
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

Efficient Evaluation of Polynomials

and Their Partial Derivatives

in Homotopy Continuation Methods

Masakazu Kojima

August 2006, B–433

B-433 Efficient Evaluation of Polynomials and Their Partial Derivatives
in Homotopy Continuation Methods
Masakazu Kojima†, August 2006

Abstract.
The aim of this paper is to study how efficiently we evaluate a system of multivariate poly-
nomials and their partial derivatives in homotopy continuation methods. Our major tool is
an extension of the Hornor scheme, which is popular in evaluating a univariate polynomial,
to a multivariate polynomial. But the extension is not unique, and there are many Hornor
factorizations of a given multivariate polynomial which require different numbers of multi-
plications. We present exact method for computing a minimum Hornor factorization, which
can process smaller size polynomials, as well as heuristic methods for a smaller number of
multiplicatios, which can process larger size polynomials. Based on these Hornor factoriza-
tion methods, we then present methods to evaluate a system of multivariate polynomials
and their partial derivatives. Numerical results are shown to verify the effectiveness and the
efficiency of the proposed methods.

Key words.

Hornor scheme, multivariate polynomial, homotopy continuation method

† Department of Mathematical and Computing Sciences, Tokyo Institute of Technol-
ogy, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. kojima@is.titech.ac.jp

1 Introduction

Various types of homotopy continuation methods, such as the linear homotopy continuation
method [1, 3, 4, 8, 10] and the polyhedral homotopy continulation method [2, 7, 9, 15, 18, 19],
have been studied extensively as numerical methods for computing all isolated solutions of a
system of polynomial equations in multi complex variables. When we trace homotopy curves
using a predictor-corrector procedure, we need to evaluate polynomials and their derivatives
repeatedly along the homotopy curves. Thus, how fast we evaluate polynomials and their
derivatives is a key to efficient implementation of homotopy continuation methods. There
are lots of software packages [5, 6, 16, 20, 21] for homotopy continuation methods. Some
techniques for efficient evaluation of polynomials and their derivatives must have been used
there. To the best of the author’s knowledge1, however, there have been no general and/or
rigorous discussion on efficient evaluation of polynomials and their derivatives. The main
purpose of this paper is to study the subject from an optimization point of view, i.e, how we
minimize the number of multiplications in evaluation of polynomials and their derivatives.

To describe the subject of the paper more precisely, let us introduce some symbols and
notation. Let C and Z+ denote the set of complex numbers and the set of nonnegative
integers, respectively. For every vector variable x = (x1, x2, . . . , xn) ∈ C

n and every α =
(α1, α2, . . . , αn) ∈ Z

n
+, we use the notation xα for the monomial xα1

1 xα2

2 · · ·xαn
n . Then we

can write a polynomial ϕ in x ∈ C
n as ϕ(x) =

∑
a∈A c(α) xα for some finite subset A

of Z
n
+ and some c(α) ∈ C (α ∈ A). We consider a general coefficient-parameter homotopy

function h : C
n × [0, 1] → C

n [11], which covers linear and polyhedral homotopy functions
as special cases, such that

h(x, t) = (h1(x, t), h2(x, t), . . . , hn(x, t)), (1)

hj(x, t) =
∑

α∈Aj

cj,α(t)xα (j = 1, 2, . . . , n).

Here each cj,α(t) is continuously differentiable with respect to t ∈ [0, 1]. When we numeri-
cally trace solution curves of h(x, t) = 0 by the predictor-corrector procedure, we evaluate
values of hj(x, t), ∂hj(x, t)/∂t and ∂hj(x, t)/∂xi (i = 1, 2, . . . , n, j = 1, 2, . . . , n) at each
iteration. These are all polynomials in x ∈ C

n. Tracing one solution curve often requires
more than hundreds of evaluations of them, so that their fast evaluation over all solution
curves is crucial to an efficient implementation of a homotopy continuation method.

We focus our attention to the number of multiplications required to evaluate hj(x, t),
∂hj(x, t)/∂t and ∂hj(x, t)/∂xi (i = 1, 2, . . . , n, j = 1, 2, . . . , n). We assume that all coeffi-
cients cj,α(t) and their derivatives dcj,α(t)/dt (α ∈ Aj, j = 1, 2, . . . , n) are generic nonzero
complex (or real) numbers when hj(x, t), ∂hj(x, t)/∂t and ∂hj(x, t)/∂xi (i = 1, 2, . . . , n, j =
1, 2, . . . , n) are evaluated. Thus the number of multiplications required depends only on the
support set Aj but not on specific values of the coefficients and their derivatives. Therefore,
this leads to a simpler question how we minimize the number of multiplications in evaluating

1In numerical experiments, HOM4PS [5] worked on some benchmark polynomials much faster than
PHoM [6]. Probably, this difference is mainly due to a difference in evaluation of polynomials and their
derivatives.

1

a single multivariate polynomial

f(x) =
m∑

p=1

cpx
αp, (2)

where m denotes a positive integer, αp ∈ Z
n
+ and cp a generic nonzero complex (or real)

number. Note that each cp is corresponding to cj,α(t) when we evaluate hj(x, t) and to
∂cj,α(t)/∂t when we evaluate dhj(x, t)/dt.

One of our major tools is a multivariate Hornor scheme. The Honor scheme is a popular
and standard technique which has been frequently used for evaluating a polynomial in a
single variable. The scheme is known to be very effective to reduce the roundoff error which
would occur if the monomials were evaluated separately and added up [22]. The idea of
the Hornor scheme is naturally extended to multivariate polynomials, but its extension is
not unique; in general, there are many distinct “Hornor factorizations” of a given multi-
variate polynomial, which require different numbers of multiplicaions. As an example, let
us consider a polynomial in x = (x1, x2) ∈ C

2:

f(x) = c1x
3

1 + c2x
5

1x
3

2 + c3x
4

1x
4

2 + c4x
2

2 + c5. (3)

In this case, some different Hornor factorizations are:

f(x) = x3

1(c1 + c2x
2

1x
3

2) + x2

2(c3x
4

1x
2

2 + c4) + c5,

f(x) = c1x
3

1 + x2

2(x
4

1x2(c2x1 + c3x2) + c4) + c5,

f(x) = x3

1(c1 + x1x
3

2(c2x1 + c3x2)) + c4x
2

2 + c5, (4)

which require 16, 12 and 11 multiplications to evaluate f(x), respectively. Thus, the problem
of finding a minimal Hornor factorization (a Honor factorization with the minimum number
of multiplications) arises. As in the single variable case, the use of the multivariate Hornor
scheme results in less roundoff errors. This was discussed in details in the papers [12, 13].
The current paper focusses its attention to the number of multiplications in factorizations
of a polynomial generated by the multivariate Hornor scheme, and discusses the problem of
minimizing the number of multiplications over all Honor factorizations.

A method for a Hornor factorization of a single polynomial with the minimum num-
ber (or a smaller number) of multiplications, however, is not enough to minimize the total
number of multiplications in evaluating values of hj(x, t), ∂hj(x, t)/∂t and ∂hj(x, t)/∂xi

(i = 1, 2, . . . , n, j = 1, 2, . . . , n) in (1) which are done at each iteration of the predictor-
corrector procedure of a homotopy continuation method. Suppose that a component hj(x, t)
is factorized as in the right hand side of (4), where we may assume that ci (i = 1, 2, . . . , 5)
are continuously differentiable functions in t. To evaluate hj(x, t) using its Hornor factoriza-
tion (4), we need to compute the monomials x3

1, x1x
3
2 and x2

2. When we counted the number
of multiplications required by the Hornor factorization (4) above, we assumed that these
monomials are computed independently. But we can utilize the value of the third monomial
x2

2 to compute the second monomial x1x
3
2 such that x1x

3
2 = x1x2 × x2

2; hence we can save
a multiplication. In general, many different monomials are generated in Hornor factoriza-
tions of the homotopy polynomials hj(x, t) (j = 1, 2, . . . , n) and also in evaluation of their
partial derivatives hj(x, t), ∂hj(x, t)/∂t and ∂hj(x, t)/∂xi (i = 1, 2, . . . , n, j = 1, 2, . . . , n)
by using the Hornor factorizations. We could consider the problem of minimizing the total

2

number of multiplications to evaluate the homotopy functions and their partial derivatives
simultaneously taking account of evaluation of those monomials. But this problem is too
complicated and too difficult to solve exactly, so that we divide the problem into two phases.
In the first phase, we find a minimum Hornor factorization or a Hornor factorization with
a small number of multiplications for each component homotopy function separately, and
then, in the second phase, we deal with the problem of minimizing the number multiplica-
tions to evaluate the set of monomials which are involved in the Hornor factorizations of
the homotopy functions and in evaluation of their partial derivatives. The latter problem is
also difficult to solve exactly, so that we propose a heuristic method.

The paper is organized as follows. In Section 2, we present a basic framework for the
Hornor scheme for a polynomial after introducing symbols, notation and an illustrative
example of a multivariate polynomial that we use through out the paper. Section 3 de-
scribes numerical methods for a minimum Hornor factorization of a single polynomial, and
Section 4 three heuristic methods for Hornor factorizations of a single polynomial with a
smaller number of multiplications. Based on the minimum and heuristic Hornor factoriza-
tion methods given for a single polynomial in Sections 3 and 4, Section 5 discusses how
efficiently we compute a system of polynomials and their partial derivatives. Section 6 is
devoted to numerical results to compare the methods proposed in this paper.

2 A framework for the Hornor scheme for multivariate

polynomials

2.1 Symbols and notation

We use the notation C[x] for the ring of polynomials in x ∈ C
n. Associated with the

polynomial f ∈ C[x] given in (2), let

M = {1, 2, . . . , m} and Fp = {β ∈ Z
n
+ : β ≤ αp} (p ∈ M).

We introduce a family F[x, f] of polynomials induced from the polynomial f of the form
(2) such that

F[x, f] =

g ∈ C[x] :

∃nonempty P ⊆ M and βp ∈ Fp (p ∈ P)

such that g(x) =
∑

p ∈ P

cpx
β

p

.

Some members of F[x, f] will serve as element polynomials of a Hornor factorization of the
polynomial f . Let g be a polynomial in F[x, f]. Then there exists a nonempty P ⊆ M and
βp ∈ Fp (p ∈ P) such that

g(x) =
∑

p ∈ P

cpx
βp . (5)

Since the values of cp (p ∈ M) are not relevant througout the paper, the information
(P ⊆ M, βp ∈ Fp (p ∈ P)), which we will simply write as (P, βp), is enough to describe
a polynomial g ∈ F[x, f]. When g ∈ F[x, f] is of the form (5), we identify g ∈ F[x, f]

3

as (P, βp) and write g = (P, αp) ∈ F[x, f]. In particular,we write the polynomial of the

form (2) as f = (M, αp). We also identify a monomial xβ with its power vector β ∈ Z
n
+.

Let deg(xβ) = deg(β) =
∑n

i=1
[β]i denote the degree of a monomial, and t.deg(g) =

t.deg(P, βp) =
∑

p∈P deg(βp) the total degree of a polynomial g = (P, βp) ∈ F[x, f].

2.2 Example 1

As an illustrative example, we consider a polynomial

f(x) = c1x1x2x3x4 + c2x2x3x4x5 + c3x1x3x4x5 + c4x1x2x4x5 + c5x1x2x3x5 + c6. (6)

In this case, we have

M = {1, 2, 3, 4, 5, 6},

α1 = (1, 1, 1, 1, 0), F1 = {α ∈ {0, 1}5 : [α]5 = 0},

α2 = (0, 1, 1, 1, 1), F2 = {α ∈ {0, 1}5 : [α]1 = 0},

α3 = (1, 0, 1, 1, 1), F3 = {α ∈ {0, 1}5 : [α]2 = 0},

α4 = (0, 1, 0, 1, 1), F4 = {α ∈ {0, 1}5 : [α]3 = 0},

α5 = (1, 1, 1, 0, 1), F5 = {α ∈ {0, 1}5 : [α]4 = 0},

α6 = (0, 0, 0, 0, 0), F6 = {(0, 0, 0, 0, 0)}.

If we take P = {1, 3, 4}, β1 = (1, 1, 1, 0, 0) ∈ F1, β3 = (1, 0, 1, 0, 1) ∈ F3 and β4 =
(0, 1, 0, 0, 1) ∈ F4, then g = (P, βp) ∈ F[x, f] turns out to be

g(x) = c1x1x2x3 + c3x1x3x5 + c4x2x5. (7)

We see that

deg(xβ
1) = deg(x1x2x3) = 3,

deg(xβ
3) = deg(x1x3x5) = 2,

deg(xβ
4) = deg(x2x5) = 2,

t.deg(g) = t.deg(P, βp) = deg(xβ
1) + deg(xβ

2) + deg(xβ
3) = 7.

Applying the Hornor scheme which will be discussed later, we have some Hornor factor-
izations of f given in (6):

x4(x3(x2(c1x1 + c2x5) + c3x1x5) + c4x1x2x5) + c5x1x2x3x5 + c6, (8)

x4(x2x3(c1x1 + c2x5) + x1x5(c3x3 + c4x2)) + c5x1x2x3x5 + c6, (9)

x2x3x4(c1x1 + c2x5) + x1x5(x4(c3x3 + c4x2) + c5x2x3) + c6, (10)

x3x4(x2(c1x1 + c2x5) + c3x1x5) + x1x2x5(c4x4 + c5x3) + c6. (11)

The Hornor factorizations (8) and (9) require 14 and 13 multiplications, respectively, while
either of (10) and (11) requires 12 multiplications.

4

P ⊆ M

Q1 ⊆ P

ϕR (⋅ ;g,Q1) = (Q2 ,α p)

Q2 = P\Q1

g = (P,α p)

xγ (g,Q1)

ϕL (⋅ ;g,Q1) = (Q1,β p − γ (g,Q1))

Figure 1: A partial-factorization of a polynomial g ∈ F[x, f]

2.3 Partial factorization

Let g = (P, βp) ∈ F[x, f]. For every Q ⊆ P , we define

γ(g, Q)i = min{[βp]i : βp (p ∈ Q)} ∈ Z+ (i = 1, 2, . . . , n),

γ(g, Q) = (γ(g, Q)1, γ(g, Q)2, . . . , γ(g, Q)n) ∈ Z
n
+.

Let

Q(g) = {Q ⊆ P : #Q ≥ 2, γ(g, Q) 6= 0} .

As an example, suppose that g = (P, βp) is of the form (7). Then

P = {1, 3, 4}, γ(g, {1, 3, 4}) = (0, 0, 0, 0, 0), γ(g, {1, 3}) = (1, 0, 1, 0, 0),
γ(g, {1, 4}) = (0, 1, 0, 0, 0), γ(g, {3, 4}) = (0, 0, 0, 0, 1),
Q(g) = {{1, 3}, {1, 4}, {3, 4}}.

 (12)

If Q(g) 6= ∅, we say that g = (P, βp) ∈ F[x, f] is partially-factorizable. In this case, if
we take a Q ∈ Q(g), we have a partial factorization of g such that

g(x) = xγ(g, Q)ϕL(x; g, Q) + ϕR(x; g, Q),

ϕL(·; g, Q) = (Q, βp − γ(g, Q)) or

ϕL(x; g, Q) =
∑

p ∈ Q

cpx
βp − γ(g, Q),

ϕR(·; g, Q) = (P\Q, βp) or

ϕR(x; g, Q) =
∑

p ∈ P\Q

cpx
β

p.

(13)

Here Q can coincide with P ; in such a case, we assume that ϕR(·; g, Q) = 0. Figure 1
illustrates a partila-factorization of a polynomial g = (P, βp) in terms of a tree. If Q(g) = ∅,
we say that g = (P, βp) ∈ F[x, f] is non-factorizable. Specifically, any Q with only one
element is non-factorizable.

5

P = {1,3,4}
g(x) = c1x1x2x3 + c3x1x3x5 + c4 x2x5

ϕL (x;g,Q1) = c1x2 + c3x5 ϕR (x;g,Q1) = c4 x2x5

Q1 = {1, 3} ⊂ P Q2 = P\Q1 = {4}

xγ (g,Q1) = x1x3

Figure 2: A partial-factorization of a polynomial g ∈ F[x, f] given in (5)

In the case of (7), if we take Q = {1, 3} then we have

γ(g, Q) = (1, 0, 1, 0, 0), xγ(g, Q) = x1x3,

ϕL(x; g, Q) = c1x2 + c3x5,

ϕR(x; g, Q) = c4x2x5,

g(x) = xγ(g, Q)ϕL(x; g, Q) + ϕR(x; g, Q)

= x1x3(c1x2 + c3x5) + c4x2x5.

See Fingure 2.

2.4 Multivariate Hornor factorizations

Note that both ϕL(·; g, Q) and ϕR(·; g, Q) in (13) belong to the class F[x, f] of polynomials
again. Hence we can apply a partial factorization to them as long as they are partially
factorizable. This will lead us to a Honor factorization of f ∈ C[x].

Algorithm 2.1.

• Input : g = (P, βp) ∈ F[x, f].

• Output : A Hornor factorization HF(g) of g = (P, βp) ∈ F[x, f] and the number
η(HF(g)) of the multiplications to evaluate g(x) using the Hornor factorization. Here
HF(g) and η(HF(g)) are generated recursively as shown below.

Step 1: If g is non-factorizable (i.e., Q(g) = ∅) then let HF(g) = g(x) and η(HF(g)) =∑
p∈P deg(βp). Otherwise go to Step 2.

Step 2: Choose a Q ∈ Q(g).

Step 3: Represent g as in (13).

Step 4: Let

HF(g) = xγ(g, Q)HF(ϕL(·; g, Q)) + HF(ϕR(·; g, Q)),

η(HF(g)) = deg(γ(g, Q)) + η(HF(ϕL(·; g, Q))) + η(HF(ϕL(·; g, Q))).

6

To generate a Hornor factorization of f = (M, αp) by applying Algorithm 2.1 to f =
(M, αp), we need to specify how we choose a Q ∈ Q(g) at Step 2. Ideally, we want to
find a minimum Hornor factorization, i.e., a Hornor factorization HF(f) of f = (M, αp)
which minimizes the number η(HF(f)) of multiplications to evaluate f(x) over all possible
Hornor factorizations of f = (M, αp). This will be discussed in Section 3. As we can easily
guess, the combinatorial explosion generally occurs in Q(g), i.e., the number of candidates
Q from Q(g) in Step 2 grows very rapidly as the number of βp (p ∈ P) increases and/or the

degrees of xβ
p (p ∈ P) get larger. Because of this reason, an optimal Hornor factorization

of f = (M, αp) is not tractable in such cases. Therefore we need some heuristic methods
for choosing a Q ∈ Q(g) for Hornor factorizations with small numbers of multiplications,
which we will discuss in Section 4.

Figure 3 illustrates an application of Algorithm 2.1 to the polynomial f ∈ C[x] given in
(6) in terms of a tree, which we will call a Hornor tree. The root node

Q0 = M = {1, 2, 3, 4, 5, 6},

g0(x) = c1x1x2x3x4 + c2x2x3x4x5 + c3x1x3x4x5 + c4x1x2x4x5 + c5x1x2x3x5 + c6

of the tree is the original polynomial f ∈ R[x] given in (6) itself, which is partially-
factorizable. At Step 2, we take Q1 = {1, 2, 3} ∈ Q(g0) then we obtain the two nodes
in the second level

Q1 = {1, 2, 3} ⊆ Q0, γ(g0, Q1) = (0, 0, 1, 1, 0), xγ(g0, Q1) = x3x4,

g1(x) = ϕL(x; g0, Q1) = c1x1x2 + c2x2x5 + c3x1x5,

and

Q2 = Q0\Q1 = {4, 5, 6}, g2(x) = ϕR(x, g0, Q1) = c4x1x2x4x5 + c5x1x2x3x5 + c6.

At the left node in the second level, we take Q3 = {1, 2} ⊂ Q(g1) and obtain two nodes in
the third level:

Q3 = {1, 2} ⊂ Q1, γ(g1, Q3) = (0, 1, 0, 0, 0), xγ(g1, Q3) = x2,

g3(x) = ϕL(x, g1, Q3) = c1x1 + c2x5,

and

Q4 = Q1\Q3 = {3}, g4(x) = ϕR(x; g1, Q3) = c3x1x5.

Taking Q5 = {4, 5} ∈ G(g2) at the right node on the second level, we similarly obtain two
nodes in the third level:

Q5 = {4, 5} ⊂ Q2, γ(g2, Q5) = (1, 1, 0, 0, 1), xγ(g2, Q5) = x1x2x5,

g5(x) = ϕL(x; g2, Q5) = c4x4 + c5x1x3,

Q6 = Q2\Q5, g6(x) = ϕR(x; g2, Q5) = c6.

Now the polynomials g3, g4, g5 and g6 at the leaf nodes are non-factorizable, so that this
completes a Honor factorization of the polynomial f . The resulting Hornor factorization
can be build up along the paths from these leaf nodes to the root node. First we observe
that

η(HF(g3)) = t.deg(g3) = 2, η(HF(g4)) = t.deg(g4) = 2,
η(HF(g5)) = t.deg(g5) = 2, η(HF(g6)) = t.deg(g6) = 0.

(14)

7

M = {1,2,3,4,5,6}

Q1 = {1,2,3} ⊂ M

x3x4

g1(x) = c1x1x2 + c2x2x5 + c3x1x5

Q2 = M \Q1 = {4,5,6}

Q3 = {1,2} ⊂ Q1

g3(x) = c1x1 + c2x5

x2

Q4 = Q1 \Q3 = {3}

g4 (x) = c3x1x5

Q5 = {4,5} ⊂ Q2 Q6 = Q2 \Q5 = {6}

g6 (x) = c6

f (x) = c1x1x2x3x4 + c2x2x3x4 x5 + c3x1x3x4 x5 + c4 x1x2x4 x5 + c5x1x2x3x5 + c6

g2 (x) = c4 x1x2x4 x5 + c5x1x2x3x5 + c6

x1x2x5

g5 (x) = c4 x4 + c5x3

Figure 3: A Hornor factorization of the polynomial f ∈ R[x] given in (6)

Then the polynomial g1 in the second level is represented in terms of the polynomials of its
child nodes, g3 and g4:

g1(x) = x2g3(x) + g4(x) = x2(c1x1 + c2x5) + c3x1x5,

η(HF(g1)) = 1 + 2 + 2 = 5.

Similarly, we have

g2(x) = x1x2x5g5(x) + g6(x)

= x1x2x5(c4x4 + c5x3) + c6,

η(HF(g2)) = 3 + 2 + 0 = 5,

and finally

f(x) = g0(x)

= x3x4g1(x) + g2(x)

= x3x4(x2(c1x1 + c2x5) + c3x1x5) + x1x2x5(c4x4 + c5x3) + c6; hence

HF(f) = x3x4(x2(c1x1 + c2x5) + c3x1x5) + x1x2x5(c4x4 + c5x3) + c6,

η(HF(f)) = 5 + 5 + 2 = 12.

2.5 Computation of the function value f(x)

Computation of the function value f(x) is carried out in a similar way as we build a Hornor
factorization above using a Hornor tree. We continue to use the same example above
whose Hornor tree is given in Figure 3. First we compute the values of the polynomials
g3, g4, g5 and g6 at the leaf nodes. Then, we compute the values of x2g3(x) + g4(x) and
g2(x) = x1x2x5g5(x) + g6(x). Finally, we obtain that f(x) = g0(x) = x3x4g1(x) + g2(x).

8

3 The minimum number of multiplications over all

Hornor factorizations

3.1 Recursive formula

For every g ∈ F[x, f], let ν(g) denote the minimum number of multiplications to evaluate
g(x) over all possible Honor factorizations. Suppose that g = (P, βp) ∈ F[x, f] with k =
min P . Then

ν(g) =

{
t.deg(g) if g = (P, βp) is non-factorizable or Q(g) = ∅,
min

{
ν(Q, βp) + ν(P\Q, βp) : k ∈ Q ⊆ P

}
otherwise.

(15)

We now focus our attention to the latter case above where we have

ν(g) = min
{
ν(Q, βp) + ν(P\Q, βp) : k ∈ Q ⊆ P

}
. (16)

If γ(g, P) 6= ∅, then

g(x) = xγ(g, P)

(
∑

p∈P

cpx
βp − γ(g, P)

)
;

hence

ν(g) = deg(γ(g, P)) + ν(P, βp − β(g, P)).

Thus the minimum is attained with Q = P . Suppose now that the minimum is attained at
some Q = Q∗ such that k ∈ Q∗ ⊂ P and Q∗ 6= P . Then

ν(g) = ν(Q∗, βp) + ν(P\Q∗, βp).

Then we have either

(i) Q∗ = {k}.

(ii) k ∈ Q∗, #Q∗ ≥ 2 and γ(g, Q∗) 6= 0.

(iii) k ∈ Q∗, #Q∗ ≥ 2 and γ(g, Q∗) = 0.

In case (iii), there exists a nonempty proper subset Q̂ of Q∗ with k ∈ Q̂ such that

ν(Q∗, βp) = ν(Q̂, βp) + ν(Q∗\Q̂, βp).

Hence we have

ν(g) = ν(Q̂, βp) + ν(Q∗\Q̂, βp) + ν(P\Q∗, βp)

= ν(Q̂, βp) + ν(P\Q̂, βp).

Redefine Q∗ = Q̂. If case (iii) still holds for this Q∗, we can continue to apply the same
argument till either (i) or (ii) holds. Therefore we can impose an additional condition

9

γ(g, Q) 6= 0 (or Q ∈ Q(g)) or Q = {k} in evaluating the minimum on the right hand side
of (16). Therefore we can replace (15) by

ν(g) =

t.deg(g) if g = (P, βp) is non-factorizable or Q(g) = ∅,

min

{
ν(Q, βp) + ν(P\Q, βp) :

k ∈ Q ∈ Q(g),
or Q = {k}

}
otherwise.

(17)

As an example, let us apply the formula (17) to the polynomial g = (P, βp) given in (5).
Recall that (12) holds. Since k = min P = 1 and Q(g) = {{1, 3}, {1, 4}, {3, 4}}, we have
that

ν(g) = min
{
ν({1, 3}, βp) + ν({4}, βp),

ν({1, 4}, βp) + ν({3}, βp),

ν({1}, βp) + ν({3, 4}, βp)
}

,

ν({1, 3}, βp) = ν(c1x1x2x3 + c3x1x3x5) = ν(x1x5(c1x2 + c3x5))

= 2 + ν(c1x2 + c3x5) = 2 + 2 = 4,

ν({4}, βp) = ν(c4x2x5) = 2,

ν({1, 4}, βp) = ν(c1x1x2x3 + c4x2x5) = ν(x2(c1x1x3 + c4x5))

= 1 + ν(c1x1x3 + c4x5) = 1 + 3 = 4,

ν({3}, βp) = ν(c3x1x3x5) = 3,

ν({1}, βp) = ν(c1x1x2x3) = 3,

ν({3, 4}, βp) = ν(c3x1x3x5 + c4x2x5) = ν(x5(c3x1x3 + c4x2))

= 1 + ν(c3x1x3 + c4x2) = 1 + 3 = 4.

Hence

ν(g) = min{4 + 2, 4 + 3, 3 + 4} = 6.

Using the formula (17) recursively, we could compute the minimum number of multipli-
cations over all possible Hornor factorizations of a polynomial f = (M, αp) ∈ C[x] of the
form (2). In the next subsection, we present lower bounds for the number of multiplications
to evaluate a polynomial g = (P, βp) ∈ F[x, f]. Incorporating the lower bounds into the
recursive formula (17), we can improve its efficiency to compute the minimum number of
multiplications in evaluating the polynomial f = (M, αp).

3.2 Lower bounds for the number of multiplications in Hornor
factorizations

Suppose that g = (P, βp) ∈ F[x, f] and k = min P . We introduce a lower bound λ1(g) for
the number of multiplications to evaluate g over all possible Honor factorizations:

λ1(g) = λ1(P, βp) =

n∑

i=1

min
{
[βp]i : p ∈ P

}
.

Note that to evaluate g(x) xi is multiplied at least min
{
[βp]i : p ∈ P

}
times for every

i = 1, 2, . . . , n. In the case of g = (P, βp) ∈ F[x, f] given in (7), we see that

λ1(g) = λ1(c1x1x2x3 + c3x1x3x5 + c4x2x5) = 5.

10

In general, λ1(P, βp) ≤ ν(P, βp) ≤ t.deg(P, βp). When g = (P, βp) is non-factorizable or
Q(g) = ∅, we see that λ1(g) = ν(g) = t.deg(P, βp). Hence the lower bound λ1(g) for ν(g) is
tight in this case. Otherwise we know from (17) that

ν(g) = min

{
ν(Q, βp) + ν(P\Q, βp) :

k ∈ Q ∈ Q(g),
or Q = {k}

}

≥ min

{
λ1(Q, βp) + λ1(P\Q, βp) :

k ∈ Q ∈ Q(g),
or Q = {k}

}

Therefore we can define a better lower bound λ2(g) = λ(((P, βp)) as follows.

λ2(g) =

t.deg(g) if g = (P, βp) is non-factorizable or Q(g) = ∅,

min

{
λ1(Q, βp) + λ1(P\Q, βp) :

k ∈ Q ∈ Q(g),
or Q = {k}

}
otherwise.

In the case of g = (P, βp) ∈ F[x, f] given in (7), we know that P = {1, 3, 4}, Q(g) =
{{1, 3}, {1, 4}, {3, 4}} and k = 1 (recall (12)). Hence

λ1(g) = 3,

λ2(g) = min
{
λ1({1, 3}, βp) + λ1({4}, βp),

λ1({1, 4}, βp) + λ1({3}, βp),

λ1({1}, βp) + +λ1({3, 4}, βp)
}

= min {λ1(c1x1x2x3 + c3x1x3x5) + λ1(c4x2x5),

λ1(c1x1x2x3 + c4x2x5) + λ1(c3x1x3x5),

λ1(c1x1x2x3) + +λ1(c4x2x5 + c3x1x3x5)}

= min{4 + 2, 4 + 2, 3 + 3} = 6.

3.3 Saving the work to compute ν(g) by using its lower bounds

Suppose that g = (P, βp) ∈ F[x, f] and Q(g) 6= ∅. In order to compute ν(g), we generate a
family of subsets of P ,

{Q ⊆ P : k ∈ Q ∈ Q(g) or Q = {k}} ,

where k = min P . Let the members of this family be

Q1, Q2, . . . , Qs−1 ∈ Q(g) and Qs = {k}.

Then

ν(g) = min{ν(Qj , βp) + ν(P\Qj, βp) : j = 1, 2, . . . , s}

Hence we observe that, for j = 1, 2, . . . , s − 1,

ν(Qj , βp) + ν(P\Qj, βp)

= deg(γ(g, Qj)) + ν(Qj , βp − γ(g, Qj)) + ν(P\Qj , βp)

≥ deg(γ(g, Qj)) + λ(Qj , βp − γ(g, Qj)) + λ(P\Qj, βp),

11

and that, for j = s,

ν(Qr, βp)) + ν((P\Qr, βp) = deg(βk) + ν(P\{k}, βp)

≥ deg(βk) + λ(P\{k}, βp).

Here λ(h) denotes either of the lower bounds λ1(h) and λ2(h) for the minimum number ν(h)
of multiplications to evaluate h ∈ F[x, f].

Now suppose that we have computed

νj = ν(Qj , βp) + ν(P\Qj , βp) (j = 1, 2, . . . , r)

for some r ≤ s − 1. Let ν∗ = min{νj : j = 1, 2, . . . , r}. Before computing

νr+1 = ν(Qr+1, βp) + ν(P\Qr+1, βp),

we compute

λ̂ =

deg(γ(g, Qr+1)) + λ(Qr+1, βp − γ(g, Qr+1)) + λ(P\Qr+1, βp)
if r + 1 < s,

deg(βk) + λ(P\{k}, βp) if r + 1 = s.

If ν∗ ≤ λ̂, then we know from the discussion above that ν∗ ≤ λ̂ ≤ νr+1. Hence νr+1 can not
improve the currently known best number ν∗ of multiplications to evaluate g(x), so that
we can skip the computation of νr+1. This saves the work to compute ν(g) because the
computation of λ is less expensive than that of νr+1 in general.

In Section 6, we show through some numerical results that how effectively the lower
bounds λ1 and λ2 save the number of recursive calls of ν to compute minimal Hornor
factorizations of polynomials.

4 Heuristic methods

As we mentioned, in order to generate a Hornor factorization of a given polynomial f =
(M, αp) of the form (2) by applying Algorithm 2.1, we need to choose a Q from Q(g) at
Step 2 of Algorithm 2.1. In this section, we present three heuristic methods for choosing Q
from Q(g) there in Sections 4.1, 4.2 and 4.3, respectively. Numerical results on the heuristic
methods proposed in this section in comparison to the recursive formula (15) incorporated
with the lower bound λ2 will be reported in Section 6.

4.1 Heuristic method 1 using the best upper bound

The first method utilizes upper bounds for the minimum number ν(g) of multiplications
to evaluate g(x), which we can compute with less cost than ν(g) itself. Suppose that
g = (P, βp) ∈ F[x, f] and k = min P . Let

µ1(g) = µ1(P, βp)

=

{
t.deg(P, βp) if γ(P, g) = 0 or #P = 1,
deg(γ(g, P)) + µ1(P, βp − γ(g, P)) otherwise.

12

Note that γ(P, βp − γ(g, P)) = 0 in the latter case; hence

µ1(g) = deg(γ(g, P)) + t.deg(P, βp − γ(g, P)) < t.deg(P, βp).

In general, ν(g) ≤ µ1(g). If g = (P, βp) ∈ F[x, f] is non-factorizable, we see that λ1(g) =
ν(g) = µ1(g).

Taking the recursive formula (17) into account as in Section 3.2, we can strengthen the
upper bound µ1(g), and define a better upper bound µ2(g) for ν(g):

µ2(g) =

t.deg(P, βp) if g = (P, βp) is non-factorizable or Q(g) = ∅,

min

{
µ1(Q, βp) + µ1(P\Q, βp) :

k ∈ Q ∈ Q(g),
or Q = {k}

}
otherwise.

Here k = min P .
In the case of g = (P, βp) ∈ F[x, f] given in (7), we see that

µ1(g) = µ1(c1x1x2x3 + c3x1x3x5 + c4x2x5) = 8,

µ2(g) = min
{
µ1({1, 3}, βp) + µ1({4}, βp),

µ1({1, 4}, βp) + µ1({3}, βp),

µ1({1}, βp) + +µ1({3, 4}, βp)
}

= min {µ1(c1x1x2x3 + c3x1x3x5) + µ1(c4x2x5),

µ1(c1x1x2x3 + c4x2x5) + µ1(c3x1x3x5),

µ1(c1x1x2x3) + +µ1(c3x1x3x5 + c4x2x5)}

= min {µ1(x1x3(c1x2 + c3x5)) + µ1(c4x2x5),

µ1(x2(c1x1x3 + c4x5)) + µ1(c3x1x3x5),

µ1(c1x1x2x3) + +µ1(x5(c3x1x3 + c4x2))}

= min{4 + 2, 4 + 3, 3 + 4} = 6.

Now we are ready to describe Heuristic method 1.

Algorithm 4.1. (Heuristic method 1)

• Input g = (P, βp) ∈ F[x, f]. Here we assume that g = (P, βp) is partially factorizable
or Q(g) 6= ∅.

• Output Q ∈ Q(g) for Step 2 of Algorithm 2.1.

Step 1: If γ(P, βp) 6= 0 then output Q = P .

Step 2: Othewise, output an optimal solution Q of the problem

minimize µ(Q, βp) + µ(P\Q, βp)
subject to k ∈ Q ∈ Q(g) or Q = {k}.

Here k = min P and µ denotes either µ1 or µ2.

The heuristic method above is less expensive than the computation of the minimum
number ν(g) of multiplications to evaluate g(x). But if we employ µ = µ2, the minimization
problem requires to compute Q(g) as in the computation of ν(g). Therefore Heuristic
method 1 with the use of µ = µ2 rapidly becomes more expensive to excecute as the

number of βp (p ∈ P) increases and/or the degrees of xβ
p (p ∈ P) get larger.

13

4.2 Heuristic method 2 taking account of a certain similarity

among monomials

In this subsection and the next, we propose less expensive heuristic methods than the
one presented in the previous subsection for computing Hornor factiorizations with small
numbers of multiplications to compute f = (M, αp). In the method described below in this
subsection, we utilize deg(γ(Q, g)) to represent a similarity for each Q ∈ Q(g). First we
choose one of the most similar pairs from P , say q and q′, and set Q = {q}. Then we add
add a q ∈ P\Q by one by one as long as µ1(Q ∪ {q}, g) + µ1(P\(Q ∪ {q}), g) gets smaller
than µ1(Q, g) + µ1(P\Q, g).

Algorithm 4.2. (Heuristic method 2)

• Input g = (P, βp) ∈ F[x, f]. Here we assume that g = (P, βp) is partially factorizable
or Q(g) 6= ∅.

• Output Q ∈ Q(g) for Step 2 of Algorithm 2.1.

Step 1: If γ(P, βp) 6= 0 then output Q = P .

Step 2: Choose a pair of distinct q, q′ ∈ P such that

deg(γ({q, q′}, βp) = max{deg(γ({r, r′}, βp) : r, r′ ∈ P, r 6= r′}.

Let Q = {q}.

Step 3: If Q = P then output Q. Otherwise let q ∈ P\Q be such that

deg(γ(Q ∪ {q}, βp) = max{deg(γ(Q ∪ {r}, βp) : r,∈ P, r ∈ P\Q}.

Step 4: If

µ1(Q, βp) + µ1(P\Q, βp) > µ1(Q ∪ {q}, βp) + µ1(P\(Q ∪ {q}), βp),

then let Q = Q ∪ {q}, and go to Step 3. Otherwise output Q.

Now let us apply Heuristic method 2 to the case of g = (P, βp) ∈ F[x, f] given in (7).
In this case, we have that

γ({1, 3, 4}, βp) = 0,

deg(γ({1, 3}, βp)) = 2 > 1 = deg(γ({1, 4}, βp)) = deg(γ({3, 4}, βp)),

so that we set Q = {1} at Step 2. Then we observe that

deg({1} ∪ {3}, βp) = 2 > 1 deg({1} ∪ {4}, βp)

14

at Step 3, and

µ1({1}, βp) + µ1({3, 4}, βp) = µ1(c1x1x2x3) + µ1(x5(c3x1x3 + c4x2))

= 3 + 4 = 7,

µ1({1} ∪ {3}, βp) + µ1({4}, βp) = µ1(x1x3(c1x2 + c3x5)) + µ1(c4x2x5)

= 4 + 2 = 6; hence

µ1({1}, βp) + µ1({3, 4}, βp) > µ1({1} ∪ {3}, βp) + µ1({4}, βp)

at Step 4. Thus we update Q = {1} to Q = {1, 3}, and go back to Step 3. Now q = 4 is
uniquely chosen at Step 3, but we see that

µ1({1, 3} ∪ {4}, βp) = deg({1, 3, 4}, βp) = 8 > 6 = µ1({1, 3}, βp) + µ1({4}, βp).

Therefore, the method outputs Q = {1, 3}.

4.3 Heuristic method 3 taking account of the number of factor-
ized monomials

We now focus our attention to the number of elements in Q ∈ Q(g), and choose Q ∈ Q(g)
having the maximum number of elements among members of Q(g), which is computed as
follows:

#{p ∈ P : [βp]i ≥ 1} = max
1≤j≤n

#{p ∈ P : [βp]j ≥ 1},

Q = {p ∈ P : [βp]i ≥ 1}.

}
(18)

Algorithm 4.3. (Heuristic method 3)

• Input g = (P, βp) ∈ F[x, f]. Here we assume that g = (P, βp) is partially factorizable
or Q(g) 6= ∅.

• Output Q ∈ Q(g) for Step 2 of Algorithm 2.1.

Step 1: If γ(P, βp) 6= 0 then output Q = P .

Step 2: Otherwise, output Q ∈ Q(g) determined by (18).

If we apply Heuristic method 3 to the case of g = (P, βp) ∈ F[x, f] given in (7), w have
that

γ({1, 3, 4}, βp) = 0,

#{p ∈ P : [βp]i ≥ 1} = 2 (i = 1, 2, 3, 5),

#{p ∈ P : [βp]4 ≥ 1} = 0.

Hence, either of

{1, 3} = {p ∈ P : [βp]1 ≥ 1} = {p ∈ P : [βp]3 ≥ 1},

{1, 4} = {p ∈ P : [βp]2 ≥ 1},

{3, 4} = {p ∈ P : [βp]5 ≥ 1}

is chosen for Q at Step 2.

15

5 Evaluation of a system of polynomials and their par-

tial derivatives

We now present how efficiently we evaluate a system of polynomials and their partial deriva-
tives. Here Hornor factorizations for a single polynomial discussed so far serve as a main
tool. Consider a system of polynomials

f (x) = (f1(x), f2(x), . . . , fm(x)), fj ∈ C[x] (j = 1, 2, . . . , m). (19)

When we are concerned with a homotopy function of the form (1), m = n and each fj(x)
is corresponding to hj(x, t) or ∂hj(x, t)/∂t for some fixed t ∈ [0, 1]. We assume that for
each j = 1, 2, . . . , m, a Hornor factorization of fj(x) with the minimum (or a small) number
of multiplications has been already computed. Given a j, we first discuss how we evaluate
partial derivatives ∂fj(x)/∂xi (i = 1, 2, . . . , n) using the Hornor factorization of fj(x) in
Section 5.1, and then present a heuristic method to evaluate the collection of monomials
which appear in Hornor factorizations of the polynomials fj(x) (j = 1, 2, . . . , m) and in the
evaluation of their partial derivatives in Section 5.2.

5.1 Computation of values of partial derivatives of fj(x)

For simplicity of notation, let f = fj ∈ C[x] for an arbitrary fixd j ∈ {1, 2, . . . , m}. Once
we have build up a Hornor factorization together with a Hornor tree of a polynomial f ,
values of partial derivatives of the polynomial is carried out by applying a method similar
to the forward-mode automatic differentialtion (for example, see [14]). By using the chain
rule, we represent the partial derivative ∂g(x)/∂xi of a polynomial g of the form (13) as

∂g(x)

∂xi

=
∂
(
xγ(g, Q1)ϕL(x; g, Q1) + ϕR(x; g, Q1)

)

∂xi

=
∂xγ(g, Q1)

∂xi

ϕL(x; g, Q1) + xγ(g, Q1)∂ϕL(x; g, Q1)

∂xi

+
∂ϕR(x; g, Q1)

∂xi

. (20)

We then apply this formula to the partial derivative of the polynomial of each node from
the leaves to the root recursively. In the case of the Hornor tree given in Figure 3, we first
compute ∂gp(x)/∂xi (i = 3, 4, 5, 6) at the leaf nodes in the third level. Then, applying the
formula above, we compute ∂g1(x)/∂xi, ∂g2(x)/∂xi and ∂f(x)/∂xi = ∂g0(x)/∂xi.

5.2 Computation of monomials

When we explained how to compute the value of f(x) in Section 2.5 and how to compute
partial derivatives in Section 5.1, we assumed that the value of a monomial was computed
independently from the value of another monomial. In the case of the Hornor tree given in

16

Figure 3, we needed the values of

x1x5 to compute g4(x) = c3x1x5,

x1x2x5 to compute g2(x) = x1x2x5g5(x) + g6(x),

x3x4 to compute g0(x) = x3x4g1(x) + g2,

∂(x1x2x5)

∂xi

to compute
∂g2(x)

∂xi

(i = 1, 2, 5).

The problem here is how we save the multiplications to evaluate all monomials. In this
example, the answer is simple. We first compute x1x2, x1x5, x2x5 and x3x4, and then x1x2x5

by multiplying x1 and x2x5 or by multiplying x1x2 and x5. In general, however, minimizing
the number of multiplications to evaluate a set of given monomials is a complicated and
difficult problem, and we will present a heuristic method for this problem below.

Let B be a nonempty finite subset of Z
n
+\{0}, and let {xβ : β ∈ B} be a set of

monomials to be evaluated. For simplicity of notation, we will identify the set of monomials

{xβ : β ∈ B} with the set of their supports B. We assume that B contains the n-dimensional
unit coordinate vectors e1, e2, . . . , en or x1, x2, . . . , xn. Suppose that we are given a value x̄

for the variable vector x ∈ C
n. Then the values of monomials xβ ∈ B with degree 1 are

decided, i.e., xi = x̄i (i = 1, 2, . . . , n). Then we will compute the value of each higher degree
monomial as the product of some two lower degree monomials recursively. For example, the
value x̄1x̄2 is computed by multiplying x̄1 and x̄2, the value x̄1x̄2x̄4 by multiplying x̄1x̄2 and
x̄4, the value x̄2

1x̄
2
2x̄4 by multiplying x̄1x̄2 and x̄1x̄2x̄4, and so on. In this example, we have

assumed that the monomials x1x2, x1x2x4 and x2
1x

2
2x4 are members of B to be computed.

If either of them is not a member of B, we need to add it to B.
Now we describe technical details of the method outlined above. To each β ∈ B, we will

attach a positive integer κ(β) and a set C(β) of two children of β such that

• if κ(β) < κ(β′) then x̄β
′

is computed in advance to x̄β .

• if C(β) = {β1, β2} ⊂ Z
n
+ then xβ = xβ

1xβ
2 or β = β1 + β2; hence the value x̄β is

computed as the product of the values x̄β
1 and x̄β

2 .

If either of βj (j = 1, 2) is not a member of B, we add it to B. We also note that if

C(β) = {β1, β2}, then κ(β) < κ(β1) and κ(β) < κ(β2) so that the values x̄β
1 and x̄β

2 are

computed in advance to the value x̄β.

Algorithm 5.1.

• Input: A nonempty finite subset B of Z
n
+\{0} containing e1, e2, . . . , en.

• Output: B̃ ⊇ B, κ(β) (β ∈ B̃) and C(β) ∈ B̃ × B̃ (β ∈ B̃).

Step 1: Let ℓ = 0 and B̃ = ∅.

Step 2: Let δ = max{deg(β) : β ∈ B}. If δ > 1 then go to Step 4. Otherwise go to
Step 3.

17

*
+
*
,

,
*
-

*
+
*
,
*
-

*
+
*
,

*
,

,
*
+
*
-

*
+

*
,

*
-

*
.

*
/

*
.
*
/

Figure 4: Output of Algorithm 5.1

Step 3: In this case, we have B = {e1, e2, . . . , en}. Let B̃ = B̃ ∪ B and B = ∅. Let

κ(ei) = ℓ + i (i = 1, 2, . . . , n), C(ei) = ∅ (i = 1, 2, . . . , n).

Output B̃ ⊇ B, k(β) (β ∈ B̃), and C(β) ∈ B̃ × B̃ (β ∈ B̃) and stop.

Step 4: Remove a β with δ = deg(β) from B, and let B̃ = B̃∪{β}, ℓ = ℓ+1 and κ(β) = ℓ.
If β = β1 + β2 for some β1 ∈ B and β2 ∈ B, then let C(β) = {β1, β2} and go to
Step 2. Otherwise, go to Step 5.

Step 5: Let
C1(β) = {β′ ∈ B : β′ ≤ β, β′ 6= β},

and choose a β1 having the largest deg(β1) from C1(β); deg(β1) = max{deg(β′) :
β′ ∈ C1(β)}. (Note that C1(β) is nonempty since ei ∈ C1(β) for every i such that
[β]i ≥ 1. Let β2 = β − β1, B = B ∪ {β2} and C(β) = {β1, β2}. Go to step 2.

As an example, let B = {x1x
3
2x5, x1x2x5, x1x2, x3x4, x1x5, xi (i = 1, 2, . . . , 5)}. Applying

Algorithm 5.1, we obtain that

κ(x1x
3

2x5) = 1, C(x1x
3

2x5) = {x1x2x5, x
2

2}, where x2

2 is added to B,

κ(x1x2x5) = 2, C(x1x2x5) = {x1x2, x5},

κ(x1x2) = 3, C(x1x2) = {x1, x2},

κ(x2

2) = 4, C(x2

2) = {x2, x2},

κ(x1x5) = 5, C(x1x5) = {x1, x5},

κ(x3x4) = 6, C(X3x4) = {x3, x4},

κ(xi) = 6 + i, C(xi) = ∅,

B̃ = B ∪ {x2

2}.

These output of Algorithm 5.1 can be depicted as Figure 4.

Given a value x̄ ∈ C
n for the variable vector x, the computation of the values x̄β for

the monomials xβ ∈ B̃ is carried out by the algorithm below.

18

Algorithm 5.2.

• Input: A finite set B̃ ⊂ Z
n
+\{0} of monomials, κ(β) (β ∈ B̃) and C(β) (β ∈ B̃), which

are constructed by Algorithm 5.1, and x̄ ∈ C
n.

• Values of the monomials xβ ∈ B̃ at x = x̄.

Step 1: Let ℓ = #B. Assign the values x̄i to the monomial xi ∈ B̃ (i = 1, 2, . . . , n). Let
ℓ = #B − n.

Step 2: If ℓ = 0 then stop.

Step 3: Choose the β ∈ B̃ with κ(β) = ℓ, and let β1 and β2 be the members of C(β).

Compute x̄β as the product of x̄β
1 and x̄β

2 . Let ℓ = ℓ − 1. Go to Step 2.

The number of multiplications required by the algorithm above amounts to #B̃ − n,
which is corresponding to the number of monomials with degree greater than one in B̃. In
the case of Figure 4, we see that one multiplication is required to compute each monomial
with degree greater than one; hence the total number of multiplications amounts to #B̃ −
#{x1, x2, . . . , x5} = 11 − 5 = 6.

5.3 Total number of multiplications to evaluate a system of poly-

nomials and their partial derivatives

As mentioned in the previous section, the set of monomials which are involved in Honor
factorizations of fj(x) (j = 1, 2, . . . , m) and the evaluation of their partial derivatives are
computed in advance to the evaluation of the polynomials and their partial derivatives.
Taking account of this, we evaluate the total number of multiplications to compute fj(x)
(j = 1, 2, . . . , m) and their partial derivatives ∂fj(x)/∂xi (i = 1, 2, . . . , n, j = 1, 2, . . . , m).
Suppose that a Hornor factorization of each fj(x) together with a Hornor tree representing
the structure of the factorization is obtained (j = 1, 2, . . . , m). To evaluate fj(x), we need
to count

(a) every monomial with a positive degree in the leaf node because it is multiplied by
some coefficient cp.

(b) every γ(g, Q) generated by Step 4 of Algorithm 2.1 or every monomial attached to an
edge of the Hornor tree because it is multiplied to some ϕL(·; g, Q) ∈ F[x, f].

If we apply the rules (a) and (b) above to the Hornor tree illustrated in Figure 3, we see
that

2 multiplications to evaluate g3(x̄),

1 multiplication to evaluate g4(x̄),

2 multiplications to evaluate g5(x̄),

0 multiplication to evaluate g6(x̄),

1 multiplication to evaluate g1(x̄) = x̄2g3(x̄) + g4(x̄),

1 multiplication to evaluate g2(x̄) = x̄1x̄2x̄5g5(x̄) + g6(x̄),

1 multiplication to evaluate g0(x̄) = x̄3x̄4g1(x̄) + g2(x̄).

19

* + ,-./. 0. 12

3 456 + 7-5-
1
8 7/5-

/
5
/

/
5
0

/
5
1

/
8 7

0
5
-
5
/
5
0
5
1
8 7

1

9
-
+ ,-./. 02 9

/
+ ,12

:
-
456 + 7

-
5-
0
8 7/5-

5
/

/
5
0

/
5
1

/
8 705/

5
0
5
1 :

/
456 + 7

1

5
-

5
/
5
0
5
1

9
0
+ ,/. 02 9

1
+ ,-2

:
0
456 + 7

/
5
-
5
/
5
0
5
1
8 7

0
:

1
456 + 7

-
5-
0

Figure 5: A minimal Hornor factorization of f given in (21)

Thus the total number of multiplications amounts to 8 assuming that the values x̄1x̄2x̄5 and
x̄3x̄4 have been computed in advance.

If we recall the chain rule (20) for the partial derivative ∂g(x)/∂xi of the the polynomial
of the form (13), we can apply a similar method as above to count the number of mutipli-
cations required to evaluate ∂fj(x)/∂xi. Here we only note that the value for ϕL(x; g, Q)
has been already computed when we evaluate g(x), and the details are omitted.

5.4 Example

In this subsection, we show by example that a minimal Hornor factorization of f ∈ C[x]
dose not necessary result in the minimal number of multiplications when the monomials
involved there are efficiently computed in advance. Let us consider a polynomial

f(x) = c1x
4

1 + c2x
2

1x
2

2x
2

3x
2

4 + c3x1x2x3x4 + c4 (21)

for some cp ∈ C (p ∈ M = {1, 2, 3, 4}). Then

x1(x2x3x4(c2x1x2x3x4 + c3) + c1x
3

1) + c4 (22)

is a minimum Hornor factorization, which requires 11 multiplications. See Figure 5.
But if we compute the monomials

x1x2x3x4, x2x3x4, x
3

1 (23)

in advance, we can reduce the number of multiplications further. Figure 6 illustrates how
efficiently we compute these monomials. For example, the first monomial x1x2x3x4 as the
product of x1 and the second monomial x2x3x4, the computational of the monomials above
requires 5 multiplications. Then, substituting these monomials into the Hornor factoriza-
tion, we can compute f(x) with additional 4 multiplications. Thus we have reduced the
number of multiplications from 11 to 9 = 5 + 4 multiplications.

20

*
+
*
,
*
-
*
.

*
,
*
-
*
.

*
+

-

*
-
*
.

*
+

,

*
+

*
,

*
-

*
.

Figure 6: Computation of the monomials involved in (22)

Now we consider a Hornor factorization

x1x2x3x4(c2x1x2x3x4 + c3) + (c1x
4

1 + c4), (24)

which requires 12 multiplications. In this case, the monomials to be computed in advance
are

x1x2x3x4, x4

1.

Figure If we compute the first monomial x1x2x3x4 as the product of x1x2 and x3x4, the
number of multiplications for the monomials amounts to 5. Substituting the monomials
listed above into the Hornor factorization (24), the computation of f(x) is done with ad-
ditional 3 multiplications. Thus the total number of multiplications amounts to 8 = 5 + 3,
which is smaller than the number of multiplications resulting from the minimum Hornor
factorization (22) combined with the efficient computation of the monomials (23).

6 Numerical experiments

We have presented several methods for Hornor factorizations of f ∈ C[x]. They are:

nu-0: The recursive formula (17). See Section 3.1.

nu-1: The recursive formula (17) with the use of the lower bound λ1. See Sections 3.2
and 3.3.

nu-2: The recursive formula (17) with the use of the lower bound λ2. See Sections 3.2
and 3.3.

H1-mu1: Algorithm 4.1 (Heuristic method 1) with the use of µ = µ1. See Section 4.1.

H1-mu2: Algorithm 4.1 (Heuristic method 1) with the use of µ = µ2. See Section 4.1.

H2: Algorithm 4.2 (Heuristic method 2). See Section 4.2.

H3: Algorithm 4.3 (Heuristic method 3). See Section 4.3.

21

We report the effectiveness and efficiency of these methods except H1-mu1 through numer-
ical experiments. H1-mu1 was found to be ineffective at all in some preliminary numerical
experiments, so that we exclude it here. All the methods were implemented in MATLAB,
and the numerical experiments were executed on a Macintosh Dual 2.5GHz powerPC G5
with 2GH DDR SDRAM.

For test problems, 40 systems of polynomials are chosen from Verschelde’s web site [17].
Some of their features are shown in Table 1. Each problem is a system of polynomials (with
n variables and n equations) of the form (19) with m = n. In the table,

of equations = n,
max degree = max{deg(fj) : j = 1, 2, . . . , n},

total degree =
n∑

j=1

deg(fj),

max # of terms = max{the number of terms of fj : j = 1, 2, . . . , n},

total # of terms =

n∑

j=1

the number of terms of fj .

(25)

The values of these features are also attached below the names of the problems in Tables 2,
3 and 4. Among these features, max # of terms is turned out to be the most important
feature of a test problem to see whether we can apply the recursive formula (17), which
compute the minimum Hornor factorization, to the test problem; as it becomes larger, the
number of recursive calls increases rapidly. We classify the test problems in two groups, the
one with smaller max # of terms and the other with larger max # of terms. We applied
the methods nu-0, nu-1 and nu-2 using the recursive formula (17) only to the former group
of problems.

6.1 The recursive formula with and without lower bounds

Table 2 shows the number of multiplications, the number of recursive calls and the cpu
time to compute a minimum Hornor factorization when the method nu-0, nu-1 and nu-2
are applied to the group of test problems with smaller max # of terms. Here “# mult”
denotes the number of multiplications in a minimum Hornor factorization. We stopped the
recursion iteration when the cpu time exceeded 3600 seconds, which is designated by 3600+.
From these numerical results, we observe that the method nu-1 combined with the lower
bound λ1 cut the number of recursive calls considerably. The method nu-2 combined with
the stronger lower bound λ2 behaved better than the method nu-1, but the difference is
minor in cpu time. This is because the lower bound λ2 is more expensive than the lower
bound λ1. Practically, these methods are not suitable for large size problems because they
would require too much cpu time to compute minimum factorizations of large size problems.

6.2 Comparison of the heuristic methods to the recursive formula

(17) with the lower bound λ2 for small size test problems

Table 3 shows numerical results on the heuristic methods H1-mu2 (Algorithm 4.2 with the
use of the upper bound µ2), H2 (Algorithm 4.2) and H3 (Algorithm 4.3) in comparison to
the method nu-2 (the the recursive formula (17) with the lower bound λ2) when they are

22

of max total max # of total # of
Problem equations degree degree terms terms
chemkin 10 2 17 5 40

game4two 4 3 12 8 32
eco8 8 3 21 8 43

sparse5 5 10 50 8 40
caprasse 4 4 14 9 26

filter9 4 4 16 9 76
butcher 7 4 24 9 55

pb601 3 6 13 9 21
heart 8 4 20 9 48

chemequ 5 3 13 11 30
katsura10 11 2 21 12 107

geneig 6 3 16 15 80
proddeco 4 4 16 15 60
tangents0 6 2 12 16 51

cohn2 4 6 22 16 52
game5two 5 4 20 16 80

cyclic-n n n
n(n + 1)

2
n n(n − 1)+2

n = 6, 7, 8, 10, 16, 24
cohn3 4 6 23 20 74

rose 3 9 19 21 29
sendra 2 7 14 22 26
speer 4 5 20 23 92

cpdm5 5 3 15 23 115
utbikker 4 3 10 27 81

comb3000 4 4 16 29 116
game6two 6 5 30 32 192

rbpl24s 9 3 19 34 103
assur44 8 3 19 41 103

stewgou40 9 4 24 49 199
pole27sys 14 2 28 57 798
game7two 7 6 42 64 448
pole28sys 16 2 32 73 1168
pole34sys 12 3 36 73 876
pole43sys 12 3 36 73 876

rps10 10 4 37 76 688
pltp34sys 12 4 48 96 1152

Table 1: Test problems from Verschelde’s web site [17]

23

the number of recursive calls (cpu time)
Problem # mult nu-0 nu-1 nu-2
chemkin 47 2 (0.31) 2 (0.10) 2 (0.09)

10,2,17,5,40
cyclic6 63 706 (2.41) 535 (1.96) 248 (1.37)

6,6,21,6,32
cyclic7 93 7250 (23.46) 5282 (18.64) 2232 (12.12)

7,7,28,7,44
game4two 28 228 (0.70) 160 (0.52) 136 (0.48)

4,3,12,8,32
eco8 56 551 (1.51) 38 (0.36) 18 (0.32)

8,3,21,8,43
cyclic-8 128 84996 (275.79) 61939 (217.61) 24351 (134.15)

8,8,36,8,58
sparse5 95 55 (0.34) 30 (0.23) 10 (0.19)

5,10,50,8,40
caprasse 40 543 (1.63) 191 (0.83) 125 (0.67)

4,4,14,9,25
filter9 88 150 (0.60) 40 (0.36) 34 (0.35)

4,4,16,9,76
butcher 70 2211 (5.90) 55 (0.80) 29 (0.74)

7,4,24,9,55
pb601 23 956 (2.38) 12 (0.26) 12 (0.26)

3,6,13,9,21
heart 100 76 (0.41) 61 (0.36) 49 (0.34)

8,4,20,9,48
cyclic-10 - - (3600+) - (3600+) - (3600+)

10,10,55,10,92
chemequ 31 442 (1.22) 90 (0.42) 85 (0.41)

5,3,13,11,30
katsura10 152 102 (0.58) 78 (0.52) 78 (0.52)

11,2,21,12,107
geneig 80 688565 (1793.14) 155108 (634.99) 114068 (551.00)

6,3,16,15,80
proddeco - - (3600+) - (3600+) - (3600+)

4,4,16,15,60
tangents0 74 8042 (25.38) 3855 (15.00) 3855 (15.05)

6,2,12,16,51
cohn2 - - (3600+) - (3600+) - (3600+)

4,6,22,16,52
game5two - - (3600+) - (3600+) - (3600+)

5,4,20,16,80

Table 2: Numerical results on recursive the formula (17) with and without bound

24

applied to small size test problems. Each box consists of the total number of multiplica-
tions in Hornor factorization obtained, the cpu time in seconds, and the total number of
multiplications to compute the system of polynomials and their partial derivatives, which
is the sum of the numbers of multiplications to compute monomials, function values and
derivatives, as presented in Section 5.

First we focus our attention to the number of multiplications in the Hornor factorizations
and the cpu time in Table 3. We can confirm that the methods nu-2 attained a Hornor
factorization with the smallest number of multiplications among the 4 methods for the
problems it was able to process within 3600 seconds. The Hornor factorizations obtained by
the less expensive heuristic method H1-mu2 are as good as those obtained by the method
nu-2. But both methods become expensive rapidly in cpu time as max # of terms and/or
max degree get larger, so that they could be used only for small size problems in practice.
On the other hand, the heuristic methods H2 and H3 processed all the problems in Table 3
within 1 seconds. The method H2 attained less numbers of multiplications for some problems
including cyclic-6, 7, 8 and 10 than the method H3, but the method H3 behaved better for
some other problems including game4two, butcher and geneig.

Concerning the total # of multiplications, we notice that a less number of multiplications
of a Hornor factorization does not necessary imply a less total # of multiplications. Recall
the example given in Section 5.4. In particular, the minimum Hornor factorization does
not necessarily result in the minimum total # of factorizations. See, for example, the cases
sparse5, caprasse, filter9, pb601 and cohn2. The method which attained the least value in
total # of multiplications varied depending on problems.

6.3 Comparison between the heuristic methods for large size test

problems

Table 4 shows numerical results on the heuristic methods H1-mu2, H2 and H3 when they
are applied to large size test problems. We notice that the method H1-mu2 was able to
process only a few of the test problems within 3600 seconds, so that it could not be used for
larger problems in practice. The methods H2 and H3 are much cheaper than the method
H1-mu2, and they can be used even for larger problems. None of them behaved better
uniformly for all the test problems than the other. Except for cyclic-16 and -24, the total
of multiplications obtained by the method H3 is smaller than or equal to that obtained
by the method H3, but, in these two test problems, the quality of the Hornor factorization
obtained by the method H2 is much better than that obtained by the method H3. Therefore,
we may conclude to use both of them simultaneously in practice; we can choose a better
Hornor factorization from the ones generated by them.

7 Concluding discussions

We have proposed a recursive formula for computing a minimum (multivariate) Hornor
factorization, a Hornor factorization which requires the minimum number of multiplications
to evaluate a multivariate polynomial over all Hornor factorizations. This formula combined
with lower bounds for the number of multiplications is effective in computing minimum
Hornor factorizations of smaller size polynomials. For larger size polynomials that can not

25

of multiplications in Hornor (cpu time in sec.)
the total # of multiplictions (monomials, functions, derivatives)

Problem nu-2 H1-mu2 H2 H3
chemkin 47 (0.32) 47 (0.17) 47 (0.09) 47 (0.09)

10,2,17,5,40 71 (15,32,24) 71 (15,32,24) 71 (15,32,24) 71 (15,32,24)
cyclic6 63 (1.43) 63 (0.52) 63 (0.15) 68 (0.14)

6,6,21,6,32 130 (18,46,66) 130 (18,46,66) 129 (15,46,68) 144 (21,46,77)
cyclic7 93 (12.17) 93 (1.52) 93 (0.22) 105 (0.22)

7,7,28,7,44 195 (23,65,107) 195 (23,65,107) 194 (22,65,107) 229 (31,65,133)
game4two 28 (0.49) 28 (0.38) 32 (0.08) 28 (0.07)

4,3,12,8,32 44 (0,28,14) 44 (0,28,14) 51 (3,28,20) 44 (0,28,14)
eco8 56 (0.32) 56 (0.71) 63 (0.13) 56 (0.11)

8,3,21,8,43 125 (11,45,69) 125 (11,45,69) 130 (19,43,68) 125 (11,45,69)
cyclic8 128 (134.65) 129 (5.38) 128 (0.30) 150 (0.31)

8,8,36,8,58 279 (29,90,160) 277 (32,89,156) 279 (29,90,160) 342 (44,90,208)
sparse5 95 (0.20) 95 (0.28) 100 (0.12) 110 (0.13)

5,10,50,8,40 172 (17,40,115) 172 (17,40,115) 153 (18,35,100) 162 (17,40,105)
caprasse 40 (0.68) 40 (0.37) 45 (0.08) 41 (0.07)

4,4,14,9,25 82 (6,28,48) 82 (6,28,48) 83 (8,25,50) 85 (6,29,50)
filter9 88 (0.35) 89 (0.31) 91 (0.15) 89 (0.15)

4,4,16,9,76 176 (29,43,104) 173 (28,43,102) 176 (34,42,100) 180 (36,43,101)
butcher 70 (0.74) 70 (2.13) 81 (0.17) 70 (0.15)

7,4,24,9,55 127 (21,50,56) 127 (21,50,56) 138 (24,50,64) 127 (21,50,56)
pb601 23 (0.27) 23 (0.46) 28 (0.06) 23 (0.06)

3,6,13,9,21 42 (3,21,18) 41 (3,20,18) 46 (5,20,21) 39 (3,19,17)
heart 100 (0.35) 100 (0.28) 100 (0.16) 104 (0.16)

8,4,20,9,48 168 (18,52,98) 168 (18,52,98) 168 (18,52,98) 176 (28,52,96)
cyclic-10 - (+3600) 229 (69.69) 228 (0.63) 281 (0.63)

10,10,55,10,92 519(56,148,315) 512(50,148,314) 667(77,149,441)
chemequ 31 (0.63) 31 (0.35) 34 (0.10) 31 (0.07)

5,3,13,11,30 49 (1,30,18) 49 (1,30,18) 53 (2,30,20) 49 (1,30,18)
katsura10 152 (0.54) 152 (0.50) 152 (0.32) 153 (0.30)

11,2,21,12,107 244 (19,130,105) 244 (19,130,105) 244 (19,130,105) 250 (23,129,98)
geneig - (+3600) 80 (42.97) 103 (0.25) 89 (0.14)

6,3,16,15,80 130 (1,79,50) 159 (6,80,73) 144 (0,89,55)
proddeco - (+3600) 68 (146.31) 80 (0.21) 68 (0.16)

4,4,16,15,60 140 (0,68,72) 159 (3,68,88) 140 (0,68,72)
tangents0 74 (15.01) 74 (0.43) 74 (0.12) 74 (0.11)

6,2,12,16,51 114 (9,56,49) 114 (9,56,49) 114 (9,56,49) 114 (9,56,49)
cohn2 - (3600+) - (3600+) 71 (0.18) 62 (0.14)

4,6,22,16,52 138(12,53,73) 127 (6,58,63)
game5two - (3600+) 75 (133.80) 90 (0.26) 75 (0.19)

5,4,20,16,80 130(0,75,55) 151(6,75,70) 130(0,75,55)

Table 3: Numerical results on small size test problems

26

of multiplications in Hornor (cpu time in sec.)
the total # of multiplictions (monomials, functions, derivatives)

Problem H1-mu2 H2 H3
cyclic16 - (3600+) 718 (2.53) 1069 (3.48)

16,.16,136,16,242 1702(158,415,1129) 2706(250,421,2035)
cohn3 - (3600+) 103 (0.27) 82 (0.20)

4,6,23,20,74 201(19,76,106) 170(7,79,84)
rose - (3600+) 61 (0.13) 63 (0.10)

3,9,19,21,29 110(15,36,59) 97(7,39,51)
sendra - (3600+) 44 (0.10) 42 (0.08)

2,7,14,22,26 77(8,27,42) 74(7,28,39)
speer - (3600+) 118 (0.31) 92 (0.19)

4,5,20,23,92 225(9,96,120) 200(0,92,108)
cpdm5 - (3600+) 156 (0.39) 135 (0.29)

5,3,15,23,115 280(14,115,151) 250(5,115,130)
cyclic24 - (3600+) 1923 (11.92) 3443 (30.06)

24,24,300,24,554 4770(420,990,3360) 9054(737,1006,7311)
utbikker 77 (508.90) 93 (0.23) 81 (0.47)

4,3,10,27,81 147(0,77,70) 164(9,78,77) 145(2,78,65)
comb3000 - (3600+) 164 (0.47) 132 (0.27)

4,4,16,29,116 293(9,124,160) 246(2,124,120)
game6two - (3600+) 234 (0.80) 186 (0.48)

6,5,30,32,192 404(14,186,204) 342(0,186,156)
rbpl24s 104 (92.89) 116 (0.34) 104 (0.24)

9,3,19,34,103 174(10,94,70) 192(16,94,82) 174(10,94,70)
assur44 - (3600+) 124 (0.35) 104 (0.20)

8,3,19,41,103 207(17,95,95) 179(9,95,75)
stewgou40 - (3600+) 255 (0.77) 237 (0.49)

9,4,24,49,199 471(18,195,258) 468(18,195,255)
pole27sys 784 (1040.52) 784 (2.49) 784 (1.42)

14,2,28,57,798 1372(0,784,588) 1372(0,784,588) 1372(0,784,588)
game7two - (3600+) 588 (3.46) 441 (1.60)

7,6,42,64,448 1017(30,441,546) 840(0,441,399)
pole28sys - (3600+) 1152 (3.73) 1152 (3.73)

16,2,32,73,1168 2048(0,1152,896) 2048(0,1152,896)
pole34sys - (3600+) 1008 (6.42) 864 (3.11)

12,3,36,73,876 1740(12,864,864) 1584(0,864,720)
pole43sys - (3600+) 1008 (6.37) 864 (3.10)

12,3,36,73,876 1740(12,864,864) 1584(0,864,720)
rps10 - (3600+) 984 (6.00) 777 (2.53)

10,4,37,76,638 1656(24,714,918) 1534(1,768,765)
pltp34sys - (3600+) 1560 (9.61) 1212 (3.12)

12,4,48,96,1152 2949 (21,1296,1632) 2580 (0,1212,1368)

Table 4: Numerical results on medium and large size test problems

27

be handled by the recursive formula, we have proposed heuristic methods for computing a
Hornor factorization with a less number of multiplications.

Founded on these Hornor factorizations, we have discussed how efficiently we evaluate
a system of polynomials and their partial derivatives in homotopy continuation methods,
and reported numerical results on 40 test problems. The recursive formula combined with
a lower bound for multiplications can effectively process small size test problems in a little
cpu time, but it becomes too expensive rapidly as the size of a problem to process gets
larger. The proposed heuristic methods H2 and H3 can process such a large problem.

As far as the author knows, there has been little literature on the subject of this paper,
how efficiently we evaluate a system of polynomials and their partial derivatives in homotopy
continuation methods. This paper is just a beginning of the subject, and there remain many
issues to study further. Our numerical experiments are not enough to judge whether the
proposed heuristics H2 and H3 work effectively and efficiently in practice. More numerical
experiments and better heuristics may be necessary. Also we have not paid any attention to
round off errors which would occur in evaluating polynomials and their partial derivatives.
This is also an important factor that should be taken into account when we design heuristic
methods for evaluating polynomials and their partial derivatives.

References

[1] E. Allgower and K. Georg, Numerical continuation methods, Springer-Verlag, 1990.

[2] D. N. Bernshtein, “The number of roots of a system of equations,” Functional Analysis

and Appl. 9 (1975) 183–185.

[3] F. J. Drexler, ”Eine methode zur Berechnung sämtlicher Lösungen von Polynomgle-
ichungssystemen,” Numer. Math. 29 (1977) 45–58

[4] C. B. Garcia and W. I. Zangwill, “Determining all solutions to certain systems of
nonlinear equations,” Mathematics of Operations Research 4 (1979) 1–14.

[5] T. Gao, T. Y. Li, and X. Li, HOM4PS, http://www.mth.msu.edu/ li/, Dept. of Math-
ematics, Michigan State university, East Lansing, MI 48824, 2005.

[6] T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa and T. Mizutani, “PHoM – a
Polyhedral homotopy continuation method for polynomial systems,” Computing. 73
(2004) 55–77.

[7] B. Huber and B. Sturmfels, “A Polyhedral method for solving sparse polynomial
systems,” Mathematics of Computation 64 (1995) 1541–1555.

[8] T. Y. Li, “Solving polynomial systems,” The mathematical intelligencer 9 (1987) 33–39.

[9] T. Y. Li, “Solving polynomial systems by polyhedral homotopies”, Taiwan Journal of

Mathematics 3 (1999) 251–279.

[10] A. Morgan, “Solving polynomial systems using continuation for engineering and scien-

tific problems,” Prentice-Hall, 1987.

28

[11] A. P. Morgan and A. J. Sommese, “Coefficient-parameter polynomial continuation,”

Appl. Math. Comput. 29 (1989) 123–160.

[12] J. M. Pena and T. Sauer, “On the multivariate Hornor scheme,” SIAM J. Numer.

Anal. 37 (2000) 1186-1197.

[13] J. M. Pena and T. Sauer, “On the multivariate Hornor scheme II: Running error
analysis,” Computing 65 (2000) 313-322.

[14] L. B. Rall and G. F. Corliss, “An introduction to automatic differentiation”, L. B.
Rall, ed. Automatic Differentiation — Techniques and Applications, Lecture Notes in
Computer Science, Vol. 120, Springer-Verlag (1981).

[15] B, Sturmfels, Solving systems of polynomial equations, CBMS Regional Conference
Series in Mathematics, No 97, American Mathematical Society, 2002.

[16] H. J. Su , J. M. McCarthy , M. Sosonkina and L. T. Watson , ”POLSYS GLP: A
Parallel General Linear Product Homotopy Code for Solving Polynomial Systems of
Equations”, To appear in the Algorithms section of ACM Trans. Math. Softw.,

[17] J. Verschelde, The database of polynomial systems is in his web site:
“http://www.math.uic.edu/∼jan/”.

[18] J. Verschelde, P. Verlinden and R. Cools, “Homotopies exploiting Newton polytopes for
solving sparse polynomial systems,” SIAM J. Numerical Analysis 31 (1994) 915–930.

[19] J. Verschelde, “Homotopy continuation methods for solving polynomial systems,”
Ph.D. thesis, Department of Computer Science, Katholieke Universiteit Leuven, 1996.

[20] J. Verschelde, “Algorithm 795: PHCpack: A general-purpose solver for polynomial
systems by homotopy continuation,” ACM Trans. Math. Softw. 25 (1999) 251–276.

[21] L. T. Watson, M. Sosonkina, R. C. Melville, A. P. Morgan, and H. F. Walker, “HOM-
PACK90: A suite of Fortran 90 codes for globally homotopy algorithms,” ACM Trans.

Math. Softw. 23 (1997) 514–549.

[22] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Notes Appl. Sci. 32, her
Majesty’s Stationery Office, London, 1963.

29

