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Abstract

Belief propagation (BP) algorithm has been becoming increasingly a
popular method for probabilistic inference on general graphical models.
When networks have loops, it may not converge and, even if it converges,
beliefs may not be equal to exact marginal probabilities. When networks
have loops, the algorithm is called Loopy BP (LBP). Tatikonda and Jor-
dan applied Gibbs measures theory to LBP algorithm and derived a suf-
ficient condition of the convergence of LBP algorithm. In this paper, we
try to proceed the another application of Gibbs measure theory to LBP
algorithm. As a consequence, we give error bounds between marginal
probabilities and the corresponding beliefs under a certain condition if
the algorithm converges. We also give numerical experiments to see the
effectiveness.

1 Introduction

The belief propagation (BP) algorithm is a tool with which one can calcu-
late beliefs, marginal probabilities, of probabilistic networks without loops (e.g.,
Bayesian networks) in a time proportional to the number of nodes. It has the
origin in the probabilistic expert system theory proposed by Pearl et al., see
Pearl [6]. Similar algorithms appear in several applications such as Viterbi al-
gorithm in hidden Markov models, iterative algorithms for Gallager codes and
turbocodes, Kalman filter and the transfer-matrix approach in physics.

As such, it can be formally applicable to networks with loops. In that case,
the algorithm is called loopy BP (LBP). However, if networks have loops, the
algorithm may not converge and, even if it converges, beliefs may not equal to
exact marginal probabilities. Nevertheless, applications of the LBP algorithm
have been reported to be remarkably useful such as in the coding theory (cf.
Frey [1], McEliece et al. [4] and Murphy et al. [5]).

Weiss [9] discussed the LBP algorithm on networks with a single loop and
Weiss and Freeman [10] discussed the LBP algorithm on Gaussian networks. A
basic idea of Weiss is the fact that the calculation of the LBP algorithm is equiv-
alent to that on corresponding infinite trees called computation trees. Tatikonda
and Jordan [8] pursued his idea and formulated the convergence problem as that
of Gibbs measures on computation trees. They showed a relationship between
the convergence of LBP algorithm and the phase transition phenomena on the
associated computation trees in a proceeding paper.

In this paper, we use Gibbs measure theory to measure the discrepancy of
marginal probabilities and the corresponding beliefs of LBP algorithm.

We give a review of the BP algorithm in Section 2. In Section 3, we introduce
Gibbs measure theory and review the application results for LBP algorithm.
In Section 4, we introduce the concept of measuring two probability measures
developed in Gibbs measure theory, apply it to the LBP algorithm with pair
potential, and show some results. In Section 5, we give numerical experiments
to see the effectiveness of these results. In Section 6, we give a conclusion and
a remark.
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2 BP algorithm and computation trees

There are several existing formulations of BP algorithm. The one used in this
paper is as follows. Let G be a connected and undirected finite network. A
random variable xi is associated with each i ∈ G and yi is its observation. The
state space Ei of xi is finite. Some yi may be missing. We consider a probability
function on G of the form

p(x | y) =
1

Z

∏

i∼j

φij(xi, xj)
∏

i∈G

φi(xi, yi),

where ∼ denotes the neighborhood relationship, and the first product extends
over all neighboring nodes (i, j). Here i ∈ G is said to be a neighbor of j ∈ G if
there exists an edge between i and j in G. We call (G, p) a probabilistic network

with the network G and the joint distribution p. Throughout this paper, Z
stands for normalizing constants and are not always the same. Usually, the
existence of a data yi restricts the state space Ei to {yi} effectively. We will
adopt this convention and, further, suppress the dependencies of φi’s on {yi}.
Therefore, it takes the form

p(x) =
1

Z

∏

i∼j

φij(xi, xj)
∏

i∈G

φi(xi). (1)

It is the basic assumption of this paper that φij(·, ·) and φi(·) are all positive.
For each pair of neighboring nodes (i, j) and each state xj ∈ Ej , we consider

the message m
(n)
ij (xj), n = 1, 2, . . .. These messages obey the following update

rule called the belief propagation (BP):

m
(n+1)
ij (xj) =

1

Z

∑

xi∈Ei

φij(xi, xj)φi(xi)
∏

k∈∂i\{j}

m
(n)
ki (xi), (2)

where ∂i denotes the set of all neighboring nodes of i. In the following, |A| for

a set A means its cardinality. All messages are initialized as m
(0)
ij (xj) ≡ 1/|Ej|.

If messages m
(n)
ij (xj) converges, its limit is denoted by mij(xj). They satisfy

the relation:

mij(xj) =
1

Z

∑

xi∈Ei

φij(xi, xj)φi(xi)
∏

k∈∂i\{j}

mki(xi). (3)

For these messages, the belief for each node i is the normalized product

bi(xi) =
1

Z
φi(xi)

∏

k∈∂i

mki(xi), xi ∈ Ei. (4)

If a probabilistic network has no loops, i.e., tree-like, it is known that all the

messages {m
(n)
ij (xj)} converge after a finite number of the BP updates and that
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Figure 1: A network G and the corresponding computation tree for the root
node 1 with depth 4.

the belief bi(·) is equal to the marginal probability P {xi = ·} for each i ∈ G,
see Jensen [3]. On the other hand, for probabilistic networks with loops, the
messages may not converge and, if they do converge, the beliefs may not be equal
to the marginal probabilities. In particular, for a probabilistic network with
loops, we call this algorithm loopy belief propagation (LBP). In order to study
the LBP algorithm, Weiss [9] introduced the concept of unwrapped networks

(computation trees in Tatikonda and Jordan [8]), which are associating infinite

trees Tk, k ∈ G. Tk is the limit of increasing finite trees {T
(n)
k }, n = 1, 2, . . .,

defined as follows, see Fig. 1.

1. Let Ni = 0, i 6= k, and Nk = 1. For convenience, let T
(0)
k = {k(1)} where

k(1) is a copy of k.

2. Let {i, j, . . .} = ∂k, Ni = Nj = · · · = 1 and i(1), j(1), . . . be copies of

i, j, . . . respectively. The first computation tree T
(1)
k consists of nodes

k(1), i(1), j(1), . . . and corresponding edges (k(1), i(1)), (k(1), j(1)), . . ..

3. If the n-th computation tree T
(n)
k is defined, the next computation tree

T
(n+1)
k is defined to be T

(n)
k augmented by new nodes and edges repeating

the following steps:

(a) For each edge (r(`), s(m)) of T
(n)
k with r(`) /∈ T

(n−1)
k , let i, j, . . ., be

the nodes ∂r\{s} (if non-empty).

(b) Let Ni ← Ni + 1, Nj ← Nj + 1, . . . and i(Ni), j(Nj), . . ., be new
copies of i, j, . . . respectively. Add new nodes i(Ni), j(Nj), . . . and
corresponding edges

(i(Ni), r(`)), (j(Nj), r(`)), . . . to T
(n)
k .

The state space Ei is associated with each node i(n) ∈ Tk and let φi(n)j(m) =
φij and φi(n) = φi. If G has no loops, Tk is the same as G except labeling of

3



nodes. It is easily seen that the message m
(n)
jk (xk) which is the result of the

n-th BP update with the parallel update rule on G starting from k is equal to

m
T

(n)
k

j(1)k(1)(xk), the result of the n-th BP update of messages performed on T
(n)
k ,

that is, on Tk starting from k(1). Therefore, the limiting message heading for
k, if exists, is the same for both G and Tk, a key idea why we consider the
computation trees besides the original probabilistic networks.

3 Gibbs measures and LBP algorithm for pair

potential

In this section, we introduce Gibbs measure theory briefly and review the rela-
tionships with LBP algorithm.

Let S be a finite or infinite site set. A discrete and finite state space Ei

is associated with each i ∈ S. A configuration Ω is defined by the set of all
possible configurations. Specifically, Ω ≡ ES =

∏

i∈S Ei. Its restriction to a
subset Λ ⊂ S is denoted by ΩΛ. Let I be the set of non-empty finite subsets
of S. A σ-field of Ω is denoted by F. An interaction potential (or simply a
potential) is a family Φ = (ΦA)

A∈I of functions ΦA : Ω 7→ R with the following
properties:

1. For each A ∈ I, ΦA is FA-measurable. Here FA is the restriction of F to
A.

2. For all Λ ∈ I and ω ∈ Ω, the series
∑

A∈I,A∩Λ6=∅
ΦA(ω) exists.

A Gibbs specification for a potential Φ is a system {γΛ(· | ξ) : Λ ∈ I, ξ ∈ ES}
of probability measures defined by

γΛ(x|ξ) =
1

ZΛ,ξ

exp







−
∑

A⊂Λ

ΦA(xA)−
∑

A∩Λ6=∅

ΦA(xAΛ , ξAΛc )







for all Λ ∈ I and x ∈ EΛ, where ZΛ,ξ is the normalizing constant called the
partition function and AΛ = A\Λ. The measure γΛ(x | ξ) is called the Gibbs

distribution in Λ with boundary condition ξ. It is noted that γΛ(x | ξ) is depen-
dent on ξ only through ξ∂Λ.

A probability measure µ on (ES , B) is called a Gibbs measure for Φ if it
satisfies the following DLR (Dobrushin-Lanford-Ruelle) equations:

µ(x | BS\Λ = ξ) = γΛ(x | ξ), ξ ∈ E∂Λ,

for all Λ ∈ I, where x ∈ EΛ is canonically embedded into ES as x×ES\Λ. Since
µ(x | BS\Λ) = µ(x | B∂Λ), such µ is also called a Markov random field.

It should be noted that, for a certain potential Φ, there is a possibility that
the Gibbs measure µ which satisfies the above equation is not unique. Let GΦ
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denote the set of all Gibbs measures for a potential Φ. Also, the notation G(γ)
for a specification γ is often used in particular when one is conscious of the
conditional probabilities rather than the potential. In terms of Gibbs measure
theory, it is said that a phase transition occurs if |GΦ| > 1 (i.e., |G(γ)| > 1).

Tatikonda and Jordan [8] applied the theory of Gibbs measures to study the
property of the LBP algorithm through the concept of computation tree in pair
potential case, i.e., the potential Φ is defined by {Φi, Φij} where {Φi} and {Φij}
are certain 1-body and 2-body potentials.

In fact, the properties of Gibbs measures defined on general tree networks
had already been discussed in Gibbs measure theory. In that discussion, the con-
cept of boundary law is utilized as an important concept. Tatikonda and Jordan
showed the relationship between the convergent messages and the boundary law
for the associated Gibbs measure on the corresponding limit computation tree,
then they concluded that the uniqueness of boundary law guarantees the con-
vergence of the LBP algorithm. They also introduced an uniqueness condition
called Simon’s condition of Gibbs measure theory as a convergence condition of
the LBP algorithm.

Recently, Taga and Mase [7] discussed the difference of convergence ratio
between so-called sequential and parallel update orders using Gibbs measure
theory. In their paper, they showed sequential update order always converges
faster than parallel one under the condition of absence of phase transitions.
They also showed sequential update order is expected to converge faster gener-
ally through numerical experiments.

4 Comparison between marginal probabilities and

beliefs

We give another application of Gibbs measure theory in this section to measure
the discrepancies between marginal probabilities of probabilistic networks with
pair potentials and the corresponding beliefs.

First, we need to introduce some concepts which can be used for Gibbs mea-
sures on general networks. In the following, we only give a brief introductions
and reviews of notations. More precisely, see Georgii [2].

Let E and E be some state space and the arbitrary σ-field respectively.
Then (E, E) is a measurable space. Let p1 and p2 be two probability measures
on (E, E). We define a distance ||p1 − p2|| of p1 and p2 by

||p1(·)− p2(·)|| ≡ max
A∈E
|p1(A)− p2(A)|.

It is clear that || · || is one half of total variation distance. Let S be an arbitrary
(not necessarily tree) site set and Ω be a set of all possible configurations on S.
Let γ be a specification on Ω. For each pair of sites i, j ∈ S, we define

Cij(γ) = sup
ζ,η∈Ω,ζS\{j}=ηS\{j}

||γi(·|ζ)− γi(·|η)||.
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The matrix C(γ) = (Cij(γ))i,j∈S is called Dobrushin’s interdependence matrix

for γ.
A real function f on Ω is called a cylinder function or a local function if f

is FΛ-measurable for some finite Λ where FΛ denotes the σ-field of ΩΛ, i.e., the
restriction of Ω to Λ. A function f : Ω 7→ R will be said to be quasilocal if there
is a sequence (fn)n≥1 of local functions fn such that limn→∞ supω∈Ω |f(ω) −
fn(ω)| = 0. We write L for the set of all bounded quasilocal functions. Let p(f)
denote the expectation of f with respect to a probability p. A specification γ is
said to be quasilocal if γΛ(f |·) is quasilocal for each Λ ∈ I and f ∈ L.

We introduce here a well-known condition for absence of phase transition.
It is said that a specification γ satisfies Dobrushin’s condition if γ is quasilocal
and

c(γ) ≡ sup
i∈S

∑

j∈S

Cij(γ) < 1.

Let f ∈ L and j ∈ S be given. The oscillation of f at j is defined by

δj(f) = sup
ζ,η∈Ω,ζS\{j}=ηS\{j}

|f(ζ)− f(η)|. (5)

Let F be a σ-field of Ω. Then we are ready to introduce a tool used to measure
a distance of two probability measures defined on (Ω, F). Let two probability
measures µ and µ̃ on (Ω, F) be given. A vector a = (ai)i∈S ∈ [0,∞)S is called
an estimate for µ and µ̃ if

|µ(f)− µ̃(f)| ≤
∑

j∈S

ajδj(f) (6)

for all f ∈ L. We state two basic facts known about the estimates. First, the
constant vector a ≡ (1)i∈S is always an estimate. Second, let fix two specifica-
tions γ and γ̃, and let µ ∈ G(γ) and µ̃ ∈ G(γ̃) be given. Suppose a is an estimate
for µ and µ̃. Define ai by

ai =
∑

j∈S

Cij(γ)aj + µ̃(bi) (7)

for every i ∈ S, where bi : Ω→ [0,∞) is a measurable function such that

||γi(·|ω)− γ̃i(·|ω)|| ≤ bi(ω). (8)

Then a = (ai)i∈S is an estimate for µ and µ̃.
In the following, we try to derive some properties specific for the LBP algo-

rithm. It is noted that the beliefs are, if message update converges, the marginal
probabilities of a single site of an associated Gibbs measure on the correspond-
ing computation tree [8]. On the basis of this fact, we look at a certain indicator
function f as follows:

Proposition 1 Fix xi ∈ Ei for some i ∈ S. Let f : Ω 7→ {0, 1} be defined by

f(ω) = 1{xi}(ωi). Then f ∈ L, and following two corollaries hold.
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Corollary 1 µ(1{xi}) is the marginal probability for Xi = xi

Corollary 2 δj(1{xi}) = 1 if j = i, otherwise 0.

Proof. First corollary is trivial so that we only show the other corollary. We
write a configuration ω = ωjωS\{j} separating with respect to a site j ∈ S and
the other sites S\{j}. Fix a site i ∈ S and xi ∈ Ei. Then we can write eq. (5)
with f(ω) = 1{xi}(ωi) as

δj(f) = sup
ζ,η∈Ω,ζS\{j}=ηS\{j}

|f(ζ)− f(η)|

= sup
ω∈Ω

sup
x,y∈Ej

|f(xωS\{j})− f(yωS\{j})|

=







sup
x,y∈Ei

|1{xi}(x)− 1{xi}(y)| if j = i,

sup
ω∈Ω
|1{xi}(ωj)− 1{xi}(ωj)| otherwise,

=

{

1 if j = i,
0 otherwise.

The proof is thus complete.
We think of µ and µ̃ shown above as the probability of a target probabilistic

network and the associated Gibbs measure and try to measure the discrepancy
between their marginal probabilities. The following two propositions are neces-
sary for this.

Proposition 2 Let G be the network of a probabilistic network and T be the

associated computation tree. Assume G′ is the network such that G′ = {i(1); i ∈
G} and G′ has an edge between i(1) and j(1) if there exists an edge between i
and j in G. Then one can construct a certain network S such that G′ ⊂ S and

T ⊂ S. We will call S the common network of G and T .

Proof. Let BT denote the edge set of T . There exist edges such that k(1)l(n) for
n ≥ 2 in BT , i.e., the neighboring sites such that one of it has 1 as superscript
and another has n > 1 as superscript. For every such k(1)l(n), if k(1)l(1) 6∈ BT ,
add k(1)l(1) to BT . The resulting site set (T, BT ) is the common space S.

We give an example in Figure 2.

Proposition 3 Suppose the joint distribution p of a probabilistic network (G, p)
has the form (1). Let Φi = log φi, Φij = log φij for i, j ∈ G. Let BG, BT be

the edge set of G and the corresponding computation tree T . We define two

interaction potentials Φ and Φ̃ for the common network S of G and T as follows.

Φ ≡ {Φi(1) = Φi; i ∈ G}

∪ {Φi(1)j(1) = Φij ; ij ∈ BG}

∪ {Φi(k) = Φi(k)j(l) = 0; k or l ≥ 2},
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Figure 2: A network G (left) and the common space S (right) with depth 2 from
the root node i. Superscripts for indices are ignored. Dotted lines correspond
to the lines added to the computation tree T in the construction of S.

Φ̃ ≡ {Φ̃i′ = Φi; i
′ ∈ T } ∪ {Φ̃i′j′ = Φij ; i

′j′ ∈ BT }

∪ {Φ̃i′j′ = 0; i′j′ /∈ BT },

where ij means the edge between i and j. Then the systems of conditional

probabilities for Φ and Φ̃ are the Gibbs specifications defined on S.

It should be noted that the transformation of potentials makes no difference
to the marginal probabilities for original space; in particular, for µ ∈ G(Φ)
and µ̃ ∈ G(Φ̃), µ(xi) and µ̃(xi) for each i ∈ G′ are equal to p(xi) and the
corresponding belief (if converge) respectively.

We let γ and γ̃ denote the specifications for Φ and Φ̃ above respectively. γ
and γ̃ have the following property.

Corollary 3 There exist non-empty set S′ ⊂ S such that for every i ∈ S′

γi(xi|ω) = γ̃i(xi|ω) (9)

for each xi ∈ Ei and ω ∈ Ω.

Proof. There is at least one site i in S such that i is originated from G and all
the edges connecting with i in S are originated from both T and G. In deed, the
node in S corresponds to the root node of the computation tree is such a site.
Each such site can be shown to satisfy (9) by direct calculations of conditional
probabilities of two specification.

According to the above property, it is clear that

||γi(·|ω)− γ̃i(·|ω)|| = 0, i ∈ S′,

for any ω ∈ Ω. Thus we can put bi(·) ≡ 0 in (8) for each i ∈ S′. We are now
ready to give the following results.

Theorem 1 Let bi(·) be a convergent belief for i ∈ G of a probabilistic net-

work (G, p). Let γ be the specification corresponding to the probabilistic network

8



and C(γ) be the Dobrushin’s interdependence matrix for γ. Define ci(γ) =
∑

j∈G Cij(γ). Then

|p(xi)− bi(xi)| ≤ min{1, ci(γ)}

for any xi ∈ Ei.

Proof. We consider the computation tree T with the root node i. Suppose S is
the common space of G and T . Let γ̃ be the specification corresponding to the
associated computation tree. Let G(γ̃) be the set of all Gibbs measures for γ̃
and fix a Gibbs measure µ̃ ∈ G(γ̃) for γ̃. With f(ω) = 1{xi}(ωi) and Corollary 2,
we can write eq. (6) as

|µ(1{xi})− µ̃(1{xi})| ≤ ai. (10)

for some Gibbs measure µ ∈ G(γ) for γ. Using the trivial estimate a = (1)i∈S ,
we can obtain ai from eq. (7) such that

ai =
∑

j∈S

Cij(γ) + µ̃(bi) =
∑

j∈G′

Cij(γ) = ci(γ).

Here we took bi(ω) ≡ 0 since i is the root node of computation tree. The second
equation comes from the fact that Cij(γ) = 0 for i, j, such that i 6∼ j for γ,
and i is the site at which (9) is satisfied. It should be noted that a′ such that
a′

i ≡ min{ai, ai} = min{1, ci(γ)} and a′
k ≡ 1 for k 6= i is also an estimate. The

marginal probabilities µ and µ̃ are in fact that of p and the belief for the node
corresponding to root node respectively. Thus the proof is complete.

If there is at least one site i such that ci(γ) < 1, its factor of an estimate
ai can be taken less than 1. On the other hand, when a site j has a neighbor i
such that ai < 1, its factor of the estimate aj may be taken less than 1 even if
cj(γ) ≥ 1 using (7) with ai < 1. Conversely, if aj decreases, ai becomes smaller
using (7) with aj again. Such a mutual improvement can be utilized below.

Corollary 4 Let γ and γ̃ be the specifications corresponding to a probabilistic

network and the corresponding computation tree defined on a certain common

space respectively. Let C(γ) be the Dobrushin’s independence matrix for the

specification γ and µ̃ ∈ G(γ̃). Let a(n) = (a
(n)
i )i∈S , n = 1, 2, . . . , . be defined by

a
(n+1)
i = min{1, a

(n)
i , (C(γ)a(n) + µ̃(b))i}, i ∈ S, (11)

where a
(0)
i = 1, i ∈ S. Then a(n) has a limit a∗ and each error bound between

the marginal probability and the belief for i is given by a∗
i .

Proof. For each i, a
(n)
i clearly does not increase with n. It is also clear that a

(n)
i

has a lower bound 0 since a
(0)
i = 1, i ∈ S, and all factors of C(γ) and µ̃(b) are

non-negative. Then a(n) has a limit. The result follows from the fact that each
a(n) can be an estimate.

9



5 Numerical experiments

In the preceding section, we showed error bounds between marginal probabilities
and the corresponding beliefs. In this section, we give numerical experiments so
as to see the effectiveness. First, we calculate the error bounds using Theorem 1
and Corollary 4.

We now use following Ising models on complete graph with four vertices.

p(x) ∝ exp

(

h
∑

1,2,3,4

xi + J
∑

xixj

)

Here second summation is taken with respect to all pairs of {1, 2, 3, 4}. The
corresponding computation tree is called Cayley tree of degree 2 in Gibbs mea-
sure theory and the associated Gibbs measure is Ising models on it. Let CT (2)
denote Cayley tree of degree 2. For Ising models on Cayley trees, all factors of
the Dobrushin’s interdependence matrix are same and it is easy to calculate. In
particular, for CT (2), the constant c(h, J) for each h, J is written by

Cij(γ) =
sinh(2|J |)

g(h, J) + cosh(2J)
≡ c(h, J),

where

g(x, y) =







cosh 2
(

|x|+ |y|
)

if |x| ≤ |y|,

cosh 2
(

|x| − 2|y|
)

otherwise.

Then ci(γ) shown in Theorem 1 will be 3c(h, J).
In calculation of (11), we need to fix b(ω) = (bi(ω))i∈CT (2) and to obtain

the expectation µ̃(b) = (µ̃(bi))i∈CT (2). The left side of (8) is clearly bounded
by 1, so that we take bi(ωi) ≡ 1. Then the expectation µ̃(b) will be 1. We use
this for (11). In Fig. 3, we summarize the result.

Let Bh,J , B∗
h,J be the error bounds obtained based on Theorem 1 and Corol-

lary 4 for each (h, J) respectively. For all h and J , it is shown that B∗
h,J ≤ Bh,J .

This means that the use of (11) are effective in this case. Nevertheless, seen
from the experimental result for Ising models reported in [7], the region where
one can get the good error bound is restrictive. It should be noted that the
region (J, h) such that Bh,J < 1 is very close to the region where Dobrushin’s
condition is satisfied.

6 Conclusion and remarks

We applied Gibbs measure theory to LBP algorithm with pair potentials to ob-
tain error bounds between marginal probabilities and the corresponding beliefs.
We showed a nontrivial error bound can be obtained under a certain condition
for each site if the algorithm converged. We also gave a procedure which has a
potential to improve the error bounds. We gave numerical experiments to check

10



h   

J

−3

0

3

−3 0 3 h   

 

−3

0

3

−3 0 3

Figure 3: Error bounds between one-variable marginal probabilities and the
corresponding beliefs for Ising models on the complete graph network with four
vertices. The left (right) figure is obtained using Theorem 1 (Corollary 4).
Contours are imposed.

the effectiveness. In some cases, such as Dobrushin’s condition is satisfied, the
error bounds and the improvement procedure seem effective. Nevertheless, the
region where one can obtain good bounds is restrictive.

We give some remarks in the rest of this section. First, the concept of
estimates we used in this paper was developed for general Gibbs measures, so
that there may be a possibility of improvements in application to LBP. Second,
we used 1 as µ̃(b) in the numerical experiments. However, the precise assessment
may have certain degree of influence for obtaining a good error bound. The last
remark is about higher-order potential case. In fact, there is another version of
LBP algorithm called LBP on factor graphs, with which one can treat higher-
order potentials. Similar to the pair potential case introduced in this paper, one
can think the concept of computation trees for LBP on factor graphs. Under
the computation tree for LBP on factor graphs, the result shown in this paper
would be valid for probability function with higher-order potentials.
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