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ABSTRACT. Bayesian networks that are probabilistic expert systems can be
used as classifiers. A special type of Bayesian networks called naive Bayes
classifiers are very popular in practice due to their good performance although
they are relatively simple.

Enhancement of the performance of naive Bayes classifiers is often done
through various parameter learning methods where the usual method is the
method of maximum likelihood estimation. Nevertheless, since the true target
of interest of Bayes classifiers are estimation of conditional probabilities, it
is natural to learn their parameters by maximization of collective conditional
likelihoods. Therefore recently there has been a growing interest in learning the
parameters of naive Bayes classifiers through maximizing collective conditional
likelihoods.

Strong consistency and asymptotic normality are two basic statistical prop-
erties which any decent estimators should have although they are primarily of
theoretical nature. In this research, we prove the strong consistency and the
asymptotic normality of the maximum collective conditional likelihood estima-
tors for the naive Bayes classifiers. Essentially our proof follows the classical
ideas well-developed for the theory of maximum likelihood estimators.

1. INTRODUCTION

A Bayesian network models probabilistic relationships among a set of random
variables through a causal factorization of the joint density. There are efficient
inference algorithms to calculate marginal and conditional densities of certain vari-
able(s) given some of other variables. Therefore Bayesian networks are also referred
to as probabilistic expert systems. In this section, we discuss some of the prelimi-
naries of Bayesian networks and point out their real world applications in various
fields. For extensive discussions on the topic, the reader is referred to Cowell et al.
(1999) and Pearl (1988) and references therein.

Let us denote the state space of a random variable X by X;. We define a
Bayesian network on a vector of n discrete finite random variables X = (Xy,...,X,,)
as follows. From the chain rule of probability, we have

n
pla) = pz1. @2, ., 2n) = pla1) [[plzo |21, 20-1)
v=2

where p(z, | z1,...,2,_1) is the conditional density
P(XL = Ty | X1 = T1,--- ,Xv,1 = .1,'1),1).

Let X, be conditionally independent of {X1,..., Xy 1} \ Xpaq) given Xpq is
true, where Xp,,y € {X1,..., Xy 1}, ie,, p(@y | 21, -, T0—1) = P(T0 | Zpa(v))
holds for v = 1,...,n. Note that a conditional independence statement express an
information irrelevance, meaning, in the above case, given X,,(,), the conditional
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density of X, can be fully defined irrespective of the realization of the variable
set {X1,..., Xp—1}\ Xpa(v)- When causality is concerned, this means that, given
some causes, other causes become irrelevant or neutral. Thus we have the following
factorization of the joint probability density:

p(:L') = Hp(l‘v | zpa(v))'

This factorization can be represented by a directed acyclic graph where arrows
are drawn so as to represent probabilistic influences among variables. Arrows are
drawn from each variable in the set X,q(,) to X, for v =1,...,n and the variable
set Xpq(v) 18 called the parents of X,. The children of a variable is defined by
the opposite relation. And for each v there exits a family of conditional densities
{p(@0 | Zpa(v)) * VZpa(v)} where each conditional density p(z, | pa(v)) is assumed
to be multinomial with its parameter vector, say, ¢ (0 VY, € X,),
which is written schematically as

U‘xpa(v) = x‘u‘xpa(v)

X, ‘ xpa(v)79v|zpa(v) ~ Mn(e’u‘mpu(v)).

In the non-Bayesian setting, 0,,(x,,., = P(Xv = 2o | Xpaw) = Tpa(w))-

It is clear that, in order to use a Bayesian network model, one needs to learn the
model from data on the variables of interest, perhaps along with subject domain
expert knowledge. Basically, this model building process consists of two part; (1)
network structure learning — extracting the conditional independence relationships
among variables, (2) parameter learning given the structure —finding the factor-
ization of the joint density numerically. In literature there are many algorithms
developed for these tasks.

A simple Bayesian network is illustrated in the Fig. 1. If we have observed, say
X1 =1 and X5 = x5, then we can calculate conditional probability densities such
as p(xs3 | z1,x5) efficiently using inference algorithms.

Bayesian networks have vast number of applications in such fields as medicine
(Cowell et al. (1993), Diez et al. (1997)), engineering (Bromley et al. (2005),
Yearling and Hand (2003)), economics and finance (Cui et al. (2006), Gemela
(2001), Wijayatunga et al. (2006)), law (Dawid et al. (2006)), etc. In fact, they
are applicable to any field which deal with uncertainty and reasoning.

Fig.1 A simple Bayesian network with the Fig.2 A naive Bayes network with
density p(z1,z2, 3,74, 25) = p(x1)p(z2 | the density p(zo,z1,22,23,24,25) =
z1)p(xs | 1)p(za | z1)p(es | w3, 74). p(zo) [T;—, (i | wo).

It is straightforward to use Bayesian networks as classifiers (Friedman and Gold-
szmidt (1996), Friedman et al. (1997)) where the interest is usually on conditional
probability densities of a particular random variable called the “class” given the
data on some of the other variables called “attributes” that are statistically related
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with it. One advantage of Bayesian networks is that classification can be done with
partial observations on attributes. In fact, there is a lot of applications of Bayesian
networks as classifiers in various subject domains. See, for example, Baesens et. al.
(2002), Wijayatunga et al. (2006) and Porwal et al. (2006).

In Fig. 1, if the class variable is X3 and we consider all the other variables as
attributes, then we are interested in conditional densities p(z3 | €1, z2, 24, x5) Where

_ p(Iz | Il)p(505 | 1‘3714)
Doy, Py [ 21)p(2s | 25, 74

p($3 | wl,I27$4,$5) ) ZP($3 |$1,$4,I5)-

Therefore, conditional probability of the class variable given all the other vari-
ables is fully determined by a subset of attributes which is called the Markov blanket
of the class, namely, { X1, X4, X5}. The Markov blanket of a variable is the set of all
its parents, children and parents of those children. When we have complete obser-
vations on Markov blanket variables of the class, we need to consider only the joint
density of p(x1, 23, x4, x5) for predictions on the class variable but one should notice
that some parameters are not necessary for the calculation of p(x3 | 1,24, x5), for
example, 0,4, .

When we build a Bayesian network classifier for a chosen class variable, it seems
that ideally we can relate the other variables to it as either its parents, or children
or parents of those children using a Bayesian network structure learning algorithm.
However, a special type of Bayesian networks called naive Bayes classifier is very
popular due to its simplicity and good performance in practice.

In naive Bayes networks it is assumed that all the attributes are conditionally
independent given the class. For instance, a naive Bayes network with class variable
X and attribute variable vector (X, ..., X5) is shown in the Fig. 2. Therefore the
structure of naive Bayes classifier is predefined and what is left to do is the learning
of parameters. This can be done using methods of maximum likelihood estimation,
Bayesian estimation when prior knowledge is available, etc.

Those general parameter learning methods often give naive Bayes classifiers good
performance in practice. Further there has been much research done to enhance
their classification accuracy through various parameter learning techniques (Lang-
ley (1993), Webb and Pazzani (1998), Wijayatunga et al. (2006)) and sometimes
by changing the structure of the network (Friedman and Goldszmidt (1996)).

Recently, there has been a growing interest on parameter learning of naive Bayes
classifiers through maximization of collective conditional likelihood (CCL) since it
is more natural in the sense that it deals directly with conditional densities of the
class given the attributes, which are the object of interest of a classifier rather than
the joint density as in the maximum likelihood estimation. Some of the references
are Friedman et al. (1997), Rubinstein and Haste (1997), Ng and Jordon (2001),
Bouchard and Trigg (2004), Chelba and Acero (2004), Grossman and Domingo
(2004), Jing et al. (2005), Greiner et al. (2005), Pernkopf and Blimes (2005), Ross
et al. (2005), Santafe et al. (2005) and Yakhnenko et al. (2005). Further the
idea of maximization of CCL is itself interesting as a new construction principle of
parameter estimators because it incorporates all the relevant conditional likelihoods
simultaneously.

In the literature, parameter learning through maximizing CCL is referred as dis-
criminative or supervised learning whereas that of through maximizing likelihood is
referred as generative or unsupervised learning. It has been reported that very of-
ten the maximum CCL estimators (MCCLESs) give a classifier a better performance
than maximum likelihood estimates (MLEs) (Chelba and Acero (2004); Greiner et



4 PRIYANTHA WIJAYATUNGA AND SHIGERU MASE

al. (2005); Pernkopf and Blimes (2005)), although Ng and Jordon (2001) give ex-
amples where MLEs have better performance. A demerit of MCCLE is that it has
no closed form formula and one needs to calculate it numerically.

The strong consistency and asymptotic normality are two important basic prop-
erties that any decent estimator should have. But we notice that so far there are
no proofs for MCCLE for naive Bayes classifiers for which it is usually applied.
Although naive Bayes networks are mainly used as operational models, MCCLE
should have these two asymptotic properties if they “were” true models. Our ar-
guments follow essentially the classical ideas of proving strong consistency and
asymptotic normality proof developed for asymptotic theory of MLE.

Consider a set X = {X, X1,...,X,,} of n + 1 discrete and finite random vari-
ables. X is the class variable and the others are attribute variables. The state
space of X; is X; = {1,...,a;}. Assume they form a naive Bayesian network so
that their joint density is

n
(1) P(To, X1,y .-, Tp) :p(xo)Hp(xi | o).
i=1

The conditional density of Xy given X7 = x1,..., X, =z, is

p(wo) [TiLy p(2i | o)
o, P(a0) [Tz p(ai | 2p)

p(xo | 2p)) = 5

where, and in the following, we frequently use the notation like z(,] meaning the
ordered set {x1,...,x,} for convenience.

Let the parameter space © be Ag, X A20 x -+ - x A% where Ay = {(p1,...,pt—1) :
0 < p, Zf;i p; < 1}. The interior of @ is denoted by ©°. In the following, we
always assume that the true parameter is an element of ©°. Note that, if not,
the naive Bayesian network is degenerated in the sense that some state space can
be got rid of or made smaller. The naive Bayesian model is parameterized with
0 = (020, 021]20s -+ » Own|ao) € O Where z; € &; for i = 0,1,...,n so that

po(x0) =0y f 2o =1,...,a0 — 1,

aofl

p0(a0) =1- Z ona

.'E():l
Po (s | £0) = Ony )z if 2 = 1,... 0, — 1,
a;—1

p@(ai ‘ IO) = 1 - Z 01121‘1170

Iiil

From (?7?), its maximum likelihood estimator is easy to obtain and nothing but mere
corresponding sample ratios which are sometimes meaningless because of lacks of
sufficient data.

Suppose we have N complete samples on the random vector (Xg, X1,...,Xp),
say, € = {(xél),xgl), . :r:%l)), e (:L‘E,N), :vgN), ... ,:c%N))}. Then the collective con-

ditional likelihood (CCL) of 6 given data @ is defined as

N N i n i i
(2) CCLy(0) = H (w(j) | x(j)) _ pﬂ(m(()J)) Hi:l pG(mz('J) | m(gj))
N LOSURR T @
j=1 j=1 Zzgj po(x) Hi:l pe(%’ | z5)

Also we can write

CCLN(H) = H p9($0 | .Z'[n})Nmo‘w[n] = HCLN(0 | .l'[n})

T0,T[n] Tln]
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o

where Ny @y 18 the number of cases in the data such that Xo = g given X|,) = 7y
and

CLN(O | ) Hpg zo | ) Neolepmy

are conditional likelihoods, that is, likelihoods of conditional distributions.
The maximum collective conditional likelihood estimator (MCCLE) is defined
as

On = argmax CCLy(0).
0co

MCCLE’s have no closed form expression in general and should be solved numeri-
cally.

2. STRONG CONSISTENCY OF MCCLE

In this section, we prove the strong consistency of MCCLE’s. The proof is based
on the classical strong consistency proof of MLE’s due to Wald. Readers can find
a good outline of Wald’s idea in, e.g., Cox and Hinkley (1974) and Stuart and
Ord (1991). A different approach is given in Hall and Heyde (1980). First, we
need the following identifiability assumption as in the MLE case. This condition
requires that 6 should be uniquely determined by the corresponding density pg(. | .).

Assumption 1 (Identifiability Condition) If pa(zo | 2(n)) = pe (z0 | z[)) for all z,
then 6 = 0'.

Equivalently, this assumption says that, if 6 # ¢’, there exists some wp,; such
that pe(. | 2,)) # pe (- | 2[my). For such zp,), we have

po(xo | 2[n)

<0,
Por(To | T(ny)

Zpef (zo | 2[n)) log

Zo

which is a particular case of the so-called information inequality.

Remark 1. This assumption may not always be true. The following is a simple
counter example. Let n =1 and Xy = X; = {1,2}. Let

(0m0—179x1*1|x0:150901:1\900:2) = (1/372/3 2/3)7
(0y=1.9, ! )= (1/3,1/4,1/4),

z1=1|zo=1’Yz1=1|x0=2

then

poplzg=1|xz1=1)=pg(vg=1] 21 = 1),
polrg =121 =2)=pg (g =1] 21 =2).
Thus we have found parameters 6 # 6’ for which corresponding conditional distri-

butions are all identical.
The following lemma is essential for the consistency proof.

Lemma 1. Let 0* € 0° be a true parameter and € > 0. Let U = {0 : |0 —
0% < €} and ©1 = O\ U. € is chosen so that U C ©°. Define CCLy(61) =
maxgco, CCLN(0). Then, under Assumption 1,

. CCLn(6:)
Pa*{zvhinoo CCLy(07) 0} =1
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Proof. For suitable d > 0 and 0 € 61, define

Po,d(o | () = max{p-(zo | zn)) : |7 — 0| < d},
N
CCLy(0.d) = [ [ po.aas | (),
i=1

Po,d(z0 | Z[n)) }

K(0%,0,d| z1,) = po= (o | 21n7) log
( ‘ [n]) xZO 0 ( 0‘ [n}) {pG*(xO | Z[n])

After some manipulations, we get

1 [ecLy.d
N 8\ CCLN(0%)

N (%)
1 Po,a(®y” | 2[n))

= — 1 o log{’.— ,
Z N z; () =2(n Do~ (xéz) ED

Zn) 0=

where 14 is equal to 1 (resp. 0) if the statement A is true (resp. false). Taking the
expectation w.r.t. pg(zo,7[,)) for given zp,,

EO* ]]-x =z log{w}
[n]=%[n] o~ (g | Z[”])

Po,d(T0 | 2[n))
- Z o= (20, Tn)) Ly =2, IOg{i[]}

Do, d\x Zn
St b 22220
To Po=(To [n]
po,d(o | Z[n])}

po+(To | 2n))

= po-(2(n) Y po- (w0 | 2ny) log {
Zo

= Do~ (Z[n})K(H*a 95 d | Z[n})
Further we have

lleI'%lK(a*,G,d | Z[n]) = K(e*agao | Z[n])

and from the information inequality K (6*,6,0 | z,)) < 0. By the strong law of
large numbers, we get

. po.a(@l | 2n) .
lim N Z ]]':L‘(i):zm] log (7) = Po* (Z[n])K(0 ; 93 d | Z[n}) <0
: o+ (" | Zn))
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Py--a.s. Therefore

lim - log 4 L (0:4)
VU N 8 CCLy(07)

. 1 po.a(28) | )
N—oc [n]

po- (x| Zn))

Il

5
g
=]
™
-
l‘f/
5

Z[n] =1
N (2)
. 1 po,a(zy” | Z[n])
=Y dim =31 1og{7_—
o, Voo N = #tm) Do~ (x(()z) | 2[n))

= K(0%,0,d) Py+-a.s.,

where K (0*,0,d) = Zz[n] Do~ (2n)) K (0%,0,d | z,)). 1f the identifiability assumption
is true, then for any 6 € @ we have K(6*,60,0) < 0 and, therefore, we can select a
small number d > 0 such that K(6*,0,d) < 0.

Since 6, is a compact set, we can find finitely many points 61, ..., 60,, in 7 such
that {Uge,)(0;) : 5 = 1,...,m} makes a covering of 61 by open subset Uyg)()) =
{0/ € ©:]|0/ —0| <d(0)} of O, where d(f) is a positive number possibly depending
on 6 such that K(0*,60,d(0)) < 0. Therefore,

61 C | Uao,)(05)
j=1

So, we have

limsu ilo 7CCLN(91)
Vol N 8 CC Ly (67)

, 1. CCLy(0;,d(0;))
< — g =1,...
< gm max{ ARG oTeT AN R A ’m}

=max {K(0*,0;,d(0;)):j=1,....,m} Py-as.
Let K = max; K(0*,0;,d(6;)), then K < 0 and

lijl\fnjctlop % log %27]]\;((23)) <K <0 Ppyr-as.
This implies that
lim CCLN(61)
N—oo CCLy(6%)
That is, we have proved that

_ CCLy(61)
Po-{ lim =27 gl
o {leéo CCLy(07) 0}

=0 Py+-a.s.

Now we can prove the strong consistency of MCCLE immediately.

Theorem 1. Under Assumption 1, MCCLE On is strongly consistent.

Proof. Assume the contrary, i.e., Pg-{0x - 0*} > 0. Then there exists some d > 0
such that

Pp-{0n ¢ Ua(6*) for infinitely many N} > 0.
Then

< m for infinitely many N } > 0.
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But by the preceding Lemma 7?7, the above probability should be equal to zero.
Therefore we have a contradiction that completes the proof. O

Corollary 1. p; (2o | 7},)) is strongly consistent estimators of pe«(zo | z(n)) for
each xp,.

Proof. Tmmediate from the theorem since pg(zo | z[,)) are rational functions of the
parameter which have no poles in @°. ]

3. AsymproTIiCc NORMALITY OF THE MCCLE

In this section, we prove the asymptotic normality of the MCCLE. We apply a
general asymptotic normality theorem from van der Vaart (1998). For convenience,
we cite the theorem below.

Theorem 2 (Theorem 5.41 of van der Vaart (1998)). For each 6 in an open subset
of Euclidean space R?, let 6 +— g(x) € R? be twice continuously differentiable
function for every x € RM. Let 6* be the true parameter and X = (X1,...,Xn) be
a corresponding iid data. Suppose that Eg-{tg-(X)} = 0, that Eg-{||vpe-(X)|*} <
oo and that the matriz Eg-{1g-(X)} exists and nonsingular where v stands for
the derivative w.r.t. 0. Assume the second-order partial derivatives of g (z) w.r.t.
0 are dominated by a fized integrable function ¢(x) uniformly for every 0 in a
neighborhood of 0*. If the estimator Ox, a zero of Wy (0) = + Zf\;l Yo(X;) =0, is
weakly consistent, then

VN(Oy — 0) = — (Eg-1)p- (X))’l\/iﬁ ZW*(Xi) +op(1).
=1

In particular, the sequence v/ N (éN — 0%) is asymptotically normal with mean zero
and covariance matrix

(Eo-{do- (X)}) " Eg- {00~ (X )0+ (X)T} (Eog- {1 (X)})

Before starting the proof of asymptotic normality of MCCLE, we introduce some
notations. It is convenient to rewrite the parameter vector as 6 = (61, ..., 0)) where
k = (ap — 1) + > (a; — 1)ag using some appropriate enumeration. Define the
function () = 2 log pa(zo | z},))- A solution of the estimating equation

—1

1 N
Un(O) =+ > we(x9) =0
=1

is the MCCLE .
In order to apply Theorem ?7?, we check its requirements as a series of lemmas
and an assumption as follows. Let 8* € ©° be the true parameter.

Lemma 2. tg(x) is twice continuously differentiable in 6 € ©° for every x.

Proof. Easy since relevant conditional probabilities are rational functions in 6 which
have no poles in ©°. O

Lemma 3. Eg«{tg«(X)} = 0 holds.

Proof. First note

7] 0 7]
%: %Pa(xo | SU[n]) = 2 ZPG(QJO | l‘[n]) = %1 =
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for every x|, and 6. Hence the assertion follows from the following relation:
Boluo(X)} = Y polao, zi){ o lompo(ao | i)}
%0,%[n]
= mz[n:]po Zpe o | Ty {%bgpe(zo | ) )}
= polam) ) %PG(IO | ()
Tin) To

0
= Zpe(fﬁ[n])% > polzo | zpm)
0

(X))} < oo

Proof. This is obvious since the expectation is a finite sum and the integrand is
finite. O

Assumption 2. (Non-singularity of asymptotic covariance matrix) The matrix
Vo = Ep«{t)p+ (X )} is non-singular.

Remark 2. The matrix exists but may not always be non-singular. In Appendix
A we give a decomposition of the matrix Vj into those of conditional distributions
and give a counter example.

Lemma 5. There exists an integrable function ¢(z) such that ||e(z)||< ¢(z) uni-
formly in x for every 6 in a neighborhood of 6*.

Proof. This is again straightforward. Possible z are finitely many and each element
of Yg(x) is a rational function in  which has no pole in ©°. Actually ¢(x) can be
a constant which is the maximum of maxima of absolute value of each elements of
e (z) w.r.t. both z and § € C where C' C ©° is a compact neighborhood of #*. O

Now we can state the following theorem of asymptotic normality of MCCLE, the
proof of which is immediate from Theorem 2 and previous lemmas.

Theorem 3. Assume Assumptions 1 and 2 and let the true parameter 6* € ©°.
Let O be MCCLE. Then

VN(Ox — 0%) = — (Ep- {tbo- (X Zwa i) +op(1).

In particular, the sequence \/N(éN — 0*) is asymptotically normal with mean zero
and covariance matriz

(Eo- {bo- (X)}) ' Ep- {to- (X)o-(X)T} (Eo- {1~ (X)})

4. CONCLUSION

—1

We have proved the strong consistency and the asymptotic normality of MCCLE
for naive Bayes classifier. It is interesting, and is natural in a sense from the
definition of MCCLEs, that quantities of interest such as K (6*,6,d) and V-« of the
collective conditional likelihood function in our proofs are of the form of weighted
averages of corresponding quantities of likelihood functions related to individual
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conditional densities pg- (2o | 2|,)) where weights are probabilities of conditioning
set po+ (Z|n))-

The assumption of identifiability of parameters is essential in our case of naive
Bayes network. It is indispensable as Example 1 shows. We cannot give a detailed
characterization of the cases that this condition are violated. But it seems such a
case is rather pathological and/or has a degenerated structure, and the condition
will be satisfied for almost all practically important situations. Note that, without
this condition, it may be meaningless to estimate parameters. A similar comment
also applies to the assumption of nonsingularity of the matrix Vp« in the asymptotic
normality proof of MCCLE.

It has been shown that very often MCCLE-trained naive Bayes model has a
better classification performance than that of MLE-trained. These empirical evi-
dence are often found by performing cross-validations of each model on various data
sets. But better models in terms of prediction or classification accuracy are often
questioned for over-fitting, especially in the cases of these types of model training
and validations. Strong consistency of MCCLE eliminates such problems against
it given that the estimator is obtained from a data sample that is sufficiently large.
But the problem remains how large enough should the data set be so as to have
consistent classification performance for the future unseen data cases.

MLESs for Bayesian networks are mere sample conditional probabilities and may
not be defined or effective because of lack of sufficient number of data. It should
be stressed that MCCLESs can be useful even when MLEs fail.

Finally it remains one important question which we cannot discuss here. Are
the MCCLE-estimated conditional classification probabilities py (zo | 2n)) asymp-
totically normal or not? At least, our proof shows that they are rational functions
of asymptotically normal parameters.
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APPENDIX A

Here we give a counter example which violates Assumption 2. First we show a

decomposition of the matrix Vp-.

Le
of

mma 6. The matrixz Vy= is a weighted average of matrices Vor |z the negative
Fisher information matriz of the conditional density pg-(zo | ).
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Proof.
Vor = > poe (20, 2 )V (2)

Z05L[n]

= o~ () Y Po+(z0 | () )o+ (0, ()
l’[n] xo

=) 0o (@) Vor |y, -
]

z[n

O

We can see that matrices —Vor |z, for each z},; are nonnegative definite since
we have for z = (21,...,2;)7

—0?
T —_— . . _—
2 Vortern)2 = ;ZlZJE”*x["I{aajaei log po (o | x["])‘oza*}
o 2
— E9*|Z[n]{{ z;zza—ez log pg(xo | ) 0:0*} }
>0,
where Fp« |, stands for the expectation w.r.t. pg«(zo | z[n)). It follows that —Vp-
is also a nonnegative definite matrix:

2T (Ve )z = Zpe*(l’[n])ZT(*Ve*\x[n])Z > 0.

T(n]

The matrix —Vp« |, is not positive definite if there exits z # 0 such that

0
(3) zi:zia—eilogpa(mo | Z[n)) b 0

for Pg«-a.s xg, hence for all zg, that is, if a%ilogpg(:ro | x[n])b:e* is linearly
dependent in ¢. The matrix —Vp~ is not positive definite if, for some z # 0, eq. (?7?)
holds for all z,.

Let n = 1 and XO = Xl = {1,2} Then 6 = (0x011701'1:1|x0:1501‘1:1\1‘0:2) =
(01,02,03). Let us find some z # 0 such that 2% (=Vj«|;,)z = 0. That is, we have
to find z # 0 so that eq. (??) holds for both 21 =1, 2:

2105035 + 22(1 — 07)0705 + z3(—07)(1 — 07)65 = 0,
21(1=05)(1 = 03) + 22(1 = 07)(=01)(1 — 03) + 2307 (1 — 07)(1 — 65) = 0.
If we let 05 = 63, then z = (0,1,1) is a solution to the above two equations.

Therefore Vy- is not positive definite.
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