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Abstract. DEMiCs is a software package written in C++ for computing the mixed
volume, which is given as the total volume of all mixed cells, of the support of a general
semi-mixed polynomial system via the dynamic enumeration method. The mixed cells play
an essential role for computing all isolated zeros of a polynomial system by the polyhedral
homotopy continuation method. A notable feature of DEMiCs is in the construction of a
dynamic enumeration tree for finding all mixed cells. The dynamic enumeration method,
proposed by Mizutani, Kojima and Takeda for a fully-mixed polynomial system, is extended
for a semi-mixed polynomial system, and is incorporated in the package. Numerical results
exhibit that DEMiCs surpasses existing software packages in computational time especially
for semi-mixed polynomial systems with many distinct supports. The software package
DEMiCs is available at
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1 Introduction

Recently, the polyhedral homotopy continuation method, proposed by Huber and Stumfels
[13], has been established as a powerful and reliable numerical method [5, 11, 12, 14, 15, 23]
for computing all isolated zeros of a polynomial system f(x) = (f1(x), f2(x), . . . , fn(x)) in
a variable vector x = (x1, x2, . . . , xn) ∈ Cn. In this method, we require to find all mixed
cells of the support of the polynomial system f (x) for construction of a family of homotopy
functions. Using the mixed cells, we construct homotopy functions between start systems,
which are polynomial systems whose zeros can be computed easily, and target system f(x).
The mixed volume, which is given as the total volume of all mixed cells, equals to the total
number of solutions for the start systems. Also, it is an upper bound for the total number
of isolated zeros in (C \ {0})n of f (x), guaranteed by the Bernshtein’s theorem [1].

The aim of this paper is to introduce the software package DEMiCs. The package
computes all mixed cells and the mixed volume of the support of a general semi-mixed
polynomial system, including a fully-mixed and full-unmixed as special cases, via the dy-
namic enumeration method which was developed for a fully-mixed system in [17]. Due to
the method, DEMiCs improves the computational time considerably in enumeration of all
mixed cells for large-scale semi-mixed systems with many distinct support sets over the
existing software packages [6, 8, 9, 16, 23, 20], and opens the door to compute all zeros of
such a large polynomial system by the polyhedral homotopy method.

Mixed cells are founded via an enumeration tree where each node is provided with a
linear inequality system. The important properties of the enumeration tree are (i) a leaf
node corresponds to a mixed cell if and only if the linear inequality system attached to the
leaf node is feasible, and (ii) each node shares a common system with the child nodes, so that
if the node is infeasible then so are all of its descendant nodes. The paper [17] refers to the
importance of how we construct an enumeration tree, and presents the dynamic enumeration
method for a fully-mixed system. In the existing static enumeration method [7, 8, 16, 20],
the structure of an enumeration tree is fixed before construction of an enumeration tree,
while in the dynamic enumeration method, we construct an enumeration tree dynamically
so that many child nodes are infeasible and pruned when a node branches into child nodes.
This paper explains how we extend the dynamic enumeration method, developed for a
fully-mixed system in [17], to a semi-mixed polynomial system.

There are several related software packages for computing the mixed volume via enumer-
ation of all mixed cells: HOM4PS [10], MixedVol [8, 9], MVLP [6], PHCpack [23], PHoM
[20] and mvol [16]. HOM4PS, PHCpack and PHoM, written in FORTRAN, Ada and C++
respectively, are software packages for computing all isolated zeros of a polynomial system
by the polyhedral homotopy method. These packages contain the module for finding mixed
cells. In particular, PHCpack is the most popular software package among these software
packages. The C++ package MixedVol, which employs the static enumeration method,
specializes in the mixed volume computation via enumeration of all mixed cells. MixedVol
surpasses all other software packages in terms of computational efficiency and a memory
requirement, as reported in the papers [8, 9]. A feature of the package is that all mixed
cells can be generated efficiently for semi-mixed polynomial systems by taking account of
the special structure of a semi-mixed type.
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Numerical results show that DEMiCs can drastically reduce the computational time for
finding all mixed cells compared to the existing software packages [6, 8, 9, 16, 23, 20] not
only for fully-mixed polynomial systems but also for the semi-mixed polynomial systems.
Although we confirmed that DEMiCs surpasses the existing packages for a large-scale fully-
mixed system and semi-mixed system with many distinct support sets, DEMiCs does not
always excel. Indeed, for fully-unmixed systems and semi-mixed systems with a few distinct
supports, DEMiCs needs more computational time than MixedVol [9]. It is due to overhead
of computation associated with the dynamic branching rule.

This paper is organized as follows. In Section 2 and 3, technical details of our method
are described. We outline the dynamic enumeration method for a general semi-mixed poly-
nomial system in Section 2. Section 3 explains how we check the feasibility of each node
and how we construct an enumeration tree when a polynomial system is a semi-mixed type.
In Section 4, the usage of DEMiCs is described. We report the performance of DEMiCs
in comparison with the existing software packages using artificial semi-mixed polynomial
systems, and well-known large-scale benchmark systems in Section 5. Section 6 is devoted
to concluding remarks.

2 Dynamic enumeration algorithm for a semi-mixed

system

2.1 Preliminaries

In this paper, we represent each component polynomial fi(x) in a polynomial system f (x) =
(f1(x), f2(x), . . . , fn(x)) in x ∈ Cn as

fi(x) =
∑

a∈Ai

ci(a) xa,

using a nonempty finite subset Ai of Zn
+ and nonzero ci(a) ∈ C for a ∈ Ai. Here Zn

+

denotes the set of nonnegative integer vectors in Rn, R and C are the sets of real and
complex numbers, respectively, and xa = xa1

1 xa2
2 · · ·xan

n for a = (a1, a2 . . . , an) ∈ Zn
+. The

support of fi(x) indicates Ai, and the support of f (x) does A = (A1,A2, . . . ,An). Let
N := {1, 2, . . . , n}. For the support A = (Ai : i ∈ N) of a polynomial system f(x), some
support sets may be equal to each other. Suppose that the polynomial system has m (≤ n)
distinct support sets S i among A1,A2, . . . ,An. Define M = {1, 2, . . . , m}. Then, we use
the notation S i (i ∈ M) for each distinct support such that

Si := Aj1 = Aj2 for every j1, j2 ∈ Ii (i ∈ M), (1)

where the subset Ii of N satisfies ∪i∈MIi = N and Ii1 ∩ Ii2 = ∅ for every i1, i2 ∈ M .
The polynomial system with the support S = (S i : i ∈ M) is called a semi-mixed system.
Especially, the system is called a fully-unmixed type when m = 1, and a fully-mixed when
m = n. Also, we call the polynomial system with the support S = (S1,S2, . . . ,Sm) a
semi-mixed system of type (k1, k2, . . . , km) when #Ii = ki for each i ∈ M . In this paper, we
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deal with a semi-mixed polynomial system f (x) of type (k1, k2, . . . , km) with the support
S = (S1,S2, . . . ,Sm), and assume that each support set S i consists of ri elements.

We review the definition of the mixed volume of the support S = (S i : i ∈ M) of
a polynomial system, and how to compute it via enumeration of mixed cells. Let Qi =
conv(S i) denote the convex hull of the support set S i. For all positive number λ1, λ2, . . . , λm,
we consider the n-dimensional volume of the Minkowski sum

λ1Q1 + λ2Q2 + · · ·+ λmQm = {λ1q1 + λ2q2 + · · ·+ λmqm : qi ∈ Qi, i ∈ M}.

This volume is given by a homogeneous polynomial of degree n in λi (i ∈ M). The mixed
volume of S is defined by the coefficient of λ1λ2 · · ·λm in the polynomial.

Huber and Sturmfels [13] introduced a fine mixed subdivision of the Minkowski sum
Q = Q1 +Q2 + · · ·+Qm to compute the mixed volume of S, and presented how to construct
the subdivision. Each piece polytope in the subdivision contributes construction of a family
of homotopy functions of the polyhedral homotopy method. See more details of a fine
mixed subdivision in [13]. We call a piece polytope Rj a cell in a fine mixed subdivision
of Q. It is known that each cell Rj in a fine mixed subdivision is represented as the
Minkowski sum conv(Cj

1) + conv(Cj
2) + · · · + conv(Cj

m) for C = (Cj
1 , C

j
2, . . . , C

j
m) with

Cj
i ⊆ S i. Especially, when a polynomial system f (x) is a semi-mixed system of type

(k1, k2, . . . , km), we call a cell Rj, which is described as the Minkowski sum of each conv(Cj
i ),

a mixed cell if dim(conv(Cj
i )) = ki for every i ∈ M . It is shown in [13] that the mixed volume

of the support S of the system f (x) is given by the summation of the volume of all mixed
cells in a fine mixed subdivision. A fine mixed subdivision of Q is constructed by applying
a lifting function ωi : Si → R whose image value is a real number chosen from R generically.
The function ωi lifts S i to

Ŝ i =

{(
a

ωi(a)

)
: a ∈ S i

}
.

Let Q̂ denote the Minkowski sum Q̂ = Q̂1 + Q̂2 + · · ·+ Q̂m for Q̂i = conv(Ŝi). Also we will
use the notation Ĉ = (Ĉ1, Ĉ2, . . . , Ĉm) for the subset Ĉi of Ŝ i. The projection Rn+1 → Rn

of the set of lower facets of Q̂ gives a fine mixed subdivision of Q.

Li and Li [16] proposed an efficient algorithm for finding lower facets of Q̂ via an enu-
meration tree. Recently, for a fully-mixed polynomial system, the paper [17] improved their
algorithm by replacing a static enumeration tree of [16] with a dynamic enumeration tree.
In this paper, a dynamic enumeration method is applied to find all mixed cells in a fine
mixed subdivision for a semi-mixed system, including a fully-mixed and fully-unmixed type.

2.2 Algorithm

We overview a dynamic enumeration algorithm in [17] and apply this algorithm to a semi-
mixed polynomial system. Let L ⊆ M . For any semi-mixed system of type (k1, k2, . . . , km),
we define

Ω(L) =

{
C = (C1, C2, . . . , Cm) :

Ci ⊆ S i, #Ci = ki + 1 (i ∈ L)
Cj = ∅ (j 	∈ L)

}

Ω = ∪L⊆MΩ(L).
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The set Ω represents the collection of all nodes in an enumeration tree. The tree is equipped
with the root node ∅m ∈ Ω(∅) := {∅m} and the leaf nodes Ω(M) ⊂ Ω. A node at the �th
level is corresponding to the element in ∪L⊆M,#L=�Ω(L). Let L(C) = {i ∈ M : Ci 	= ∅} for
any C ∈ Ω(L) (L ⊆ M). A node C = (Ci : i ∈ L) ∈ Ω(L) with L ⊆ M is provided with
the linear inequality system I(C):

I(C) :=

{
〈âi, α̂〉 = 〈â′

i, α̂〉, ∀âi, âi
′ ∈ Ĉi

〈âi, α̂〉 ≤ 〈â, α̂〉, ∀â ∈ Ŝ i \ Ĉi

(i ∈ L(C)), (2)

where

α̂ =

(
α
1

)
∈ Rn+1.

Here, 〈·, ·〉 stands for the usual inner product in the Euclidean space. Li and Li showed in
[16] that any mixed cell in a fine mixed subdivision of S = (S i : i ∈ M) is in one-to-one
correspondence to C = (C1, C2, . . . , Cm) with Ci ⊆ Si and #Ci = ki + 1 for each i ∈ M
such that the linear inequality system I(C) is feasible. We say that C ∈ Ω is a feasible
node when I(C) is feasible. Let

Ω∗ = {C ∈ Ω(M) : C is feasible}.

Then we can easily see from (2) that Ω∗ consists of every mixed cell in a fine mixed subdi-
vision.

For C ∈ Ω and L ⊆ M , we use the notation CL for CL = (Ci : i ∈ L). Regarding
the root node ∅m ∈ Ω as a feasible node, we construct an enumeration tree according to
Algorithm 2.1 of [17]. Namely, for a node C ∈ Ω(L) with the proper subset L � M and
t ∈ M \ L(C) we generate the child node set W (C, t) of C

W (C, t) =
{
C̄ ∈ Ω(L(C) ∪ {t}) : C̄L(C) = CL(C)

}
.

Starting from the root node ∅m ∈ Ω, we choose t from M \L(C) at each node C ∈ Ω(L) with
L � M and create child nodes of C until #L = m−1 based on the algorithm. Accordingly,
Ω∗ coincides with the set of the feasible leaf nodes C ∈ Ω(M). If we check the feasibility
of all leaf nodes, all mixed cells in a fine mixed subdivision can be obtained. Note that this
algorithm produces various types of trees depending on a choice of an index t ∈ M \ L(C)
at each node C ∈ Ω(L) with L � M .

A static enumeration tree is constructed in the previous works [7, 8, 16, 20], which
specify how to choose an index t ∈ M \ L(C) at each node C ∈ Ω(L) with L � M before
the building of a tree. In contrast to this, the paper [17] develops a dynamic enumeration
tree by choosing a suitable index t from M \ L(C) at each node C ∈ Ω(L) with L � M in
order to reduce the cost for finding all feasible leaf nodes.

The purpose of the tree representation is to reduce a computational task at the feasibility
check for all leaf nodes. The feasible region of the linear inequality system I(C) attached
to a node C contains that of I(C̄) to a child node C̄ of C. That is, we can say that if a
parent node C is infeasible, then all child nodes C̄ ∈ W (C, t) (t ∈ M \L(C)) are infeasible.
If a node is detected to be infeasible, we can prune a subtree having the node as the root
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node because there is no mixed cells in the subtree. Therefore, by replacing W (C, t) at
Algorithm 2.1 of [17] with

W ∗(C, t) = {C̄ ∈ W (C, t) : C̄ is feasible} ⊆ W (C, t),

every mixed cell can be found as the feasible leaf nodes in the tree. Taking account of this
property, we search for all nodes in Ω∗ according to the dynamic enumeration algorithm as
stated in below. We will use the notation A� (� ∈ {0} ∪ M) for the set of feasible nodes.

Algorithm 2.1. (The dynamic enumeration algorithm)

Input: A support S = (S1,S2, . . . ,Sm).

Output: All mixed cells in a fine mixed subdivision.

Ai ← ∅ for all i ∈ M .
A0 ← ∅m and � ← 0.

while � < m do
for all C ∈ A� do

Choose t from M \ L(C) : (A)
A�+1 ← A�+1 ∪ W ∗(C, t) : (B)

end for
� ← � + 1.

end while

When this algorithm is terminated, Am contains all nodes in Ω∗, i.e, every mixed cell can
be stored in Am. We introduce this algorithm, which employs the breadth-first order, for
simplicity of the description, though it is essentially the same as Algorithm 2.2 described in
[17], which utilizes the depth-first order. Hence, we can obtain the same result from these
two algorithms though there is the difference in the search order for feasible leaf nodes. The
software package DEMiCs employs the depth-first order, which is similar to Algorithm 2.2
in [17], to save a memory requirement.

The following two issues have a major effect on computational efficiency of the dynamic
enumeration algorithm for a semi-mixed system.

(a) How we choose an index t from M \ L(C) in (A).

(b) How we construct W ∗(C, t) in (B).

As for (a), in the static enumeration method proposed in the previous works [7, 8, 16, 20],
we set up a permutation π of M before starting the algorithm, and choose the index t such
as t = π(� + 1) ∈ M \ L(C). Hence, a choice of an index t at (A) is determined by
a permutation π. In this paper, we employ the dynamic enumeration method, which is
developed for a fully-mixed system in the paper [17]. Naturally, this method can be applied
to a semi-mixed system. Suppose that C is a feasible node in A� with � < m. Then, we

5



consider a choice of an index t from M \ L(C) so that many child nodes of C are expected
to be infeasible. Ideally, we would like to choose the index t such that the size of W ∗(C, t)
is the smallest among t ∈ M \L(C). However, this cost is too expensive. Therefore, instead
of W ∗(C, t), we consider another set Ŵ (C, t, xinit) which can be constructed easily by the
use of xinit generated from a feasible solution of I(C). The dynamic enumeration method
computes Ŵ (C, t, xinit) satisfying

W ∗(C, t) ⊆ Ŵ (C, t, xinit) ⊆ W (C, t),

and chooses the index t which attains the minimum size of Ŵ (C, t, xinit) for all t ∈ M\L(C).
In Subsection 3.3, we refer to how to construct this set. The relation table proposed in [8] is
useful to find infeasible nodes in W (C, t). The software package DEMiCs removes infeasible
nodes from W (C, t) by the use of the relation table before construction of Ŵ (C, t, xinit).

As for (b), it may not be an easy task to find all feasible nodes in W (C, t) because the
size of W (C, t) is not small. So we embed the construction process for W ∗(C, t) in a tree,
and prune worthless subtrees in order to reduce the computational task. In Subsection 3.1
we discuss the details of this procedure, and show the formulation of the feasibility check of
a node in Subsection 3.2.

3 Feasibility check for a semi-mixed system

3.1 Tree structure for construction of W ∗(C, t) in (B)

We now explain a tree structure for finding all elements in W ∗(C, t) efficiently. In this
subsection, suppose that an index t is chosen from M \ L(C) for a feasible node C ∈ A�

with � < m in (B) of Algorithm 2.1. Then, we would like to construct W ∗(C, t) ⊆ W (C, t).
For a nonnegative integer k, let

Γ(k; C, t) =

⎧⎨
⎩U = (U1, U2, . . . , Um) :

UL(C) = CL(C)

Ut ⊆ St, #Ut = k
Ui = ∅ (i 	∈ L(C) ∪ {t})

⎫⎬
⎭ .

This set Γ(kt + 1; C, t) coincides with W (C, t) clearly.

For a feasible node C ∈ A� with � < m in the dynamic enumeration algorithm, we
build a tree T for construction of W ∗(C, t). The tree structure is outlined as follows. Let
Kt = {0, 1, . . . , kt + 1}. The set

Γ := ∪k∈KtΓ(k; C, t)

serves as the collection of all nodes in a tree. The tree has C ∈ Γ(0; C, t) = {C} as the root
node, and U ∈ Γ(k; C, t) with #Ut = k as a node at the kth level. Each node U ∈ Γ(k; C, t)
is equipped with the linear inequality system I(U) in a variable vector α̂ ∈ Rn+1. Note that
each system I(U) with U ∈ Γ(kt +1; C, t) is identical to the linear inequality system I(C̄)
at a node C̄ ∈ W (C, t). Therefore, if we check the feasibility of any node U ∈ Γ(kt+1; C, t)
which corresponds to each leaf node at the (kt + 1)the level, W ∗(C, t) can be obtained.
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We describe a tree structure for construction of W ∗(C, t) more precisely. For Ut ⊆ St,
we choose a function mt : St → Z which answers the maximum number i among the indices
of ai ∈ Ut. Namely, mt(Ut) = max{i ∈ Z : ai ∈ Ut} for Ut ⊆ St. Let T = (V, E) denote
a rooted tree, which describes the relation among elements of a node set Γ. Recall that St

has rt elements. For a node U ∈ Γ(k; C, t), we generate the child node set

Z(U ; C, t) =
{
Ū ∈ Γ(#Ut + 1; C, t) : Ūt = Ut ∪ {ai}, mt(Ut) < i ≤ rt

}
and construct a tree T = (V, E) such as V =

⋃
k∈Kt

Vk and E =
⋃

k∈Kt
Ek, based on the

following algorithm:

Algorithm 3.1. (Construction of a tree T = (V, E))

Input: A feasible node C ∈ A� and an index t ∈ M \ L(C).

Output: A tree T = (V =
⋃

k∈Kt
Vk, E =

⋃
k∈Kt

Ek).

V0 ← C, E0 ← ∅ and k ← 0.
Vi ← ∅ and Ei ← ∅ for all i ∈ Kt \ {0}.

while k < kt + 1 do
for all U ∈ Vk : (�) do

if mt(Ut) ≤ kt + 1 then

Vk+1 ← Vk+1 ∪ Z(U ; C, t)
Ek+1 ← Ek+1 ∪ {(U , Ū)) ∈ Vk × Vk+1 : Ū ∈ Z(U ; C, t)}

end if
end for
k ← k + 1.

end while

The root node of the tree T , constructed by the algorithm, corresponds to V0 = {C}, which
is identical to A� generated by Algorithm 2.1. When this algorithm is terminated, Vk stores
every element in Γ(k; C, t) for any k ∈ Kt. Hence, W (C, t), generated by a feasible C ∈ A�

and an index t ∈ M \L(C) at Algorithm 2.1, is equal to Vkt+1, which has each leaf node at
the (kt + 1)th level of the tree T .

For a node U ∈ Vk and the child node Ū ∈ Vk+1 of U , the feasible region of I(U)
contains that of I(Ū). Hence, if the node U ∈ Vk is infeasible, every child node Ū ∈ Vk+1

of U is infeasible. Therefore, the subtree with a root node U can be pruned, since it does
not contain any feasible leaf nodes at the (kt + 1)th level. Accordingly, even if we replace
Vk at (�) of Algorithm 3.1 by V ∗

k such that

V ∗
k = {U ∈ Vk : U is feasible},

we can find every feasible leaf node at the (kt+1)th level in V ∗
kt+1, and thus obtain W ∗(C, t).

After the building of T = (V, E), according to the following search procedure, we enu-
merate all feasible nodes at the (kt +1)th level in T and construct V ∗

kt+1. First, we initialize
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V ∗
0 as V ∗

0 = V0. Next, we repeat the following procedure until k = kt. Suppose that V ∗
k

is constructed. Then, we check the feasibility of every child node Ū of U ∈ V ∗
k , and store

the feasible nodes in V ∗
k+1. As a result, W ∗(C, t) can be obtained as V ∗

kt+1. We introduce
Algorithm 3.1 using the breadth-first order for the simplicity of the description. However,
the software package DEMiCs adopts the depth-first order for construction of W ∗(C, t) to
save a memory requirement.

3.2 Formulation for the feasibility check

Suppose that a tree T = (V, E) with V =
⋃

k∈Kt
Vk and E =

⋃
k∈Kt

Ek is generated by
Algorithm 3.1 for a feasible node C ∈ A� and an index t ∈ M \ L(C). Then, we need
to check the feasibility of each node U ∈ Vk in order to construct V ∗

k . For the feasibility
check of a node U ∈ Vk, a linear programming (LP) problem can be formulated. Let γ
denote a specific n-dimensional real vector. Using this γ ∈ Rn, we choose γ̂ ∈ Rn+1 such as
γ̂T = (γT , 0). To determine whether a node U ∈ Vk is feasible or not, we solve the following
problem in a variable vector α̂ ∈ Rn+1:

P(U) :
∣∣ max. 〈γ̂, α̂〉 s. t. I(U).

Let ai be an element in Ui for any i ∈ L(U ). The dual problem in a variable vector x ∈ Rd,
where d =

∑
i∈L(U)(ri − 1), is written as

D(U) :

∣∣∣∣∣∣∣∣

min. Φ(x; U)
s. t. Ψ(x; U) = γ,

−∞ < xb < +∞ b ∈ Ui \ {ai}
xb′ ≥ 0 b′ ∈ S i \ Ui (i ∈ L(U )).

Here, the linear functions Φ(x; U) and Ψ(x; U) in x ∈ Rd are defined as follows:

Φ(x; U) =
∑

i∈L(U)

∑
a∈Si\{ai}

(ωi(a) − ωi(ai)) xa

and Ψ(x; U) =
∑

i∈L(U)

∑
a∈Si\{ai}

(ai − a) xa,

where
x = (xa : a ∈ S i \ {ai}, i ∈ L(U )) ∈ Rd.

Any real vector γ ∈ Rn can be chosen. If γ is fixed so that D(U) is feasible, the duality
theorem holds for this primal-dual pair. P(U) is feasible if and only if D(U ) is bounded
below, and P(U) is infeasible if and only if D(U) is unbounded. Hence, the feasibility of
P(U) can be revealed if the boundedness of D(U) is detected. The following mentions how
we set up γ. Recall that U ∈ Vk is a node at the kth level in T = (V, E) generated by
Algorithm 3.1, and C ∈ V0 serves as the root node of T . We note that the feasible region
of D(C) is included in that of D(U) for any U ∈ Vk. We consider a right-hand vector γ of
D(U) for any U ∈ Vk as

γ̃ = Ψ(x̃; C)
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using an arbitrary nonnegative vector x̃ ∈ Rd. Then, D(U) becomes feasible for each
U ∈ Vk.

Furthermore, we can easily find an initial feasible solution of a dual problem D(U) for
any U ∈ Vk by the use of an optimal solution of D(C). Recall that the root node C ∈ V0

was revealed to be feasible. That is, we have solved D(C) and obtained an optimal solution
x∗ ∈ Rd of D(C), where d =

∑
i∈L(C)(ri − 1). For any U ∈ Vk, the vector

(
x∗
0

)
∈ Rd̄, where d̄ =

∑
i∈L(U)

(ri − 1). (3)

becomes a feasible solution of D(U). In addition, if D(U) is bounded below for U ∈ Vk with
k < kt + 1, an optimal solution of D(U) is a feasible solution of D(Ū) for any child node
Ū ∈ Vk+1 of U since the feasible region of D(U ) is included in that of D(Ū). The simplex
method is suitable for solving these dual problems with the common structure. Assume
that a node U ∈ Vk (k < kt + 1) is feasible and generates the child nodes Ū ∈ Vk+1 of
U . Then, the simplex method usually does not require many iterations for solving D(Ū)
when we reuse an optimal solution of D(U) as an initial solution. In terms of the size of
problems, the dual problems are superior to the primal ones as stated in [17]. Therefore, we
employ the dual problems to check the feasibility of a nod and solve these problems using
the simplex method.

3.3 Choice of t ∈ M \ L(C) in (A)

In Algorithm 2.1, we want to detect an index t from M \ L(C) for a node C ∈ A� with
� < m so that a large portion of the child nodes are infeasible. Using an optimal solution of
D(C) for a feasible node C ∈ A�, we estimate the number of feasible child nodes in W (C, t)
associated with a choice of an index t ∈ M \ L(C).

Suppose that C is a feasible node in A� with � < m and an index t is chosen from
M \ L(C). As stated in the previous subsection, we can easily obtain a feasible solution
of D(U) for any U ∈ Γ(1; C, t) using an optimal solution of D(C). That is, if xinit is set
up as (3) using an optimal solution x∗ of D(C), xinit is a feasible solution of D(U) for any
U ∈ Γ(1; C, t). Note that in each iteration, the simplex method updates a feasible solution
x as x̄ = x+θd using a nonnegative scalar θ and a direction vector d to which x is incident
on the polytope of a feasible region. Especially, d is called an unbounded direction if we
can choose any nonnegative θ without violating the feasibility of a problem. The simplex
methods usually require only a few iterations for solving D(U) with U ∈ Γ(1; C, t) if using
xinit as the initial feasible solution, because the structure of these problems D(C) and D(U)
are similar to each other. From this observation, we can expect that a feasible solution xinit

of D(U) is incident to an unbounded direction when this problem is unbounded. Thereby,
we test whether the feasible solution xinit of D(U) has an unbounded direction instead of
solving this problem by the simplex method. At (A) of Algorithm 2.1, we construct

Ŵ (C, t, xinit) = {C̄ ∈ Ω(L(C) ∪ {t}) : C̄L(C) = CL(C) and C̄t ⊆ Â(C, t, xinit)},
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where

Â(C, t, xinit) =

{
a ∈ St :

there is no unbounded direction emanating from
xinit of D(U) where U ∈ Γ(1; C, t) and Ut = {a}

}
.

Then, we choose an index t such that the size of Ŵ (C, t, xinit) is the smallest among
t ∈ M \ L(C), using xinit generated from an optimal solution of D(C) with C ∈ A�. To
check whether xinit of D(U) has an unbounded direction, we need to compute the direction
vectors and reduced costs with respect to xinit. In Section 3.2 of [17], we can see the
detailed description of how to get the direction vectors and reduced costs. There may be
a gap between the size of Ŵ (C, t, xinit) and W ∗(C, t) for any t ∈ M \ L(C). However,
the numerical results in Section 5 show that this evaluation reduces the computational task
sufficiently for finding all mixed cells in a fine mixed subdivision.

4 Usage of DEMiCs

After unpacking the software package DEMiCs, we can see SRC and polySys, which include
source and sample files, respectively, in the main directory. A make file is found in the
directory SRC. When we carry out the command in the directory

make all

the executable file “demics” is generated.

The input file requires information regarding the support of a polynomial system: the
dimension of the system, the number of the distinct support sets, the cardinality, multiplicity
and elements of each support set. For example, we consider the support sets for a semi-mixed
system of type (2, 1, 1) as follows:

S1 := A1 = A2 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 0, 0), (1, 1, 1, 1)}
S2 := A3 = {(2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2), (0, 0, 0, 0), (2, 2, 2, 2)}
S3 := A4 = {(3, 0, 0, 0), (0, 3, 0, 0), (0, 0, 3, 0), (0, 0, 0, 3), (0, 0, 0, 0), (3, 3, 3, 3)}.

Then, the input file for S = (S1,S2,S3) is written in the following format:

# The dimension or the number of variables

Dim = 4

# The number of the distinct support sets

Support = 3

# The number of elements in each support set

Elem = 6 6 6

# The multiplicity of each support set
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Type = 2 1 1

# The elements of the 1st support set

a1.1 = 1 0 0 0

a1.2 = 0 1 0 0

a1.3 = 0 0 1 0

a1.4 = 0 0 0 1

a1.5 = 0 0 0 0

a1.6 = 1 1 1 1

# The elements of the 2nd support set

a2.1 = 2 0 0 0

a2.2 = 0 2 0 0

a2.3 = 0 0 2 0

a2.4 = 0 0 0 2

a2.5 = 0 0 0 0

a2.6 = 2 2 2 2

# The elements of the 3rd support set

a3.1 = 3 0 0 0

a3.2 = 0 3 0 0

a3.3 = 0 0 3 0

a3.4 = 0 0 0 3

a3.5 = 0 0 0 0

a3.6 = 3 3 3 3

Also, in the directory polySys, you can find some sample files in which the support sets of
several benchmark polynomial systems are described.

The above input file is placed in SRC as “poly.dat”. To compute the mixed volume via
a fine mixed subdivision, we just execute

demics poly.dat

in SRC, in which the executable file “demics” and the input file “poly.dat” exist. Then, this
software package provides the total number of mixed cells, the value of the mixed volume
and cpu time on a screen.

# Mixed Cells: 4

Mixed Volume: 24

CPU time: 0 s

Furthermore, we can select three options “-c”, “-s” and “-cs” when running the program.
The option “-c” offers information about each mixed cell C = (Ci : i ∈ M) ∈ Ω(M). After
the execution of the command
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demics -c poly.dat

the following information is displayed on a screen

# 1 : 1 : ( 1 2 6 ) 2 : ( 1 5 ) 3 : ( 5 3 )

Volume: 6

# 2 : 1 : ( 4 1 6 ) 2 : ( 1 5 ) 3 : ( 3 5 )

Volume: 6

# 3 : 1 : ( 4 2 6 ) 3 : ( 3 4 ) 2 : ( 6 5 )

Volume: 6

# 4 : 1 : ( 4 2 6 ) 3 : ( 4 5 ) 2 : ( 5 1 )

Volume: 6

# Mixed Cells: 4

Mixed Volume: 24

CPU time: 0.01 s

Therefore, we can understand that the mixed volume is given by the summation of volumes
of four mixed cells for the specific lifting values ωi(a) (a ∈ S i). On the first line with “#
1”, “1 : (1 2 6)” means the subset C1 = {a1, a2, a6} of S1. That is, the number in front
of a colon is corresponding to the index of a support set. We thus know that one of mixed
cells C = (C1, C2, C3) consists of

C1 = {a1, a2, a6} ⊆ S1, C2 = {a1, a5} ⊆ S2 and C3 = {a5, a3} ⊆ S3.

“Volume” on the next line represents the volume of the mixed cell C = (C1, C2, C3). On a
line with “#”, the sequence of indices i for the subset Ci of each support set S i indicates
the order of an index t chosen from M \L(C) at Algorithm 2.1. For example, the line with
“# 3” shows that support sets S1,S3 and S2 are chosen in this order at the algorithm.

This software package needs the seed number to generate a random number for each
lifting value ωi(a) (a ∈ S i). If no option is selected as stated in the above, the seed number
is set to “1” automatically. The option “-s” is useful in the case where we change the seed
number to generate different lifting values for each execution. As an example, when “6” is
chosen as the seed number for the input data “poly.dat”, we type the command

demics -s poly.dat 6

Also, when we get detailed information about mixed cells, and take the seed number as “2”,
the option “-cs” is used as follows:

demics -cs poly.dat 2
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5 Numerical results

This software package has been tested on a large variety of polynomial systems including
fully-unmixed, semi-mixed and fully-mixed types. The papers [8, 9] report the superiority
of MixedVol in computational time for these three types of the systems over the existing
software packages: HOM4PS [10], MVLP [6], PHCpack [23], PHoM [20] and mvol [16].
Therefore, we compare DEMiCs with MixedVol for each type of polynomial systems in terms
of the computational time. Note that MixedVol employs the static enumeration method,
while DEMiCs adopts the dynamic enumeration method. All numerical experiments were
executed on a 2.4GHz Opteron 850 with 8GB memory, running Linux.

First, we observe how the computational time of DEMiCs and MixedVol varies depend-
ing on m, which is the number of distinct support sets S1,S2, . . . ,Sm of the semi-mixed
polynomial systems f(x) in x ∈ Rn. In numerical experiments, we deal with artificial
semi-mixed systems, which are created to investigate the feature of DEMiCs. Each support
set S i of the semi-mixed systems is given as follows. We choose the subset T of Zn

+ with
#T = 2n such as

T =

{
(1, 0, 0, . . . , 0, 0), (0, 1, 0, . . . , 0, 0), · · · , (0, 0, 0, . . . , 1, 0), (0, 0, 0, . . . , 0, 0)
(1, 0, 0, . . . , 0, 1), (0, 1, 0, . . . , 0, 1), · · · , (0, 0, 0, . . . , 1, 1), (0, 0, 0, . . . , 0, 1)

}
⊆ Zn

+.

Note that the convex hull of T is the n-dimensional prism with a simplex basis, and the n-
dimensional volume is 1

(n−1)!
. Let ei denote the n-dimensional ith unit vector. For T ⊆ Zn

+,
we regard the transition of T by the direction vector ei as S i. Namely,

S i := ei + T = {a + ei : a ∈ T } for each i ∈ M.

Assume that each support set Si has the multiplicity n/m ∈ Z for the dimension n
and the number of distinct support sets m. That is, we deal with semi-mixed polyno-
mial systems f (x) of type (n/m, n/m, . . . , n/m). Here, the mixed volume of the support
S = (S1,S2, . . . ,Sm) of f (x) is calculated as n! × 1

(n−1)!
= n because the n-dimensional

volume of conv(S i) and conv(T ) is equal to each other.

To demonstrate the performance of DEMiCs and MixedVol, we choose two different
values n = 18, 24 for the dimension of elements in S i ⊆ Zn

+, and change the number of
distinct supports sets m in response to each dimension n. Table 1 and 2, which are in the
case of n = 18, 24 respectively, summarize the cpu time of DEMiCs and MixedVol for each
system. We performed 10 times numerical experiments for each system by choosing the
different lifting values in DEMiCs and MixedVol. The cpu time listed in Table 1 and 2 is
the average for each trial. The column “#Supp.” means the number of distinct support
sets m, and “Speed-up ratio” indicates the ratio between the cpu time of DEMiCs and
MixedVol. The symbol “-” means that the software package has not been applied to the
corresponding system. From these tables, we see that DEMiCs is superior to MixedVol in the
computational time if the number of the distinct support sets is large. To the contrary, if the
number of the distinct support sets is small, we may not expect the advantage of a dynamic
enumeration method. One of the main reasons is that there is not great difference between
the structure of the dynamic and static enumeration trees. Moreover, DEMiCs needs more
computational tasks involved in choosing an index t from M \ L(C) at Algorithm 2.1.
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Table 1: n = 18 (The mixed volume of all systems is 18)

Speed-up
# Supp. (m) DEMiCs MixedVol ratio

m = 1 0.052s 0.045s 0.87
m = 3 8.893s 4.969s 0.56
m = 6 8.715s 52.482s 6.02
m = 9 15.453s 3m40.422s 14.26
m = 18 1m7.927s 1h13m36.590s 65.02

Table 2: n = 24 (The mixed volume of all systems is 24)

Speed-up
# Supp. (m) DEMiCs MixedVol ratio

m = 1 0.599s 0.341s 0.57
m = 3 11m42.896s 5m32.361s 0.47
m = 6 4m20.044s 1h21m13.110s 18.74
m = 8 4m31.044s 4h3m41.700s 53.95
m = 12 9m9.827s 23h43m40.700s 155.36
m = 24 1h40m11.080s -

Therefore, DEMiCs takes more computational time than MixedVol for semi-mixed systems
with a few distinct supports.

Second, we consider the following benchmark polynomial systems, including fully-unmixed,
semi-mixed and fully-mixed systems. The PRS-10 and RRS-12 systems, which are arising
from kinematic problems in [19], have 12 polynomials with 12 variables and 11 polyno-
mials with 11 variables, respectively. The PRS-10 system is a semi-mixed system of type
(1, 1, 1, 9), and the first three support sets have 4 elements, the last 100 elements. Also,
the RRS-12 system is a fully-unmixed system of type (11), and the support set has 224
elements. The cyclic-n[2], chandra-n[4] and katsura-n[3] systems are fully-mixed systems,
and size-expandable systems by the number n. The katsura-n systems consist of (n + 1)
polynomials with (n + 1) variables, and the others n polynomials with n variables. The
detailed description of the systems can be found in the web cite [21]. We changed the lifting
values 10 times for each system, and executed numerical experiments. In Table 3, we list the
comparison of the average cpu time of DEMiCs and MixedVol. The column “Mixed volume”
presents the mixed volume of the support of corresponding systems, and “Speed-up ratio”
is the ratio between the cpu time of these software packages. The numerical results for
the cyclic-n, chandra-n and katsura-n systems in Table 3 show that DEMiCs improves the
cpu time for finding all mixed cells dramatically when we address the polynomial systems
with many distinct support sets. However, the numerical results on the PRS-10 and RRS-
12 systems imply that it may be difficult for DEMiCs to deal with the fully-unmixed and
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semi-mixed system which has only a few distinct support sets, compared with MixedVol.

Finally, we consider the large-scale cyclic-n, chandra-n and katsura-n polynomial sys-
tems. Numerical experiments were carried out 5 times for each system associated with the
different lifting values. Table 4 exhibits the average cpu time of DEMiCs for each system.
As compared with numerical results in Table 2 of [17], the computational time of DEMiCs
is less than that of the program developed in [17] as the size of the systems becomes larger.
It could be due to improvement on how to use memory space in DEMiCs.

6 Concluding remarks

In this paper, we introduced the software package DEMiCs. Using the dynamic enumeration
method, this package computes the mixed volume, which is given as the total volume of all
mixed cells, of the support of a semi-mixed polynomial system. The dynamic enumeration
method, which was developed for a fully-mixed type in [17], can be extended to a semi-mixed
type naturally. Numerical results show that this package improves the computational time
sufficiently over the existing software packages, and can generate all mixed cells for a large-
scale semi-mixed system with many distinct support sets. We confirm that it is important
to take account of how we construct an enumeration tree for enumeration of mixed cells.
From numerical results, we recognize that DEMiCs needs more computational time than
MixedVol for a fully-unmixed system and a semi-mixed system with a few distinct support
sets. It appears that dynamic enumeration method does not have a beneficial effect on
such a system, because the structure of the dynamic tree is almost the same as that of the
static tree. Finding mixed cells plays a crucial role in the polyhedral homotopy method. We
expect that DEMiCs opens the way for computing all isolated zeros of large-scale polynomial
systems by the polyhedral homotopy method.
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