(Q̂, γ̂) ≤ · · · ≤
f im(Q̂, γ̂), where (i1, ..., im) is index vector after sorting.

Step 3. Set G← { ij : j ≤ ⌈βm⌉ }.
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In the above description, we distinguish between the β for the MVE we want to compute and
the β′ for the CMVE computation. Intuitively, in the case of β close to 1, the optimal value of
Problem (CMVE(β)) gives a good approximate of that of Problem (26) from Equation (8), so
setting β = β′ is natural. However, for smaller β, e.g., 0.5, we can expect better approximation
by using different βs, i.e., β 6= β′.

The second algorithm, denoted as SS2, applies the b-CMVE computation for different bs so
as to obtain a subset G of size ⌈βm⌉.

Algorithm SS2.

Input: β ∈ [0, 1), the set of data points {x1, ...,xm} and its index set I = {1, ...,m}.

Output: G ⊂ I

Step 0. Set b← β, H ← I := { 1, ...,m }, G← φ.

Step 1.

i) Solve

minimize
Q, γ, α, z

− ln det [Q]

subject to α +
e⊤z

(1− b)|H|
≤ n,

zi ≥
∥∥Qxi − γ

∥∥2
− α, (i ∈ H),

zi ≥ 0, (i ∈ H),

Q ≻ O, z ∈ IR|H|,

(27)

and let (Q̂, γ̂, α̂, ẑ) be its optimal solution.

ii) Sort the ellipsoid scores of all the points in ascending order as f i1(Q̂, γ̂) ≤ · · · ≤ f im(Q̂, γ̂)
where (i1, ..., im) is index vector after sorting.

iii) If { i : f i(Q̂, γ̂) > n }∩H 6= φ, then setting H ← H\{ i : f i(Q̂, γ̂) > n } and b← βm/ |H|,
repeat Step 1. Otherwise, set G← { ij : j ≤ ⌈βm⌉ }.

This algorithm is inspired by the ones proposed in Larsen et al.[10], in which the minimization
of conditional value-at-risk (CVaR) is solved iteratively with various βs in order to obtain an
approximate solution to the associated quantile (VaR) minimization whose exact solution is
difficult to be found. Their problem contains the CVaR measure in the objective while ours
does in constraint. In addition, they impose the constraints on the ordering of scores in their
CVaR minimization problem, we do not impose such a constraint in the optimization problem
at Step 1. If such constraints are additionally imposed on (27) as in [10], it would result in
having a nonconvex structure because of the nonlinearity of the ellipsoidal score f . By avoiding
imposing such constraints, what we have to do at each iteration is to adopt the interior point
algorithm described in the previous section so as to solve Problem (27).

The third strategy, denoted as SS3, is a simple application of the modified ellipsoidal peeling
stated at the beginning of this section.

Algorithm SS3.

Input: β, β′ ∈ [0, 1), the set of data points {x1, ...,xm}.

Output: G ⊂ I

10



Table 1: List of Test Data
name Air Bra Col Del Edu Sal Sta Woo

dim. n 4 2 5 2 3 3 2 5

num. m 23 28 20 25 50 28 47 20

Step 0. Set G← I = {1, ...,m}.

Step 1. Solve Problem (CMVE(β)) for G, and let (Q̂, γ̂, α̂, ẑ) be its optimal solution.

Step 2. Let i′ ∈ arg maxi f
i(Q̂, γ̂) and set G← G \ { i′ }. Repeat Step 1 until |G| < ⌈βm⌉ is

satisfied.

This subset selection strategy solves Problem (CMVE(β)) for m−⌈βm⌉ times, which means the
number of computations of Problem (CMVE(β)) increases proportionally to the sample size m.
Conversely, since the number of points to be deleted is only one at each iteration, the resulting
subset is selected in a prudent manner. Thus, we can expect that this strategy selects a better
subset than the previous two strategies, SS1 and SS2.

In order to examine the performance of the above three strategies, computational exper-
iments are conducted by applying eight data sets contained in [14]. Table 1 summarizes the
abbreviated names of the test data to be used, and their size, i.e., dimension, n, and the num-
ber, m, of samples. Though the size of every data set seems to be rather small in the context of
contemporary data analysis, it is reasonable to use these data sets as a first step because they
have been used as a benchmark in the researches dealing with algorithms for the MVE com-
putation. All computations were performed on a personal computer (Dell Precision 370, CPU:
Pentium 4, 3.80GHz, RAM: 2GB, OS: Windows) and implemented with MATLAB (R14SP2).
For simple presentation, we apply β′ = β for SS1 and SS3 in the following experiments.

Tables 2 (a), (b) and (c) compare the log-volume, − ln det[Q], obtained by several strategies
for β = 0.9, 0.7 and 0.5, respectively. Each table consists of four pairs of rows. The upper row
of the first to third pairs shows the log-volume achieved by each strategy (SS1, SS2, or SS3,
respectively), whereas the lower row of those shows the log-volume achieved by the combination
of each proposed strategy and the pairwise swap strategy called the “feasible solution algorithm
(FSA)” in [7].

The FSA guarantees that the resulting ellipsoid cannot be improved by any pairwise swap of
two sample points, and such an ellipsoid is called a “feasible solution.” In our experiments, we
repeat the following steps until any “feasible solution” is found: 1. We first apply each subset
selection strategy proposed above and then compute the minimum volume ellipsoid covering the
selected subset of the data points by applying Titterington’s algorithm [16]; 2. We next check if
the obtained ellipsoid satisfies the necessary condition to be the β-MVE by checking all possibile
pairwise swaps, and replace the subset by better one if any. In order to reduce the computation
time for evaluating each minimum volume covering ellipsoid, we employ an aborting strategy
proposed in [7] which quits the computation as soon as the volume of ellipsoid is found to be
larger than the incumbent value.

The upper row of the fourth pair of rows in Tables 2 (a) to (c) shows the smallest log-volume
achieved through fifty FSA trials, each starting from a randomly selected subset of the data
points, while the lower shows the number of the random subsets which attain the best achieved
volume, indicating easiness for finding the minimum volume ellipsoid. As is easiliy expected,
when β gets closer to 0.5, Problem (MVE(β)) is likely to have many nonoptimal local solutions
and accordingly, local search algorithms including the FSA may get stuck in such a solution.
This can be observed especially for instances with larger number m of samples, e.g., Edu and
Sta, and larger dimensions n, e.g., Col and Woo.
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Table 2: Log-Volume, − ln det[Q], of Achieved Ellipsoids

(a) β = 0.9 Air Bra Col Del Edu Sal Sta Woo

SS1 19.0069 0.8367 3.0536 7.7110 14.9312 3.1013 -1.0673 -16.0943

SS1+FSA 17.4473 0.7781 2.6407 7.2108 14.4952 2.7992 -1.0983 -16.0943

SS2 19.0069 0.8367 3.0536 7.7110 14.7597 3.1013 -1.0063 -16.0943

SS2+FSA 17.4473 0.7781 2.6407 7.2108 14.4952 2.7992 -1.0983 -16.0943

SS3 19.0069 0.9330 3.3848 7.9213 14.6100 2.9353 -1.0983 -15.9399

SS3+FSA 17.4473 0.7781 2.6407 7.2108 14.4952 2.7992 -1.0983 -16.0943

min. 50-FSA 17.4473 0.7781 2.6407 7.2108 14.4952 2.7992 -1.6741 -16.0943

#(attained) 50 50 50 50 50 50 2 50

(b) β = 0.7 Air Bra Col Del Edu Sal Sta Woo

SS1 17.1917 0.3187 1.8023 6.8647 13.8013 2.7896 -2.0487 -16.6535

SS1+FSA 16.1918 -0.7144 1.4295 6.2597 13.7714 1.8795 -2.9991 -17.1574

SS2 16.5934 -0.6920 1.6807 6.7613 13.7629 1.8795 -2.9798 -16.6535

SS2+FSA 16.1918 -0.7144 1.4295 6.2597 13.7407 1.8795 -2.9991 -17.1574

SS3 16.5432 -0.6920 1.4660 6.7849 13.8190 1.9431 -3.0526 -17.1103

SS3+FSA 16.3948 -0.7144 1.4295 6.2597 13.4906 1.8795 -3.0851 -17.1574

min. 50-FSA 16.1810 -0.7647 1.3185 6.2597 13.4906 1.8795 -3.0851 -17.1574

#(attained) 28 4 33 33 11 39 36 26

(c) β = 0.5 Air Bra Col Del Edu Sal Sta Woo

SS1 16.3823 -1.2902 0.5839 6.6183 13.3759 1.7692 -2.8204 -17.7550

SS1+FSA 14.7993 -1.8291 -0.6165 5.6395 12.7972 1.0899 -3.4529 -19.6479

SS2 15.5503 -1.4027 0.1447 5.8444 12.9566 1.4876 -3.4222 -17.7550

SS2+FSA 14.4443 -1.8291 -0.3937 5.6395 12.7212 0.7952 -3.4529 -19.6479

SS3 15.3103 -1.3551 0.1928 5.7727 12.9867 1.3623 -3.4724 -19.5037

SS3+FSA 14.4443 -1.8291 -0.6165 5.6395 12.7897 1.1479 -3.4724 -19.6479

min. 50-FSA 14.4443 -1.8291 -0.8752 5.6395 12.7212 0.7952 -3.5418 -20.2611

#(attained) 28 33 11 39 2 15 5 2

From Table 2, we see that when β = 0.9, the subset selection achieving smaller ellipsoid
is not so hard and, accordingly, any combination of each of three proposed strategies and the
FSA results in the smallest volume among the fifty trials except Sta data which is mentioned
as a hard problem also in [7]. In addition, we cannot find any significant difference among the
initial subset selections of the three proposed strategies. As β gets closer to 0.5 and the subset
selection becomes more cumbersome, the performances of the three proposed strategies differ.
The volume of the initially chosen subset by SS1 is constantly inferior to that by the other two,
though the resulting ellipsoid via the combination of the proposed strategies and the FSA seems
to have less to do with the initial volume. Also, we cannot find any significant difference between
SS2 and SS3.

Tables 3 (a) through (c) summarize the number of updates required until reaching to a
“feasible solution” for β = 0.5, 0.7 and 0.9, respectively. The upper three rows in each table
show the number of subset updates during the FSA phase starting from the subset obtained by
the proposed strategies, whereas the lower four rows show the average, the (unviased) standard
deviation, the maximum, and the minimum, respectively, of the number of the subset updates
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Table 3: Number of Updates up to a Feasible Solution
(a) β = 0.9 Air Bra Col Del Edu Sal Sta Woo

SS1+FSA 2 1 2 1 3 1 1 0

SS2+FSA 2 1 2 1 2 1 1 0

SS3+FSA 2 2 2 2 1 1 0 1

ave.(50-FSA) 1.82 1.92 1.92 1.88 4.66 1.92 3.52 1.78

stdev.(50-FSA) (0.44) (0.27) (0.53) (0.33) (0.69) (0.27) (0.68) (0.42)

max.(50-FSA) 2 2 3 2 6 2 4 2

min.(50-FSA) 0 1 1 1 3 1 2 1

(b) β = 0.7 Air Bra Col Del Edu Sal Sta Woo

SS1+FSA 3 5 2 3 1 4 4 2

SS2+FSA 2 1 2 2 1 0 2 2

SS3+FSA 1 1 1 2 3 1 2 1

ave.(50-FSA) 4.40 6.90 4.46 5.28 11.28 6.02 12.54 3.36

stdev.(50-FSA) (1.18) (1.78) (1.43) (1.23) (2.27) (1.76) (1.91) (1.01)

max.(50-FSA) 7 10 8 8 17 10 16 6

min.(50-FSA) 2 3 2 3 7 3 7 1

(c) β = 0.5 Air Bra Col Del Edu Sal Sta Woo

SS1+FSA 4 1 2 4 7 2 4 3

SS2+FSA 5 2 1 2 4 5 1 3

SS3+FSA 3 2 3 1 2 3 0 1

ave.(50-FSA) 5.98 8.08 4.42 6.54 15.42 7.10 15.36 4.34

stdev.(50-FSA) (1.83) (2.04) (1.81) (2.01) (3.35) (1.97) (2.78) (1.24)

max.(50-FSA) 10 12 9 12 26 12 22 8

min.(50-FSA) 3 4 2 3 8 3 9 2

among fifty trials of the random subset selection. From the tables (b) and (c), we see that the
number of the updates by proposed strategies is stably less than by the random ones. This is
emphasized in case of huge number of samples as we will see later, even though the FSA schemes
can save computation time by making use of the aborting strategy

Table 4 shows the computational CPU time on the second time scale. The second row of
first to three pairs of rows reports the CPU time spent for obtaining the initial subset by each
strategy. From this, we see that single application of each strategy is very efficient. The fourth
pair of rows shows the average CPU time of fifty trials starting from randomly selected subsets,
and the number in parentheses is its standard deviation. We see that the FSA starting from
a subset determined by the proposed strategies reaches a “feasible solution” in a more efficient
manner on average than that from a randomly selected subset. In particular, when the number
of samples is large, e.g., Edu or Sta, the computation time for the FSA increases remarkably,
while the time for solving (11) increases gradually.

In order to confirm this aspect, we apply our algorithms to randomly generated data of larger
size with (n,m) = (5, 100) and (5, 300). Tables 5 and 6 report the computational performance,
showing the average, the standard deviation, the maximum and the minimun of the CPU time
among ten different instances drawn from a five-dimensional composite distribution of two nor-
mal ones with different variances. When (n,m) = (5, 300) and the subset update starts from
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Table 4: CPU Time for Small Data Sets [sec.]

(a) β = 0.9 Air Bra Col Del Edu Sal Sta Woo

SS1+FSA 1.83 0.91 1.78 0.44 4.11 1.56 7.58 0.47

SS1 0.02 0.03 0.02 0.02 0.03 0.03 0.03 0.00

SS2+FSA 1.91 0.89 1.80 0.48 5.95 1.66 3.42 0.45

SS2 0.02 0.02 0.02 0.03 0.05 0.03 0.03 0.02

SS3+FSA 2.00 1.05 1.45 0.70 0.72 1.61 1.91 0.83

SS3 0.05 0.03 0.03 0.03 0.09 0.05 0.06 0.02

ave. (50 FSA) 2.00 2.70 1.72 0.88 64.05 3.06 8.47 2.75

stdev. (0.61) (0.97) (0.49) (0.30) (25.86) (0.64) (2.22) (1.37)

(b) β = 0.7 Air Bra Col Del Edu Sal Sta Woo

SS1+FSA 2.56 3.55 0.75 3.83 13.31 4.38 7.69 2.58

SS1 0.03 0.02 0.02 0.03 0.05 0.03 0.05 0.00

SS2+FSA 1.13 0.36 0.64 3.25 2.58 0.38 3.61 2.56

SS2 0.02 0.05 0.05 0.03 0.06 0.05 0.05 0.00

SS3+FSA 0.25 0.36 0.48 3.17 10.58 0.75 3.86 1.25

SS3 0.05 0.06 0.03 0.05 0.19 0.06 0.11 0.02

ave. (50 FSA) 7.60 9.81 3.15 5.40 186.86 16.87 102.29 7.40

stdev. (3.99) (9.46) (2.15) (2.10) (118.29) (12.07) (63.34) (8.19)

(c) β = 0.5 Air Bra Col Del Edu Sal Sta Woo

SS1+FSA 3.00 0.52 0.42 2.84 13.94 0.80 23.91 0.52

SS1 0.03 0.05 0.02 0.05 0.05 0.03 0.03 0.00

SS2+FSA 2.67 0.58 0.17 2.70 5.45 1.72 0.91 0.53

SS2 0.03 0.05 0.03 0.05 0.08 0.06 0.06 0.00

SS3+FSA 2.69 0.39 0.70 2.50 7.45 0.72 0.33 0.22

SS3 0.06 0.09 0.05 0.08 0.25 0.09 0.09 0.02

ave. (50 FSA) 8.09 11.10 1.23 10.99 227.67 13.15 146.99 1.92

stdev. (5.04) (9.01) (0.92) (7.77) (137.70) (9.75) (93.76) (1.53)
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Table 5: CPU Time for 10 Random Data with (n,m) = (5, 100) [sec.]

β = 0.5 ave. stdev. max. min.

SS1+FSA 36.3 (18.0) 73.1 16.1

SS2+FSA 39.8 (18.7) 79.1 11.9

SS3+FSA 38.0 (13.8) 55.8 12.2

random FSA 1753.4 (593.6) 2719.2 962.7

Table 6: CPU Time for 10 Random Data with (n,m) = (5, 300) [sec.]

β = 0.5 ave. stdev. max. min.

SS1+FSA 810.38 (296.19) 1407.58 419.19

SS1 0.83 (0.06) 0.92 0.73

SS2+FSA 1063.50 (281.92) 1494.94 635.13

SS2 2.09 (0.16) 2.36 1.92

SS3+FSA 883.09 (412.83) 1712.50 403.98

SS3 58.39 (1.36) 60.41 55.61

random+FSA - - - -

the randomly generated subset, result is not given in Table 6 because the first problem out of
ten could not reach optimality within 36 hours. From theses tables, we see that every proposed
strategy achieves a “feasible subset” more efficiently than the randomly selected strategy, and
that the time spent for obtaining an initial candidate is much smaller than that for the updat-
ing. Tables 7 and 8 show the average number of updates starting from the initial subset to any
“feasible solution.” From these tables, we confirm that every proposed strategy takes smaller
number of updates compared to the random FSA. That is the reason why the CPU time for
proposed strategies is superior to the randomly generated FSA application.

5 Application 2: Multiclass Discrimination

In this section, we turn to apply the β-CMVE to a multiclass discriminant analysis motivated
by the second statement of Proposition 2.2.

Under the nomality assumption, the log-likelihood function with observations {x1, ...,xm}
is defined by

ℓ(Q,γ) = m ln det[Q]−
1

2

∑

i∈I

f i(Q,γ). (28)

Table 7: Number of Updates through FSA with (n,m) = (5, 100)

β = 0.5 ave. stdev. max. min.

SS1+FSA 4.4 (2.0) 8 2

SS2+FSA 4.8 (2.0) 8 1

SS3+FSA 4.3 (2.2) 8 1

random FSA 35.4 (3.2) 40 30
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Table 8: Number of Updates through FSA with (n,m) = (5, 300)

β = 0.5 ave. stdev. max. min.

with SS1 6.8 (1.87) 10 4

with SS2 7.7 (2.11) 11 5

with SS3 6.6 (4.22) 16 2

random - - - -

The maximum likelihood estimator of the scatter matrix D = Q2 of (2) is then given as the
sample covariance matrix ( 1

m

∑
i(x

i − γ)(xi − γ)⊤)−1 and the location c = Q−1γ of the data
cloud is given as the sample mean vector (

∑
i x

i)/m. From Proposition 2.2, we can consider the
function Fβ as equal to

∑
i f

i(Q,γ)/m when β = 0.
Associated with the maximization of the normal log-likelihood function (28), let us consider

the following optimization problem:

maximize
Q ≻ O, γ, α

m ln det [Q]−
1

2

∑

i∈I

(
α +

1

1− β

[
f i(Q,γ)− α

]+
)

. (29)

The difference between the normal log-likelihood function (28) and the objective of Problem
(29) is found in their second terms. From Proposition 2.2, the second term in the latter can be
viewed as a generalization of that of the former.

More directly, the following proposition shows the equivalence between the generalized log-
likelihood maximization (29) and Problem (CMVE(β)). The proof is provided in Appendix A.

Proposition 5.1 Problem (29) and Problem (12) have the same optimal solution.

From this proposition, Problem (CMVE(β)) can be regarded as the maximization of the gener-
alized log-likelihood function (29). In other words, optimal ellipsoid via Problem (CMVE(β))
is determined so that the conditional normal likelihood of data points whose ellipsoidal score
ranks in the top 100(1 − β) percent of all, would be maximal. This fact is consistent with that
Problem (CMVE(β)) with β = 0 characterizes the covariance matrix and the mean vector as in
(10).

Once (Q,γ) is obtained in any way, the normal density can be identified. One of the most
useful applications of this estimation is discriminant analysis. For multiclass discrimination, one
can use the normal likelihood function (28) as in Fisher’s discriminant model. More specifically,
for class index set K := {1, ..., K̃}, we first estimate (Qk,γk) by solving Problem (12) for each
k ∈ K, and then, for a new sample x̄, we assign its class label as

k̄ ∈ arg max
k∈K

{
ln det[Qk]−

1

2
f(x̄|Qk,γk)

}
. (30)

Another possibly promising criterion is the comparison of the modified Mahalanobis dis-
tances, i.e., for a new sample x̄, its class label is assigned as

k̄ ∈ arg min
k∈K

(x̄− ck)
⊤Dk(x̄− ck), (31)

where the metric of the squared norm is given by Dk = (Qk)2 and the origin by ck = {Qk}−1γk.
For both criteria, the estimate (Qk,γk) depends on β and, therefore, different β can be

applied to each class estimation.
In order to examine the potential of the proposed multiclass classification model, ten-fold

cross-validation is carried out using two famous data sets in [3]: (i) Iris (three classes) and (ii)
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Table 9: Learning and Testing Error Rates of 10-Fold Cross-Validation for Iris data��� �������		
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(

WDBC Cancer (two classes). Table 9 shows the total learning (in-sample) and testing (out-
sample) error rates with two different criteria: (a) via the normal likelihood (30) and (b) via the
modified Mahalanobis distance (31) when the Iris data is applied. For ease of presentation, β is
set to be common in all three classes. From this table, we see that nicely low test error rate is
achieved by searching β over (0, 1). For the two criteria, the lowest rate is achieved at different β,
and we see that the selection of criterion is crucial for the results, and more elaborative analysis
is needed for such a selection.

Tables 10 (i) to (iii) show the total learning and testing error rates via the two criteria and
Fisher’s methods when the WDBC cancer data is applied. Apart from the case of the iris data,
we computed with various combination of βs for two classes, i.e., β1 and β2. It is worth noting
that the required number of times for solving Problem (CMVE(β)) is only 2N (not N2) where
N is the number of subdivisions of each β, because each ellipsoid is determined based only on
parameter β, and error rate is evaluated by the comparison between two ellipsoids with different
βs.

Mangasarian et al.[11] formulated a linear programming discriminant model and achieves
fairly low predictive error with this data set. One of the authors applied an extended quadratic
model of their linear model, and sees it difficult to outperform their model ([9]). From Table
10 (ii)-(d), we see that a nicely small misclassification result which is comparable to that in
[11] is achieved via the modified Mahalanobis distance criterion when (β1, β2) = (0.93, 0.76) and
(0.93, 0.77). In addition, comparing with the Fisher’s discriminantion methodologies which may
be viewed as special cases in our model, we see that from Table 10 (iii) ours is more predictive
than the Fisher’s classical models.

6 Concluding Remarks

In this paper, we provide a new formulation for constructing an ellipsoid from a set of given
data points in IRn, based on the CVaR technique proposed by Rockafellar and Uryasev [13].
This formulation yields a generalized notion of both the minimum volume ellipsoid covering all
the data points and the ellipsoid characterized via the maximum likelihood estimators of the
normal distribution. Computation of the generalized ellipsoid is accomplished through a convex
optimization and a modified version of an interior point algorithm developed by Sun and Freund
[15] can solve it in a fairly efficient manner.

Motivated by such generalizing property and computational accessibility, we exploit this el-
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Table 10: Learning and Testing Error Rates of 10-Fold Cross-Validation for WDBC Cancer data
(i) via the Normal Loglikelihood (30)

(a) learning error (b) testing error���������������� ���������������� ���������������� ���������������� ���������������� ���������������� ���������������� ���������������� ��	���	���	���	� ��������
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���
���
���
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(ii) via the Modified Mahalanobis’ Distance (31)
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(iii) Fisher’s Discriminant Analysis†

model type (a) learning error (b) testing error

Linear 3.14% 4.22%

Quadratic 2.68% 4.39%

Mahalanobis 9.86% 12.83%
† The function ‘classify’ in MATLAB Statistics toolbox is used.
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lipsoid construction in two statistical applications. We first apply it to selecting the subset of
given data points for approaching the MVE estimator, which is defined via the minimum volume
ellipsoid containing inside a certain proportion of the given data points. Though seeking the
MVE in a direct manner is known to be very tough, preliminary experiments demonstrate that
the proposed algorithms achieve as small an ellipsoid as by the random heuristic algorithm pro-
posed in [7] in far less computation time. Comparative study with the other methods including
some deterministic ones such as the effective independence distribution (EID) method proposed
in [12] remains to be done as a future work.

The second application of the proposed ellipsoid is multiclass discrimination. Since the co-
variance matrix and the mean vector are characterized as a solution of the maximum likelihood
estimator of the multidimesional normal distribution function, we also generalize the Fisher’s dis-
criminant methods through a parameterization. From preliminary computational experiments,
we see that the proposed methods can achieve better predictive accuracy on the class index of
unseen data. Further elaborative experiments are in progress and will be reported elsewhere in
the future as well as analysis of statistical properties of the proposed methods.

Appendix A

A.1 Proof of Proposition 2.2

With fixed (Q,γ), we sort the ellipsoidal scores fi(Q,γ) := ‖Qxi − γ‖2, i ∈ I in ascending
order. If ℓ different data points xj, j ∈ I have the same score, say, f i(Q,γ), we consider those
ℓ points as a single point xi and assign the value of ℓ

m to it as its empirical probability pi.

Then, we denote the sorted scores as g1(Q,γ) < . . . < gm′

(Q,γ), m′ ≤ m, with the underlaying
probability pi, i ∈ I ′ := {1, . . . ,m′}. Proposition 8 of [13] evaluates the β-quantile (VaR) of
gi(Q,γ), i ∈ I ′ as αβ(Q,γ) = gK(Q,γ) = ‖QxK − γ‖2, where K is the unique index such that∑K

i=1 pi ≥ β >
∑K−1

i=1 pi. Hence, αβ(Q,γ) = φβ(Q,γ) = maxi∈I f i(Q,γ) = gm′

(Q,γ) holds for

β > 1−1/m ≥
∑m′−1

i=1 pi, and the constraint φβ(Q,γ) ≤ n of (6) can be replaced by f i(Q,γ) ≤ n
for all i ∈ I. For the case of β = 0, one has φβ(Q,γ) = min

α
{ 1

m

∑
i∈I

max{‖Qxi − γ‖2, α}} =

1
m

∑
i∈I

‖Qxi − γ‖2. 2

A.2 Proof of Theorem 2.3

At first, we show that Problem (11) has an optimal solution. Since the equivalence between (11)
and (12) is obvious, it suffices to show that (12) has an optimal solution. The Lagrangian dual
of (12) is given as

maximize
λ, η > 0

n
2 + 1

2 ln det
[
2(XΛX⊤ − 1

e⊤λ
Xλλ⊤X⊤)

]
− nη

subject to e⊤λ = η, 0 ≤ λ ≤ η
(1−β)me.

By replacing λ/η by λ̃, the dual turns out to be

maximize
λ, η > 0

n
2 + 1

2 ln det
[
XΛ̃X⊤ −Xλ̃λ̃

⊤
X⊤

]
− nη + 1

2 ln(2η)n

subject to e⊤λ̃ = 1, 0 ≤ λ̃ ≤ 1
(1−β)me.

This problem is optimized with η = 1
2 , and one reaches

maximize
λ

1
2 ln det

[
XΛ̃X⊤ −Xλ̃λ̃

⊤
X⊤

]

subject to e⊤λ̃ = 1, 0 ≤ λ̃ ≤ 1
(1−β)me,

(32)
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with corresponding primal solution

Q = (XΛ̃X⊤ −Xλ̃λ̃
⊤
X⊤)−1/2; γ =

∑

i∈I

λ̃iQxi. (33)

We observe that the dual (32) has a feasible solution λ̃ = e/m with finite objective value, i.e.,

det[XΛ̃X⊤ −Xλ̃λ̃
⊤
X⊤] > 0 under Assumption 2.1, so it has a finite optimal solution. By

noting that the complemantarity condition is fullfilled, (33) is a solution of Problem (12).
Next we show that Fβ(Q,γ, α) = n holds at optimality. Let (Q∗,γ∗, α∗) be an optimal

solution of (11), and let

U∗ := Fβ(Q∗,γ∗, α∗) = α∗ +
1

(1− β)m

∑

i∈I

[∥∥Q∗xi − γ∗
∥∥2
− α∗

]+
.

Now we show U∗ > 0 for any β ∈ [0, 1). Note that the strict inequality
∑

i∈I

∥∥Q∗xi − γ∗
∥∥2

> 0

holds, since assuming on the contrary that
∑

i∈I

∥∥Q∗xi − γ∗
∥∥2

= 0, we have xi = (Q∗)−1γ∗

for all i ∈ I, which contradicts Assumption 2.1. Therefore, we see that when β = 0, U∗ =
1
m

∑
i∈I max{

∥∥Q∗xi − γ∗
∥∥2

, α∗} is positive. When β > 0, α∗ ≥ 0 follows and hence, U∗ > 0 is
shown. Indeed, assuming on the contrary that α∗ < 0, the constraint Fβ(Q∗,γ∗, α∗) ≤ n of (11)
is expressed as

1

(1− β)m

∑

i∈I

∥∥Q∗xi − γ∗
∥∥2
≤ n− (1−

1

1− β
)α∗

and one then finds a feasible solution (Q,γ, α) = { n
n−(1− 1

1−β
)α∗
}1/2(Q∗,γ∗, 0) with smaller

objective value, which contradicts the optimality of (Q∗,γ∗, α∗). The strict inequalities 0 <

n− (1− 1
1−β )α∗ < n are ensured since

∑
i∈I

∥∥Q∗xi − γ∗
∥∥2

> 0 and (1− 1
1−β )α∗ > 0.

Suppose that the inequality constraint of (11) is not binding, i.e., U∗ < n. Then, one finds a
better feasible solution (( n

U∗ )1/2Q∗, ( n
U∗ )1/2γ∗, ( n

U∗ )α∗) with the objective value (− ln det[Q∗] +

n/2 ln(U∗

n )) < − ln det[Q∗], which again contradicts the optimality of (Q∗,γ∗). 2

A.3 Proof of Proposition 5.1

We note that Problem (29) is equivalent to the following minimization problem:

minimize
Q, γ, α, z

− ln det [Q] +
1

2
{α +

e⊤z

(1− β)m
}

subject to zi ≥
∥∥Qxi − γ

∥∥2
− α, (i ∈ I),

z ≥ 0, Q ≻ O.

(34)

The Lagrangian dual of (34) becomes

maximize
λ

n
2 + 1

2 ln det

[
XΛX⊤ Xλ

λ⊤X⊤ 1

]

subject to e⊤λ = 1, 0 ≤ λ ≤ 1
(1−β)me,

(35)

and the corresponding primal solution is given by

Q = (XΛX⊤ −Xλλ⊤X⊤)−1/2; γ =
∑

i∈I

λiQxi,

which is in common with the Lagrangian dual (32) of (12) as shown in the proof of Theorem
2.3. 2
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