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Summary

A class of approximately unbiased tests based on bootstrap probabilities is considered for

the normal model with unknown expectation parameter vector, where the null hypothesis

is represented as an arbitrary-shaped region with possibly singular boundary surfaces.

We alter the sample size n′ of replicated datasets from the sample size n of the observed

dataset, and calculate bootstrap probabilities at several n′ values. As shown in a previous

paper, this multiscale bootstrap gives a bias-corrected p-value with third-order accuracy

by differentiating bootstrap z-value with respect to
√

n′. However, the asymptotic theory

is justified only for smooth boundary surfaces, and a breakdown of the theory is observed

for cone shaped regions derived from inequality constraints. In this paper, we develop a

linear theory, where the Fourier transformation of the boundary surface, instead of the

Taylor series, plays an important role. A low-pass filter and its inverse filter represent cal-

culation of bootstrap probability and an unbiased p-value, respectively. It turns out that

the unbiased p-value is expressed as the bootstrap probability with n′ = −n. The obtained

class of p-values includes, as special cases, the bootstrap probability and the third-order

accurate p-value, and is equivalent in a certain sense to the bootstrap iteration. A new

geometrical insight into the controversy over unbiasedness and monotonicity is given by

showing that monotone tests, not the approximately unbiased tests, can be counterin-

tuitive. The proposed procedure is illustrated in examples of phylogenetic inference and

multiple comparisons.

Footnotes

• Supported by Grant KAKENHI-17700276 from MEXT of Japan.

• AMS 2000 subject classifications. Primary 62G10; secondary 62G09.

• Key words and phrases. Approximately unbiased tests, bootstrap probability, bias

correction, Fourier transformation, monotonicity, multiple testing, problem of re-

gions, scaling-law.
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1 Introduction

The problem we are going to discuss is expressed simply as follows. Let Y be a m + 1-

dimensional multivariate normal vector with unknown mean vector µ and covariance

identity Im+1,

(1.1) Y ∼ Nm+1(µ, Im+1).

A null hypothesis of our interest is represented as µ ∈ H, where H is an arbitrarily-shaped

region in m + 1-dimensional space. Observing y, we calculate α̂(y), a probability value

(p-value) for testing the null hypothesis. We would like to devise α̂(y) so that the bias

of hypothesis testing is small while keeping the computational cost manageable and also

taking account of other properties of testing called locality and monotonicity. The bias

of testing is the difference between rejection probability and significance level 0 < α < 1

for µ being on the boundary of region ∂H;

(1.2) P (α̂(Y ) < α | µ) = α + bias, µ ∈ ∂H,

where P (·) denotes probability with respect to (1.1). This is also said the bias of the

p-value interchangeably.

We do not assume our knowledge on the value of m nor the shape of H in the calcula-

tion of α̂(y), but only assume that a mechanism is available to us for generating bootstrap

replicates and identifying whether outcomes are in the region or not. Let y∗
1, . . . , y

∗
B be B

(say, B = 10, 000) bootstrap replicates generated from

(1.3) Y ∗ ∼ Nm+1(y, σ2Im+1).

Typically, the scale parameter is σ = 1, but it can be altered to any positive value by us.

We count how many times the replicates are in the region; C = #{y∗
1, . . . , y

∗
B ∈ H}. The

bootstrap probability is calculated as C/B, or formally defined as

α̃σ(y) = Pσ(Y ∗ ∈ H | y)

by considering the limit B → ∞. Here Pσ(·) denotes probability with respect to (1.3).

Our calculation of α̂(y) is based only on α̃σ(y) values, so that the method can be used

for complicated practical applications. Let D = {d1, . . . , dn} be a observed sample of size

n, and D∗ = {d∗
1, . . . , d

∗
n′} be a bootstrap sample of size n′. We are interested in how

much confidence we have in the outcome of a 0-1 valued function g(D). For example,

D is an array of DNA sequences in the hierarchical clustering problem (phylogenetic

inference) of Section 2. A particular dendrogram of interest corresponds to g(D) = 1.

3



The bootstrap probability is easily calculated, although computationally demanding, by

repeatedly applying a computer software calculating g(D) to D∗’s. We assume that there

is a transformation f from D to y such that y = f(D) and y∗ = f(D∗) satisfy (1.1) and

(1.3), respectively, at least approximately with scale parameter

σ2 =
n

n′ ,

and that g(D) = 1 ⇔ y ∈ H. For the case of d1, . . . dn being real vectors with sufficiently

large n, such a transformation may be given by y =
√

n × 1
n
(d1 + · · · + dn) and y∗ =

√
n × 1

n′ (d
∗
1 + · · · + d∗

n′). Since the bootstrap probability is transformation invariant, i.e.,

it does not change by the transformation f , we only assume the existence of f without

knowing the functional form of f .

Several versions of α̂(y), denoted α̂k(y), k = 1, 2, . . ., are defined from α̃σ(y). The

simplest one is the bootstrap probability with σ = 1, denoted α̂1(y) = α̃1(y). This has

been used widely since its application to phylogenetic inference in Felsenstein (1985), and

there have been attempts to reduce bias of α̂1(y). The two-level bootstrap of Efron et al.

(1996) and Efron and Tibshirani (1998) calculates a bias-corrected p-value based on the

ABC bias correction of Efron (1987). Let µ̂(y) be the maximum likelihood estimate of

µ under the restriction that µ ∈ ∂H; i.e., the point on the boundary which minimizes

the distance to y. The bias of α̂1(y) mainly comes from the curvature of ∂H at µ̂(y).

For bias-correction, the two-level bootstrap estimates the curvature as the deviation of

α̂1(µ̂(y)) from 0.5. Computation of µ̂(y), however, can be an implementational difficulty in

complex problems. By introducing a scaling-law to their asymptotic theory, the multiscale

bootstrap method of Shimodaira (2002) calculates a even less biased p-value. It estimates

the geometric quantities such as distance and curvature from α̃σi
(y) at arbitrary σi, i =

1, . . . , M (M ≥ 2) without calculating µ̂(y). This is equivalent to

(1.4) α̂2(y) = 1 − Φ

(
dz̃σ(y)

d(1/σ)

∣∣∣
1

)
,

where the bootstrap z-value is defined as

(1.5) z̃σ(y) = Φ−1(1 − α̃σ(y)).

Here Φ(·) is the standard normal distribution function, and Φ−1(·) is its inverse. When

∂H is a smooth surface, these three p-values are approximately unbiased in the sense

that the bias in (1.2) reduces to zero asymptotically as n → ∞. α̂(y) is said to be

k-th order accurate if the bias is O(n−k/2); α̂1(y) is first-order accurate, the two-level

bootstrap is second-order accurate, and α̂2(y) is third-order accurate. This argument is

generalized to exponential family of distributions in Shimodaira (2004) by introducing a

multistep-multiscale bootstrap method.
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Smoothness of the boundary surface ∂H is essential for justification of the above result.

For convenience, we write y = (u, v), u = (u1, . . . , um) and µ = (θ, λ), θ = (θ1, . . . , θm).

(1.1) and (1.3) are now

(1.6) U ∼ Nm(θ, Im), V ∼ N(λ, 1), U∗ ∼ Nm(u, σ2Im), V ∗ ∼ N(v, σ2).

By taking the coordinates properly, a hypothesis region with smooth boundary can be

expressed asymptotically as

H = {(θ, λ) | λ ≤ −h(θ)}

in a neighborhood of u. ∂H is specified by λ = −h(θ). The Taylor series of h(u∗) around

u is written as

h(u∗) = h(u) +
1

2

m∑

a,b=1

∂2h

∂ua∂ub

∣∣∣
u
(u∗

a − ua)(u
∗
b − ub)

+
1

6

m∑

a,b,c=1

∂3h

∂ua∂ub∂uc

∣∣∣
u
(u∗

a − ua)(u
∗
b − ub)(u

∗
c − uc) + · · · .

The asymptotic order of coefficients is ∂kh/∂uk = O(n−(k−1)/2), k ≥ 2, because H is

magnified by the rescaling factor
√

n to keep the variance in (1.1) constant; see the

argument below eq. (2.12) of Efron and Tibshirani (1998). The surface becomes flat at

the limit n → ∞, in which case α̃σ(y) = 1 − Φ((v + h(u))/σ) and an exactly unbiased

p-value is given by α̂(y) = 1 − Φ(v + h(u)) = α̃1(y). When the surface is curved, the

two-level bootstrap adjusts the curvature term ∂2h/∂u2 = O(n−1/2), and the multiscale

bootstrap adjusts up to ∂3h/∂u3 = O(n−1) term.

In this paper, we remove the restriction of smoothness by allowing singularities of

surfaces while keeping the normality assumption. A simple example is a circular cone;

h(u) = a‖u‖ is singular at the vertex u = 0. The asymptotic theory based on smooth

surfaces may lead to seriously biased p-values when µ is close to the vertex, while the

singularity can be ignored when µ is far from the vertex. In practice, H is often a cone

at least approximately in a neighborhood of singular points. This is exactly the case for

the selection problem of Section 3, where H is a polyhedral convex cone. More generally,

a polyhedral H is derived from linear inequalities on µ; it can be regarded as a cone

asymptotically by magnification centered at a singular point. It is noted that the shape

of cone does not change by the magnification, e.g., a of the circular cone is constant as

n → ∞, a very distinctive feature of cones compared with smooth surfaces.

It was the key to success in the asymptotic theory that smooth surfaces become flat

as n → ∞. In reality, n is finite and the deviation from the flat surface is adjusted by
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taking account of the first few terms in the Taylor series. We apply this same idea to

singular surfaces. For example, the circular cone h(u) = a‖u‖ is flat if a = 0, and thus we

may develop an asymptotic theory in terms of a → 0 instead of n → ∞. We consider the

power series expansion in terms of a, and the deviation from the flat surface is adjusted by

taking account of first few terms. In this paper, we discuss only up to O(a) term ignoring

O(a2). This linear theory for singular surfaces calculates, if compared with the asymptotic

theory for smooth surfaces, up to O(n−1/2) term ignoring O(n−1). For singular surfaces,

including smooth surfaces as special cases, we introduce a notion of nearly flat surfaces

as follows. First we accept the idea that p-value calculation should depend only on the

shape of H in the neighborhood of y, and that the influence of h(u∗) approaches zero as

‖u∗ − u‖ → ∞. This property of α̂(y), which we call locality, is inevitable for p-values

based only on α̃σ(y). Without losing generality, we assume that y and µ are not very far

from the origin, and that h(u∗), ‖u∗‖ > L, can be ignored for sufficiently large L. More

specifically, we define

hL(u) = h(0) + (h(u) − h(0))e−‖u‖2/2L2

,

and ignore the difference |hL(u) − h(u)|. For a technical reason, we assume that hL(u) −
hL(0) is absolutely integrable;

∫
|hL(u) − hL(0)| du < ∞,

where the integration is over m-dimensional space. Then, we say h(u) is nearly flat if

∆h = sup
u

|hL(u) − hL(0)|

is sufficiently small. In our linear theory, calculation is made only up to O(∆h) term

ignoring O((∆h)2), and equality up to O(∆h) is indicated by “≈”.

In Section 2, we will define a class of approximately unbiased p-values α̂k(y), k ≥ 1, and

its generalization. The bootstrap probability and the bias-corrected p-value of Shimodaira

(2002) correspond to k = 1 and 2, respectively. It will be shown in Section 5 that α̂k(y)

adjusts up to ∂2k−1h/∂u2k−1 term, and the bias approaches zero (in the sense of “≈”) even

for singular surfaces as k → ∞. It will be also shown there that the p-value calculated

by k bootstrap iterations of Hall (1992) shares the same property. On the other hand, it

follows from Lehmann (1952) that assuming the power function to be analytic, unbiased

tests, except for the trivial randomized test, do not exist if ∂H has cone singularities. This

apparent inconsistency is explained by the fact that α̂k(y) does not converge as k → ∞
for singular surfaces. In other words, the boundary surface of rejection region oscillates

wildly for large k, a symptom of inappropriate, or counterintuitive, “Emperor’s new tests”
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criticized by Perlman and Wu (1999); this symptom often implies that the rejection region

is not monotone in the sense of Lehmann (1952). There is a controversy (Perlman and

Wu, 1999, Comments and Rejoinder) over which of unbiasedness and monotonicity is

important. Although we are seeking for unbiased tests, I agree to the importance of

monotonicity. A problem is that monotonicity is geometrically a global property which

is incompatible with locality. A compromise can be made by relaxing the strict use of

monotonicity so that it holds only approximately in a neighborhood of each point. It will

be seen that a good balance is made by using a finite k.

This paper proceeds as follows. The multiscale bootstrap method for nearly flat sur-

faces is presented though an illustrative example of phylogenetic inference in Section 2.

Properties of testing such as unbiasedness and monotonicity are discussed from geometri-

cal viewpoints via a numerical study of selection problem in Section 3. A formal argument

of the linear theory is given for location-scale family of distributions in Section 4, where

the Fourier transformation of the boundary surface, instead of the Taylor series, plays

an important role. The theory is applied to the normal model in Section 5 to derive the

approximately unbiased tests. Technical details are given in Appendix and Shimodaira

(2006).

2 Multiscale bootstrap in an illustrative example

2.1 Phylogenetic inference

Phylogeny is the history of evolution, represented as a tree with labeled leaves correspond-

ing to species. It has become a common practice for biologists to analyze DNA sequences

for phylogenetic tree inference. We are interested in the branching order of species, called

tree topology. The maximum likelihood method has been used widely since Felsenstein

(1981); each tree gives a parametric model, and the tree with the largest likelihood value

is selected. For illustration, the dataset of Shimodaira and Hasegawa (1999), consisting of

n = 3414 amino acids for six mammalian species, was reanalyzed by using the same model

of evolution as in that paper. Fifteen tree topologies are considered and numbered 1 to 15

in decreasing order of likelihood values; see Table 1 of Shimodaira and Hasegawa (1999)

or Table 3 of Shimodaira (2002). The maximum likelihood estimate is tree-1, represented

as ((((human, (seal, cow)), rabbit), mouse), opossum) indicating rabbit is closer to human

than to mouse, while a traditional hypothesis is tree-7, represented as (((human, (rabbit,

mouse)), (seal, cow)), opossum) indicating rabbit is closer to mouse than to human. Our

null hypothesis is that tree-7 is the true history.
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2.2 Multiscale bootstrap resampling

First we performed bootstrap resampling with n′ = n. The number of bootstrap samples

is B = 105, which may be too large, but for a clear result of illustration. The number

of times that tree-7 became the maximum likelihood estimate is C = 1510, and thus the

bootstrap probability is estimated as α̃1 = 0.0151. The null hypothesis is then rejected

at significance level α = 0.05.

We next performed M = 13 sets of bootstrap resampling with n′
i = 13656, 10838,

8602, 6828, 5419, 4301, 3414, 2709, 2150, 1707, 1354, 1075, 853 for i = 1, . . . ,M (n′ = n

is included). These values are chosen so that σ2
i = n/ni is equally spaced in log-scale

over the range of 2−2, ..., 22. The frequency of selecting tree-7 was counted to get Ci =

20, 57, 140, 308, 582, 971, 1510, 2068, 2713, 3325, 4149, 4496, 5137, respectively. α̃σi
are

estimated as Ci/B, and z̃σi
are plotted in Fig. 1(a).

— Insert Figure 1 Here —

2.3 Model fitting

We will work on a function ψ(σ2), instead of z̃σ, defined simply as

(2.1) ψ(σ2) = σz̃σ, σ > 0.

We consider parametric models of ψ(σ2) to understand how the bootstrap probability

depends on σ. The simplest model would be a polynomial with respect to σ2;

(2.2) ψk(σ
2 | β) =

k−1∑

j=0

βjσ
2j,

where β = (β0, . . . , βk−1) is a parameter vector. This model turns out to be correct for

smooth surfaces. In fact, the linear theory of Section 5 (and Appendix A.1) shows that

ψ(σ2) ≈ ψk(σ
2|β) if h(u) is a polynomial of degree 2k − 1. For k = 2, (2.2) is written as

z̃σ = β0σ
−1 + β1σ, which is exactly the model of Shimodaira (2002) with signed distance

β0 and curvature correction term β1.

In practice, we estimate ψ(σ2) from observed bootstrap probabilities. Let ψ(σ2|β) be

a model of ψ(σ2). Since Ci is distributed as binomial with number of trials B and success

probability α̃σi
= 1 − Φ(ψ(σ2

i |β)/σi), the maximum likelihood estimate β̂ is obtained

numerically by maximizing the log-likelihood function

`(β) =
M∑

i=1

(Ci log(α̃σi
) + (B − Ci) log(1 − α̃σi

)) .

8



For example, the parameter of ψ2(σ
2|β) is estimated as

β̂0 = 1.7733, β̂1 = 0.3895.

The result of model fitting is shown in Fig. 1 for k = 2, 3, 4. The goodness of fit is measured

by the difference of AIC values between the specified model and an unconstrained binomial

model;

AIC = (−2`(β̂) + 2k) − (−2ˆ̀+ 2M),

where ˆ̀=
∑M

i=1(Ci log(Ci/B) + (B − Ci) log(1 − Ci/B)).

2.4 Approximately unbiased p-values

A surprising consequence of Section 5 is that an approximately unbiased p-value with bias

≈ 0 is expressed, if exists, as

(2.3) α̂∞ = 1 − Φ(ψ(−1)).

In other words, α̂∞ is obtained from the bootstrap probability with σ2 = −1 or n′ = −n,

by extrapolating ψ(σ2) from those of σ2 > 0 to that of σ2 = −1. By letting ψ(σ2) =

ψk(σ
2|β) in (2.3), we define

(2.4) α̂k = 1 − Φ

(
k−1∑

j=0

(−1)jβj

)
,

where β is estimated by β̂ in practice. For k = 2, this gives the approximately unbiased

p-value of Shimodaira (2002) as

(2.5) α̂2 = 1 − Φ(β̂0 − β̂1) = 1 − Φ(1.7733 − 0.3895) = 0.0832,

which does not reject the null hypothesis at α = 0.05. In Table 1, α̂k is shown at row ψk

of column α̂k,1 for k = 1, . . . , 4. Note that (2.4) differs from the description of Section 1

for k = 1, 2. However α̂1(y) = 1−Φ(β̂0) converges to α̃1(y) as all σi → 1. Similarly α̂2(y)

of (2.5) converges to (1.4).

— Insert Table 1 Here —

2.5 Singular models

We next performed M = 13 sets of bootstrap resampling again but with n′
i = 873984,

346840, 137643, 54624, 21677, 8602, 3414, 1354, 537, 213, 84, 33, 13 for i = 1, . . . , M so

that σ2
i = n/ni is equally spaced in log-scale over the range of 2−8, ..., 28. The frequency
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of selecting tree-7 was counted to get Ci = 0, 0, 0, 0, 1, 146, 1499, 4017, 5942, 6703, 6794,

5827, 5395, respectively. Except for those of Ci = 0, z̃σi
are plotted in Fig. 1(b).

The corrected p-value is calculated for k = 2, say, as

(2.6) α̂2 = 1 − Φ(2.6743 − 0.1182) = 0.0053,

which rejects the null hypothesis at α = 0.05. We observe a large difference in the p-value

between (2.5) and (2.6), and also in Table 1 between the narrow σ range (σ2
i = 2−2, ..., 22)

and the wide σ range (σ2
i = 2−8, ..., 28). Looking at the curves in Fig. 1, we notice a

quite bad fitting of ψk, k = 2, 3, 4 for the wide σ range, although the fitting improves as

k increases. It was mentioned in Shimodaira (2002) that the misspecification of models

indicates a “breakdown of the asymptotic theory” and that the corrected p-value should

not be used then.

The bad fitting of ψk models is explained if h(u) is a singular surface. ψ(σ2) is expanded

in the form of

(2.7) ψ(σ2) =
∞∑

j=0

βjσ
1−j = β0σ + β1 + β2σ

−1 + · · ·

in a neighborhood of the vertex of cones as shown in Appendix A.3. We call ψ(σ2|β) a

singular model if it takes account of such singularities. For example, a simple singular

model is defined by

(2.8) ψs(σ
2|β0, β1, β2) = β0 + β1σ

2(1 + β2σ)−1,

which includes the first two terms in (2.7) by letting β2 → ∞ with β1/β2 fixed, while it

becomes ψ2 by letting β2 → 0. The fitting of this model is extremely good in Fig. 1.

Substituting σ2 = −1 in (2.8) does not make sense, because σ =
√
−1 is an imaginary

number. In general, let ψ(σ2) be a smooth function for σ > 0. We define a class of

approximately unbiased p-values from ψ(σ2) by

(2.9) α̂k,σ0 = 1 − Φ

(
k−1∑

j=0

(−1 − σ2
0)

j

j!

djψ(x)

dxj

∣∣∣
σ2
0

)

for k ≥ 1 and σ0 > 0. This is simply a Taylor series of ψ(σ2) around σ2
0 terminated at the k-

th term for calculating ψ(−1). α̂1,σ0 = α̃σ0 for k = 1; this is the reason why α̃1 is denoted

as α̂1 in Section 1 for notational simplicity. α̂k,σ0 reduces to α̂k′ if ψ(σ2) = ψk′(σ2|β),

k′ ≤ k.

For models ψk′ , k′ = 1, . . . , 4 and ψs, explicit formulas of the corrected z-value ẑk,σ0 =

Φ−1(1 − α̂k,σ0) are given for k = 1, . . . , k′ (k′ = 4 for ψs) as follows. Model ψ1(σ
2|β);
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ẑ1,σ0 = β0. Model ψ2(σ
2|β); ẑ1,σ0 = β0 + σ2

0β1, ẑ2,σ0 = β0 − β1. Model ψ3(σ
2|β); ẑ1,σ0 =

β0 + σ2
0β1 + σ4

0β2, ẑ2,σ0 = β0 − β1 − σ2
0(2 + σ2

0)β2, ẑ3,σ0 = β0 − β1 + β2. Model ψ4(σ
2|β);

ẑ1,σ0 = β0 + σ2
0β1 + σ4

0β2 + σ6
0β3, ẑ2,σ0 = β0 − β1 − σ2

0(2 + σ2
0)β2 − σ4

0(3 + 2σ2
0)β3, ẑ3,σ0 =

β0 − β1 + β2 + σ2
0(3 + 3σ2

0 + σ4
0)β3, ẑ4,σ0 = β0 − β1 + β2 − β3. Model ψs(σ

2|β); ẑ1,σ0 =

β0 + β1σ
2
0(1 + σ0β2)

−1, ẑ2,σ0 = β0 − β1(1 + 1
2
σ0(1 − σ2

0)β2)(1 + σ0β2)
−2, ẑ3,σ0 = β0 −

β1(1 +
3+18σ2

0−σ4
0

8σ0
β2 +

1+6σ2
0−3σ4

0

8
β2

2)(1 + σ0β2)
−3, ẑ4,σ0 = β0 − β1(1 +

1+9σ2
0+55σ4

0−σ6
0

16σ3
0

β2 +
1+5σ2

0+15σ4
0−σ6

0

4σ2
0

β2
2 +

1+5σ2
0+15σ4

0−5σ6
0

16σ0
β3

2)(1 + σ0β2)
−4.

For good fitting models, the corrected p-value should not be influenced very much by

the choice of σi values. This is the case for ψs model in Fig. 1. Let us apply (2.9) to

ψ(σ2) = ψs(σ
2|β̂) with k = 2, σ0 = 1. The corrected p-value is written as

α̂2,1 = 1 − Φ

(
β̂0 −

β̂1

(1 + β̂2)2

)
.

The maximum likelihood estimate (β̂0, β̂1, β̂2) = (1.6374, 0.7858, 0.4643) for the narrow σ

range gives α̂2,1 = 0.1019, and (β̂0, β̂1, β̂2) = (1.6606, 0.7361, 0.4293) for the wide σ range

gives α̂2,1 = 0.0968. The difference is negligible here for k = 2, and so for k = 1, . . . , 4

in Table 1. In addition, the corrected p-value should not be influenced very much by

the choice of model itself as far as good fitting models are used. This is the case for

ψ2, ψ3, ψ4, ψs in the narrow σ range, and for ψs in the wide σ range.

2.6 Sampling errors in bootstrap

There are sampling errors caused by the bootstrap resampling in the maximum likelihood

estimates as well as the corrected p-values. This error of order O(
√

MB) approaches zero

as the total number of bootstrap replicates MB increases, but it is limited by computing

resources. For making the error as small as possible, we carefully choose σi values, models,

and (k, σ0) of α̂k,σ0 .

The error will be smaller for wider σ range and also for simpler models (with smaller

number of parameters), but the model fitting will become worse then. Considering this

trade-off, we may choose the wide σ range and ψs model in the phylogeny example. But

too wide σ range again inefficient, because Ci or B − Ci can be very small or even zero

for some σi.

As seen in Table 1, the standard error becomes larger as k increases. Typically, we

use B = 104 in practice, meaning the standard errors are three times larger than those in

Table 1, and then k ≤ 4 is advised. The error will also be large if σ0 is not covered well

in the range of σi’s.

Although the above issues are important in practice, the problem vanishes ultimately

11



by increasing MB. In the next section, we discuss the choice of (k, σ0) by assuming the

correct model and B = ∞.

3 Geometry of rejection regions

3.1 Subset selection of three normal populations

Let us consider multiple comparisons of independent normal populations

Xi ∼ N(ηi, 1), i = 1, . . . , m + 2,

where we would like to find i of the largest ηi value by selecting a subset of 1, . . . , m + 2.

This problem is equivalent to consider, for each i, the null hypothesis that ηi ≥ maxj 6=i ηj;

i is included in the subset if the hypothesis is not rejected.

We discuss the case of i = 1, m = 1; the null hypothesis is

(3.1) η2 − η1 ≤ 0, η3 − η1 ≤ 0.

Geometry is discussed easily if we work on transformed variables

y1 =
−x2 + x3√

2
, y2 =

−2x1 + x2 + x3√
6

, y3 =
x1 + x2 + x3√

3
.

Since y3 is not relevant to (3.1), we consider mean parameters for y1 and y2 as

θ =
−η2 + η3√

2
, λ =

−2η1 + η2 + η3√
6

.

Now we consider two independent normal variables

Y1 ∼ N(θ, 1), Y2 ∼ N(λ, 1)

with the null hypothesis λ ≤ −|θ|/
√

3 as shown in Fig. 2(a).

In the following, we will consider several tests to explain properties of the approxi-

mately unbiased tests. A similar argument with reviews on subset selection procedures is

found in Somerville (1986).

— Insert Figure 2 Here —
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3.2 Normal test and multiple comparisons

First we consider Point 1 in Fig. 2, corresponding to

x2 − x1 = 1.5, x3 − x1 = 2.5.

A one-sided normal test does not reject η2 − η1 ≤ 0 at α = 0.05 because x2 − x1 ≤
1.645×

√
2 = 2.326, but it does reject η3−η1 ≤ 0 because x3−x1 > 2.326. A simple-minded

use of the normal test, therefore, rejects (3.1) because max(x2−x1, x3−x1) > 2.326. The

p-value is calculated as α̂nt = 1 − Φ(2.5/
√

2) = 0.0385; nt stands for normal test.

The subset selection procedure of Gupta (1965) is designed to control a type-I error by

considering the multiple comparisons problem. The critical constant 1.916×
√

2 = 2.710 is

larger than that of the normal test, and (3.1) is not rejected because max(x2−x1, x3−x1) ≤
2.710. The p-value is calculated as α̂mc = P (max(X2 − X1, X3 − X1) > 2.5|η1 = η2 =

η3) = 0.0686; mc stands for multiple comparisons.

In phylogenetic inference, versions of these two tests are widely used for comparing

log-likelihood values. The test of Kishino and Hasegawa (1989) is a normal test, and that

of Shimodaira and Hasegawa (1999) is a multiple comparisons test.

The multiple comparisons test is valid, but often said conservative. For a fixed value of

the test statistic, the p-value approaches one as m → ∞. The p-value is P (maxm+2
i=2 Xi −

X1 > 2.5|η1 = · · · = ηm+2) = 0.191 for m = 8, and it becomes 0.498 for m = 98.

Imagine a situation that x2 − x1 = 2.5, xi − x1 = −1010, i = 3, . . . , 100. The normal

test gives p-value 0.0385 by ignoring extremely small xi’s. On the other hand, the multiple

comparisons test gives 0.498 by considering the least favorable configuration η1 = · · · =

η100, i.e., the vertex of cone, although it is unrealistic for the observed x. It is the multiple

comparisons test that is counterintuitive in this case, not the approximately unbiased tests.

3.3 Multiple range subset selection

The multiple range subset selection procedure of Somerville (1984) introduces a series of

critical constants in the multiple comparisons. As a consequence, it has the locality prop-

erty and remedies the counterintuitive behavior. When applied to the three populations

case, it first uses critical constant 1.969 ×
√

2 = 2.784, slightly larger than that of Gupta

(1965). It is shown in DuPreez et al. (1985) that the multiple range test controls the

type-I error for m = 1, but only numerical studies seem available for m ≥ 2 (Somerville,

1986).

We consider Point 2 in Fig. 2, corresponding to

x2 − x1 = −2, x3 − x1 = 2.5.

13



At the first stage, the multiple range test does not reject (3.1) because max(x2 − x1, x3 −
x1) ≤ 2.784. Next we see if any of x2 or x3 is small enough to be excluded for further

consideration; we ignore x2 because |x2 − x3| > 2.784 using the same critical constant as

the first stage. At the last stage, (3.1) is rejected because max(x2 − x1, x3 − x1) > 2.326

by applying the normal test. The p-value is α̂mr = 0.0385; mr stands for multiple range.

Table 2 compares the p-values for the four points of Fig. 2, including those for a

concave case discussed later. α̂mr behaves similarly as α̂mc for points close to the vertex

(Points 1, 3) and α̂mr behaves similarly as α̂nt for points far from the vertex (Points 2, 4).

This same tendency is observed for the shapes of the rejection regions in Fig. 2, and also

for the rejection probabilities in Table 3. In fact, the multiple range test is approximately

unbiased in the sense that the rejection probability is equal to the significance level at η

with η1 = ηi for i ∈ I ⊂ {2, . . . , m + 2} and ηj = −∞ for the rest of j; these points are

regarded locally as a vertex of cone in |I| dimensional space.

Recently, Lehmann et al. (2005) discussed some optimality of monotone step-down

procedures; they are to identify which of the inequalities hold. Although the appearance

of the multiple range test, which considers only the overall hypothesis, is similar to the

step-down procedures, they differ.

— Insert Table 2 Here —

— Insert Table 3 Here —

3.4 Concave cones

Sometimes we are interested in the null hypothesis; ηi ≤ maxj 6=i ηj. Its rejection indicates

a significant evidence that ηi is the largest. For i = 1, m = 1, the null hypothesis is

(3.2) η2 − η1 ≥ 0 or η3 − η1 ≥ 0.

The signs of y2 and λ are reversed so that (3.2) is a lower part in Fig. 2(b). We say a

“concave cone” for the complement of a convex cone. The p-value are given in Table 2

for the two points of Fig. 2(b); Point 3 is x2 − x1 = −3, x3 − x1 = −2, and Point 4 is

x2 − x1 = −6.5, x3 − x1 = −2.

We define α̂nt, α̂mc, and α̂mr in the same way as before, but using tests statistics with

their signs reversed. Note, however, that α̂mc and α̂mr are nonstandard and do not control

the type-I error for the concave case, whereas α̂nt does so. The approximately unbiased

test of Liu and Berger (1995), which controls the type-I error, is constructed from the

normal test by carefully enlarging the rejection region.
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Note that α̂k,σ0 for (3.2) is given by 1− α̂k,σ0 using α̂k,σ0 for (3.1), because the normal

density is symmetric and 1−Φ(x) = Φ(−x) holds. This applies for any hypothesis region

obtained by the complement of another region.

3.5 Approximately unbiased tests

We calculated p-values α̂k,1, k = 1, . . . , 4 from (2.9). Bootstrap resampling is not used, and

ψ(σ2) is obtained directly by numerical integration from (2.1). As expected, the rejection

probability approaches α as k increases, but the convergence is slow at the vertex (δ = 0),

particularly for the concave case. Overall, α̂k,1 with k = 2, 3, 4 behaves similarly as α̂mr.

Their rejection regions have a “dent” near the vertex of the convex cone, and a “bump”

for the concave case. This common feature for tests attempting unbiasedness violates the

monotonicity of rejection regions. A rejection region R is said monotone for testing (3.1),

if x′ ∈ R is implied by x ∈ R and x′
i − x′

1 ≥ xi − x1. For testing (3.2) the inequalities

are reversed. In terms of p-values, α̂ is monotone if α̂(x) ≥ α̂(x′). In testing (3.1), for

example, Point 1 is a stronger evidence than Point 2. However α̂mr, α̂k,1, k = 2, 3, 4 claim

the opposite, and thus they are not monotone, whereas α̂nt, α̂mc, and α̂1,1 are monotone.

A measure of the amount of nonmonotonicity may be defined by

γε(x) = sup
x′ºx, ‖x′−x‖<ε

α̂(x′) − α̂(x),

where º denotes the partial ordering of monotonicity. For monotone α̂, γε(x) ≤ 0 for

all ε > 0 at any point x. A large positive γε(x), or γ(x) = limε→0 γε(x)/ε, results in ∂R
oscillating wildly, whereas ∂R extends nearly parallel to ∂H for monotone tests. As seen

in Fig. 2, the violation of monotonicity is minor for α̂k,1, k = 2, 3, although it becomes

serious as k increases.

We see that unbiasedness improves as k increases but monotonicity becomes worse

then. In Section 5, we see that unbiasedness improves slightly as σ0 approaches zero

but monotonicity becomes much worse then. It seems that a sensible choice is between

2 ≤ k ≤ 4 with σ0 = 1. Further experience is needed for a proper choice of (k, σ0) in

applications.

Note that the nonmonotonicity criticism in literature has been made mostly to the

concave case; Perlman and Wu (2003, Fig. 11) proposed a likelihood ratio test for the

convex case qualitatively similar to ours, and their Remark 6.1 says “monotonicity is not

necessarily relevant for testing problems with multivariate one-sided hypotheses.”
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4 Linear theory of location-scale family

4.1 Bootstrap probability

Let us consider a location-scale family

(4.1) U ∼ f(u − θ), V ∼ g(v − λ), U∗ ∼ fσ(u∗ − u), V ∗ ∼ gσ(v∗ − v)

as a generalization of (1.6). f(·) and g(·) are arbitrary densities, and fσ(u) = f(u/σ)/σm

and gσ(v) = g(v/σ)/σ. The bootstrap probability is written as

α̃σ(u, v) = Pσ(V ∗ ≤ −h(U∗) | u, v) = Eσ

(
G

(
−v − h(U∗)

σ

)
| u

)
,

where G(x) =
∫ x

−∞ g(v) dv and Eσ(·) denotes the expectation at scale σ. Applying the

Taylor series around a = −v−h(u) twice, we obtain α̃σ(u, v) ≈ G
(

a
σ

)
− gσ(a)Eσ(h(U∗)−

h(u)|u) ≈ G
(

a
σ
− 1

σ
Eσ(h(U∗) − h(u)|u)

)
by ignoring O((∆h)2) terms. As a result, we

have exchanged the order of the two operators G(·) and Eσ(·|u) to get

(4.2) α̃σ(u, v) ≈ G

(
−v + Eσ(h(U∗)|u)

σ

)
.

We define a modification of bootstrap z-value as z̃σ = −G−1(α̃σ) via G(·) instead of Φ(·).
Then (4.2) is rewritten as

(4.3) σz̃σ(u, v) ≈ v + Eσ(h(U∗)|u).

4.2 Unbiased surfaces

We consider a rejection region of the form

R = {(u, v) | v > −r(u)}.

The dependence on α is implicit in the notation. We assume that ∂R is nearly flat with

∆r = O(∆h) and r(u) satisfies the same conditions as h(u) does. Then it follows from

(4.2) that the acceptance probability is written as

(4.4) P (V ≤ −r(U)|θ, λ) ≈ G (−λ − E(r(U)|θ))

by replacing u, v, h, U∗, V ∗, σ in Pσ(V ∗ ≤ −h(U∗) | u, v) with θ, λ, r, U, V, 1, respectively.

Let us consider a region of the form

S = {(θ, λ) | λ ≤ −s(θ)}.
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Given R, we define the function s(θ) so that the rejection probability is equal to α for

any (θ, λ) ∈ ∂S. We call ∂S an unbiased surface, because S = H implies unbiasedness

of the test. By substituting 1 − α for the left side of (4.4), and letting λ = −s(θ) on the

right side, we get

(4.5) s(θ) ≈ E(r(U)|θ) + G−1(1 − α).

We formally denote the inverse operator of E(·|θ) as E−1(·|u). Then (4.5) is rewritten as

(4.6) r(u) ≈ E−1(s(θ)|u) − G−1(1 − α).

Let α̂(u, v) be the p-value associated with R, meaning that α̂(u, v) < α is equivalent

to v > −r(u). By letting α = α̂(u, v), r(u) = −v in (4.6) for (u, v) ∈ ∂R, we obtain

(4.7) α̂(u, v) ≈ 1 − G(v + E−1(s(θ)|u)).

We define a modification of corrected z-value as ẑ = G−1(1− α̂) via G(·) instead of Φ(·).
Then, (4.7) is rewritten as

(4.8) ẑ(u, v) ≈ v + E−1(s(θ)|u).

4.3 Fourier transformation

Let F be the Fourier transformation operator

Fh(ω) =

∫
e−iω·uh(u) du,

where ω = (ω1, . . . , ωm) is an angular frequency vector, ω · u =
∑m

j=1 ωjuj is the inner

product, i =
√
−1 is the imaginary unit, and integrals are over m dimensional space

otherwise stated. The inverse operator F−1 is given as

h(u) = F−1(Fh(ω))(u) =
1

(2π)m

∫
eiω·uFh(ω) dω.

Since h(u) must be absolutely integrable for justifying the transformation, we in fact work

on hL(u) − hL(0), and formally denote Fh for a nearly flat h(u).

Here we overview properties of the Fourier transformation. Let (Eh)(θ) denote the

expectation operator defined by

E(h(U)|θ) =

∫
h(u)f(u − θ) du.

Since it is a convolution, we can write

(4.9) (FEh)(ω) = (Fh)(ω) (Ff)(−ω),
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and its inverse becomes

(4.10) (FE−1h)(ω) = (Fh)(ω)/(Ff)(−ω).

The scaling-law of density is

(4.11) (Ffσ)(ω) = (Ff)(σω),

and it follows from (4.9) and (4.11) that

(4.12) (FEσh)(ω) = (Fh)(ω) (Ff)(−σω).

Results of Sections 4.1 and 4.2 can be written down explicitly via the Fourier trans-

formation. For notational brevity, we write

H(ω) =
1

(2π)m
Fh(ω), S(ω) =

1

(2π)m
Fs(ω), F (ω) = Ff(−ω).

Then applying (4.12) to (4.3) gives

(4.13) σz̃σ(u, v) ≈ v +

∫
eiω·uH(ω)F (σω) dω,

and applying (4.10) to (4.8) gives

(4.14) ẑ(u, v) ≈ v +

∫
eiω·u S(ω)

F (ω)
dω.

An approximately unbiased z-value with bias ≈ 0 is expressed, if exists, as (4.14) by letting

S(ω) = H(ω); we denote it as ẑ∞(u, v), and the corresponding p-value as α̂∞(u, v) =

1 − G(ẑ∞(u, v)).

These two formulas provide intuitive interpretations. Calculation of α̃σ is equivalent to

applying the linear filter F (σω) to ∂H, which is often a low-pass filter. Calculation of α̂∞

is equivalent to applying the inverse filter 1/F (ω) to ∂H, which is often an unstable high-

pass filter. This explains the reason why ∂R oscillates wildly for “Emperor’s new tests”;

singularities imply high-frequency components in H(ω), and they are much emphasized

in H(ω)/F (ω). In fact, we will see H(ω)/F (ω) → ∞ as ‖ω‖ → ∞ for singular surfaces

in Section 5.

4.4 Bootstrap iteration

We consider the bootstrap iteration of Hall (1992) for calculation of corrected p-values.

Let α̂k+1,bi be the p-value obtained by applying the bootstrap iteration k times to α̃1, in
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the sense of Efron and Tibshirani (1998); bi stands for bootstrap iteration. In terms of

ẑk,bi = G−1(1 − α̂k,bi), the k-th iteration is written as

ẑk+1,bi(u, v) = G−1
(
P

(
ẑk,bi(U

∗, V ∗) ≤ ẑk,bi(u, v)
∣∣∣ θ̂(u, v),−h(θ̂(u, v))

))

for k ≥ 1 and ẑ1,bi(u, v) = z̃1(u, v), where θ̂(u, v) is the maximum likelihood estimate of

θ under the restriction that (θ, λ) ∈ ∂H. For the normal case, (θ̂,−h(θ̂)) is the point on

∂H closest to (u, v).

It is shown in Appendix A.4 that, using a function dk(u) = O(∆h), the z-value is in

the form of

(4.15) ẑk,bi(u, v) ≈ v + dk(u),

and the iteration is

(4.16) dk+1(u) ≈ dk(u) − E(dk(U
∗)|u) + h(u)

for k ≥ 1 and d1(u) ≈ E(h(U∗)|u). This result can be written down explicitly via the

Fourier transformation. The iteration of Dk(ω) = Fdk(ω)/(2π)m is Dk+1(ω) ≈ (1 −
F (ω))Dk(ω) + H(ω) for k ≥ 1 and D1(ω) ≈ H(ω)F (ω). Thus, by induction,

Dk(ω) = H(ω)
1 − (1 + F (ω))(1 − F (ω))k

F (ω)
(4.17)

= H(ω)
k∑

j=0

k!(k − 1 − 2j)

(j + 1)!(k − j)!
(−F (ω))j.

By noting dk(u) =
∫

eiω·uDk(ω) dω, (4.17) is compared with (4.14). Bootstrap iteration

modifies the inverse filter of unbiased test by multiplying the factor 1 − (1 − F (ω))k(1 +

F (ω)). The modified filter is bounded and thus stable, because it includes only F (ω)j,

j ≥ 0.

5 Normal model

5.1 An approximately unbiased test

The argument of Section 4 is simplified for the normal model of (1.6);

G(v) = Φ(v), F (ω) = e−
‖ω‖2

2 .

The two z-value definitions are G−1(1−α) = −G−1(α), and the scaling-law of the density

is F (σω) = F (ω)σ2
. The latter implies the main result (2.3), because the inverse filter
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1/F (ω) is now given by F (σω) with σ =
√
−1. More specifically, (4.13) and (4.14) are

now

(5.1) σz̃σ(u, v) ≈ v +

∫
eiω·u−σ2 ‖ω‖2

2 H(ω) dω,

(5.2) ẑ(u, v) ≈ v +

∫
eiω·u+

‖ω‖2
2 S(ω) dω.

Therefore (2.3) follows by noting (5.1) ≈ (5.2) if we let σ2 = −1 and S(ω) = H(ω).

5.2 Smooth surfaces

Assume h(u) is a smooth surface, and define ψ∞(σ2|β) =
∑∞

j=0 βjσ
2j with coefficients

(5.3) βj =
1

2jj!

∑

j1+···+jm=j

j!

j1! · · · jm!

∂2jh

∂u2j1
1 · · · ∂u2jm

m

∣∣∣
u

for j ≥ 1 and β0 = v +h(u). Considering (4.3) and the series expansion of Eσ(h(U∗)|u) in

Appendix A.1, we obtain ψ(σ2) ≈ ψ∞(σ2|β), and thus ψk is correct up to O(∆h) if h(u)

is a polynomial of degree 2k − 1.

On the other hand, we also have

(5.4) βj =
1

2jj!

∫
eiω·u(−1)j‖ω‖2jH(ω) dω

for j ≥ 1 by substituting e−σ2 ‖ω‖2
2 =

∑∞
j=0(−σ2‖ω‖2/2)j/j! in (5.1) and exchanging the

order of summation and integration. Therefore, (−1)j‖ω‖2j component in a linear filter,

if applied to smooth ∂H, gives ∂2jh/∂u2j.

5.3 Singular surfaces

We consider a simple example of singular surface of the form

h(u) = ‖u‖q

for a real number q > 0. This is singular except for even numbers q = 2, 4, . . ., and it is

a cone for q = 1. First note that, for χ2
m, a chisquare random variable of m degrees of

freedom, the expected value of (χ2
m)q/2 is E(χq

m) = 2q/2Γ(m+q
2

)/Γ(m
2
). Then it is shown

in Appendix A.2 that

(5.5) Eσ(‖U∗‖q | u) = σqE(χq
m) 1F1

(
−q

2
,
m

2
,−‖u‖2

2σ2

)
,
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where the confluent hypergeometric function is

1F1(a, b, z) = 1 +
az

b
+

a(a + 1)z2

2b(b + 1)
+ · · · =

∞∑

j=0

(a)jz
j

j!(b)j

using the Pochhammer symbol (a)j = a(a + 1) · · · (a + j − 1). Thus, from (4.3), we see

that ψ(σ2) ≈ v +
∑∞

j=0 βj‖u‖2jσq−2j with βj’s defined from m and q; this reduces to ψk

with k = q
2

+ 1 for smooth surfaces, because the summation terminates at j = q/2 for

even q.

The Fourier transformation of hL(u) is

(5.6) H(ω) = (2π)−
m
2 Lm+qE(χq

m) 1F1

(
m + q

2
,
m

2
,−L2‖ω‖2

2

)
.

For sufficiently large x = L2‖ω‖2/2,

1F1

(
m + q

2
,
m

2
,−x

)
=





(−1)q/2 Γ(m
2

)

Γ(m+q
2

)
e−xxq/2(1 + O(x−1)) q is even

Γ(m
2

)

Γ(− q
2
)
x−m+q

2 (1 + O(x−1)) otherwise.

This result is consistent with Section 5.2 for smooth surfaces; the e−x term above makes

|βj| < ∞ in (5.4). For singular surfaces, however, the integration in (5.4) does not

converge for j ≥ (m + q − 1)/2, indicating that ẑ∞ does not exist. We can even say that

H(ω)/F (ω) → ∞ as ‖ω‖ → ∞.

— Insert Figure 3 Here —

5.4 Filter representations

We consider a corrected z-value, using a function J(ω), of the form

(5.7) ẑ(u, v) ≈ v +

∫
eiω·u+

‖ω‖2
2 (1 − J(ω))H(ω) dω,

which reduces to ẑ∞(u, v) if J(ω) = 0. The Fourier transformation of the unbiased surface

is S(ω) = (1 − J(ω))H(ω); we call 1 − J(ω) as an unbiased filter. The linear filter to be

applied to ∂H in (5.7) is e
‖ω‖2

2 (1−J(ω)), and we call it as a rejection filter. The rejection

filter calculates not only ẑ(u, v) but also ∂R by r(u) ≈ ẑ(u, v) − v − z. In the following,

we call r(u) + z as a rejection surface. This is the boundary surface of rejection region at

α = 0.5, so that it is compared with h(u) easily.

Consider a series of J(ω), denoted as Jk(ω), k ≥ 1. We will see both the multiscale

bootstrap and the bootstrap iteration lead to versions of Jk(ω) with the following two

21



properties. (i) Jk(ω) is a polynomial of ‖ω‖2 in which coefficients are zero for ‖ω‖2j,

j = 0, . . . , k − 1. Thus e
‖ω‖2

2 (1 − Jk(ω)) is equivalent to e
‖ω‖2

2 up to ‖ω‖2k−2 term.

Considering (5.4), Jk(ω) calculates ẑ ≈ ẑ∞ if h(u) is a polynomial of degree 2k − 1.

(ii) Jk(ω) is bounded for all k and ω, and Jk(ω) → 0 as k → ∞ at each ω. Since

H(ω) − S(ω) = J(ω)H(ω), this implies s(u) → h(u), meaning that the test bias reduces

zero up to O(∆h), although the corrected p-value does not converge for singular surfaces.

5.5 Multiscale bootstrap

Let Jk,σ0(ω) be J(ω) in (5.7) for α̂k,σ0 defined in (2.9). By considering the j-th derivative

of (5.1) with respect to σ2, we have

(5.8)
djψ(σ2)

d(σ2)j

∣∣∣
σ2
0

≈
∫

eiω·u−σ2
0
‖ω‖2

2

(
−‖ω‖2

2

)j

H(ω) dω.

Therefore, the rejection filter is

e
‖ω‖2

2 (1 − Jk,σ0(ω)) =
k−1∑

j=0

(1 + σ2
0)

j‖ω‖2j

2jj!
e−σ2

0

‖ω‖2

2 .

Using the incomplete gamma function γ(k, z) =
∫ z

0
tk−1e−t dt, we have

Jk,σ0(ω) =
γ(k, (1 + σ2

0)
‖ω‖2

2
)

Γ(k)

=
∞∑

j=k

(−1)j−k(1 + σ2
0)

j‖ω‖2j

(k − 1)!(j − k)!j2j
.

Note that a smaller σ0 leads to less biased p-value, but Jk,σ0(ω) does not vanish even at

σ0 = 0.

If we go back to (4.3), the rejection surface is written as

(5.9) r(u) + z ≈
k−1∑

j=0

(−1 − σ2
0)

j

j!

∂jEσ(h(U∗) | u)

∂(σ2)j

∣∣∣
σ2
0

.

Considering (5.8), the unbiased surface s(u) is given by (5.9) but the derivative is evaluated

at σ2
0 + 1 instead of σ2

0. These surfaces are drawn for h(u) = ‖u‖q with m = 1, q = 1 in

Fig. 3 (a, b) using eq. (A.1) in Appendix.
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5.6 Bootstrap iteration

Let Jk,bi(ω) be J(ω) in (5.7) for α̂k,bi defined in Section 4.4. We immediately obtain from

(4.17) that

Jk,bi(ω) = (1 + e−
‖ω‖2

2 )(1 − e−
‖ω‖2

2 )k(5.10)

= (−1)kk!
∞∑

j=k

(S2(j, k) + S2(j + 1, k + 1))
(−1)j‖ω‖2j

2jj!
,

where S2(j, k) =
∑k

i=0 (−1)k−iij/i!(k − i)! are the Stirling numbers of the second kind.

Note that the rejection filter converges to k − 1 as ‖ω‖ → ∞, while it converges to zero

for the multiscale bootstrap. This difference leads to the pointy shape of the rejection

surface at θ = 0 observed in Fig. 3(c).

The rejection surface is obtained from (4.17), by noting F (ω)j = F (
√

jω), as

(5.11) r(u) + z ≈
k∑

j=0

(−1)jk!(k − 1 − 2j)

(j + 1)!(k − j)!
E√

j(h(U∗) | u),

where E0(h(U∗) | u) = h(u) for j = 0. The unbiased surface s(u) is given by (5.11) but

E√
j(h(U∗) | u) is replaced by E√

j+1(h(U∗) | u).

A Appendix

A.1 Expected value of smooth surfaces

We consider the expected value of smooth h(U∗) under the normal model. Note that

Eσ(U∗q
j |0) = σq(q − 1)!! = σq2q/2Γ(1+q

2
)/Γ(1

2
) for even q, and Eσ(U∗q

j |0) = 0 for odd

q. Thus, if all q1, . . . , qm are even, Eσ(
∏m

j=1(U
∗
j − uj)

qj | u) = σq
∏m

j=1(qj − 1)!! with

q =
∑m

j=1 qj. Otherwise, the expectation is zero. Applying this result to the Taylor series

of h(U∗) around u gives Eσ(h(U∗)|u) = h(u) +
∑∞

j=1 βjσ
2j with βj defined in (5.3).

A.2 Expected value of surfaces of revolution

We consider h(u) = ‖u‖q for a real q ≥ 0. Note that Eσ(‖U∗‖q|u) = σqE(χq
m(δ2)),

where χ2
m(δ2) is a noncentral chisquare random variable with noncentrality δ2 = ‖u‖2/σ2.

Since E(χq
m(δ2)) =

∑∞
j=0

(δ2/2)j

j!
e−δ2/2E(χq

m+2j) = E(χq
m)e−δ2/2

1F1

(
m+q

2
, m

2
, δ2

2

)
, eq. (5.5)

follows from the identity ez
1F1(a, b,−z) = 1F1(b − a, b, z). By differentiating (5.5) with

respect to σ2, we have

(A.1)
∂jEσ(‖U∗‖q | u)

∂(σ2)j
=

σq−2jΓ(1 + q
2
)

Γ(1 − j + q
2
)

E(χq
m) 1F1

(
j − q

2
,
m

2
,−‖u‖2

2σ2

)
.
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The Fourier transformation of hL(u) is obtained from

∫
e−iω·ue−

‖u‖2

2L2 ‖u‖q du = e−
L2ω2

2 (2πL2)
m
2 EL(‖U∗‖q | L2iω).

Applying (5.5) to it gives (5.6).

A.3 Expected value of cone surfaces

Let us consider a polar coordinate system (‖u‖, t) ↔ u, where t = u/‖u‖ indicates the

direction instead of angles. A cone shaped surface is, in general, represented in the form

of h(u) = a(t)‖u‖, which reduces to the circular cone if a(t) = a is a constant. By noting

the independence of ‖U∗‖ and T ∗ for u = 0, we have

Eσ(h(U∗)|u) = e−
‖u‖2

2σ2 Eσ

(
h(U∗)e

U∗·u
σ2 | 0

)

= e−
‖u‖2

2σ2 Eσ

(
a(T ∗)‖U∗‖

∞∑

j=0

(σ2jj!)−1‖U∗‖j (T ∗ · u)j | 0
)

= e−
‖u‖2

2σ2

∞∑

j=0

(σ2jj!)−1Eσ(‖U∗‖j+1|0)E
(
a(T ∗)(T ∗ · u)j | 0

)
.

Since Eσ(‖U∗‖j+1|0) = σj+1E(χj+1
m ), we find that Eσ(h(U∗)|u) is expanded in the series

of σ1−j, j ≥ 0; this proves (2.7). For a cone with a(−t) = a(t), such as the circular cone,

the series includes only σ1−2j, j ≥ 0, since E (a(T ∗)(T ∗ · u)j | 0) = 0 for odd j.

A.4 Proof of equations (4.15) and (4.16).

Let u′ = θ̂(u, v) = u + O(∆h). Assume (4.15) holds for k. Then G(ẑk+1,bi(u, v)) =

E{P (V ∗ +dk(U
∗) ≤ v +dk(u) | U∗,−h(u′)) | u′} = E{G(v +dk(u)−dk(U

∗)+h(u′)) | u′}.
Applying the Taylor series around a = v + dk(u) − dk(u

′) + h(u′) twice, it becomes

G(ẑk+1,bi(u, v)) ≈ E{G(a)+g(a)(−dk(U
∗)+dk(u

′)) | u′} = G(a)+g(a)E(−dk(U
∗)+dk(u

′) |
u′) ≈ G(a + E(−dk(U

∗) + dk(u
′) | u′)) = G(E(v + dk(u) − dk(U

∗) + h(u′) | u′)). Thus

dk+1(u) ≈ v + dk(u) − E(dk(U
∗)|u′) + h(u′). (4.16) is shown by noting h(u′) ≈ h(u) and

E(dk(U
∗)|u′) ≈ E(dk(U

∗)|u). This also proves (4.15) for k + 1.
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Figure 1: Multiscale bootstrap for the phylogeny example. Bootstrap z-value of eq. (1.5)

is plotted against σ in log-scale. Circles are observed z-values of (a) Section 2.2, or

(b) Section 2.5. Parametric models ψ2, ψ3, ψ4 of eq. (2.2) and ψs of eq. (2.8) are used for

curve fitting.
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(a) convex cone (b) concave cone
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Figure 2: Geometry of the selection example. The axes are (y1, y2) or (θ, λ). The null

hypothesis is eq. (3.1) in Panel (a) and eq. (3.2) in Panel (b). The boundary surfaces of

rejection regions are shown for the normal test (short dashed lines), the multiple compar-

isons (long dashed lines), the multiple range procedure (dash-and-dot lines), and α̂k,1 for

k = 1, . . . , 4 (solid lines).
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Figure 3: The rejection filter e
‖ω‖2

2 (1− J(ω)) and the unbiased filter 1− J(ω) are plotted

against 0 ≤ ‖ω‖ ≤ 4. The rejection surface r(θ) + z and the unbiased surface s(θ) are

plotted against 0 ≤ θ ≤ 3 for h(θ) = |θ| (dotted lines) with m = 1. Solid lines are for

(a) α̂k,1, k = 1, . . . , 6, (b) α̂2,2−i , i = 0, . . . , 4, and (c) α̂k,bi, k = 1, . . . , 6. Surfaces are

also shown for α̂nt (short dashed lines) and α̂mc (long dashed lines). The rejection surface

of α̂nt coincides with h(θ). The unbiased surfaces in (a) and (c) will converge to h(θ) as

k → ∞, but s(θ) > h(θ) near the vertex, indicating that the rejection probability on ∂H
is larger than α for h(θ) = a|θ| with a > 0 (convex cone), and also it is smaller than α for

a < 0 (concave cone).
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Tables

Table 1: Corrected p-values (in percent) for the phylogeny example. Calculated are α̂k,1

of eq. (2.9) for models ψ1, . . . , ψ4, and ψs. The bootstrap probability α̃1 is indicated by

∗. The values in parentheses are standard errors estimated by the delta method. Only

corrected p-values with reasonably small AIC values are justified.

model α̂1,1 α̂2,1 α̂3,1 α̂4,1 AIC

narrow range (σ2 = 2−2, ..., 22)
∗ 1.51 (0.04)

ψ1 0.63 (0.01) 12708

ψ2 1.53 (0.02) 8.32 (0.14) 72.15

ψ3 1.51 (0.01) 10.17 (0.27) 12.30 (0.54) -5.89

ψ4 1.49 (0.02) 10.34 (0.29) 14.14 (1.21) 15.18 (1.82) -7.11

ψs 1.49 (0.02) 10.19 (0.26) 14.24 (0.87) 17.16 (1.54) -10.20

wide range (σ2 = 2−8, ..., 28)
∗ 1.50 (0.04)

ψ1 0.00 (0.00) 174279

ψ2 0.26 (0.01) 0.53 (0.01) 16984

ψ3 0.71 (0.01) 1.97 (0.04) 1.98 (0.04) 3969

ψ4 1.10 (0.02) 3.88 (0.07) 3.94 (0.07) 3.94 (0.07) 1140

ψs 1.48 (0.03) 9.68 (0.25) 13.25 (0.42) 15.75 (0.56) 6.03
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Table 2: p-values (in percent) for the selection example.

Point α̂nt α̂mc α̂mr α̂1,1 α̂2,1 α̂3,1 α̂4,1

1 3.85 6.86 7.91 1.97 4.60 6.25 7.97

2 3.85 6.86 3.85 3.85 3.93 3.67 3.83

3 7.86 2.31 2.25 8.85 5.54 6.25 9.06

4 7.86 2.31 7.86 7.86 7.86 7.87 7.84

Table 3: Rejection probabilities (in percent) at significance level α = 0.05 for the selection

example. These values are obtained by numerical integration. The parameter η is specified

by η1 = η3 = η2 + δ, δ ≥ 0 so that µ ∈ ∂H with θ = δ/
√

2.

δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7 δ = 8

convex region (λ ≤ − 1√
3
|θ|)

α̂nt 8.78 5.59 5.05 5.00 5.00 5.00 5.00 5.00 5.00

α̂mc 5.00 3.07 2.79 2.77 2.77 2.77 2.77 2.77 2.77

α̂mr 5.00 3.60 4.14 4.71 4.95 4.99 5.00 5.00 5.00

α̂1,1 13.4 7.77 5.79 5.20 5.04 5.01 5.00 5.00 5.00

α̂2,1 7.66 4.74 4.43 4.67 4.88 4.97 4.99 5.00 5.00

α̂3,1 6.61 4.51 4.70 5.02 5.09 5.05 5.01 5.00 5.00

α̂4,1 6.22 4.61 4.99 5.17 5.08 5.00 4.99 5.00 5.00

concave region (λ ≤ 1√
3
|θ|)

α̂nt 1.22 2.71 4.09 4.78 4.97 5.00 5.00 5.00 5.00

α̂mc 5.00 9.18 12.1 13.3 13.5 13.6 13.6 13.6 13.6

α̂mr 5.00 8.57 9.50 7.75 5.92 5.17 5.02 5.00 5.00

α̂1,1 0.85 2.04 3.43 4.42 4.85 4.97 5.00 5.00 5.00

α̂2,1 1.95 3.99 5.44 5.66 5.34 5.10 5.02 5.00 5.00

α̂3,1 2.37 4.49 5.52 5.30 4.96 4.92 4.97 4.99 5.00

α̂4,1 2.67 4.71 5.37 5.03 4.89 4.98 5.01 5.01 5.00
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