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Summary

Consider a binary response function of data, for example, whether hierarchical clustering

produces a particular dendrogram of interest. An arbitrary-shaped region of the parameter

space may represent the null hypothesis defined by the binary response to the population.

The bootstrap probability is a widely used p-value, and its calibration has been attempted

in the literature; the test bias is estimated as curvature of smooth boundary surfaces of

the region. However boundaries are nonsmooth for regions of practical importance such

as cones. To treat such singularities, the Fourier transforms of surfaces are employed in

this paper. Computation requires only the binary responses to bootstrap samples of size

n′ generated from data of size n. Our method first computes bootstrap probabilities for

several values of n′ around n, and then extrapolates them, after some transformation,

back to n′ = −n. This gives corrected p-values related to the bootstrap iteration.
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1. Introduction

Let Y be a random vector of dimension m+1 for some integer m ≥ 1, and y ∈ Rm+1 be

its observed value in m + 1 dimensional Euclidean space. Our argument is based on the

multivariate normal model with unknown mean vector µ ∈ Rm+1 and covariance identity

Im+1,

Y ∼ Nm+1(µ, Im+1).

This is a simplification of reality. Let X = (x1, . . . , xn) be a sample of size n. We

assume there is an approximate transformation, depending on n, from X to y so that

Y is appropriately normalized. Let H ⊂ Rm+1 be an arbitrary-shaped region of positive

volume. We would like to calculate a p-value p(y) for testing the null hypothesis µ ∈ H.

This is the “problem of regions” discussed previously in Efron and Tibshirani (1998),

where smoothness of the boundary surface ∂H has been assumed. Our purpose here is to

extend the argument to nonsmooth ∂H.

The most common practice for calculating p(y) can be described as follows. Let θ ∈ Rm

be a nuisance parameter vector with domain Θ, and µ(θ) be a function to express the

boundary surface as ∂H = {µ(θ) | θ ∈ Θ}. By assuming p(y) is decreasing as y moves

away from H, we consider the test bias only on the boundary surface as

P (p(Y ) < α | µ(θ)) = α + bias(θ),

where α is a significance level and P (· | µ) denotes probability with respect to Y . Let

T (y) be a test statistic, which is increasing as y moves away from H, and define a p-value

p(y|θ) = P (T (Y ) ≥ T (y) | µ(θ)) for testing the simple hypothesis µ = µ(θ). Then,

psup(y) = supθ∈Θ p(y|θ) controls the type-I error, i.e., bias(θ) ≤ 0 for all θ ∈ Θ.

Let θ̂(y) be the maximum likelihood estimate of θ, i.e., the value which minimizes

‖y − µ(θ)‖. Berger and Boos (1994) argued that “it seems a waste of information in the

data to take the sup over all values of θ.” psup(y) can be improved if the point achieving

the sup is very far from θ̂(y) so that psup(y) is much larger than p(y|θ̂(y)). They gave

pβ(y) = supθ∈Cβ(y) p(y|θ) + β for a very small β such as 0.001, where Cβ(y) is a 1 − β

confidence set for θ. pβ(y) controls the type-I error and it is less conservative than psup(y),

although not yet unbiased in general.

Our mathematical formulation focuses on the unbiasedness, i.e., bias(θ) = 0 for all

θ ∈ Θ. Since pβ(y) is closer to being unbiased than psup(y), pβ(y) is preferable to psup(y).

More generally, we take the position that unbiasedness is an ideal property, which auto-

matically leads to the control of type-I error. Another position is that the unbiasedness

is a secondary criterion and it can be even inappropriate since it does not directly ad-

dress the evidence in the data against the null hypothesis (Perlman and Wu, 1999). Both
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positions are compromised in our search for approximately unbiased tests, not the exact

one.

The paper is organized as follows. In Section 2, we describe our method and the

main result after some background. In Section 3, we introduce the notion of nearly flat

surfaces and develop a nonstandard asymptotic theory utilizing Fourier transforms of

surfaces. This theory is quite simple mathematically, yet it provides the basis of our

method. In Section 4, numerical examples are given for demonstrating the importance of

approximately unbiased tests for nonsmooth surfaces. In Section 5, practical issues are

discussed. All mathematical proofs are given in the Appendix.

2. Approximately unbiased tests

2.1. Background. An example of an approximately unbiased test is given simply by

p(y) = p(y|θ̂(y)). The test bias may reduce asymptotically as n → ∞. In fact, this p(y)

has bias(θ) = O(n−3/2) for smooth ∂H when T (y) is the signed distance, i.e., ±‖y −
µ(θ̂(y))‖ with positive sign for y 6∈ H and negative sign for y ∈ H. This is a one-sided

analogue of the Bartlett correction applied to ‖y − µ(θ̂(y))‖2.

Another example is the bootstrap probability introduced by Felsenstein (1985) for phy-

logenetic inference. For a scale parameter σ > 0, we define

ασ2(y) = Pσ2(Y ∗ ∈ H | y),

where the probability is with respect to

Y ∗ ∼ Nm+1(y, σ2Im+1).

The p-value p(y) = α1(y) has been widely used. Given a high-performance computing

environment, we can calculate ασ2(y) very easily as an observed frequency of Y ∗ ∈ H
even for the situation where complicated data analysis is employed almost as a black-

box. The following two properties (a) and (b) of ασ2(y) are important for facilitating

the implementation. (a) Only used is a binary response whether Y ∗ ∈ H. For example,

whether a particular dendrogram or cluster of interest is observed in hierarchical cluster-

ing. (b) Only resampling from the data y is performed. We assume that the above normal

model is obtained at least approximately from bootstrap sample X ∗ = (x∗
1, . . . , x

∗
n′) for

n′ > 0 by applying the same transformation used for X ; thus H is unchanged for Y ∗.

The normalizing constant is
√

n for many situations (Bickel and Freedman, 1981), and

the scale is σ2 = n/n′. This is because we used
√

n for X ∗, for which the normalizing

constant should have been
√

n′.

Although easy to implement, the bias of α1(y) is rather large; bias(θ) = O(n−1/2) even

for smooth ∂H. There have been several attempts to improve α̂1(y). Let Φ(·) and Φ−1(·)
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be the distribution function of N(0, 1) and its inverse, respectively. For convenience, we

often work on the bootstrap z-value and the z-value of p(y) defined respectively by

zσ2(y) = Φ−1(1 − ασ2(y)), q(y) = Φ−1(1 − p(y)).

Efron et al. (1996) gave a corrected p-value with bias O(n−1) by q(y) = z1(y)−2c(y), where

c(y) = z1(µ(θ̂(y))) term adjusts the bias due to the curvature of ∂H. Efron and Tibshirani

(1998) mentioned another p-value with bias O(n−3/2) defined by p(y) = p(y|θ̂(y)) using

T (y) = z1(y); this is an instance of the double bootstrap of Hall (1992). These two

methods require resampling from µ(θ̂(y)), and thus they do not satisfy (b) but only (a).

For easier implementation, although based on the theory of Efron et al. (1996), a cor-

rected p-value with bias O(n−3/2) satisfying both (a) and (b) was given by the multiscale

bootstrap method of Shimodaira (2002). Considering zσ2(y) as a function of 1/σ, q(y) is

defined as the slope of this function at 1/σ = 1;

(2.1) q(y) =
∂zσ2(y)

∂(1/σ)

∣∣∣
1
.

This p(y) as well as its extension to the exponential family of distributions (Shimodaira,

2004) is shown to be equivalent to other p-values of bias O(n−3/2) such as p(y) = p(y|θ̂(y))

using T (y) = z1(y) or the signed distance, and p(y) obtained from p∗-formula (Barndorff-

Nielsen, 1986).

All the above methods for approximately unbiased tests are derived under the assump-

tion that ∂H is smooth. In this paper, we develop a method without this assumption.

We consider the following property. (c) The boundary surface ∂H is possibly nonsmooth,

including smooth surfaces as special cases. This is not merely a theoretical interest, but

important for applications such as phylogenetic inference. An attempt for (c) is found in

Liu and Singh (1997, Remark 4.2), but it does not satisfy (a) nor (b).

2.2. Our method. Here we propose a generalization of the multiscale bootstrap method.

This new method satisfies (a) and (b), and it is justified for (c). We work on σzσ2(y),

which may be called the normalized bootstrap z-value. Considering σzσ2(y) as a function

of σ2, we will specify parametric models of this function in Section 3.4. The models

are denoted as ψ(σ2|β(y)) with a parameter vector β(y). The dependency on y may be

suppressed in the notation. The new method proceeds as follows.

Step 1. Calculate ασ2(y) at several σ2 > 0 values specified in advance. In reality, each

ασ2(y) is estimated by counting the frequency of Y ∗ ∈ H.

Step 2. Estimate the parameter β(y) by fitting the model

(2.2) σzσ2(y) = ψ(σ2|β(y))
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to the bootstrap probabilities obtained in Step 1. An estimated model with the estimated

parameter value is written as ψ(σ2|β̂(y)).

Step 3. Calculate q(y) by extrapolating ψ(σ2|β̂(y)) back to σ2 = −1. More specifically,

for an integer k > 0 and a real number σ2
0 > 0, we define

(2.3) qk(y) =
k−1∑

j=0

(−1 − σ2
0)

j

j!

∂jψ(σ2|β̂(y))

∂(σ2)j

∣∣∣
σ2
0

by using the first k terms of the Taylor series around σ2
0. Then pk(y) = 1 − Φ(qk(y)),

k = 1, 2, . . ., constitute a class of corrected p-values. The dependency on σ2
0 is implicit in

this notation, and we use σ2
0 = 1 throughout.

The idea of extrapolation to σ2 = −1 is intimately analogous to the SIMEX, simulation-

extrapolation, method for measurement error models (Cook and Stefanski, 1994). The

mysterious σ2 = −1 will be explained by the fact that σzσ2 is obtained from an unbiased

q by applying the Gaussian kernel smoothing filter with variance σ2 + 1 in the space of

y; we notice that σzσ2 = q when the variance of the filter is zero.

The bootstrap probability corresponds to k = 1, and the corrected p-value of Shi-

modaira (2002) corresponds to k = 2. In fact, it is easily verified from (2.1), (2.2) and

(2.3) that

ψ(1|β̂) = q1,
∂(ψ(σ2|β̂)/σ)

∂(1/σ)

∣∣∣
1

= q2.

The main result shown in the following sections is that bias(θ) → 0, ignoring some

asymptotic errors, as k → ∞ even for nonsmooth ∂H. Although it happened that the

procedure of Shimodaira (2002) is a special case of the new method, their justifications

are based on very different asymptotic frameworks. We will also show similarities between

our method and the k-th iterated bootstrap method for interpreting the p-values.

3. Asymptotic theory of nearly flat surfaces

3.1. Nearly flat surfaces. We describe conditions imposed on ∂H, and some notation

for the Fourier transforms.

First we consider a parametric form of ∂H. Let yj = uj, j = 1, . . . ,m, for u ∈ Rm, and

ym+1 = v for v ∈ R. A point is simply written as y = (u, v). Using a continuous function

h(u), we write H, at least locally, as

H = {(u, v) | v ≤ −h(u), u ∈ Rm}.

We will use the L1-norm and L∞-norm of h defined as

‖h‖1 =

∫

Rm

|h(u)| du, ‖h‖∞ = sup
u∈Rm

|h(u)|.
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In ordinary asymptotic theory as n → ∞, the shape of H in the space of normalized

Y is magnified by the factor
√

n. For asymptotic expansions, we utilize the fact that

a smooth ∂H approaches a flat surface in a neighborhood of any point on ∂H. More

specifically, it follows from the argument below eq. (2.12) of Efron and Tibshirani (1998)

that h(0) = ∂h/∂θ|0 = 0 and ∂jh/∂θj|0 = O(n− j−1
2 ), j ≥ 2, by choosing coordinates

without losing generality. This argument, however, does not apply to nonsmooth ∂H.

For example, a cone-shaped H is invariant under the magnification.

In the asymptotic argument of this paper, we do not let n → ∞. Instead, we introduce

an artificial parameter τ and let τ → 0. The idea is to assume ‖h‖∞ = O(τ) so that any

surfaces approach flat surfaces. For smooth surfaces, this assumption can be interpreted as

∂jh/∂θj = O(τ), j ≥ 0. We will work on asymptotic expansions in terms of τ, τ 2, τ 3, . . .,

and take only finite terms. In reality, ‖h‖∞ is not necessarily small enough, and the

theory may be confirmed numerically; we do the same thing when applying the ordinary

asymptotic theory to a small or moderate n. Although n is irrelevant to our argument,

it is implicitly assumed to be large enough to justify the normal model. Some further

notion is discussed at the end of Section 3.4.

For each τ , we impose two extra conditions on h as follows. They are for technical

reasons related to the Fourier transforms.

We assume that h is absolutely integrable, i.e., ‖h‖1 < ∞ for each τ . Then the Fourier

transform of h is defined as

h̃(ω) = Fh(ω) =

∫

Rm

e−iω·u h(u) du,

where ω ∈ Rm is a spatial angular frequency vector, ω · u =
∑m

j=1 ωjuj is inner product,

and i =
√
−1 is the imaginary unit. The condition ‖h‖1 < ∞ implies ‖h̃‖∞ < ∞. It

follows from the Riemann-Lebesgue lemma that lim‖ω‖→∞ h̃(ω) = 0, and h̃ is uniformly

continuous.

For a given h̃(ω), we next assume that ‖h̃‖1 < ∞ for each τ . Then, the inverse Fourier

transform is defined as

h(u) = F−1h̃(u) =
1

(2π)m

∫

Rm

eiω·u h̃(ω) dω,

where the above integral can be interpreted in the same way as F ; it is a Lebesgue integral

instead of an improper Riemann integral. We also have ‖h‖∞ < ∞, lim‖u‖→∞ h(u) = 0,

and h is uniformly continuous. The convolution of g and h for ‖g‖1 < ∞ is written as

(g ∗ h)(u) =

∫

Rm

g(u′)h(u − h′) du′ = F−1[g̃(ω)h̃(ω)](u).

Note that g ∗ h also satisfies the same conditions as h; ‖g ∗ h‖1 ≤ ‖g‖1‖h‖1 < ∞, and

‖F(g ∗ h)‖1 = ‖g̃(ω)h̃(ω)‖1 ≤ ‖g̃‖∞‖h̃‖1 < ∞.
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The conditions are summarized as ‖h‖1 < ∞, ‖h̃‖1 < ∞, and ‖h‖∞ = O(τ). In this

paper, an h satisfying these conditions is called nearly flat.

3.2. Expectation operator and its inverse. Consider the expected value of h(U∗)

with respect to U∗ ∼ Nm(u, σ2Im), and denote it as

Eσ2h(u) = Eσ2(h(U∗)|u).

The left-hand side is meant to be an operator applied to the function h. This notation

will be used repeatedly in the following sections. Here we give expressions for Eσ2h(u)

and its inverse using the Fourier transforms.

Let fσ2(u) = (2πσ2)−
m
2 e−

‖u‖2

2σ2 be the density of Nm(0, σ2Im), and f̃σ2(ω) = e−σ2 ‖ω‖2
2 be

its Fourier transform. Then Eσ2h(u) can be expressed as a convolution,
∫

Rm

fσ2(u∗ − u)h(u∗) du∗ = fσ2(−u) ∗ h(u),

and its Fourier transform becomes F [Eσ2h](ω) = f̃σ2(ω) h̃(ω). By applying the inverse

Fourier transform, we obtain

Eσ2h(u) = F−1
[
e−σ2 ‖ω‖2

2 h̃(ω)
]
(u).

This is a Gaussian kernel smoothing of scale σ, and can interpreted as an application of

the Gaussian low-pass filter f̃σ2 to h̃.

The inverse filter of f̃σ2 defines F [E−1
σ2 h](ω) = (1/f̃σ2(ω)) h̃(ω). Its inverse Fourier

transform gives

E−1
σ2 h(u) = F−1

[
eσ2 ‖ω‖2

2 h̃(ω)
]
(u)

= E−σ2h(u).

Although Eσ2h is nearly flat for σ2 > 0, E−1
σ2 h may not be defined in general unless

‖eσ2 ‖ω‖2
2 h̃(ω)‖1 < ∞.

3.3. Bootstrap probability. We give an expression for ασ2 using the expectation oper-

ator. A simple linear theory will be discussed by taking only up to O(τ) terms.

For y = (u, v), we write ασ2(y) as

ασ2(u, v) = Pσ2(V ∗ ≤ −h(U∗) | u, v)

= Eσ2

[
Φ

(−h(U∗) − v

σ

)
| u

]
.

By letting x = (−Eσ2h(u)− v)/σ and ε = (−h(U∗) + Eσ2h(u))/σ, it becomes ασ2(u, v) =

Eσ2(Φ(x+ε)|u). Considering Eσ2(ε|u) = 0 and Eσ2(εk|u) = O(τ k), k = 2, 3, . . ., we obtain

8



the asymptotic expansion as

ασ2(u, v) = Eσ2

(
Φ(x) + φ(x)ε − φ(x)xε2/2 | u

)
+ O(τ 3)

= Φ(x) − φ(x)xEσ2(ε2|u)/2 + O(τ 3)

= Φ
(
x − xEσ2(ε2|u)/2 + O(τ 3)

)
.(3.1)

If we take only x = O(τ) above, a scaling-law for ασ2 is expressed as

(3.2) σzσ2(u, v) = v + Eσ2h(u) + O(τ 2).

3.4. Models. To specify appropriate parametric models ψ(σ2|β), we would like to give

expressions for Eσ2h(u) for concrete cases of h such as polynomials and cones. For this

purpose, h is allowed to be unbounded, and a justification of this argument is given at

the end of this section.

For a smooth h, it is shown in Appendix A.1 that

(3.3) Eσ2h(u) =
∞∑

j=0

σ2jβj(u),

where the Taylor series of h(u∗) around u gives

βj(u) =
1

2jj!

∑

j1+···+jm=j

j!

j1! · · · jm!

∂2jh

∂u2j1
1 · · · ∂u2jm

m

, j ≥ 0.

The summation ranges over all combinations of nonnegative integers with the sum fixed

at j. If h is a polynomial of degree 2k − 1, we may redefine β0 := v + β0(u) to get

ψpoly,k(σ
2|β) =

k−1∑

j=0

βjσ
2j, k ≥ 1.

This model specifies σzσ2 correctly by ignoring O(τ 2) terms.

Since ψpoly,k(σ
2|β) is nothing but a polynomial of σ2 of degree k − 1, it approximates

arbitrarily well any continuous function within a finite interval of σ2 > 0 by increasing

k, so that it might suffice even for nonsmooth h. However, it would most certainly be

better to have a concise model, because the parameters must be estimated from bootstrap

probabilities. For a cone-shaped H with vertex at the origin, it is shown in Appendix A.2

that

(3.4) Eσ2h(u) =
∞∑

j=0

σ1−jβj(u)

in a neighborhood of the vertex, where βj(u) = O(‖u‖j) as ‖u‖ → 0; these βj(u) are not

relevant to those in (3.3). A model that takes conical singularity into account may be
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defined as

ψsing,k(σ
2|β) = β0 +

k−2∑

j=1

βjσ
2j

1 + βk−1(σ − 1)
, k ≥ 3,

where 0 ≤ βk−1 ≤ 1. If βk−1 = 0, ψsing,k(σ
2|β) reduces to ψpoly,k−1(σ

2|β). If βk−1 = 1,

then ψsing,k(σ
2|β) includes the first two terms of (3.4).

Polynomials and cones are unbounded, and they are obviously not nearly flat. When an

unbounded h is used in this paper, it is in fact meant to be g as defined below. Let g(u) be

a continuous function of slow growth, i.e., for some k, |g(u)| = O(‖u‖k), as ‖u‖ → ∞. We

assume g(u) = O(τ) for each u. Let h(u) = fδ2(u)∗(wL2(u)g(u)), where wL2(u) = f̃L−2(u)

is a window function and δ and L are constants. It is shown in Appendix A.3 that h(u)

is nearly flat and the difference between g(u) and h(u) can be made arbitrarily small by

letting δ → 0 and L → ∞. We ignore this difference by assuming δ is sufficiently small

and L is sufficiently large.

3.5. Unbiased surfaces. Let R and S be regions in Rm+1. If R is the rejection region

of an unbiased test of the null hypothesis S, then ∂S is called an unbiased surface of R
in this paper. This test is unbiased for H if H = S.

We first derive an expression of S for a given R. Let r and s be nearly flat continuous

functions, and z = Φ−1(1 − α) for significance level α. In a similar way to H, we write

R = {(u, v) | v > z − r(u)}, S = {(u, v) | v ≤ −s(u)}.

The rejection probability at µ = (θ,−s(θ)) for θ ∈ Rm is

P1(V > z − r(U) | θ,−s(θ)) = 1 − E1(Φ(z − r(U) + s(θ)) | θ),

where Pσ2 and Eσ2 , previously defined for Y ∗ = (U∗, V ∗), are used for Y = (U, V ). By

letting x = z − E1r(θ) + s(θ), ε = −r(U) + E1r(θ) in (3.1), we have

(3.5) Φ−1(1 − P1(reject S | θ)) = z − E1r(θ) + s(θ) + O(τ 2).

Since the left-hand side is equal to z, we obtain

(3.6) s(θ) = E1r(θ) + O(τ 2).

We next derive an expression of the unbiased z-value q(u, v) for the null hypothesis S.

From (3.6), we have

(3.7) r(u) = E−1s(u) + O(τ 2).

Since q(u, v) = z for y ∈ ∂R, we substitute r(u) = q(u, v) − v for the left-hand side of

(3.7), and we obtain

(3.8) q(u, v) = v + E−1s(u) + O(τ 2),
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from which the unbiased p-value is calculated as p(u, v) = 1 − Φ(q(u, v)).

Assume s(u) = h(u) + O(τ 2) and σzσ2(u, v) = ψ(σ2|β(u)) + O(τ 2). By comparing (3.2)

and (3.8), we obtain

(3.9) q(u, v) = ψ(−1|β(u)) + O(τ 2)

for an approximately unbiased test of H with bias O(τ 2), if the right-hand side exists. A

refinement of this result is given below.

Theorem 1. For a nearly flat h, assume that E−1h and E−1h
2 exist. Define q(u, v) by

extrapolating the value of σzσ2(u, v) to σ2 = −1. This gives an approximately unbiased

test of H with bias only O(τ 3).

For a given S, let us define q(u, v) by (3.8), and use it for testing H. The rejection

probability at µ ∈ ∂H is obtained by evaluating (3.5) for µ = (θ,−h(θ)),

(3.10) Φ−1(1 − P1(reject H | θ)) = z − s(θ) + h(θ) + O(τ 2).

Therefore the test bias in terms of z-value is h(θ) − s(θ) + O(τ 2) at each θ. In the next

section, we examine the test bias for choices of s(θ).

3.6. A class of approximately unbiased tests. We evaluate the bias of our method

proposed in Section 2, and consider its generalization. The argument is made within the

linear theory by ignoring O(τ 2) terms.

If h is a polynomial of degree 2k − 1, ψpoly,k(σ
2|β) is a correct model for σzσ2 . Thus

qk(y) of (2.3) using the correct model becomes simply qk(u, v) = ψpoly,k(−1|β(u)). This is

an example of (3.9), where the right-hand side exists. For any continuous h, if considered

only within a bounded domain ‖u‖ < L, say, it can be approximated arbitrarily well by

a polynomial of large k. Therefore the bias of qk, if using the correct model, approaches

zero as k → ∞, by ignoring O(τ 2) terms and the effect from the outside of the bounded

domain. Our qk is approximately unbiased for any continuous h in this sense.

Is there any other qk with this property? To answer this question, we first rewrite our

qk, k ≥ 1, as follows.

qk(u, v) = v +
k−1∑

j=0

(−1 − σ2
0)

j

j!

∂j

∂(σ2)j

∣∣∣
σ2
0

F−1
[
h̃(ω)e−σ2 ‖ω‖2

2

]
(u) + O(τ 2)

= v + F−1
[
h̃(ω)e

‖ω‖2
2 (1 − Jk(ω))

]
(u) + O(τ 2),(3.11)
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where Jk(ω) for our qk is given by straightforward calculation as

Jk(ω) = 1 − e−(1+σ2
0)

‖ω‖2
2

k−1∑

j=0

(1 + σ2
0)

j

j!

(‖ω‖2

2

)j

=
γ(k, (1 + σ2

0)
‖ω‖2

2
)

Γ(k)
=

∞∑

j=k

(−1)j−k(1 + σ2
0)

j‖ω‖2j

(k − 1)!(j − k)!j2j
.

By comparing (3.8) and (3.11), we may define s for qk and denote it as sk. The test bias

in terms of z-value is then

h(θ) − sk(θ) = F−1[h̃(ω)Jk(ω)](θ) + O(τ 2).

Therefore, one may think that any qk can be approximately unbiased in the same sense

as our qk, if Jk(ω) → 0 as k → ∞. This idea is stated more formally in the below.

Theorem 2. Define a class of corrected z-values qk(u, v), k = 1, 2, . . ., by (3.11) for

a given Jk(ω). We assume that h is nearly flat and Jk(ω) satisfies the following three

conditions. (i) Jk(ω) → 0 as k → ∞ at each ω. (ii) For some C > 0, ‖Jk‖∞ < C holds

for all k. (iii) ‖e
‖ω‖2

2 (1 − Jk(ω))‖∞ < ∞ for each k. Then, we have

P1(qk(U, V ) > z | θ,−h(θ)) → α + O(τ 2)

as k → ∞ at each θ.

In addition to the above three conditions, let us assume that (iv) Jk(ω) is expressed as

Jk(ω) =
∑∞

j=k ak,j‖ω‖2j, where ak,j are coefficients. It is shown in Appendix A.6 that the

bias of qk is O(τ 2) if h is a polynomial of degree less than or equal to 2k − 1.

It is easy to verify that the Jk(ω) of our qk satisfies conditions (i)-(iv). Another example

of a Jk(ω) satisfying the four conditions is defined below. Let qk be the corrected z-

value of the k-th iterated bootstrap applied to the bootstrap probability. For k = 1,

q1(u, v) = z1(u, v), and for k ≥ 1,

qk+1(u, v) = Φ−1
{

P1

(
qk(U

∗, V ∗) ≤ qk(u, v) | θ̂(u, v),−h(θ̂(u, v))
)}

.

It is shown in Appendix A.7 that the Jk(ω) of this qk is given by

Jk(ω) = (1 + e−
‖ω‖2

2 )(1 − e−
‖ω‖2

2 )k

= (−1)kk!
∞∑

j=k

(S2(j, k) + S2(j + 1, k + 1))
(−1)j‖ω‖2j

2jj!
,

where S2(j, k) =
∑k

i=0 (−1)k−iij/i!(k − i)! are the Stirling numbers of the second kind.
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4. Numerical examples

4.1. Multiple comparisons. We consider a polyhedral convex cone expressed as

H = {µ | µ1 ≥
M

max
i=2

µi},

for M = m+1; H can be expressed in terms of h(u) after rotation of the coordinates. We

consider y of the form y2 = y1 + 1, y3 = · · · = yM = y1 − d below. Table 1 shows p-values

for d = −1, M = 10 and d = 5, M = 10.

This H appears in the multiple comparisons with the “best” (Hsu, 1981), or equivalently

the ranking and selection of Gupta (1965). The test statistic T (y) = maxM
i=2(yi − y1)/

√
2

is used often for the multiple comparisons (denoted MC for short). The p-value of MC

is psup(y), where the sup is attained at the least favorable configuration µ1 = · · · = µM .

Since T (y) = 1/
√

2 is the same for d = −1 and d = 5, psup(y) gives the same value for the

two cases.

For d = 5, a statistician may decide by using common sense that y3, . . . , yM should

be ignored for calculating the p-value because they are too small. Then, the z-test gives

p(y) = 1−Φ(T (y)). In fact, this is valid for d → ∞, where pβ(y) can be made arbitrarily

close to the z-test.

This situation is often encountered when using maximum likelihood inference for phylo-

genetic trees. It is an example of non-nested model selection, where yi is the log-likelihood

of i-th tree, and a large sample size, say, n > 3000, justifies the central limit theorem for y.

A resampling-based MC (Shimodaira and Hasegawa, 1999) as well as the z-test (Kishino

and Hasegawa, 1989) has been widely used. Practitioners complain that MC is conserva-

tive and we discover nothing, whereas the z-test tends to give false discoveries.

Our method seems to have the advantages of both MC and z-test; it behaves in a way

similar to MC near d = 0 and also to the z-test as d → ∞. Our pk are calculated from

thirteen ασ2 values of the multiscale bootstrap (Figure 1). For d = 5, pk, k = 1, . . . , 4,

give almost the same values as the z-test. For d = 0, p1 is too small, but it is calibrated

by our method so that p4 is almost the same as MC.

— Insert Table 1 Here —

— Insert Figure 1 Here —

4.2. Rejection probabilities. We consider a region in R2 defined as

H =
{

(µ1, µ2) | µ2 ≤ −(a + µ2
1/3)1/2

}
,

where a = 1 or a = 0. Both cases are shown in Figure 2. Table 2 gives rejection

probabilities at significance level α = 0.05 for µ ∈ ∂H; we chose µ1 = d/
√

2, d = 0, 1, 2, 4, 8.

By applying a linear transformation to H, it can be shown that the case when a = 0

13



corresponds to the case when M = 3 for MC with µ2 = µ1, µ3 = · · · = µM = µ1 − d. The

results for M = 10 are also given.

MC is unbiased at d = 0, and so is the z-test as d → ∞. However, MC performs very

poorly for d → ∞ and so does the z-test at d = 0. On the other hand, the corrected p-

values, especially p4, are much closer to being unbiased overall. More detailed examination

of the results is given below.

The rejection region R is defined by pk < α for each k, and it corresponds to the region

above the curve pk = α. As expected, P (pk(Y ) < α) approaches α as d or k increases.

However, the conical singularity made the convergence slower for a = 0 than for a = 1,

and an increase of dimensionality made it even slower for M = 10 than for M = 3.

Let H′ be the complement of H in Rm+1, and denote ασ2 and pk by α′
σ2 and p′k re-

spectively when H′ is the null hypothesis. Bayesian-like formulas, ασ2 + α′
σ2 = 1 and

pk + p′k = 1, hold for our method. The rejection probability P (pk(Y ) > 1 − α) for H′

behaves similarly to that for H, but the sign of test bias is reversed.

For H and H′, the test bias of pk tends to be larger as the singularity of the surface

becomes more evident by increasing M or decreasing d. The test bias of pk reduces even

for such cases, although very slowly, as k increases.

— Insert Figure 2 Here —

— Insert Table 2 Here —

5. Discussion

Theorem 2 states that the test bias of our pk approaches zero, ignoring the asymptotic

error of O(τ 2), as k → ∞ even for nonsmooth ∂H. This is confirmed numerically in

Section 4.2. However, the argument of Lehmann (1952) implies that an unbiased test

does not exist for cone-shaped H. This nonexistence does not exclude the possibility of

approximately unbiased tests but it does lead to some difficulty as explained below.

In Figure 2, ∂R oscillates more wildly for a = 0 than for a = 1. This is a consequence

of our attempt to reduce the test bias, although a larger bias still remains in pk for a = 0

than for a = 1 (Table 2). Shapes of R similar to those in the panel (b) of Figure 2 are

found in DuPreez et al. (1985) and Perlman and Wu (2003, Fig. 11) for regions H of

convex cones, and also Liu and Berger (1995) for regions H of concave cones, i.e., the

complements of convex cones.

These R violate monotonicity in the sense of Lehmann (1952), and they, particularly in

the concave cases, are criticized by Perlman and Wu (1999). I do agree with this criticism

if the oscillation of ∂R is large for interpreting the p-value as the evidence against H. Our

numerical examples suggest that a compromise between unbiasedness and monotonicity

is made by taking around k = 3. For example, the curve of p4 = 0.95 for a = 0 in

14



Figure 2 oscillates too much, while p4 improves the bias of p3 only slightly in Table 2. For

determining an optimal k, the balance should be formulated as mathematical criteria in

future work.

The above problem with our pk, which also applies to the bootstrap iteration, is

explained technically by the fact that ‖e
‖ω‖2

2 (1 − Jk(ω))‖∞ is unbounded for k → ∞
in the condition (iii) of Theorem 2. Let rk be the r for pk, and note that r̃k(ω) =

h̃(ω)e
‖ω‖2

2 (1 − Jk(ω)). Since high frequency components in a nonsmooth h are large,

|h̃(ω)| reduces only slowly as ‖ω‖ → ∞ so that rk diverges as k → ∞.

In reality, several factors other than k must also be determined; they include σ2
0,

ψ(σ2|β), the number of resamples, the number of σ2 and their values. The scaleboot

software (R package is available from CRAN), which comes with examples of real applica-

tions, implements maximum likelihood estimation of β by numerical optimization of the

binomial likelihood function and model selection by AIC from ψpoly,k and ψsing,k models.

A narrow range of σ2, say, σ−2 = 0.5, 0.6, . . . , 1.4, suffices for p2. For pk, k ≥ 3, a wider

range of σ2 as those in Section 4 is needed for estimating the higher order derivatives of

σzσ2 . The standard errors of pk due to the resampling increases as k becomes larger; this

also restricts the use of a large k.
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Appendix A. Proofs

A.1. Expected value of smooth surfaces. (3.3) follows by applying below to each

term of the Taylor series.

Eσ2

{
(U∗

1 − u1)
k1 · · · (U∗

m − um)km | u
}

= σk1+···+km(k1 − 1)!! · · · (km − 1)!!

if all k1, . . . , km are even, and it becomes zero otherwise.

A.2. Expected value of cone surfaces. Consider a kind of polar coordinates (‖u‖, t) ↔
u, where t = u/‖u‖. Let c(t) be a continuous function on the sphere. Then, cones are

expressed as h(u) = c(t) ‖u‖. By considering fσ2(u∗ − u)/fσ2(u∗), we have Eσ2h(u) =

e−‖u‖2/2σ2
Eσ2(h(U∗)eU∗·u/σ2|0), where U∗ ∼ Nm(0, σ2Im). In this expression, ‖U∗‖ and T ∗

are independent, where ‖U∗‖2/σ2 ∼ χ2
m and T ∗ is distributed uniformly on the sphere.
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By substituting h(U∗) = c(T ∗)‖U∗‖ and U∗ · u = ‖U∗‖ (T ∗ · u) for those in above, we

obtain

Eσ2h(u) = σe−
‖u‖2

2σ2

∞∑

j=0

(j!σj)−1E(χj+1
m )E(c(T ∗) (T ∗ · u)j),

from which (3.4) immediately follows.

A.3. Functions of slow growth. Let t(u) = wL2(u)g(u). Since ‖t‖1 < ∞, we have

‖h‖1 ≤ ‖fδ2‖1 ‖t‖1 < ∞ and ‖h̃‖1 ≤ ‖f̃δ2‖1 ‖t̃‖∞ < ∞. Therefore h is nearly flat. At

each u, h(u) → t(u) as δ → 0 (Lukacs, 1964, p. 781), and t(u) → g(u) as L → ∞, since

wL2(u) → 1. Then, h(u) → g(u) as δ → 0 and L → ∞ at each u.

A.4. Proof of Theorem 1. By calculating Eσ2(ε2|u) in (3.1), the scaling-law of (3.2)

becomes

(A.1) σzσ2(u, v) = v + Eσ2h(u) − v

2σ2

{
Eσ2h2(u) − (Eσ2h(u))2

}
+ O(τ 3).

We will show that (3.8), if calculated up to O(τ 2) terms, becomes

(A.2) q(u, v) = v + E−1s(u) +
v

2

{
E−1s

2(u) − (E−1s(u))2
}

+ O(τ 3).

By letting σ2 = −1 in (A.1) and s(u) = h(u) + O(τ 3) in (A.2), we observe that these two

formulas are equivalent up to O(τ 2) terms. This completes the proof.

We first define R from (A.2) by q(u, v) > z, and then we will show this R is the rejection

region of an unbiased test of S, ignoring O(τ 3) terms. Solve q(u, v) = z with respect to

v, and substitute it for v on the right-hand side of r(u) = z − v. Then we have

(A.3) r(u) = E−1s(u) +
z

2

{
E−1s

2(u) − (E−1s(u))2
}

+ O(τ 3).

On the other hand, (3.5) becomes, by calculating Eσ2(ε2|u) in (3.1),

Φ−1(1 − P1(reject S | θ)) = z − E1r(θ) + s(θ) − z

2

{
E1r

2(θ) − (E1r(θ))
2
}

+ O(τ 3).

The right-hand side becomes z + O(τ 3), by substituting (A.3) for r(u).

A.5. Proof of Theorem 2. From (iii), we have ‖h̃(ω)e
‖ω‖2

2 (1 − Jk(ω))‖1 ≤
‖h̃‖1 ‖e

‖ω‖2
2 (1 − Jk(ω))‖∞ < ∞. Thus F−1 in (3.11) exists for each k, and we can write

qk(u, v) = v + E−1sk(u) + O(τ 2), where sk(u) is defined by s̃k(ω) = h̃(ω)(1− Jk(ω)). The

proof completes by showing that limk→∞(h(θ) − sk(θ)) = 0 at each θ in the below.

Considering h̃(ω)−s̃k(ω) = h̃(ω)Jk(ω) and (ii), we have |eiω·u(h̃(ω)−s̃k(ω))| ≤ C |h̃(ω)|.
Since C ‖h̃‖1 < ∞, the dominated convergence theorem gives

lim
k→∞

F−1[h̃(ω) − s̃k(ω)](θ) = F−1[h̃(ω) lim
k→∞

Jk(ω)](θ).

From (i), the right-hand side becomes F−1[h̃(ω) × 0] = 0.
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A.6. Condition (iv). Here we employ the Fourier transforms in terms of generalized

functions (Zemanian, 1965) so that Fh exists without the justification argument at the

end of Section 3.4 for functions of slow growth. Consider a monomial h(u) = ub1
1 · · ·ubm

m ,

b = b1 + · · · + bm ≤ 2k − 1. Let δ(x) be the delta function and δ(b)(x) be its b-th

derivative. Then, h̃(ω) = ib(2π)mδ(b1)(ω1) · · · δ(bm)(ωm). On the other hand, eiω·uJk(ω) =

eiω·u ∑∞
j=k ak,j(ω

2
1 + · · ·+ω2

m)j includes only monomials of form ωc1
1 · · ·ωcm

m , c1 + · · ·+cm ≥
2k. Therefore, F−1[h̃(ω)Jk(ω)](θ) is a linear combination of the following terms

∫

Rm

δ(b1)(ω1) · · · δ(bm)(ωm)ωc1
1 · · ·ωcm

m dω

=(−1)b

∫

Rm

δ(ω1) · · · δ(ωm)
db1ωc1

1

dωb1
1

· · · dbmωcm
m

dωbm
m

dω = 0,

and thus h(θ)− sk(θ) = 0. This argument is linear with respect to h, so it applies to any

polynomial of degree less than or equal to 2k − 1.

A.7. Bootstrap iteration. Assume that qk(u, v) is expressed using a nearly flat rk as

(A.4) qk(u, v) = v + rk(u) + O(τ 2).

For k = 1, q1(u, v) = z1(u, v) = v + E1h(u) + O(τ 2), and (A.4) holds by letting r1(u) =

E1h(u). For brevity, write u′ = θ̂(u, v) = u + O(τ). Then, Φ(qk+1(u, v)) = P1(V
∗ +

rk(U
∗) ≤ v + rk(u)|u′,−h(u′)) + O(τ 2) = E1{Φ(v + rk(u) − rk(U

∗) + h(u′))|u′} + O(τ 2).

The argument of (3.1) gives qk+1(u, v) = v + rk(u) − E1rk(u
′) + h(u′) + O(τ 2), and we

obtain rk+1(u) = rk(u)−E1rk(u)+h(u)+O(τ 2). This implies that (A.4) holds for k ≥ 1.

Next we will give an expression of rk(u). The Fourier transform of the recurrence

formula is r̃k+1(ω) = (1−e−
‖ω‖2

2 )r̃k(ω)+ h̃(ω)+O(τ 2), and for k = 1, r̃1(ω) = h̃(ω)e−
‖ω‖2

2 .

By solving the formula, we obtain r̃k(ω) = h̃(ω)e
‖ω‖2

2 {1−(1+e−
‖ω‖2

2 )(1−e−
‖ω‖2

2 )k}+O(τ 2).

The proof completes by solving r̃k(ω) = h̃(ω)e
‖ω‖2

2 (1 − Jk(ω)) + O(τ 2) for Jk(ω).
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Figure 1. Computation of corrected p-values by the multiscale bootstrap

method for (a) d = −1, M = 10 and (b) d = 5, M = 10. Observed σzσ2

values are plotted for 13 σ2-values equally spaced in log-scale between 1/9

and 9. (a) ψsing,3 and (b) ψpoly,3 models fit very well. For d = −1, ψsing,3

became β0 + β1σ because β̂2 = 1. Corrected p-values were calculated by

(2.3) for k = 1, . . . , 4. Note that ασ2 were in fact calculated from numerical

integration here, but the standard errors in Table 1 are given for the case

that each ασ2 is estimated from 10,000 resamples.
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Figure 2. Contour lines (solid curves) of pk = 0.05 or 0.95 for (a) a = 1

and (b) a = 0; lines are drawn for −1 ≤ µ1 ≤ 3.5. Hypotheses are regions

below the dotted curves. Line segments with arrowheads are of length

Φ−1(0.95) = 1.64.
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Tables

Table 1. p-values for the two cases of multiple comparisons. The values

are in percent, and standard errors are shown in parentheses.

d = −1 d = 5

MC 65.91 65.91

z-test 23.98 23.98

k = 1 1.53 (0.02) 24.11 (0.05)

k = 2 18.79 (0.21) 24.15 (0.09)

k = 3 40.10 (0.74) 23.01 (0.12)

k = 4 64.81 (1.66) 23.01 (0.12)
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Table 2. Rejection probabilities at α = 0.05. The values are in percent.

They are calculated by numerical integration for a = 1 and a = 0, and by

a Monte-Carlo simulation of 100,000 runs for M = 10.

P (pk(Y ) < 0.05) P (pk(Y ) > 0.95)

d 0 1 2 4 8 0 1 2 4 8

a = 1 (smooth boundary)

k = 1 7.66 7.27 6.51 5.48 5.07 2.65 2.88 3.42 4.45 4.93

k = 2 5.33 5.19 4.98 4.89 4.99 4.34 4.56 4.97 5.22 5.01

k = 3 5.11 5.04 4.96 4.99 5.00 4.67 4.83 5.08 5.06 5.00

k = 4 5.06 5.02 4.98 5.01 5.00 4.79 4.91 5.07 4.99 5.00

a = 0 (nonsmooth boundary) or M = 3

MC 5.00 3.07 2.79 2.77 2.77 5.00 9.18 12.1 13.5 13.6

z-test 8.78 5.59 5.05 5.00 5.00 1.22 2.71 4.09 4.97 5.00

k = 1 13.4 7.77 5.79 5.04 5.00 0.85 2.04 3.43 4.85 5.00

k = 2 7.66 4.74 4.43 4.88 5.00 1.95 3.99 5.44 5.34 5.00

k = 3 6.61 4.51 4.70 5.09 5.00 2.37 4.49 5.52 4.96 5.00

k = 4 6.22 4.61 4.99 5.08 5.00 2.67 4.71 5.37 4.89 5.00

M = 10 (multiple comparisons)

MC 5.1 1.4 0.8 0.8 0.8 5.1 17.3 30.7 38.0 38.7

z-test 23.3 8.9 5.5 4.9 5.0 0.0 0.5 1.9 4.8 5.1

k = 1 53.8 25.4 11.1 5.3 5.0 0.0 0.1 0.8 4.0 5.1

k = 2 16.9 5.4 3.0 4.1 5.0 0.3 2.0 5.6 7.2 5.1

k = 3 10.2 3.4 2.8 4.9 5.0 0.6 3.3 7.3 6.3 5.0

k = 4 7.1 2.7 2.7 5.1 5.0 1.3 4.9 8.5 6.2 5.0
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