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Abstract. Sampled convex programs are studied to deal with convex optimization problems
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1 Introduction

Uncertain programs have been developed to deal with optimization problems including inexact

data, that is, uncertainty. In practical situations, say, decision-making environments, usually we

do not know exact forms of objective functions or constraint functions, since optimization prob-

lems are constructed based on observed data for which contamination is inevitable. Even some

information in the future may be required to formalize exact cost functions or constraints. Un-

certain convex program (UCP) is formalized as a convex program under uncertain constraints.

Without loss of generality, objective function is assumed to be linear without uncertainty pa-

rameters, and only constraints include uncertainty parameters, u ∈ U . When a realized value

of uncertainty parameter is u ∈ U , the constraint for optimization problem is given as the

form of f(x,u) ≤ 0, where x is optimization variable and f is convex in x. We do not know

which uncertainty parameter will be realized, and thus, we need to deal with whole constraints,

f(x,u) ≤ 0 (u ∈ U) according to some optimization criteria.

Robust convex program (RCP) is one of the common approaches for UCP, see for instance

[1, 2, 10, 11, 12, 13]. In RCP approach, one looks for a solution that is feasible under all

possible realizations of uncertainty parameters. This means that the worst-case constraints are

taken into account. Feasible region for RCP is described as {x : f(x,u) ≤ 0, ∀u ∈ U}. In

some applications, the worst-case scenario needs to be considered, if the violation of constraints

causes significant detriments. From the viewpoint of computation, though RCP is still convex

optimization problem, in general it is numerically hard to solve the problem, because RCP

involves infinitely many constraints. If constraint function f and uncertainty set U satisfy some

nice properties, RCP can be reduced to standard convex problems that are tractable. For

example, robust linear programs may result in second order cone programs [15], and robust

second order cone programs may result in semidefinite programs. For details, see [19].

Sampled convex program (SCP) is a practical alternative to RCP for problems with uncer-

tainty. The purpose of SCP is to find an approximated solution for RCP which satisfies almost all

uncertainty constraints, while tractability is retained. SCP uses a probability distribution P on

uncertainty set U . The set of constraints for SCP is defined by random samples. Let u1, . . . ,uN

be N independent and identically distributed random samples over U , extracted according to

P . The feasible region for SCP is defined as {x : f(x,ui) ≤ 0, i = 1, . . . , N}, which depends on

the realization of random samples. SCP is a convex optimization problem with finite number of

constraints, and thus, it is tractable for wide range of UCP. This is an advantage of SCP over

RCP, while resulting solutions do not necessarily satisfy all constraints. Random sampling has

been well-established technique in practical situations. The significant issue is to estimate the

number of random samples, N , to guarantee that resulting solution violates only a small portion

of constraints. Calafiore and Campi [4, 6] defined violation probability for randomized solutions,

and proposed some practical lower bounds for the number of random samples to achieve small

violation probability. If the number of random samples, N , is chosen properly according to the
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criterion given by Calafiore and Campi, obtained solution satisfies almost all constraints with

high probability. Although the fact that violation probability is equal to zero does not necessar-

ily denote that all constraints are satisfied, solutions with small violation probability are enough

acceptable in many practical situations.

Chance constrained program (CCP) is one of the classical approaches for optimization prob-

lems with uncertainty [8], and CCP also uses probability distributions over uncertainty set U ,

as well as SCP. Typically, constraint set for CCP is nonconvex, and thus, it is difficult to solve

the problems exactly. Relation between CCP and SCP is also discussed (see [5, 7]).

Previous works of Calafiore and Campi have mainly focused on how much percentage of

uncertain constraints are violated at an optimal solution of SCP. In this paper, we investigate

statistical properties for function values of uncertain constraints at the optimal solutions of

SCP. It is important to assess how large the solution violates each constraint function. In many

applications, degree of violation at given solutions, measured by the value of each constraint

function, has significant role to assess the validity of the approximated solution. This is the

main reason that we focus on the values of constraint functions for UCP.

Degree of violation at a given solution x for SCP is governed by the worst-case violation

defined as maxv∈U f(x,v). Thus, our main concern is to provide an upper bound of the worst-

case violation at a solution of SCP. To assess the worst-case violation, we need to evaluate

the tail probability of f(x,u), that is, the probability such that f(x,u) takes values around

maxv∈U f(x,v). A uniform lower bound of the tail probability is derived under some conditions,

and it is applied to evaluate the value of the worst-case violation stochastically. Moreover, we

study the relation between the violation probability defined by Calafiore and Campi, and the

worst-case violation. As well as violation probability, the worst-case violation is assured to take

small value with high probability under a large enough number of random samples. By using

uniform lower bound of the tail probability, we can estimate the number of random samples

to achieve an approximated solution with high accuracy before solving SCP. This is a priori

evaluation. Min-max problems are a common application of UCP, and our results can be applied

to assess optimal values of min-max problems.

A criterion for a-posteriori assessments is also proposed. After computing an optimal solution

of SCP, one can make an a-posteriori assessment with low computation cost for the value of the

worst-case violation at the solution. The assessment is very useful to evaluate the worst-case

violation with high accuracy. In general, uniform lower bound of the tail probability is not

sufficiently tight in a priori evaluation, and as the result, the number of samples required to

achieve high accuracy becomes quite large. Even if it is intractable to solve SCP with such a

large amount of constraint functions given by random samples, a-posteriori assessment is still

tractable, since we do not need to solve any optimization problems for a-posteriori assessment,

but what we need is to compute the values of constraint functions.

The paper is organized as follows. In Section 2, first, we introduce the results of Calafiore
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and Campi, and derive an upper bound of the worst-case violation. A posteriori assessment for

the worst-case violation is also proposed. To derive an upper bound of the worst-case violation,

we need to evaluate an uniform lower bound for the tail probability of f(x,u). Under some

conditions, the uniform lower bound is calculated in Section 3. We also provide a practical way

of estimating the uniform lower bound based on constraint function f and uncertainty set U . In

Section 4, we derive a tighter uniform lower bound of tail probability for particular uncertainty

set. In Section 5, we show some numerical simulations, and Section 6 is devoted to concluding

remarks.

2 Worst-case Violation for General Robust Optimization

General robust convex program is described as

(RCP )

∣∣∣∣∣
minx∈X c⊤x

s.t. f(x,u) ≤ 0 ∀u ∈ U ⊂ R
d,

where f(x,u) is convex function in x, and X is a convex subset in R
m. Calafiore and Campi

[4, 6] have proposed to approximately solve problem (RCP ). In this approach, an approximation

problem

(SCPN )

∣∣∣∣∣
minx∈X c⊤x

s.t. f(x,ui) ≤ 0 i = 1, . . . , N,

is solved instead of original problem (RCP ), where ui, i = 1, . . . , N, are N independent iden-

tically distributed samples on U . The above problem is called sampled convex program (SCP).

Fundamental question concerning with randomized optimization problems is how many samples

are needed to achieve accurate solutions. The feasible region of (SCPN ) is regarded as an ap-

proximation for that of original robust optimization problem (RCP ) which consists of infinitely

many constraints. Note that feasible region of (SCPN ) depends on random variables, and thus,

statistical discussions are useful to deal with convergence properties of optimal solutions.

Generally, optimal solutions of (SCPN ) are not necessarily feasible for (RCP ). The ratio of

violated constraints at x ∈ X is measured by violation probability [4] defined below.

Definition 2.1. Let P be a probability measure on U . Violation probability at x ∈ X is defined

by

V (x) = P{u ∈ U : f(x,u) > 0},

where f(x, ·) : U → R is assumed to be measurable function for each x.

For example, if P is the uniform distribution on U , violation probability is calculated from

the volume of the set, {u ∈ U : f(x,u) > 0}. Even if an optimal solution of (SCPN ) is not
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feasible for (RCP ), the solution with small violation probability would be practically acceptable

as an approximation of optimal solution for (RCP ).

Calafiore and Campi [6] have proposed that a solution of (SCPN ) fails to satisfy only a small

portion of the original constraints, when sufficient number of samples N are taken.

Theorem 2.2 (Calafiore and Campi [6]). For a level parameter, ǫ ∈ (0, 1), and a confidence

parameter, η ∈ (0, 1), let N(ǫ, η) be

N(ǫ, η) =
2

ǫ
log

1

η
+ 2m +

2m

ǫ
log

2

ǫ
,

where m is the dimension of X . Let x̂N be an optimal solution of (SCPN ). Then, for any

positive integer N > N(ǫ, η), the inequality

PN{V (x̂N ) > ǫ} ≤ η,

holds, where PN{· · · } denotes the probability over N independent random samples, ui ∈ U , i =

1, . . . , N .

In Theorem 2.2, sufficient number of samples N(ǫ, η) is determined by level parameter, ǫ,

confidence parameter, η, and the dimension of X . Note that these parameters are specified

before solving the optimization problems.

In Theorem 2.2, the value of f(x̂N ,u) is not taken into account, though the probability

of violation f(x̂N ,u) > 0 is considered. The aim of this section is to derive a bound of con-

straint function f(x,u) at an optimal solution of (SCPN ). Throughout this paper, we call

maxu∈U f(x,u) the worst-case violation of x, when maxu∈U f(x,u) > 0. At an optimal solu-

tion x̂N of (SCPN ), maxu∈U f(x̂N ,u) is generally larger than zero, but it would converge to

non-positive value as N goes to infinity. Now, we show how to decide the number of samples,

N , so that the worst-case violation at x̂N is within a given tolerance level. For uncertainty set

U and constraints f(x,u), the following conditions are assumed.

Assumption 2.3. (a) Let U be a compact set in R
d. Suppose that there exists d-dimensional

hypersphere S in U which satisfies the condition,

conv({u} ∪ S) ⊂ U , for any u ∈ U ,

where conv(A) denotes the convex hull of set A.

(b) Let the function f : X × U → R be convex in x, and Lipschitz continuous on U , that is,

there exists a constant L such that

|f(x,u) − f(x,v)| ≤ L‖u − v‖,

holds for ∀x ∈ X and ∀u,v ∈ U , where ‖ · ‖ denotes the Euclidean norm.
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A compact convex set in R
d including an open subset satisfies the condition (a), and an

example of function with property (b) is shown in Section 3.2.

To estimate the worst-case violation of f(x,u), the tail probability of f(x,u) has important

role. Let us define p(δ,x) as

p(δ,x) = P

{
u ∈ U : max

v∈U
f(x,v) − δ < f(x,u)

}
.

Under conditions (a) and (b), the tail probability, p(δ,x), has uniform lower bound.

Lemma 2.4. Suppose conditions (a) and (b). Under the uniform distribution over U , there

exist a positive constant B and an increasing function q(δ) such that the inequality,

0 ≤ q(δ) ≤ p(δ,x), 0 ≤ δ ≤ B, (1)

holds for any x ∈ X .

The function q(δ) which satisfies (1) is called uniform lower bound of tail probability for

0 ≤ δ ≤ B. The proof of Lemma 2.4 is shown in Section 3. In the proof, concrete expressions

for q(δ) and B are indicated: q(δ) and B depend on the volume of U , the radius of hypersphere

S ⊂ U , the diameter of U , and a Lipschitz constant L.

The uniform distribution in Lemma 2.4 can be replaced by other probability distributions

with some regularity conditions, such that the probability distribution has probability density

function which is bounded below by some positive constant. For the sake of simplicity, we

assume the uniform distribution over U .

An uniform bound of f(x̂N ,u) is given by the following theorem.

Theorem 2.5. Let q(δ) be a uniform lower bound of tail probability for 0 ≤ δ ≤ B, and let

ǫ ∈ (0, q(B)), η ∈ (0, 1) and N ≥ N(ǫ, η). An optimal solution of (SCPN ), x̂N , satisfies the

following inequalities simultaneously with probability of at least 1 − η,

(i) V (x̂N ) ≤ ǫ,

(ii) max
u∈U

f(x̂N ,u) ≤ q−1(ǫ),

that is,

PN

{
V (x̂N ) ≤ ǫ, max

u∈U
f(x̂N ,u) ≤ q−1(ǫ)

}
≥ 1 − η

holds.

Proof. From Theorem 2.2, the inequality

PN{V (x̂N ) ≤ ǫ} ≥ 1 − η,
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holds, if N ≥ N(ǫ, η). For x̂N such as V (x̂N ) ≤ ǫ, we derive an upper bound of the worst-case

violation of x̂N . Note that the assumption of ǫ < q(B) leads to maxu∈U f(x̂N ,u) ≤ B. Indeed,

if maxu∈U f(x̂N ,u) > B holds, we have

ǫ < q(B) ≤ P

{
u ∈ U : max

v∈U
f(x̂N ,v) − B < f(x̂N ,u)

}
≤ P {u ∈ U : 0 < f(x̂N ,u)} = V (x̂N ) ≤ ǫ,

and this is contradiction. When maxu∈U f(x̂N ,u) < 0 holds, it is clear that the inequality (ii)

holds. Therefore, it is sufficient to consider the case of maxu∈U f(x̂N ,u) ≥ 0. Applying Lemma

2.4, we have

q

(
max
u∈U

f(x̂N ,u)

)
≤ p

(
max
u∈U

f(x̂N ,u), x̂N

)
= P {u ∈ U : 0 < f(x̂N ,u)} = V (x̂N ) ≤ ǫ.

Therefore, we obtain a bound maxu∈U f(x̂N ,u) ≤ q−1(ǫ) under the condition of V (x̂N ) ≤ ǫ. �

When the parameter ǫ > 0 is fixed, there exists a sequence ηN → 0 as N → ∞, and with

probability of at least 1 − ηN , (i), and (ii) holds. Hence, in probability, V (x̂N ) converges to

zero, and maxu∈U f(x̂N ,u) converges to a non-positive value, when the number of sampled

constraints goes to infinity.

Note that the bound q−1(ǫ) of f(x̂N ,u) does not depend on x̂N , and thus, before solving

(SCPN ), Theorem 2.5 guarantees that the worst-case violation at an optimal solution of (SCPN )

is less than q−1(ǫ) with high probability if N(≥ N(ǫ, η)) samples are drawn. Therefore, we can

set a parameter ǫ and η, which determine sample number N , so that the worst-case violation is

assured to be small with high probability.

Next we study a-posteriori assessment. Once an optimal solution x̂N of (SCPN ) is computed,

one can make a-posteriori assessment of the worst-case violation by Monte-Carlo methods. Sup-

pose that new samples, U (M) = {ũ1, . . . , ũM}, are independently and identically distributed

from the distribution P . Following theorem gives a probabilistic bound of maxu∈U f(x̂N ,u).

Theorem 2.6. Let x̂N be an optimal solution of (SCPN ). Let M ≥ ln η
ln(1−q(δ)) for fixed δ ∈ (0, B]

and η ∈ (0, 1), where q(δ) denotes uniform lower bound of tail probability for 0 ≤ δ ≤ B. Then,

the inequality

max
u∈U

f(x̂N ,u) < max
ũ∈U(M)

f(x̂N , ũ) + δ

holds with probability of at least 1 − η.

Proof. With probability at most 1 − q(δ), the inequality,

max
u∈U

f(x̂N ,u) − δ ≥ f(x̂N , ũ)
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holds when ũ is drawn from the distribution P , since we have 1 − p(δ, x̂N ) ≤ 1 − q(δ) for

δ ∈ (0, B]. Thus, following inequalities holds,

PM{max
u∈U

f(x̂N ,u) − δ < max
ũ∈Ũ(M)

f(x̂N , ũ)}

= 1 − P{max
u∈U

f(x̂N ,u) − δ ≥ max
ũ∈Ũ(M)

f(x̂N , ũ)}

= 1 −
M∏

i=1

P{max
u∈U

f(x̂N ,u) − δ ≥ f(x̂N , ũi)}

≥ 1 − (1 − q(δ))M ≥ 1 − η.

�

Note that a-posteriori assessment does not require computation for optimization, and thus,

even if the number of random samples, M , is large, computation of a-posteriori assessment is

still tractable. Also, in a-posteriori assessment, we can utilize q̄(δ,x̂N ), defined for the solution

x̂N , satisfying 0 ≤ q̄(δ, x̂N ) ≤ p(δ, x̂N ) instead of uniform lower bound q(δ), since a-posteriori

assessment is carried out after the solution x̂N is obtained. The use of q̄(δ, x̂N ) would decrease

the number of samples, M , in comparison to that of q(δ). In numerical simulations in Section

5, we show how to construct q̄(δ, x̂N ).

3 Uniform Upper Bound for Worst-case Violation

3.1 Evaluation of Uniform Lower Bound of Tail Probability

We evaluate a uniform lower bound of the tail probability, when P is the uniform distribution

over U . Under the assumptions, (a) and (b), Lemma 2.4 assures that there exist an increasing

function q0(δ) and a positive constant B0 such that inequality,

∀δ ∈ [0, B0], 0 ≤ q0(δ) ≤ p(δ,x),

holds for all x ∈ X . To show concrete form of q0, we need the volume formula for the intersection

of two d-dimensional hyperspheres. The volume formula is provided in Lemma 3.1.

Lemma 3.1. Let d-dimensional hypersphere of radius s centered at the origin be S1 and that

of radius r centered at an boundary point of S1 be S2. Then, for r ∈ [0, 2s], the volume of the

intersection of two hyperspheres is given as

Dd(r, s) = Vd−1(1)



sd

∫ cos−1(1− r
2

2s2
)

0
(sinx)ddx + rd

∫ π

cos−1(− r

2s
)
(sinx)ddx



 , (2)

where Vd(r) denotes the volume of d-dimensional hypersphere with radius r.
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Figure 1: The set S1 ∩ S2 is divided into two parts, one is the right part of the dotted line, and
the other is left part of the dotted line. Volume of each part is calculated by integration for a
part of hypersphere. Definitions of angles, θ1 and θ2, are illustrated.

Proof. We have

Vol(S1 ∩ S2) =

∫ θ1

0
Vd−1(s sinx)s sinxdx +

∫ π

θ2

Vd−1 (r sinx) r sinxdx,

= Vd−1(1)

{
sd

∫ θ1

0
(sinx)ddx + rd

∫ π

θ2

(sinx)ddx

}
,

where θ1 and θ2 is defined by

s sin θ1 = r sin θ2, s cos θ1 = s + r cos θ2.

The geometrical interpretation of these equations is illustrated in Figure 1. This volume formula

holds for 0 ≤ r ≤ 2s. Angles, θ1 and θ2, are given by

cos θ1 = 1 − r2

2s2
, cos θ2 = − r

2s
,

and thus, we reach the conclusion. �

Next, we show the proof of Lemma 2.4.

Proof of Lemma 2.4. For a fixed x ∈ X , let ū ∈ U be an optimal solution of
∣∣∣∣ max

u
f(x,u), s.t. u ∈ U .

Note that the compactness of U and continuity of f on U assure the existence of ū. By Lipschitz

continuity, |f(x, ū) − f(x,u)| < δ holds, when ‖ū − u‖ < δ
L
. Thus, we have inequality,

P

{
u ∈ U : ‖ū − u‖ <

δ

L

}
≤ P{u ∈ U : |f(x, ū) − f(x,u)| < δ}

= P{u ∈ U : f(x, ū) − f(x,u) < δ}
= p(δ,x).
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Thus, lower bound of the probability such as ‖ū−u‖ < δ/L also provides that of p(δ,x). Since

the probability distribution over U is the uniform distribution, the probability of ‖ū−u‖ < δ/L

is given by

P

{
u ∈ U : ‖ū − u‖ <

δ

L

}
=

Vol({u ∈ U : ‖ū − u‖ < δ/L})
Vol(U)

,

where Vol(·) denotes volume under the Lebesgue measure on R
d. We derive a lower bound of

Vol({u ∈ U : ‖ū − u‖ < δ/L}). The radius of S in assumption (a) is denoted by r, and let the

diameter of U defined by supu,v∈U ‖u − v‖ be R. Let S(y, w) be hypersphere of radius w at

center y ∈ R
d,

S(y, w) =
{

x ∈ R
d : ‖x − y‖ ≤ w

}
.

Let us define Ad(θ) for θ ∈ [0, π] as surface area of a part of d-dimensional unit hypersphere

defined by {
x = (x1, . . . , xd) ∈ R

d : ‖x‖ = 1, cos θ ≤ x1

}
.

In other words, Ad(θ) is solid angle in R
d. In Figure 2 (a), Ad(θ) for d = 2 is illustrated. From

assumption on U , there exist a hypersphere, S(c, r) ⊂ U .

When ū ∈ S(c, r), we have

Vol({u ∈ U : ‖ū − u‖ < δ/L}) ≥ Vol({u ∈ S(c, r) : ‖ū − u‖ < δ/L}). (3)

The right-hand side is the volume of the intersection of two hyperspheres such that each radius

is respectively equal to r and δ/L. The volume of these intersection decreases as the distance

between centers (c and ū) of these hyperspheres increases, and therefore, the minimum volume

is attained when ū exists in the boundary of S(c, r). According to Lemma 3.1, the right-hand

side of (3) is lower bounded by Dd(δ/L, r) for 0 ≤ δ/L ≤ 2r. Thus, for ū ∈ S(c, r), a lower

bound,

1

Vol(U)
Dd

(
δ

L
, r

)
≤ P

{
u ∈ U : ‖ū − u‖ <

δ

L

}
, 0 ≤ δ

L
≤ 2r,

is derived.

When ū 6∈ S(c, r), there exists a hypersphere S(dα, αr) ⊂ S(c, r) for 0 < α < 1, where dα is

defined as

dα = ū +
c − ū

‖c − ū‖ (‖c − ū‖ + (1 − α)r) .

Let subsets K1 and K2 be

K1 = conv({ū} ∪ S(dα, αr)) ∪ S(c, r),

K2 =
{

ū + β(v − ū) ∈ R
d : v ∈ S(dα, αr), β ≥ 0

}
,

respectively, where K2 is a cone with vertex at ū. The function ℓ(α) is defined as

ℓ(α) = sup {ℓ : S(ū, ℓ) ∩ K2 ⊂ K1} .
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(a) (b)

Figure 2: (a) Surface area, Ad(θ), of a part of unit hypersphere, {x = (x1, · · · , xd) ∈ R
d : ‖x‖ =

1, cos θ ≤ x1}. In the figure, surface area for d = 2, which denotes the length of the thick arch, is
drawn. (b) Definitions of S(c, r), S(dα, αr), φ, and ℓ(α) are illustrated. The shaded set denotes
S(ū, ℓ(α)) ∩ K2.

The definition of ℓ(α) is illustrated in Figure 2 (b). Note that for 0 ≤ ℓ ≤ ℓ(α), the inclusion

relation, S(ū, ℓ)∩K2 ⊂ K1 ⊂ U , holds. Thus, for 0 ≤ δ/L ≤ ℓ(α), the volume of {u ∈ U : ‖ū−
u‖ < δ/L} is lower bounded by that of {u ∈ S(ū, ℓ)∩K2 : ‖ū−u‖ < δ/L} which is equal to

Vd(δ/L) times Ad(φ)/Ad(π), where Vd(a) denotes the volume of d-dimensional hypersphere with

radius a, and φ is defined as sinφ = αr/‖ū − dα‖. Since ‖ū − dα‖ + αr ≤ R holds, φ is lower

bounded by sin−1 αr
R−αr

. As the result, a lower bound of the volume of {u ∈ U : ‖ū−u‖ < δ/L}
for 0 ≤ δ/L ≤ ℓ(α) is given by

Vol({u ∈ U : ‖ū − u‖ < δ/L}) ≥ Ad(φ)

Ad(π)
Vd

(
δ

L

)
≥

Ad(sin
−1 αr

R−αr
)

Ad(π)
Vd

(
δ

L

)
.

Therefore, we obtain

1

Vol(U)

Ad(sin
−1 αr

R−αr
)

Ad(π)
Vd

(
δ

L

)
≤ P

{
u ∈ U : ‖ū − u‖ <

δ

L

}
(4)

for 0 ≤ δ/L ≤ ℓ(α). Applying the cosine formula, we have

r2 = ‖ū − c‖2 + ℓ(α)2 − 2‖ū − c‖ ℓ(α) cos φ.

From the definition of ℓ(α), larger solution of the quadratic equation is equal to ℓ(α). Substi-

tuting

sinφ =
αr

‖ū − dα‖
=

αr

‖ū − c‖ + (1 − α)r

to the solution, we obtain

ℓ(α) = ‖ū − c‖

√

1 −
(

αr

‖ū − c‖ + (1 − α)r

)2

+

√

r2 − α2r2

( ‖ū − c‖
‖ū − c‖ + (1 − α)r

)2

.
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For ‖ū − c‖ ≥ r, the first term of ℓ(α) is increasing function of ‖ū − c‖. Thus, we have the

inequality,

ℓ(α) ≥ r

√

1 −
(

αr

r + (1 − α)r

)2

+

√

r2 − α2r2

( ‖ū − c‖
‖ū − c‖ + (1 − α)r

)2

≥ r

√

1 −
(

αr

r + (1 − α)r

)2

+
√

r2 − α2r2

= r

(√
1 − α2 +

2
√

1 − α

2 − α

)
.

Therefore, inequality (4) holds for 0 ≤ δ
L
≤ r

(√
1 − α2 + 2

√
1−α

2−α

)
, regardless of ū ∈ U\S(c, r).

It is easy to see 0 ≤
√

1 − α2 + 2
√

1−α
2−α

≤ 2, for 0 ≤ α ≤ 1.

In summary, for any α ∈ (0, 1), inequality

q0(δ) := 1
Vol(U) min

{
Ad(sin−1 αr

R−αr
)

Ad(π) Vd

(
δ
L

)
, Dd

(
δ
L
, r
)}

≤ p(δ,x),

0 ≤ δ ≤ B0 := rL
(√

1 − α2 + 2
√

1−α
2−α

)
.

(5)

is satisfied. It is clear that the lower bound is strictly increasing function with respect to δ. �

Though there would be more tight uniform lower bound for tail probability than q0(δ),

calculation of volume would be more complicated for such lower bound.

The preferable α in (5), denoted by α∗, is given as follows. Typically, inequality

Ad(sin
−1 αr

R−αr
)

Ad(π)
Vd

(
δ

L

)
≤ Dd

(
δ

L
, r

)

will hold. In Theorem 2.5, the value of ǫ is chosen from (0, q0(B0)), where B0 = rL
(√

1 − α2 + 2
√

1−α
2−α

)
,

and then, q0(B0) should take large value for practical use. Thus, α∗ is determined by

α∗ = arg max
0≤α≤1

Ad

(
sin−1 αr

R − αr

)
Vd

(
r

(√
1 − α2 +

2
√

1 − α

2 − α

))

= arg max
0≤α≤1

(
sin−1 αr

R − αr

)d−1(√
1 − α2 +

2
√

1 − α

2 − α

)d

. (6)

When R and r are given, numerical computation of α∗ is easily performed.

3.2 Estimation of Uniform Bound

In practical problems, we need to estimate the function q0(δ) and a constant B0 in (5) to

guarantee the accuracy of resulting randomized solution. We propose a simple way of estimating

q0(δ) for given uncertainty set U and constraint function f . As shown in the proof of Lemma

2.4, the lower bound q0(δ) depends on volume of U , radius of hypersphere S ⊂ U , diameter of

U , and Lipschitz constant L. Here, for specific U and f(x,u), we show how to estimate those

parameters.
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Lipschitz constant L: We consider a quadratic constraint function f(x,u) in x which

is linearly perturbed in terms of u, that is, f(x,u) := x⊤Q(u)x + q(u)⊤x + γ(u), where

Q(u) := Q0 +
∑d

j=1 ujQj , q(u) := q0 +
∑d

j=1 ujqj, and γ(u) := γ0 +
∑d

j=1 ujγj for u ∈ U .

This function is also rewritten as f(x,u) = d(x)⊤u + (x⊤Q0x + q⊤
0 x + γ0), where d(x) :=

(x⊤Q1x + q⊤
1 x + γ1, . . . ,x

⊤Qdx + q⊤
d x + γd)

⊤. Then we have

|f(x,u) − f(x,v)| = |d(x)⊤(u − v)| ≤ max
x∈X

‖d(x)‖ × ‖u − v‖.

It is possible to estimate roughly an upper bound for maxx∈X ‖d(x)‖ as

L :=

√√√√
d∑

j=1

(σmax(Qj)r
2
x + ‖qj‖rx + γj)2

with the maximum eigenvalue σmax(Q) of Q and and the diameter rx of X such as maxx1,x2∈X ‖x1−
x2‖ ≤ rx.

Diameter R of U : If the diameter R of U is not easily available, we can compromise a

hypercube including U and use the length of diagonal line for hypercube as an upper bound of

R. For U described by convex quadratic functions, it is solvable to find a hypercube including

U . Indeed, such a hypercube is obtained by solving 2d quadratic programs
∣∣∣ max e⊤

i u s.t. u ∈ U , (7)

and the ones with the object function −e⊤
i u for i = 1, . . . , d.

Radius r of inscribed hypersphere: We show how to calculate the radius of inscribed

hypersphere for U . At first, we assume that uncertainty set U is described as

U =
{

u ∈ R
d : aT

i u ≤ bi, i = 1, . . . , p
}

.

Let B = {rv + c ∈ R
d : ‖v‖ ≤ 1} be a hypersphere of radius r. The uncertainty set U contains

B if and only if

aT
i (rv + c) ≤ bi, i = 1, . . . , p

holds for all ‖v‖ ≤ 1. Note that equality,

sup
v:‖v‖≤1

aT
i (rv + c) = r‖ai‖ + aT

i c,

holds. In consequence, the maximum radius of inscribed hypersphere is given by the optimal

value of the linear program,

∣∣∣∣∣∣∣∣

max
r,c

r

s.t. r ‖ai‖ + aT
i c ≤ bi, i = 1, . . . , p,

−r ≤ 0.
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We can apply same technique for quadratic constraints. Assume that U is given as

U =

{
u ∈ R

d :
aT

i u ≤ bi, i = 1, . . . , p,

uT Aju + 2dT
j u + ej ≤ 0, j = 1, . . . , q

}
,

where Aj denotes positive definite matrix, and we would like to find the maximum radius, r,

such as B ⊂ U . We first work out the condition under which

uT Aju + 2dT
j u + ej ≤ 0,

holds for all u ∈ B. This occurs if and only if

sup
v: ‖v‖≤1

(rv + c)T Aj(rv + c) + 2dT
j (rv + c) + ej ≤ 0,

and this is equivalent to the condition that there exists λj ≥ 0 such as




−λj − ej − dT
j A−1

j dj 0T (c + A−1
j dj)

T

0 λjI rI

c + A−1
j dj rI A−1

j


 � 0. (8)

The detail of the derivation refers to [3]. Therefore, for uncertainty set described by quadratic

functions and linear functions, finding the maximum radius of inscribed hypersphere is solvable

by semi-definite programs.

If the set U is convex but is not the one described above, we can utilize the following

technique: at first, from U we pick up several points arbitrarily (say, C := {u1, . . . ,uN}) and

then, find a minimum volume ellipsoid covering C by solving a convex program. Then a smaller

ellipsoid shrunk by a factor of the dimension d of U about its center is guaranteed to lie inside

the convex hull of C, that is, inside the assumed U . See also [3] for the details.

Volume Vol(U) of U : We suppose that U is included in hypercube C :=
∏d

i=1[ci, ci] ⊂ R
d,

which is available by the technique proposed for diameter R of U . Monte Carlo method is a

simple way of estimating Vol(U). For some positive number n, let v1, . . . ,vn be random samples

identically and independently distributed according to the uniform distribution over hypercube

C. The volume of U is estimated by ŵ × Vol(C), where ŵ is defined by

ŵ =
1

n

n∑

i=1

I(vi ∈ U) (9)

where I(·) is the indicator function. Note that calculation of Vol(C) is easy. Clearly, ŵ ×Vol(C)

is an unbiased estimator of Vol(U), that is, mean value of ŵ × Vol(C) with respect to random

samples, v1, . . . ,vn, is equal to Vol(U). Computational cost of the estimator depends on how

difficult it is to determine if vi ∈ U or not. When the dimension of U , denoted by d, is not
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so high, the computation of ŵ × Vol(C) will be easily performed. The deviation of ŵ from

Vol(U)/Vol(C) is evaluated by Hoeffding’s inequality [9]: for any τ > 0,

PU

{
ŵ ≤ Vol(U)

Vol(C)
− τ

}
≤ e−2τ2n,

holds, where PU{· · · } denotes the probability distribution over random samples v1, . . . ,vn, each

of which is generated from the uniform distribution over C.

As mentioned above, the radius r of hypersphere S ⊂ U , an upper bound of diameter of U
denoted by R, and Lipschitz constant L of function f(x,u) on U are available. Moreover, the

volume of U is estimated by ŵ×Vol(C) via random sampling over hypercube including U . As the

result, we have an estimator of the uniform lower bound of tail probability, q0(δ). The following

two theorems are analogs of Theorems 2.5 and 2.6, and moreover, probabilistic deviation of the

estimator is taken into account. The function h(δ) and the constant B0 are defined as

h(δ) = min

{
Ad(sin

−1 α∗r
R−α∗r

)

Ad(π)
Vd

(
δ

L

)
, Dd

(
δ

L
, r

)}
,

B0 = rL

(√
1 − α∗2 +

2
√

1 − α∗

2 − α∗

)
,

respectively, where α∗ is the value given by (6). Note that h(δ)/Vol(U) is also a lower bound

of p(δ,x), even if the diameter of U is replaced by its upper bound, and the radius of inscribed

hypersphere S is replaced by its lower bound.

Theorem 3.2. Let n ≥ 1
2τ2 log 1

β
for arbitrary τ > 0 and β ∈ (0, 1), and let ŵ = 1

n

∑n
i=1 I(vi ∈

U) be an unbiased estimator of Vol(U)

Vol(C)
calculated from n random samples which are uniformly

distributed over hypercube C. Also, let N ≥ N(ǫ, η) for ǫ ∈
(
0, h(B0)

(ŵ+τ)Vol(C)

)
and η ∈ (0, 1).

Then, the following inequalities hold simultaneously with probability at least (1 − η) × (1 − β),

(i) V (x̂N ) ≤ ǫ,

(ii) max
u∈U

f(x̂N ,u) ≤ h−1((ŵ + τ)Vol(C)ǫ).

Proof. From the condition of n, inequality,

Vol(U) < (ŵ + τ)Vol(C)

holds in probability of at least 1 − β, and then, we have

0 < ǫ <
h(B0)

(ŵ + τ)Vol(C)
<

h(B0)

Vol(U)

For such ǫ, inequalities, V (x̂N ) ≤ ǫ and maxu∈U f(x̂N ,u) ≤ h−1(Vol(U)ǫ), are simultaneously

satisfied in probability of at least 1− η, as shown in the proof of Theorem 2.5. When Vol(U) ≤
(ŵ + τ)Vol(C) is valid, we have

h−1(Vol(U)ǫ) ≤ h−1((ŵ + τ)Vol(C)ǫ).
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In consequence, (i) and (ii) are valid in probability of at least (1 − η) × (1 − β). �

We can also derive a-posteriori probability for assessments of optimal solution based on the

estimator of q0(δ). Given an optimal solution x̂N of (SCPN ), we apply Monte-Carlo methods

to assess the worst-case violation. Suppose that samples U(M) = {ũ1, . . . , ũM} are identically

and independently distributed over U . The theorem below provides a probabilistic bound of

maxu∈U f(x̂N ,u).

Theorem 3.3. Let x̂N be an optimal solution of (SCPN ). Suppose that n samples are used

to estimate Vol(U), where n satisfies inequality n ≥ 1
2τ2 log 1

β
for fixed τ > 0 and β ∈ (0, 1).

Let M ≥ ln η
ln(1−q̂0(δ)) , where q̂0(δ) = h(δ)

(ŵ+τ)Vol(C)
for fixed δ ∈ (0, B0] and η ∈ (0, 1). Then, the

inequality,

max
u∈U

f(x̂N ,u) < max
ũ∈Ũ

f(x̂N , ũ) + δ

holds with probability at least of (1 − β) × (1 − η).

Proof of the theorem is omitted, since it is almost same as that of Theorem 2.6.

4 Worst-case Violation for Particular Robust Optimization

4.1 Min-max optimization problems

Min-max optimization problem is a common application of robust convex program. Let f(x,u)

be an objective function to be minimized in x, where uncertainty is represented by parameter

u varying among uncertainty set U ⊂ R
d. The constraints on x are specified as x ∈ X ⊂ R

m.

We would like to minimize the objective function under the most disadvantage condition. Thus,

the optimization problem is formalized as min-max problem such as

∣∣∣ min
x

max
u

f(x,u), x ∈ X , u ∈ U ,

which is also written as

(P )

∣∣∣∣∣∣

min
x∈X ,t∈R

t

s.t. f(x,u) − t ≤ 0 ∀u ∈ U .

The min-max problem (P ) is approximated by random sampling such as

(PN )

∣∣∣∣∣∣

min
x∈X ,t∈R

t

s.t. f(x,ui) − t ≤ 0, i = 1, . . . , N.

Set of random samples, {u1, . . . ,uN}, is denoted by U (N), and let V (x̂N , t̂N ) be the violation

probability of a feasible solution (x̂N , t̂N ) for (PN ).
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Note that for min-max problems, the values of objective function are directly connected to

those of constraint functions. Thus, it is possible to assess the optimal value of (P ) by applying

results in Section 2. A uniform lower bound of tail probability for (P ) can be calculated from

U and f as shown in Lemma 2.4.

Theorem 4.1. Let q(δ) be a uniform lower bound of tail probability for 0 ≤ δ ≤ B. Let

ǫ ∈ (0, q(B)), η ∈ (0, 1), N ≥ N(ǫ, η) and (x̂N , t̂N ) be an optimal solution of (PN ). Then,

following inequalities hold simultaneously with probability of at least 1 − η,

(i) V (x̂N , t̂N ) ≤ ǫ

(ii) 0 ≤ opt(P ) − opt(PN ) ≤ q−1(ǫ),

where opt(·) denotes the optimal value of optimization problem.

Proof. Firstly, we have 0 ≤ opt(P ) − opt(PN ), since inequality,

max
û∈U(N)

f(x, û) ≤ max
u∈U

f(x,u),

holds for any x ∈ X from the incursion relation U (N) ⊂ U . Next, we derive an upper bound of

opt(P ) − opt(PN ) in probability. Suppose that V (x̂N , t̂N ) ≤ ǫ, then, we have

p

(
max
u∈U

f(x̂N ,u) − opt(PN ), x̂N

)
≤ ǫ

because t̂N = opt(PN ) holds. The above inequality and assumption of ǫ < q(B) lead to

maxu∈U f(x̂N ,u) − opt(PN ) ≤ B. Thus, applying Lemma 2.4, we have

q

(
max
u∈U

f(x̂N ,u) − opt(PN )

)
≤ p

(
max
u∈U

f(x̂N ,u) − opt(PN ), x̂N

)
≤ ǫ.

In consequence, we obtain

opt(P ) − opt(PN ) ≤ max
u∈U

f(x̂N ,u) − opt(PN ) ≤ q−1(ǫ),

that is valid whenever V (x̂N , t̂N ) ≤ ǫ holds. That is, with probability of at least 1− η, inequal-

ities,

V (x̂N , t̂N ) ≤ ǫ and, 0 ≤ opt(P ) − opt(PN ) ≤ q−1(ǫ)

are satisfied for N > N(ǫ, η). �

Next, we study a-posteriori assessment of optimal value for (PN ) as well as the worst-case

violation of (SCPN ). Once an optimal solution (x̂N , t̂N ) of (PN ) is computed, one can make

a-posteriori assessment of optimal values by Monte-Carlo methods. Suppose that new samples

U (M) = {ũ1, . . . , ũM} are generated independently and identically. Following theorem gives

a probabilistic bound of opt(P ) − opt(PN ) as a-posteriori assessment. Note that a-posteriori

assessment does not require the computation for optimization and even if the number of samples

in U (M) is large, the computation is still tractable.

16



Theorem 4.2. Let q(δ) be a uniform lower bound of tail probability for 0 ≤ δ ≤ B, and let x̂N

be an optimal solution of (PN ). For M ≥ ln η
ln(1−q(δ)) induced from δ ∈ (0, B] and η ∈ (0, 1), the

inequality

0 ≤ opt(P ) − opt(PN ) < max
v∈U (N)∪U(M)

f(x̂N ,v) − max
u∈U(N)

f(x̂N ,u) + δ

holds with probability at least of 1 − η.

Proof. With probability at least 1 − η, the inequality

max
u∈U

f(x̂N ,u) − δ < max
ũ∈U(M)

f(x̂N , ũ)

holds as shown in Theorem 2.6. Hence with probability at least 1 − η, we see

max
ũ∈U(N)∪U(M)

f(x̂N , ũ) − max
û∈U(N)

f(x̂N , û) ≥ max
ũ∈U(M)

f(x̂N , ũ) − max
û∈U(N)

f(x̂N , û)

> max
u∈U

f(x̂N ,u) − δ − max
û∈U(N)

f(x̂N , û)

≥ min
x∈X

max
u∈U

f(x,u) − δ − max
û∈U(N)

f(x̂N , û)

= opt(P ) − opt(PN ) − δ,

and 0 ≤ opt(P ) − opt(PN ) is clear. This is the inequality to be proved. �

Theorem 4.1 and Theorem 4.2 are easily modified for estimated uniform lower bound includ-

ing ŵ in (9).

4.2 Common robust optimization problems

In robust optimization, one of the big issues is to find appropriate uncertainty set, though this

is an application dependent question. Now we introduce some common uncertainty sets U ⊂ R
d

and function f(x,u) for robust optimization problems.

• The ellipsoidal uncertainty set U = {u : ‖u‖ ≤ 1,u ∈ R
d} is proposed

– in [2] for an uncertain linear program with a linear uncertain constraint f(x,u) :=

q(u)⊤x, where q(u) = q0 +
∑d

j=1 ujqj, and

– in [1] for an uncertain quadratically constrained convex quadratic programs (QCQP)

with a quadratic uncertain constraint f(x,u) = x⊤A(u)⊤A(u)x + q(u)x + γ(u),

where (A(u), q(u), γ(u)) = (A0, q0, γ0) +
∑d

j=1 uj(Aj , qj, γj).

• The norm-constrained uncertainty set,

Uk :=

{
u =

(
v1

v2

)
: ‖u‖ ≤ 1,v1 ≥ 0,v1 ∈ R

k,v2 ∈ R
d−k

}
,

is proposed in [12] for a QCQP problem
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– with a quadratic uncertain constraint f(x,u) := x⊤Q(v1)x+q(v1)
⊤x+γ(v1), where

u = v1 and (Q(u), q(u), γ(u)) = (Q0, q0, γ0) +
∑d

j=1 uj(Qj , qj, γj), and also,

– with a quadratic uncertain constraint f(x,u) := x⊤Q(v1)x+q(v2)
⊤x+γ(v2), where

Q(u) = Q0 +
∑k

j=1 ujQj, (q(u), γ(u)) = (q0, γ0) +
∑d

j=d−k+1 uj(qj , γj).

The robust optimization problem (RCP ) with f(x,u) and U described above is tractable

whenever X is convex set, and thus, it is not necessary to obtain an approximated solution via the

sampled problem (SCPN ). However, the evaluation of a uniform lower bound of tail probability

for the above uncertainty sets is useful to solve other kinds of non-tractable problems, for exam-

ple, the minimax relative regret problem (robust deviation problem): minx∈X maxu∈U f(x,u) :=

g(x,u)−miny∈X g(y,u), where g(x,u) is a convex quadratic function in x. Kouvelis and Yu [14]

proposed a scenario based approach to represent the input data uncertainty u in the minimax

relative regret problem.

The proof of Lemma 2.4 provides expressions for B0 and q0(δ), where B0 and q0 depend on

volume of U , radius of hypersphere S ⊂ U , diameter of U , and Lipschitz constant L. However,

for common robust optimization problems presented above, it is possible to provide tighter

estimations for uniform lower bound of the tail probability.

Lemma 4.3. Under the uniform distribution on ellipsoidal uncertainty set U = {u ∈ R
d :

‖u‖ ≤ 1}, the inequality

q1(δ) :=
1

Vd(1)
Dd

(
δ

L
, 1

)
≤ p(δ,x), 0 ≤ δ ≤ B1 := 2L

holds for any x ∈ X , where Vd(r) denotes the volume of d-dimensional hypersphere with radius

r, and Dd(r, s) is defined as (2).

Proof. For a given x ∈ X , let ū be an optimal solution in arg maxu∈Uf(x,u). Since ‖u−ū‖ < δ
L

implies |f(x, ū) − f(x,u)| ≤ L‖u − ū‖ < δ, we have

P

{
u ∈ U : ‖u − ū‖ ≤ δ

L

}
= P

{
u ∈ U : ‖u − ū‖ <

δ

L

}

≤ P
{
u ∈ U : max

v
f(x,v) − δ < f(x,u)

}
.

The probability on the left-hand side is described as Vol({u ∈ U : ‖u − ū‖ ≤ δ
L
})/Vol(U).

The denominator, Vol(U), is equal to Vd(1). Next, we evaluate a lower bound of Vol({u ∈
U : ‖ū − u‖ ≤ δ

L
}). This is the volume of the intersection of two hyperspheres such that each

radius is respectively equal to 1 and δ
L
, and the distance between two centers is equal to ‖ū‖. For

any two hyperspheres, the volume of the intersection decreases as the distance between centers

of two hyperspheres increases. Applying this fact, we find that Vol({u ∈ U : ‖ū − u‖ ≤ δ
L
})

takes minimum value when ‖ū‖ = 1, because of ū ∈ U . When ‖ū‖ = 1, we have Vol({u ∈
U : ‖ū − u‖ ≤ δ

L
}) = Dd

(
δ
L
, 1
)

according to Lemma 3.1, and thus, reach the conclusion. �
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Figure 3: If ‖ū‖ ≤ 1 − rk, the hypersphere of radius rk centered at ū is included in unit
hypersphere.

The value of ǫ should be included in the interval (0, q1(B1)), when we apply Theorem 2.5 or

Theorem 4.1 to obtain upper bound of the worst-case violation. For the function q1, however,

q1(B1) = 1
Vd(1)Dd(2, 1) = 1 holds, and thus, we can take any value of (0, 1) for probability ǫ.

Since function q1(δ) is continuous and increasing with respect to δ, it is easy to calculate q−1
1 (ǫ)

that is a uniform bound of the worst-case violation.

We extend Lemma 4.3 for the norm-constrained uncertainty set Uk.

Lemma 4.4. Under the uniform distribution on norm-constrained uncertainty set

Uk :=

{
u =

(
v1

v2

)
: ‖u‖ ≤ 1,v1 ≥ 0,v1 ∈ R

k,v2 ∈ R
d−k

}
,

the inequality

q1(δ) ≤ p(δ,x), 0 ≤ δ ≤ L√
k + 1

holds for any x ∈ X , where the function q1 is defined in Lemma 4.3.

Proof. Let rk be 1√
k+1

, and s be δ
L
, for the sake of simplicity. For any ū ∈ Uk, we estimate an

uniform lower bound of the volume of {u ∈ Uk : ‖ū − u‖ ≤ s} which is described as W ∩ Vk,

where W := {u : ‖ū − u‖ ≤ s, ‖u‖ ≤ 1} and Vk := {u ∈ R
d : ui ≥ 0, i = 1, . . . , k}. Note

that the set W is the one considered in Lemma 4.3, while the range [0, rkL] of δ is smaller than

before. The proof is decomposed into two parts. The case of ‖ū‖ ≤ 1− rk is firstly studied, and

secondly, the case of 1 − rk < ‖ū‖ ≤ 1 is considered. Geometrical meaning of these conditions

is illustrated in Figure 3.

First, we prove Vol(W∩Vk)

Vol(Uk)
≥ q1(δ) under the condition of ‖ū‖ ≤ 1− rk. Let u be an element

of W ∩ {ū + x : x1, . . . , xk ≥ 0}, then, ui ≥ ūi holds for i = 1, . . . , k. Since ū lies in Uk, we

have inequalities ūi ≥ 0, i = 1, . . . , k. Thus, inequalities ui ≥ ūi ≥ 0, i = 1, . . . , k are valid. This

19



denotes u ∈ W∩Vk. As the consequence, we obtain Vol(W∩Vk) ≥ Vol(W∩{ū+x : x1, . . . , xk ≥
0}). Since {u : ‖ū − u‖ ≤ s} ⊂ {u : ‖u‖ ≤ 1} holds under the conditions ‖ū‖ ≤ 1 − rk and

s ≤ rk, the equality, Vol(W ∩ {ū + x : x1, . . . , xk ≥ 0}) =
(

1
2

)k
Vd(s) holds. On the other hand,

the volume of Uk is equal to
(

1
2

)k
Vd(1), and thus, we have

Vol(W ∩ Vk)

Vol(Uk)
≥
(

1
2

)k
Vd (s)

(
1
2

)k
Vd(1)

≥ q1(δ),

where the last inequality is the result of Lemma 4.3.

Next, we assume 1−rk < ‖ū‖ ≤ 1 and k < d. Let ei (i = 1, . . . , d) be unit coordinate vectors.

If there exists u ∈ W such as e⊤
i u < 0, we say, ei cuts W. We reorder unit coordinate vectors

from e1 to ek such that e1, . . . ,eℓ cut W, and eℓ+1, . . . ,ek do not cut W . For ℓ + 1 ≤ i ≤ k,

equality Vol(W ∩ Vi−1) = Vol(W ∩ Vi) holds clearly. In what follows, we show that inequality

Vol(W ∩ Vi) ≥ 1
2Vol(W ∩ Vi−1) holds for any i = 1, . . . , ℓ. The key of the proof is to show

that there exists a hyperplane that divides W ∩ Vi−1 into two subsets with same volume and

W ∩ Vi includes one of them. Let i be a positive integer less than or equal to ℓ, and Πi be

the orthogonal projection matrix onto the subspace spanned by {ei, . . . ,ed}, that is, Πiu =

(0, . . . , 0, ui, . . . , ud)
⊤ for all u = (u1, . . . , ud)

⊤ ∈ R
d. For any j = 1, . . . , i, 0 ≤ ūj < s ≤ rk is

satisfied, because e1, . . . ,ei cut W . From the assumption ‖ū‖2 > (1 − rk)
2, we have inequality

‖Πiū‖2 > r2
k, since ‖Πiū‖2 > (1 − rk)

2 − ū2
1 · · · − ū2

i−1 > (1 − rk)
2 − (k − 1)r2

k = r2
k. Thus, for

any u such as ‖u − ū‖2 ≤ s2 (≤ r2
k), we have

u⊤Πiū > 0,

because r2
k ≥ ‖u − ū‖2 ≥ ‖Πi(u − ū)‖2 ≥ ‖Πiū‖2 − 2u⊤Πiū > r2

k − 2u⊤Πiū. Let us define the

vector b as

b = ei −
ūi

‖Πiū‖2
Πiū,

where b is well-defined because of ‖Πiū‖2 > r2
k > 0. The vector b is not zero vector, because

inequalities, 0 ≤ ūi < s ≤ rk and ‖Πiū‖ > rk, assure that the norm of ūi

‖Πiū‖2 Πiū is strictly

less than one. Note that the inequality, e⊤i b = 1 − ū2
i

‖Πiū‖2 ≥ 0 holds. In the following way, we

find that W ∩ Vi−1 is symmetric with respect to the hyperplane defined by {u ∈ R
d : b⊤u = 0}.

We have the equalities, b⊤ej = 0 (j = 1, . . . , i − 1) and b⊤ū = 0. Note that b⊤Πiū = 0 is

also satisfied. Let the symmetric transformation matrix T be T = Id − 2
‖b‖2

bb⊤, where Id is

d × d identity matrix. Using equalities, Tū = ū, Tej = ej (j = 1, . . . , i − 1), and ‖Tu‖ = ‖u‖
(∀u ∈ R

d), we can verify {Tv | v ∈ W ∩ Vi−1} = W ∩ Vi−1, by confirming each condition of

W ∩ Vi−1. Now, we give a proof of the incursion relation,

W ∩ Vi−1 ∩ {u : b⊤u ≥ 0} ⊂ W ∩ Vi.

First, we define an orthogonal decomposition of u ∈ R
d. Let U1 be the subspace spanned by

{e1, . . . ,ei−1}, and U ′
2 be the subspace spanned by {ei, . . . ,ed}. Since U ′

2 involves b and Πiū,
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the subspace U ′
2 is decomposed into two subspaces, one is the subspace spanned by {b,Πiū} and

the other is its orthogonal complement U2 in U ′
2. As the result, any vector u ∈ W ∩ Vi−1 ∩ {u :

b⊤u ≥ 0} has the orthogonal decomposition,

u = α b + β Πiū + u1 + u2,

where α, β ∈ R, u1 ∈ U1 and u2 ∈ U2. Note that the equality e⊤i u2 = 0 is valid, since the

definition of b implies that ei is represented by linear combination of b and Πiū. Recall that

for u ∈ W ∩ Vi−1 ∩ {u : b⊤u ≥ 0}, we have inequality, u⊤Πiū > 0, in addition to b⊤u ≥ 0.

Moreover, we have b⊤Πiū = 0 and e⊤
i b ≥ 0. From b⊤u ≥ 0 and u⊤Πiū > 0, we obtain

α ≥ 0 and β > 0. Thus, the inequality, e⊤
i u = αe⊤

i b + β e⊤
i Πiū ≥ 0, holds, because of α ≥ 0,

e⊤
i b ≥ 0, β > 0 and e⊤

i Πiū = ūi ≥ 0. Therefore, u ∈ W ∩ Vi is valid. From the incursion

relation, W ∩ Vi−1 ∩ {u : b⊤u ≥ 0} ⊂ W ∩ Vi, we have the inequality of volume formula,

Vol(W ∩ Vi) ≥ 1
2Vol(W ∩ Vi−1), since the hyperplane defined by b⊤u = 0 separates W ∩ Vi−1

into two regions with the same volumes. As the conclusion, we obtain

Vol(W ∩ Vk) = · · · = Vol(W ∩ Vℓ) ≥
1

2
Vol(W ∩ Vℓ−1) ≥ · · · ≥

(
1

2

)ℓ

Vol(W) ≥
(

1

2

)k

Vol(W)

and thus, Vol(W∩Vk)
Vol(Uk) ≥ q1(δ), in the same way as the case of ‖ū‖ ≤ 1 − rk.

When 1 − rk < ‖ū‖ ≤ 1 and k = d, that is, nonnegative constraints are imposed for all

components of u, there exists an index i such that the region W∩Vd is included in {u : e⊤
i u ≥ 0}.

If there is no such index, inequality 0 ≤ ūi < s ≤ rd, holds for all i = 1, . . . , d, and this contradicts

1 − rd < ‖ū‖. Without loss of generality, the nonnegative constraint, ui ≥ 0, can be deleted,

when we evaluate the volume of W ∩ Vd. As the result, only d − 1 nonnegative constraints are

essential, and thus, the discussion under the assumption k < d holds even for k = d. �

5 Numerical Simulations

5.1 Test Problem

We consider a robust linear program:

(P )
∣∣∣ min

x
max
u

q(u)⊤x s.t. u ∈ U , x ∈ X ,

where q(u) := q0 +
∑d

j=1 ujqj , U := {u ∈ R
d : ‖u‖ ≤ 1} and X := {x ∈ R

m : ‖x‖ ≤ 1}. This

problem can be described as a second order cone program, which is solvable via interior point

methods. We measure the difference between the optimal value of (P ) and that of its sampled

problem (PN ) experimentally and theoretically. Theorem 4.1 guarantees with probability at

least 1 − η that the difference of values opt(P ) − opt(PN ) is within [0, q−1(ǫ)] for ǫ ∈ (0, q(B)),

where q(δ) is a uniform lower bound of tail probability for 0 ≤ δ ≤ B. Several techniques to

construct uniform lower bound of tail probability is presented in previous sections. Especially,
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Theorem 3.2 replaces the confidence probability 1 − η with (1 − η) × (1 − β), and provides a

general way to construct a uniform lower bound q0(δ) as

q0(δ) =
1

(ŵ + τ)Vol(C)
min





Ad

(
sin−1 α∗r

R−α∗r

)

Ad(π)
Vd

(
δ

L

)
, Dd

(
δ

L
, r

)
 ,

0 ≤ δ ≤ B0 := rL

(√
1 − α∗2 +

2
√

1 − α∗

2 − α∗

)
,

where α∗ is given by 6. Note that τ > 0 is arbitrary, ŵ is defined as (9) and C is hypercube

including U . On the other hand, for the above problem (P ) with the ellipsoidal uncertainty set

U , it is possible to utilize easily achievable function that is provided as

q1(δ) =
1

Vd(1)
Dd

(
δ

L
, 1

)
, 0 ≤ δ ≤ B1 := 2L.

To form q1(δ), Lipschitz constant L and the dimension d of u are necessary. Additionally, the

definition of q0(δ) requires the diameter R of U , the radius r of inscribed hypersphere in U , and

an upper bound (ŵ + τ)Vol(C) for the volume Vol(U).

Now, we evaluate the probabilistic theoretical error in these two ways: one is q−1
1 (ǫ) devised

for the the ellipsoidal uncertainty set U , and the other is q−1
0 (ǫ) under the assumption that the

shape of U is not exactly known, that is, R, r and Vol(U) are unknown.

Lipschitz constant L: Lipschitz constant L of the objective function q(u)⊤x can be esti-

mated as the square root of the maximum eigenvalue of matrix
∑d

i=1 qiq
⊤
i , that is,

√
σmax(

∑d
i=1 qiq

⊤
i ),

since the inequality

| q(u)⊤x − q(v)⊤x | = | d(x)⊤(u − v) | ≤ max
x∈X

‖d(x)‖ × ‖u − v‖

holds for d(x) := (q⊤
1 x, . . . , q⊤

d x)⊤.

Diameter R of U : A hypercube including U is obtained as [−1, 1]d via 2d quadratic programs

(7). Then, the length of diagonal line of the hypercube, 2
√

d, provides an upper bound for the

diameter R of U . Therefore, we regard 2
√

d as diameter R.

Radius r of inscribed hypersphere: The radius r = 1 is achieved by solving the optimiza-

tion problem, which consists of the objective function r and a positive semi-definite constraint

(8) induced from U = {u ∈ R
d : ‖u‖ ≤ 1}.

Volume Vol(U) of U : Vol(U) is estimated approximately by Monte-Carlo methods. Since

a hypercube including Vol(U) is already obtained as C = [−1, 1]d, ŵ is available with (9) and

Vol(C) = 2d.
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Table 1: Theoretically estimated error for opt(P ) − opt(PN ) (η = 0.01)

q−1
0 (ǫ) R.err-0 q−1

1 (ǫ) R.err-1 [%]

N(ǫ, η) = 2.50 × 103 ǫ = 4.88 × 10−2 − − 1.98 5.67 %

N(ǫ, η) = 2.50 × 104 ǫ = 7.14 × 10−3 4.04 11.58 % 1.01 2.89 %

N(ǫ, η) = 4.50 × 104 ǫ = 4.30 × 10−3 3.42 9.80 % 0.84 2.41 %

N(ǫ, η) = 6.89 × 107 ǫ = 5.69 × 10−6 0.37 1.06 % 0.09 0.25 %

Legend: ’−’ denotes that ǫ is out of range.
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Figure 4: Empirical error opt(P ) − opt(PN )

5.2 A-priori Assessment

We constructed (P ) with the dimension m = 15 of x and d = 3 of u. The linear objective

function consists of q0 = (10, . . . , 10)⊤ and qj ∈ [−1, 1]m, (j = 1, 2, 3), which are generated

randomly. Then, Lipschitz constant L = 4.01. With the parameter setting such as α = 0.01 and

β = 0.01, we obtain an upper bound (ŵ + α)Vol(C) = 4.23 for Vol(U) = 4.19. Then, B0 = 6.13

and q0(B0) = 2.49 × 10−2 are calculated.

Table 1 indicates the relation between the number of random samples N(ǫ, η) and the theo-

retical error measures (theoretical error q−1
0 (ǫ), q−1

1 (ǫ) and their theoretical relative errors) under

the above parameter setting. The theoretical relative error is defined by R.err-i :=
q−1
i

(ǫ)
|opt(P )| × 100

(i = 0, 1). When the function q1 is utilized to evaluate the error opt(P )−opt(PN ) for an optimal

solution of (PN ) with N = 2.50× 104 random samples, it is guaranteed with probability at least

1−η(= 0.99) that the error is within 1.01, which corresponds to 2.89% theoretical relative error.

The estimation accuracy, however, deteriorates with the use of generally constructed function

q0. Indeed, the evaluation of q−1
0 (ǫ) is guaranteed only in the small range ǫ ∈ (0, 2.49 × 10−2),

while ǫ ∈ (0, 1) for q1. Moreover, the difference of estimations q−1
0 (ǫ) and q−1

1 (ǫ) is large with

fixed N(ǫ, η).
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Table 2: A-posteriori assessments for x̂N1 and x̂N2 (η = 0.01)

x̂N1 (N1 = 2500)

δ0 A.err-0 R.err-0 δ1 A.err-1 R.err-1

M = 8.68 × 103 1.607 1.659 4.75% 0.392 0.444 1.27 %

M = 1.09 × 106 0.321 0.413 1.18% 0.077 0.169 0.48 %

M = 1.36 × 108 0.064 0.164 0.47% 0.015 0.115 0.33 %

x̂N2 (N2 = 45000)

δ0 A.err-0 R.err-0 δ1 A.err-1 R.err-1

M = 8.68 × 103 1.607 1.607 4.61 % 0.392 0.392 1.12 %

M = 1.09 × 106 0.321 0.328 0.94 % 0.077 0.084 0.24 %

M = 1.36 × 108 0.064 0.077 0.22 % 0.015 0.028 0.08 %

On the other hand, from an empirical point of view, less number N of samples may be

required to attain an approximated solution x̂N with the empirical error opt(P ) − opt(PN ) ≤
1.01. To show this, for each N , 100 different sets of random samples are drawn and sampled

problems (PN ) constructed from the random samples are solved. Figure 4 shows the maximum,

average and minimum values among 100 optimal values of (PN ) for each N . Certainly, the

empirical error opt(P ) − opt(PN ) achieved with N = 2.50 × 104 is far less than the theoretical

error q−1
1 (7.14 × 10−3) = 1.01.

5.3 A-posteriori Assessment

Next, a-posteriori assessments are carried out for x̂Ni
(i = 1, 2), which are obtained via sampled

problems (PNi
) with N1 = 2500 and N2 = 45000, respectively. In a-posteriori assessment,

we can utilize q̄(δ, x̂N ), defined for the solution x̂N , instead of uniform lower bound. For the

concerned problem (P ), q0(δ) and q1(δ) are reformed with Lipschitz constant L = ‖d(x̂N )‖,
where d(x) := (q⊤

1 x, . . . , q⊤
d x)⊤. L = 3.79 is evaluated for x̂Ni

(i = 1, 2).

Now we compute function values and obtain maxv∈U (M) f(x̂N ,v) for some fixed M > 0. As

a theoretical error measure, we define

A.err-i := max
v∈U (N)∪U(M)

f(x̂N ,v) − max
u∈U(N)

f(x̂N ,u) + δi

for δi satisfying M = ⌈ ln η
ln(1−qi(δi))

⌉ with fixed M and η = 0.01. Theorem 4.2 guarantees with

probability at least 1−η that the error opt(P )−opt(PN ) is less than A.err-i whenever δi ∈ (0, B0]

holds.

Table 2 shows theoretical error measures obtained via a-posteriori assessments for the so-

lutions x̂N1 and x̂N2. R.err-i is evaluated by A.err-i
opt(P ) (i = 1, 2). A-posteriori assessment with
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M = 1.36 × 108 ensures that these solutions x̂Ni
(i = 1, 2) approximate an optimal solution of

(P ) fairly well. Indeed, for x̂N1 with N1 = 2500, a-posteriori assessment with function q1(δ)

guarantees that the relative error is within 0.33% with probability 1 − η (= 0.99), while 5.67%

relative error is guaranteed via a-priori assessment. When generally formulated function q0(δ) is

utilized for a-posteriori assessment, 0.47% and 0.22% relative errors are estimated for x̂N1 and

x̂N2 , respectively. Furthermore, as an advantage of a-posteriori assessment, we mention that the

computational tasks necessary for a-posteriori assessment are just function evaluations and the

assessment does not require computation for optimization. Therefore, even if the number M is

large, computation of a-posteriori assessment is still tractable.

For achieving a nice approximation of an optimal solution of (P ), it might be a clever way

to solve (PN ) with appropriately large N and check the accuracy of the obtained solution x̂N

via a-posteriori assessment. If the solution is sufficiently accurate, it can be accepted as almost

optimal solution of (P ).

6 Concluding Remarks

Sampling convex programs are applied to solve uncertain convex programs. Calafiore and Campi

[4] have proposed sufficient number of random samples to achieve small violation probability,

and along this line, we stochastically evaluate the worst-case violation. To derive an upper

bound of the worst-case violation, uniform lower bound of tail probability q(δ) has important

role. For general uncertainty set U , we construct the function q(δ), and show a simple way

of estimating q(δ). Using such q(δ), we give the relation between violation probability and

the worst-case violation, which provides an upper bound of joint probability such that both

violation probability and the worst-case violation take small values. The uniform lower bound

q(δ) is also useful for a-posteriori assessment, which derives a reliable upper bound of the worst-

case violation at an optimal solution of sampled convex program. We apply our results on the

worst-case violation to min-max optimization problems, and derive upper bounds for optimal

values.

Simple numerical simulations are also shown. The number of random samples tends to

be large to make the worst-case violation enough small before solving optimization problems.

However, throughout our numerical simulations, it is confirmed that a-posteriori assessment is

effective to estimate the worst-case violation at an optimal solution of sampled convex program.

Indeed, the a-posteriori assessment is carried out with high accuracy without heavy computa-

tional costs.

When uncertainty set is nonconvex, or more complicated shape, the uniform lower bound

q0(δ) is not so tight for tail probability. As the result, the number of random samples tends to be

large, and the optimization problem will be intractable. Thus, as a future work, it is important

to propose a way of reducing the number of randomly sampled constraint functions.
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