
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

Equality Based Contraction

of Semidefinite Programming Relaxations

in Polynomial Optimization

Cong Vo, Masakazu Muramatsu and

Masakazu Kojima

December 2006, B–437



B-437 Equality Based Contraction of Semidefinite Programming
Relaxations in Polynomial Optimization

Cong Vo], Masakazu Muramatsu? and Masakazu Kojima†

December 2006

Abstract.
The SDP (semidefinite programming) relaxation for general POPs (polynomial optimization
problems), which was proposed as a method for computing global optimal solutions of
POPs by Lasserre, has become an active research subject recently. We propose a new
heuristic method exploiting the equality constraints in a given POP, and strengthen the
SDP relaxation so as to achieve faster convergence to the global optimum of the POP. We
can apply this method to both of the dense SDP relaxation which was originally proposed
by Lasserre, and the sparse SDP relaxation which was later proposed by Kim, Kojima,
Muramatsu and Waki. Especially, our heuristic method incorporated into the sparse SDP
relaxation method has shown a promising performance in numerical experiments on large
scale sparse POPs. Roughly speaking, we induce valid equality constraints from the original
equality constraints of the POP, and then use them to convert the dense or sparse SDP
relaxation into a new stronger SDP relaxation. Our method is enlightened by some strong
theoretical results on the convergence of SDP relaxations for POPs with equality constraints
provided by Lasserre , Parrilo and Laurent, but we place the main emphasis on the practical
aspect to compute more accurate lower bounds of larger sparse POPs.
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1. Introduction

We consider the following POP (polynomial optimization problem):

(1) 〈POP〉


minimize f(x),
subject to gi(x) ≥ 0 (i = 1, . . . , p),

hi(x) = 0 (i = 1, . . . , k)

where f(x), g1(x), . . . , gp(x) and h1(x), . . . , hk(x) are polynomials in x ∈ Rn with
real coe�cients.

The SDP relaxation (semide�nite programming relaxation, or sums of squares
relaxation) for POPs, which was proposed as a method for computing global optimal
solutions of general POPs by Lasserre [Las01b] (see also Parrilo [Par00, Par03]),
has become an active research subject recently. He introduced a hierarchy of SDP
(semide�nite programming) relaxations for a POP. Here we assume that the POP
is a minimization problem of the form 〈POP〉 in (1). Then a sequence of SDP
relaxation problems is constructed so that the optimal value of each problem serves
as a lower bound for the global minimum of 〈POP〉 and is nondecreasing along the
sequence. Under a mild assumption which requires the compactness of the feasible
region, the sequence of lower bounds converges to the global minimum of 〈POP〉
([Las01b, Theorem 4.2 ]).

Although the theoretical global convergence property on the SDP relaxation
mentioned above is very attractive, the sizes of the SDPs grow rapidly with the size
of a POP to be solved. This discourages engineering applications of the SDP relax-
ation. Therefore, it is necessary from a practical point of view to revise the SDP
relaxation so as to construct a hierarchy of smaller size SDP relaxation problems
without sacri�cing the quality of the lower bounds they provide. The heuristic pro-
posed in this paper aims at such a revision e�ectively utilizing equality constraints
involved in a POP.

The research on the SDP relaxation method spreads widely from fundamental
theory to practical implementation of the method for large scale POPs. Important
theoretical results include the theories on the convergence of the optimal values of
the SDP relaxations to the optimal value of the POP (see Lasserre [Las01b], Parrilo
[Par03]). Henrion and Lasserre [HL03] showed by numerical experiments that the
method is powerful for small size POPs. Applications of the method to POPs from
engineering, which are of larger scales but sparse, is the main subject of practical
approaches by Kim, Kojima, Muramatsu and Waki [KKW05, WKKM04b]. We call
the SDP relaxation method originally proposed by Lasserre the dense SDP relax-
ation method, and the one proposed later by Kim et al. the sparse SDP relaxation
method. Recently, Lasserre [Las05] proved convergence of a hierarchy of sparse
SDP relaxations in the spirit of the paper [WKKM04b] by Waki et al. .

We propose a new heuristic method exploiting the equality constraints in 〈POP〉,
which we can apply to both of the dense and sparse SDP relaxations, and strengthen
the SDP relaxations so as to achieve faster convergence to the global minimum of
〈POP〉. Roughly speaking, we �rst add valid equality constraints induced from the
original equality constraints of 〈POP〉. Secondly we use them to convert the dense
or sparse SDP relaxation into an SDP satisfying the following properties:

• The psd (positive semide�nite) constraints of the new SDP becomes smaller
than that of the original SDP.
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• The new SDP may have more equality constraints.
• The lower bound given as the optimal value of the new SDP for 〈POP〉 is
expected better (at least not worse) than that given by the original SDP.

Our heuristic method incorporated into the sparse SDP relaxation method has
shown a promising performance in numerical experiments on large scale sparse
POPs. The experiments have shown that the new SDPs are easier to solve, and
the optimal values of the new SDPs converge faster to the optimal value of a given
POP.

Our heuristic method exploiting the equality constraints in POPs is enlight-
ened by the theoretical results referred below, but it places the main emphasis on
the practical aspect to compute more accurate lower bounds of larger sparse POPs.
Lasserre [Las02, Las01a] showed that optimization of a polynomial on a grid of �nite
points in Rn: {x ∈ Rn : hi(x) = 0, (i = 1, . . . , k)}, where hi(x) =

∏ri

j=1(xj−ai,j),
reduces to an SDP problem of �xed size. In particular, every 0-1 POP in n vari-
ables is equivalent to an SDP problem in 2n − 1 variables (generated by the n-th
SDP relaxation). Later, Parrilo [Par02] extends Lasserre's results to the case where
the feasible region of 〈POP〉 is an arbitrary �nite set. He required that the set
{x ∈ Cn : hi(x) = 0 (i = 1, . . . , k)} to be �nite and that the ideal I generated by
h1(x),..., hk(x) to be radical, and proved that every polynomial nonnegative on
the feasible region belongs to the quadratic module generated by the equality con-
straints and inequality constraints. As a consequence, the sum of squares relaxation
is exact for some proper �nite supports. However, a prerequisite for obtaining the
SDP representation is to completely enumerate all feasible solutions of the given
POP. Laurent [Lau04] presented a new SDP relaxation which involves combinato-
rial moment matrices. When the polynomial equality constraints have a �nite set
of complex solutions, without assuming that the ideal I generated by the equality
constraints is radical, she extended Parrilo's results furthermore and proved that
the POP can be reformulated as a �nite SDP problem. She then proved the conver-
gence of the sum of squares relaxations in the case where I is radical (i.e. the result
of [Par02]) and in the case where the equality constraints construct a Groebner
basis of I. The combinatorial moment matrices involved in her method are indexed
by a basis of the quotient space R[x]/I. Hence they have smaller size comparing to
the size of the classical moment matrices, though, the formulation of combinatorial
moment matrices requires a considerable computational cost.

After some preparation of the dense and sparse SDP relaxation method for
〈POP〉 in Section 2, we show how to reduce the dimensions of psd matrices in
these relaxations in Section 3, how to add valid equality constraints to 〈POP〉 in
Section 4, and report numerical results in Section 5. Concluding discussions are
given in Section 6.

2. Preliminaries

Let Rn denote the n dimensional Euclidean space, and Zn
+ the set of non-

negative integer vectors in Rn. A real-valued polynomial t : Rn → R is de-
�ned as follows. Let S ⊂ Zn

+ be a nonempty �nite set. Assuming that for
each α ∈ S, a real value tα is given, we have t(x) =

∑
α∈S tαxα, where xα =

xα1
1 · · ·xαn

n . The support of t is de�ned by supp t = {α ∈ S, tα 6= 0}, and the
degree of t by deg t = maxα∈supp t |α|, where |α| =

∑n
i=1 αi. Let deg〈POP〉 =
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max(deg f,deg g1, . . . ,deg gp,deg h1, . . . ,deg hk). Let R[x] denote the set of real-
valued polynomials of x ∈ Rn.

We say that α <lex β and xα <lex xβ for α,β ∈ Zn
+,x ∈ Rn if, in the

vector α− β the left-most nonzero entry is negative. Let S = {α1,α2, . . . ,αk} ⊂
Zn

+ with α1 <lex α2 <lex . . . <lex αk and tαi ∈ R (i = 1, . . . , k). We de�ne

(xα : α ∈ S) :=
(
xα1

,xα2
, . . . ,xαk

)T

and (tα : α ∈ S) := (tα1 , tα2 , . . . , tαk)T
. A

polynomial t(x) is then identi�ed with its coe�cient vector (tα : α ∈ supp t), since
t(x) ≡ (tα : α ∈ supp t)T (xα : α ∈ supp t). In the following, the elements of a
�nite set S ⊂ Zn

+ are always arranged in the �lexicographical� order mentioned
above.

For a symmetric square matrix A, A < O means that A is positive semide�nite.

Let MS(x) := (xα : α ∈ S) (xα : α ∈ S)T
for a �nite set S ⊂ Zn

+. From 〈POP〉
we introduce the following PSDP (polynomial SDP) problem which is to lead to a
dense SDP relaxation or a sparse SDP relaxation:

(2) 〈PSDP〉


minimize f(x),
subject to MCi(x) < O (i = 1, . . . , r),

gi(x) MGi
(x) < O (i = 1, . . . , p),

hi(x) MHi
(x) = O (i = 1, . . . , k)

where Ci, Gi,Hi are �nite subsets of Zn
+ such that, for some integer N ≥ 1

2 deg〈POP〉:

(3)


0 ∈ Ci,deg MCi(x) = 2N (i = 1, . . . , r),
0 ∈ Gi,deg gi(x) MGi(x) = 2N or 2N − 1 (i = 1, . . . , p),
0 ∈ Hi,deg hi(x) MHi

(x) = 2N or 2N − 1 (i = 1, . . . , k).

Clearly, if x ∈ Rn is a feasible solution of 〈POP〉, then it is feasible to 〈PSDP〉, since
MS(x) < O for any �nite set S ⊂ Zn

+. Furthermore, the elements in the upper left
corners of MCi(x),MGj (x),MHl

(x) always take value 1, since 0 ∈ Ci,0 ∈ Gj ,0 ∈
Hl (i = 1, . . . , r, j = 1, . . . , p, l = 1, . . . , k), therefore any feasible solution of 〈PSDP〉
will be feasible to 〈POP〉. Moreover, the objective functions of 〈POP〉 and 〈PSDP〉
are the same. Consequently, 〈PSDP〉 is equivalent to 〈POP〉.

We can rewrite 〈PSDP〉 as:

(4)


minimize f(x),
subject to

∑
α∈SCi

M̂αxα < O (i = 1, . . . , r),∑
α∈SGi

M̃αxα < O (i = 1, . . . , p),∑
α∈SHi

Mαxα = O (i = 1, . . . , k)

where SC1 , . . . , SCr
, SG1 , . . . , SGp

, SH1 , . . . , SHk
are �nite subsets of Zn

+ and M̂α,

M̃α, Mα are symmetric square matrices, deriving from the coe�cients of polyno-
mials gi(x), hi(x) and matrices of monomials MCi(x), MGi(x),MHi(x) in 〈PSDP〉.
Let 〈SDP〉 denote the SDP resulting from 〈PSDP〉 by linearization, i.e. by replacing
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each monomial xα in (4) by a new variable yα ∈ R:

(5) 〈SDP〉


minimize (fα : α ∈ supp f)T (yα : α ∈ supp f) ,

subject to
∑

α∈SCi
M̂αyα < O (i = 1, . . . , r),∑

α∈SGi
M̃αyα < O (i = 1, . . . , p),∑

α∈SHi
Mαyα = O (i = 1, . . . , k).

We say that 〈SDP〉 is a SDP relaxation of 〈POP〉 in relaxation order N . This
〈SDP〉 represents a dense SDP relaxation ([Las01b]) or a sparse SDP relaxation
([KKW05, WKKM04b]) depending on how we choose Ci, Gi,Hi in 〈PSDP〉.

Proposition 1. If 〈POP〉 has an optimal solution x̄, then 〈SDP〉 has a nonempty

feasible solution set. Moreover, the optimal value of 〈SDP〉 is a lower bound for

that of 〈POP〉.

Proof. Let ȳα = x̄α, then (ȳα) is a feasible solution of 〈SDP〉. Moreover, the
objective value of 〈SDP〉 at (ȳα) is equivalent to the optimal value of 〈POP〉. The
conclusion follows since 〈SDP〉 is a minimization problem. �

The dimensions of the symmetric square matrices appearing in 〈SDP〉 are deter-
mined by the cardinality of Ci, Gi and Hi as follows:

• Mα (α ∈ SCi
) have the same dimensions with MCi

(x), i. e. |Ci| × |Ci|, for
i = 1, . . . , r.

• Mα (α ∈ SGi) have the same dimensions with MGi(x), i. e. |Gi| × |Gi|, for
i = 1, . . . , p.

• Mα (α ∈ SHi
) have the same dimensions with MHi

(x), i. e. |Hi| × |Hi|, for
i = 1, . . . , k.

Lasserre introduces in [Las01b] a hierarchy of SDP relaxations, which we call dense
relaxations in this paper, since Ci, Gi,Hi are set as the largest possible ones, i. e.
given N , referring to (2):

(6)


C1 = {α ∈ Zn

+ : |α| ≤ N}, r = 1,

Gi = {α ∈ Zn
+ : |α| ≤ N − 1

2 deg gi(x)} (i = 1, . . . , p),
Hi = {α ∈ Zn

+ : |α| ≤ N − 1
2 deg hi(x)} (i = 1, . . . , k).

The hierarchy of dense relaxations provides a sequence of 〈SDP〉 whose associated
optimal values asymptotically converge to the global minimum of 〈POP〉, under a
mild assumption ([Las01b, Theorem 4.2]). In practice, the convergence is usually
fast, and often �nite (up to machine precision); see e.g. [HL03]. However, despite
these nice features, the size of the dense relaxations grows rapidly with the size
of the original POP. Typically, the dense relaxation of relaxation order N has to

handle at least one psd matrix of size

(
n + N

N

)
×

(
n + N

N

)
, and

(
n + 2N

2N

)
variables. The large size of the dense relaxations limits the applicability of the
method to problems with small to medium size only.

Following Kim, Kojima, Muramatsu and Waki [KKW05, WKKM04b], we intro-
duce the correlative sparsity. We �rst observe that the number of possible mono-

mials in a polynomial t ∈ R[x] of a degree d is

(
n + d

d

)
, however, a polynomial

in practical cases often consists of a much smaller number of monomials; that is
when the polynomial is sparse. Let V = {1, . . . , n} and for a polynomial t(x),
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ind t = {j ∈ V : maxα∈supp t αj > 0} is to denote indices of the variables appear-
ing in t(x).

• a csp (correlative sparsity pattern) graph G = 〈V,E〉 is built as: {i, j} ∈ E
if and only if
� either xi and xj appear simultaneously in a monomial of f(x)
� or they appear in an inequality (or equality) constraint;

• let C1, . . . , Cr be the maximum cliques of a chordal extension of G (a chordal
graph is a simple graph possessing no chordless cycles, see [Wes96]);

• let Gi =
⋃

Cj⊇ind gi
Cj for i = 1, . . . , p;

• let Hi =
⋃

Cj⊇ind hi
Cj for i = 1, . . . , k.

Finally, referring to (2):

(7)


Ci = {α ∈ Zn

+ : |α| ≤ N,αj = 0 if j 6∈ Ci} (i = 1, . . . , r),
Gi = {α ∈ Zn

+ : |α| ≤ N − 1
2 deg gi(x), αj = 0 if j 6∈ Gi} (i = 1, . . . , p),

Hi = {α ∈ Zn
+ : |α| ≤ N − 1

2 deg hi(x), αj = 0 if j 6∈ Hi} (i = 1, . . . , k).

Let κ = max{|C1|, . . . , |Cr|, |G1|, . . . , |Gp|, |H1|, . . . , |Hk|}. The sparse relaxation of

order N consists of symmetric square matrices of sizeO
((

κ + N
N

)
×

(
κ + N

N

))
,

and about O
((

κ + 2N
2N

))
variables. When κ is small, a frequent case in prac-

tical applications of interest, the sparse SDP relaxation method above succeeds in
exploiting the sparsity of the POP to obtain impressive gains in the size of the re-
sulting SDP relaxations, as well as in the computational time needed for obtaining
an optimal solution.

Lasserre [Las05] has made some (computationally) slight modi�cation to the
SDP relaxations de�ned in [WKKM04b] and has proved theoretical convergence of
the sparse SDP relaxations under a certain condition on the sparsity pattern.

3. Contraction of semidefinite matrices

A typical psd matrix MCi(x) or gi(x) MGi(x) in 〈PSDP〉 (2) has the form

(8) t(x) MS(x) < O

where t(x) may be 1. We will show in this section how to translate this psd
constraint into a smaller one and additional equality constraints when we are given
valid equality constraints on the monomial set S, i. e. given a matrix K such that:

K (xα : α ∈ S) = 0(9)

is satis�ed by any feasible solution x of 〈PSDP〉. In Section 4, we will explain how
to �nd such a matrix K, given a �nite set S ⊂ Zn

+. Assume K is of full row rank.
There exists a matrix J such that

(10) L =
(

J
K

)
is a non-singular square matrix.

Then (8) is equivalent to

(11) Lt(x) MS(x)LT < O
6



or

(12)

(
t(x)JMS(x)JT t(x)JMS(x)KT

t(x)KMS(x)JT t(x)KMS(x)KT

)
< O.

However, by (9), among the four submatrices of the psd matrix above, the North-
east, the Southeast and the Southwest must be zeros, and the Northwest psd, or
equivalently:

(13)

{
t(x)JMS(x)JT < O,

t(x)KMS(x) = O.

Now let us write (8) as

(14)
∑
α∈T

(M̂S)αxα < O.

Then its linearization becomes

(15)
∑
α∈T

(M̂S)αyα < O.

Proposition 2. We consider the following system:

(16)

{∑
α∈T J(M̂S)αJT yα < O,∑
α∈T K(M̂S)αyα = O.

1) (16) is the linearization of (13).
2) Any solution y satisfying (16) also satisfy (15).

Proof. Premultiplying and multiplying L and LT respectively to (14), we see that
(11) and (12) can be rewrote as
(17)∑

α∈T

L(M̂S)αLT xα =
( ∑

α∈T J(M̂S)αJT xα
∑

α∈T J(M̂S)αKT xα∑
α∈T K(M̂S)αJT xα

∑
α∈T K(M̂S)αKT xα

)
< O,

and its linearization

(18)

( ∑
α∈T J(M̂S)αJT yα

∑
α∈T J(M̂S)αKT yα∑

α∈T K(M̂S)αJT yα

∑
α∈T K(M̂S)αKT yα

)
< O.

It is clear from (17), (18) and (12) that (16) is exactly the linearization of (13).
Because L is nonsingular due to (10), clearly (15) and (18) are equivalent each
other.

If y satisfy (16), then the Northeast, the Southeast, and the Southwest submatri-
ces of (18) are all zeros, and the Northwest submatrix of (18) is positive semide�nite.
Therefore the positive semide�niteness of the whole matrix follows. �

Moreover, when K in (9) is given, we can choose J to satisfy (10) such that
J (xα : α ∈ S) becomes a sub-vector of (xα : α ∈ S), as follows. Let k = |S|, ei

denote the i-th row of the k×k identity matrix. Since the vector set {e1, e2, . . . ,ek}
is linearly independent, we can select a subset V =

{
ei1 , ei2 , . . . ,eik−rank K

}
⊂
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{e1, e2, . . . ,ek} such that

rank


K
ei1

ei2
...

ei`

 = ` + rank K

for ` = 1, 2, . . . , k − rank K. Finally, we use vectors in the vector set V as row
vectors to build the matrix J .

Now, since J is a sub-matrix of the identity matrix, we have
(
xα : α ∈ S̄

)
=

J (xα : α ∈ S) for some S̄ ⊂ S. Therefore (13) becomes

(19)

{
t(x) MS̄(x) < O,

t(x)K MS(x) = O.

Note that if for the monomial set S we do not have K available to satisfy (9), then
in (19) we suppose S̄ = S and omit the equality constraint (or let K = O).

Using the technique described above, corresponding to 〈PSDP〉 (2), if we have
the following valid equality constraints:

Kci (xα : α ∈ Ci) = 0 (i = 1, . . . , r),
Kgi (xα : α ∈ Gi) = 0 (i = 1, . . . , p),

then we can translate 〈PSDP〉 into the following optimization problems:

(20) 〈PSDP〉



minimize f(x),
subject to MC̄i

(x) < O (i = 1, . . . , r),
gi(x) MḠi

(x) < O (i = 1, . . . , p),
hi(x) MHi

(x) = O (i = 1, . . . , k),
Kci

MCi
(x) = O (i = 1, . . . , r),

Kgi
gi(x) MGi

(x) = O (i = 1, . . . , p).

Note that Ḡi and C̄i are subsets of Gi and Ci, respectively. Though 〈PSDP〉 is
equivalent to 〈PSDP〉, the sizes of the psd matrices in 〈PSDP〉 are smaller than the

sizes of respective psd matrices in 〈PSDP〉. Let the linearizations of 〈PSDP〉 and
〈PSDP〉 be 〈SDP〉 and 〈SDP〉, respectively, we have the following propositions.

Proposition 3. If 〈POP〉 has an optimal solution x̄, then 〈SDP〉 has a nonempty

feasible solution set. Moreover, the optimal value of 〈SDP〉 is a lower bound for

that of 〈POP〉.
Proof. Similar to the proof of Proposition 1. �

Proposition 4. If 〈POP〉 has an optimal solution x̄, then 〈SDP〉 has an optimal

value larger than, or at least equal to that of 〈SDP〉.

Proof. First, the objective functions of 〈SDP〉 and 〈SDP〉 are the same. Second, the
linearization of the constraints hi(x) MHi

(x) = O (i = 1, . . . , k) are the same in the
two systems. Finally, each psd constraint of the form (8) in 〈PSDP〉 (where it may

happen that t(x) = 1) corresponds to a sub-system of the form (19) in 〈PSDP〉,
and the linearization of the latter sub-system is not looser than the linearization of
the former psd constraint (Proposition 2). The conclusion follows. �
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4. Valid equality constraints

The main idea in producing new valid equality constraints boils down to recog-
nizing that the more valid equality constraints we have, the more we can reduce the
size of psd matrices MCi(x) (i = 1, . . . , r) and MGj (x) (j = 1, . . . , p) in 〈PSDP〉 as
we have done in Section 3. We will show how to conduct valid equality constraints
for a given �nite monomial set (xα : α ∈ S), S ⊂ Zn

+. In other words, we �nd a
coe�cient matrix K to satisfy (9), i. e.

K (xα : α ∈ S) = 0,

but �rst we need to conduct more valid equality constraints for 〈POP〉. An equal-
ity constraint h(x) = 0 forms a valid equality constraint of 〈POP〉 if h(x) =∑k

i=1 qi(x)hi(x), qi ∈ R[x] for i = 1, . . . , k.
Let the degree of 〈PSDP〉 be 2N as it is set in (2), (3). We have the following

system of valid equality constraints for 〈PSDP〉:
(21) hi(x)xα = 0 (|α| ≤ N − deg hi, i = 1, . . . , k),

which we rewrite as

(22) C (xα : α ∈ A) = 0

for a �nite set A ⊂ Zn
+ and a coe�cient matrix C. Note that the degree of (22) is

exactly N ; if deg hj > N for some j (1 ≤ j ≤ k), then we do not use that hj in the
system of valid equality constraints (21) above.

To �nd a coe�cient matrix K satisfying (9), separate A into the set B of α those
contained in S and the set B̄ of the others:

• B = S ∩A,
• B̄ = A\B.

Instead of �nding valid equality constraints on (xα : α ∈ S), we can �nd valid
equality constraints on (xα : α ∈ B), since B ⊆ S. For appropriate submatrices
CB and CB̄ of the coe�cient matrix C we rewrite (22) as follows.

(23) CB (xα : α ∈ B) + CB̄

(
xα : α ∈ B̄

)
= 0.

We need a matrix Q such that QCB̄ = O, since premultiplying such Q to (23) we
obtain the necessary valid equality constraints:

QCB (xα : α ∈ B) = 0.

We adopt a heuristic to compute the necessary valid equality constraints faster. Let
C̄B denote the submatrix of CB , which consists of rows of CB where corresponding
rows of CB̄ are zeros. Immediately we have:

C̄B (xα : α ∈ B) = 0.

We use this heuristic in the numerical experiments in Section 5. It works signi�-
cantly well when the equality constraints of 〈POP〉 are sparse, whence C in (22) is
sparse and the sparsity of CB and CB̄ in (23) follows.

5. Numerical experiments

We have incorporated our method into the sparse SDP relaxation method [KKW05,
WKKM04b] to test its performance on large scale sparse POPs. The method is
implemented on a 2.4 GHz Linux workstation with 7.5GB memory, using Sparse-
POP [WKKM04a] version 1.20 and SeDuMi [Pol, Stu99] version 1.10. SparsePOP
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is used to solve 〈PSDP〉 or 〈PSDP〉; internally, it calls SeDuMi to solve 〈SDP〉
or 〈SDP〉. We have originally created the Matlab code to convert 〈PSDP〉 into

〈PSDP〉.
Some test problems are selected from the literature and the others are generated

randomly. Table 1 explains the notation used subsequently. Note that SDPobj is
an e�ective lower bound of the optimal objective value of the POP, due to Propo-
sition 1. Proper box constraints u ≥ x ≥ l (u ∈ Rn, l ∈ Rn) are added to all
test problems for computational e�ciency. Typical parameters of SparsePOP and
SeDuMi are explained in Table 2 and Table 3. The numerical solutions computed
by SeDuMi are accepted only if SeDuMi's indicators satisfy the constraints in Ta-

ble 4. For more details on parameters and indicators of SparsePOP and SeDuMi,
see the manuals [WKKM04a, Pol, Stu99].

5.1. Test problems from GlobalLib. We have selected from GlobalLib [GLO]
quadratic optimization problems with a su�cient number of equality constraints,
see Table 5. In this table, #InEqns denotes the number of inequality constraints
(except additional box constraints), #Eqns the number of equality constraints, and
n the number of variables. These problems also appear in [FPA+99]. Numerical
results are given in Table 6. We see that the speed-up ratio is about 1.5 ∼ 2.8.
In particular, for problem ex9_2_8, our method helps solving the problem with
relaxation order 1, while the original sparse (or even dense) relaxations only solve
the problem with relaxation order 2.

5.2. Linearly constrained quadratic problems. We have generated linearly
constrained quadratic optimization problems with structured sparsity, following
[WKKM04b].

minimize
m∑

i=1

ti(x),

subject to gT
i,jvi(x) = bi,j (i = 1, . . . ,m, j = 1, . . . ,mi),

l ≤ x ≤ u

where, given n large enough then m is chosen properly such that:

• n1 = 1 < n2 < n3 < · · · < nm < nm+1 = n,
• ni+1 − ni = 40 for i = 1, . . . ,m− 1,
• vi(x) = (xni

, . . . , xni+1) for i = 1, . . . ,m,
• mi = ni+1 − ni − 3 for i = 1, . . . ,m,
• each gT

i,j has only 3 nonzeros, for i = 1, . . . ,m, j = 1, . . . ,mi,
• ti(x) is a quadratic polynomial in xni

, . . . , xni+1 for i = 1, . . . ,m.

Besides, the constants bi,j and bounds l and u are set properly for the existence of
a feasible solution. Numerical results are given in Table 7. We see the speed-up
ratio is about 7, which is remarkable.
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5.3. Concave problems with transportation constraints. We consider the
following transportation problem (test problem 8 in [FPA+99, Chapter 2])

minimize
m∑

i=1

k∑
j=1

(aijxij + bijx
2
ij),

subject to
m∑

i=1

xij = cj (j = 1, . . . , k),

k∑
j=1

xij = di (i = 1, . . . ,m),

xij ≥ 0 (i = 1, . . . ,m, j = 1, . . . , k).

The coe�cients aij , bij , cj , di are integers satisfying
m ≤ k, aij ∈ {200, 201, . . . , 800},

bij ∈ {−6,−5,−4,−3,−2},
di ∈ {3, . . . , 9}, cj ∈ {2, 3, . . .},

∑m
i=1 di =

∑k
j=1 cj .

Our method can solve some problems of this type with relaxation order 1 and
satisfying accuracy, while the ordinary relaxation method can not. The numerical
results are given in Table 8. We see that for the �rst test problem with m =
4, k = 5, the speed-up ratio is about 2825, since our method solves the problem with
relaxation order 1 in 0.13 seconds, though the ordinary method requires relaxation
order 2 and 367.28 seconds . For the other test problems, the ordinary relaxation
method runs out of memory when trying to solve the problems with relaxation
order 2. In contrast, our method can solve the problems with relaxation order 1.
These results are conclusive.

Table 1. Notation
Notation Explanation

N relaxation order, see (3)
EBC/STD EBC is to indicate that our method � equalities based contrac-

tion � is applied. STD is to indicate that the standard sparse
semide�nite relaxation method is applied.

SDPobj optimal objective value of 〈SDP〉 or 〈SDP〉
POPobj objective value at an approximate solution α of 〈POP〉
r.acc ‖SDPobj-POPobj‖/max(1,‖SDPobj‖)
r.err

(
−

∑p
i=1 min(0, gi(α)) +

∑k
i=1 |hi(α)|

)
/a, where a is the maxi-

mum absolute values of the coe�cients of the polynomials gi, hi

sTime CPU time consumed by SeDuMi to solve 〈SDP〉 or 〈SDP〉
eTime CPU time used to convert 〈PSDP〉 into 〈PSDP〉
nY number of variables in 〈SDP〉 or 〈SDP〉
nEQ number of equality constraints in 〈SDP〉 or 〈SDP〉
nSDP number of elements of psd matrices in 〈SDP〉 or 〈SDP〉
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Table 2. Parameters for SparsePOP
Parameter Value Explanation

perturbation 1.0e-5 perturb the objective polynomial
scalingSW 1 scale the polynomials to improve numerical

stability

Table 3. Parameters for SeDuMi
Parameter Value Explanation

stepdif 0 primal-dual step di�erentiation is disabled
par.eps 1.e-5 desired accuracy
free 1 free variables are placed inside a Lorentz cone

Table 4. Indicators of SeDuMi
Indicator Value Explanation

pinf, dinf 0 solution is primal and dual feasible
feasratio between 1±1.e-3 value of the feasibility indicator
numerr 0 desired accuracy is achieved

Table 5. Test problems from GlobalLib
Problem #InEqns #Eqns n

ex9_1_1 0 13 14

ex9_1_2 0 10 11

ex9_1_8 1 12 15

ex9_2_8 0 6 7

Table 6. Test problems from GlobalLib
Problem N method SDPobj r.acc r.err sTime eTime

ex9_1_1 2 STD -1.30E+01 1.37E-16 -6.13E-05 1.40 0

ex9_1_1 2 EBC -1.30E+01 0.00E+00 -2.36E-04 0.76 0.17

ex9_1_2 2 STD -1.60E+01 2.22E-16 -8.42E-05 0.52 0

ex9_1_2 2 EBC -1.60E+01 0.00E+00 -3.99E-05 0.34 0.08

ex9_1_8 2 STD -3.25E+00 2.73E-16 -1.65E-05 0.55 0

ex9_1_8 2 EBC -3.25E+00 2.73E-16 -2.75E-05 0.37 0.09

ex9_2_8 2 STD 1.50E+00 1.83E-07 -5.50E-07 0.11 0

ex9_2_8 1 EBC 1.50E+00 8.88E-07 -1.09E-07 0.04 0.01
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Table 7. Linearly constrained quadratic problems, N = 1

n method r.acc r.err sTime eTime nY nEQ nPSD

110 STD 3.15E-07 -2.31E-10 18.87 0 2276 100 4451

EBC 1.93E-06 -1.89E-11 2.88 0.18 2276 3976 162

210 STD 1.88E-07 -1.82E-10 66.76 0 4425 191 8661

EBC 1.16E-06 -4.89E-11 9.20 0.42 4425 7747 447

470 STD 3.64E-07 -2.52E-10 411.88 0 10301 432 20181

EBC 1.36E-05 -1.30E-11 52.28 2.08 10301 18144 669

530 STD 1.11E-08 -7.03E-12 320.92 0 11453 487 22429

EBC 1.22E-06 -6.71E-12 40.35 2.61 11453 20131 997

Table 8. Concave quadratic optimization problem with trans-
portation constraints

m k N method r.acc r.err sTime eTime nY nEQ nPSD

4 5 2 STD 1.96E-08 -1.47E-09 367.28 0 4530 389 42042

4 5 1 EBC 1.33E-07 -9.92E-08 0.12 0.01 176 78 661

5 5 1 STD 5.09E+00 -4.49E-10 0.18 0 260 9 1239

5 5 1 EBC 4.10E-06 -2.42E-07 0.19 0.02 260 94 1059

8 8 1 STD 3.98E+00 -3.32E-11 12.55 0 1500 16 8326

8 8 1 EBC 5.07E-06 -2.72E-08 18.31 0.08 1500 272 7846

10 10 1 STD 2.79E+00 -3.97E-09 214.59 0 3545 20 20848

10 10 1 EBC 9.33E-06 -3.68E-07 298.27 2.31 3545 389 20088

6. Concluding discussions

The equality constraints of a POP can be used to strengthen SDP relaxations
for the POP. We �rst (i) induce valid equality constraints from the original equality
constraints of the POP, and then (ii) use them to contract the psd matrices in the
SDP relaxations. Given that the POP is sparse, these tasks are computationally
cheap. This leads to notable speedup for some test cases, especially those with a
large number of sparse linear equality constraints.

Theoretically, our heuristic method should work more e�ectively as the POP (1)
involves more equality constraints. We should mention, however, that if the POP
has too many equality constraints then the number of equality constraints in the
SDP relaxation problem generated by our heuristic method get very large, causing
instability for SDP solvers currently available. On the other hand, if the given
POP has only a very few equality constraints, then the number of valid equality
constraints added is a few, and our heuristic does not work e�ectively. Therefore,
SDP solvers more stable to handle many equality constraints would be necessary
for our heuristic method to demonstrate its real power.
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