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Abstract. As an extension of ν-support vector machine for classification (SVC), Extended
ν-SVC was developed by Perez-Cruz et al. Their numerical experiments confirm the validity
of Extended ν-SVC, but we need to solve a nonconvex QP problem for Extended ν-SVC. In
the paper, we propose a modification for the existing algorithm of Extended ν-SVC, which
makes possible to analyze the finite convergence and local optimality of the algorithm. The
modification is theoretically rather than practically important, but experimental results also
show that the modification causes the algorithm to finish faster.
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11 Introduction

The ν-support vector machines for classification (ν-SVC) proposed by Schölkopf et al. [8]
has a meaningful parameter ν, which roughly represents the fraction of support vectors. The
parameter ν cannot always take all possible values between 0 and 1. Therefore, to extend the
permissible range of ν up to [0, 1), Extended ν-SVC was developed by Perez-Cruz et al. [6].
While the modification to extend the range up to 1 is relatively simple and understandable,
the modification to extend the range down to zero is far more complex. However, due to the
modification for extending the range down to zero, numerical experiments of [6] confirm the
validity of Extended ν-SVC.

On the other hand, Gotoh and Takeda [2] proposed a classification method by introducing
a risk measure known as the conditional value-at-risk (β-CVaR) [7]. The CVaR minimization
problem for the margin distribution is essentially the same as the formulation of Extended ν-
SVC with ν = 1−β. Takeda [10] further investigated the classification method based on CVaR
minimization as β-SVC, and discussed theoretical aspects, mainly generalization performance,
of β-SVC.

When the parameter β = 1 − ν is set to be less than a threshold β̄, problems of β-SVC
and Extended ν-SVC result in a convex quadratic programming (QP) problem of ν-SVC. For
β = 1− ν ≥ β̄, however, we need to solve a nonconvex QP problem for β-SVC and Extended
ν-SVC. If a kernel matrix is not full-rank as in linear or polynomial kernel, nonconvex β-SVC
and Extended ν-SVC has a possibility to find a good classifier.

Local search algorithms were proposed in [2, 6] for β-SVC and Extended ν-SVC. The
algorithm of [6] has the advantage of easy implementation with a standard linear programming
(LP) solver, compared to that of [2]. In the paper, we propose a modification for the algorithm
of [6], which makes possible to analyze the finite convergence and local optimality of the
algorithm.

2 Nonconvex Problem based on CVaR Minimization

As one of soft margin approaches in the nonlinearly separable case, Gotoh and Takeda [2]
proposed conditional geometric score (CGS) classification method using given training data
(xi, yi) ∈ χ × {±1}, i ∈ M := {1, ..., m}. The examples xi, i ∈ M , are taken from some
nonempty set χ ⊂ IRn and the labels yi, i ∈ M , are from binary values: −1 or 1. The CGS
method regards the signed distance function defined by

f(w, b; x, y) = −y(〈w, x〉 + b)

‖w‖ (1)

as a cost function. Let αβ(w, b) be β-percentile, which is also called the value-at-risk (β-VaR),
for the distribution of f(w, b; xi, yi), i ∈ M . β-VaR is typically used by security houses or
investment banks to measure the market risk of their asset portfolios. The mean of the β-tail
distribution of f(w, b; x, y) is known as conditional value-at-risk (β-CVaR) [7], and denoted
by φβ(w, b) (see Fig. 1).

The CGS problem [2] minimizes β-CVaR for f(w, b; xi, yi), i ∈ M of (1) as

min
w,b,α

α +
1

(1 − β)m

∑
i∈M

[f(w, b; xi, yi) − α]+,
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probability : 

Fig. 1. Illustration of the β-tail expectation of f

where [X]+ := max{X, 0}. Rockafellar & Uryasev [7] have shown that the solution α∗ is
almost equal to β-VaR, α(w∗, b∗), and the optimal value is equal to β-CVaR, φ(w∗, b∗). In
the problem, a threshold is set on β-VaR, and expected excess of f(w∗, b∗; x, y) over β-VaR,
which corresponds to β-CVaR, is regarded as the loss or risk.

The CVaR minimization problem is rewritten as

min
w,b,α,z

α +
1

(1 − β)m

∑
i∈M

zi

subject to zi + yi( 〈w, xi〉 + b ) + α ≥ 0, i ∈ M,

zi ≥ 0, i ∈ M,

w�w = 1.

(2)

Let the numbers of data with positive and negative labels be m+ and m−, respectively, and
suppose that m+ and m− are positive. Then Problem (2) is proved to have an optimal solution

when the parameter β is chosen so that βmin := 1 − 2min{m+,m−}
m

≤ β < 1.
Problem (2) is essentially the same as the formulation of Extended ν-SVC proposed by

Perez-Cruz et al [6]. Indeed, Extended ν-SVC with ν = 1 − β and β-SVC generate the same
classifier.

The optimal value of (2) is nondecreasing with respect to β (see [2, 10]). When the training
data are linearly separable, there exists (w, b) such that f(w, b; xi, yi) < 0 holds for all i ∈ M .
Then, at an optimal solution, β-CVaR and β-VaR obviously take negative values. In the
nonlinearly separable case, however, β-CVaR and β-VaR possibly become positive especially
for large β. Since the optimal value of (2), φβ(w∗

β, b∗β), is nondecreasing with respect to β,

there may exist β̄ which induces 0 optimal value in (2), that is, φβ̄(w∗̄
β
, b∗̄

β
) = 0, though it is

difficult to find such β̄ exactly. With the use of β̄, Problem (2) is classified into two cases: the
convex case where the optimal value of (2) is negative for β ∈ [βmin, β̄), and the nonconvex
case where its optimal value is nonnegative for β ∈ [β̄, 1).

Problem (2) is not obviously convex. But when β is in the range [βmin, β̄), it can be
transformed into a convex problem:

min
w,b,α,z

α +
1

(1 − β)m

∑
i∈M

zi

subject to zi + yi( 〈w, xi〉 + b ) + α ≥ 0, i ∈ M,

zi ≥ 0, i ∈ M,

w�w ≤ 1.

(3)
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The nonconvex constraint w�w = 1 of (2) is relaxed into a convex constraint w�w ≤ 1, since
at optimality w�w = 1 is attained as far as the optimal value of (2) is negative. It is easy to
incorporate a kernel function into β-SVC (3). Taking dual for Problem (3) and incorporating
kernels k(xi, xj) to dot products 〈xi, xj〉 in the objective function, we have a QP problem
which is exactly ν-SVC with parameter ν = 1 − β.

On the other hand, if solving a convex problem (3) for β-SVC (2) with β ∈ (β̄, 1), one has
the meaningless optimal solution w = 0 and b = 0. Therefore, in this case, the nonconvex
constraint w�w = 1 is essential. As a nonlinear kernel-based variant of β-SVC, [10] proposed
the problem:

min
w,b,α,z

α +
1

(1 − β)m

∑
i∈M

zi

subject to zi + yi( 〈w, vi〉 + b ) + α ≥ 0, i ∈ M,

zi ≥ 0, i ∈ M,

w�w = 1,

(4)

where vi is obtained from the decomposition of the kernel matrix such as

⎡
⎢⎣

k(x1, x1) · · · k(x1, xm)

. . .

k(xm, x1) · · · k(xm, xm)

⎤
⎥⎦ =

⎡
⎢⎢⎣

v�
1
...

v�
m

⎤
⎥⎥⎦ [v1 · · · vm] .

By solving the problem, we have an optimal solution (w∗, b∗) and its KKT multipliers (λ∗, δ∗),
where δ∗ corresponds to w∗�w∗ = 1 and λ∗

i does to z∗i + yi( 〈w∗, vi〉 + b∗ ) + α∗ ≥ 0. A
detailed discussion on these KKT multipliers is shown in the next section. Using the re-
lation w∗ = 1

δ∗
∑

i∈M λ∗
i yivi, we can estimate the label of new data point x as h(x) =

sign( 1
δ∗

∑
i∈M λ∗

i yik(x, xi) + b∗).
When a positive definite matrix is used for k(xi, xj) as in radial basis functions (RBF),

a convex QP with any β ∈ [βmin, 1) provides a negative optimal value, and we need not to
solve nonconvex kernelized β-SVC (4). When a positive semi-definite kernel matrix k(xi, xj)
is chosen as in linear or polynomial kernel, the nonconvex case of β-SVC is caused with large
β.

3 Modified Extended ν-SVC Algorithm for nonconvex β-SVC

Now we consider the existing solution methods for the nonconvex case of β-SVC (4) with
β ∈ [β̄, 1), since we can use an efficient solution method such as the interior-point method and
Sequential Minimal Optimization (SMO) algorithm for convex QPs with β ∈ [βmin, β̄). The
nonconvex constraint w�w = 1 in Problem (4) can be replaced by w�w ≥ 1 for β ∈ [β̄, 1),
and thus, the nonconvex case of β-SVC (4) is essentially a nonconvex problem. This type of
nonconvex problem, whose feasible region is the intersection of a polyhedral set with a concave
inequality (say, w�w ≥ 1), is often referred to a linear reverse convex program (LRCP). It is
known that a global optimal solution of the LRCP (4) is a basic solution, where r + m + 2
constraints including one equality-constraint are satisfied with equalities. To solve the LRCP
problem, several kinds of global optimization algorithms based on cutting plane methods were
proposed (see [3]), but they consume long computation time as the size of the problem becomes
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large. In this section, we restrict ourselves to finding a local minimizer of (4). We introduce a
local solution method, Modified Extended ν-SVC Algorithm, for β-SVC, and investigate the
properties of the method.

Algorithm (Modified Extended ν-SVC Algorithm )

Step 0. Choose a feasible solution w0 of (4). Let k = 0.
Step 1. Solve the linear programming (LP) problem:

min
w,b,α,z

α +
1

(1 − β)m

∑
i∈M

zi

subject to zi + yi( 〈w, vi〉 + b ) + α ≥ 0, i ∈ M,

zi ≥ 0, i ∈ M,

w�
k w = 1,

(5)

and obtain a basic optimal solution (w̄, b̄, ᾱ, z̄).
Step 2. If w̄ = wk, terminate with (w∗, b∗, α∗, z∗) := (wk, bk, αk, zk). Otherwise, go to Step 3.
Step 3. Compute

wk+1 :=
1

‖w̄‖w̄. (6)

Let k = k + 1 and go to Step 1.

The major difference between the Extended ν-SVC algorithmic implementation proposed
by [6] and the above modified one is the choice of wk+1. The Extended ν-SVC method [6]
chooses wk+1 as a convex combination:

wk+1 := γwk + (1 − γ)w̄ (7)

with γ > 0 and shows a good compromise value γ = 9/10 (it may be a mistake. see numerical
results).

We can show the following properties for modified Extended ν-SVC algorithm:

– the solution (w∗, b∗, α∗, z∗) is a local minimizer of nonconvex β-SVC (4), and
– the algorithm terminates within a finite steps.

The change of wk+1 from (7) to (6) may be theoretically rather than practically important.
There are not so large difference experimentally in computational efficiency if we choose a
suitable parameter value for γ (see numerical results). A more efficient method was proposed
in Gotoh and Takeda [2]. In the method, basic feasible solutions are followed as in the simplex
method, so that the objective function value decreases. Compared to the implementation of
the solution method of [2], that of modified Extended ν-SVC algorithm is much easy because
we can use a standard LP solver in Step 1.

Proposition 1. Modified Extended ν-SVC Algorithm terminates within a finite steps.

Proof. This statement can be proved in the same way with [11]. We define

(wk+1, bk+1, αk+1, zk+1) :=
1

‖w̄‖(w̄, b̄, ᾱ, z̄)
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for the optimal solution (w̄, b̄, ᾱ, z̄) of the LP solved at the kth iteration. The algorithm
produces basic feasible solutions (wk, bk, αk, zk), k = 1, 2, . . ., of nonconvex β-SVC (4). The
number of basic solutions of (4) is finite, and thus, if (wk, bk, αk, zk), ∀k, are all distinct, the
algorithm terminates within finite iterations. Therefore, it suffices to show that those solutions
are distinct. By denoting the objective function of (4) by q(α, z), we have

q(αk, zk) > q(ᾱ, z̄) ≥ q(αk+1, zk+1) (8)

at the kth iteration. The first inequality comes from the optimality of (w̄, b̄, ᾱ, z̄) for the LP,
and the second one from the observations: ‖w̄‖ > 1 and q(ᾱ, z̄) ≥ 0. Note that ‖w̄‖ > 1
is ensured by w�

k w̄ = 1, and q(ᾱ, z̄) ≥ 0 is by the nonnegativity of the optimal value of
nonconvex β-SVC (4) with β ∈ [β̄, 1). The relation (8) implies that (wk, bk, αk, zk), ∀k, are
all distinct.

Under a suitable constraint qualification, a local minimizer (w∗, b∗, α∗, z∗) of Problem (4)
satisfies the Karush-Kuhn-Tucker (KKT) conditions: there is a vector λ ∈ IRm and δ ∈ IR
satisfying ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ ≥ 0 (convex case), δ ≤ 0 (nonconvex case),

0 ≤ λi ≤ 1

(1 − β)m
, i ∈ M,∑

i∈M

λiyivi = δw∗,
∑
i∈M

λiyi = 0,
∑
i∈M

λi = 1,

λi {z∗i + yi( 〈w∗, vi〉 + b∗ ) + α∗} = 0, i ∈ M,

z∗i

(
1

(1 − β)m
− λi

)
= 0, i ∈ M.

(9)

The vector λ of λi, i ∈ M , and δ are called KKT multipliers. The last two equations of (9) are
called complementary conditions. We also call a point (w, b, α, z) satisfying KKT conditions
as a KKT point.

We can show that the classical Mangasarian-Fromovitz constraint qualification [5] holds
at a local minimizer. Therefore, the KKT optimality conditions are necessary conditions for
a local minimizer. Let us recall the constraint qualification. Let qi(w, b, α, z) ≥ 0, i ∈ M , be
the first set of constraints in Problem (4), rj(w, b, α, z) ≥ 0, j ∈ M , be the second one, and
s(w, b, α, z) = 0 be the equality-constraint. Also, define sets of active inequality-constraints
as

I(w, b, α, z) := {i ∈ M : qi(w, b, α, z) = 0},
J (w, b, α, z) := {j ∈ M : rj(w, b, α, z) = 0}.

Then, for a local minimizer (w∗, b∗, α∗, z∗), the constraint qualification requires that there
exists a direction d = (d1, d2, d3, d4) such that

∇qi(w
∗, b∗, α∗, z∗)�d = yiv

�
i d1 + yid2 + d3 + e�

i d4 > 0, i ∈ I(w∗, b∗, α∗, z∗)

∇rj(w
∗, b∗, α∗, z∗)�d = e�

j d4 > 0, j ∈ J (w∗, b∗, α∗, z∗)

∇s(w∗, b∗, α∗, z∗)�d = 2w∗�d1 = 0,

where ei indicates the ith unit coordinate vector. Indeed, there exists a direction d = (0, 0, 0, e),
where e = (1, 1, . . . , 1)�, satisfying the above strict inequalities and one equality, and thus,
Mangasarian-Fromovitz constraint qualification is satisfied at the local minimizer.
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We see that (w∗, b∗, α∗, z∗) of modified Extended ν-SVC algorithm satisfies the KKT

conditions (9). Note that (w∗, b∗, α∗, z∗) is an optimal solution for the LP:

min
w,b,α,z

α +
1

(1 − β)m

∑
i∈M

zi

subject to zi + yi( 〈w, vi〉 + b ) + α ≥ 0, i ∈ M,

zi ≥ 0, i ∈ M,

w∗�w = 1,

and thus, (w∗, b∗, α∗, z∗) must satisfy the KKT conditions of the LP, which are equal to (9). If
(w∗, b∗, α∗, z∗) is a unique nondegenerate optimal solution of the LP, it has r +m +2 linearly
independent active constraints and satisfies strict complementarity.

Proposition 2. A solution of Modified Extended ν-SVC Algorithm is a local minimizer of
nonconvex β-SVC (4), if it is unique and nondegenerate.

Proof. The statement can be shown by mimicking the proof in [2], but let us sketch it below to
make this paper self-contained. Suppose that (w∗, b∗, α∗, z∗) is a solution of Modified Extended
ν-SVC Algorithm, and λ∗ and δ∗(≤ 0) are corresponding KKT multipliers. Then, for any
feasible perturbation (Δw, Δb, Δα, Δz) of Problem (4) from (w∗, b∗, α∗, z∗), the increase Δq
of the objective function value is evaluated as

Δq = Δα +
1

(1 − β)m

∑
i∈M

Δzi

=
(

λ∗� μ
∗�

)
︸ ︷︷ ︸

η∗�

⎛
⎜⎜⎜⎜⎝

y1v
�
1 y1 1

...
...

... I

ymv�
m ym 1

O 0 0 I

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
V

⎛
⎜⎜⎜⎜⎝

Δw

Δb

Δα

Δz

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Δd

−δ∗Δw�w∗,

since η∗�V − δ∗(w∗�, 0, 0, 0�) = (0�, 0, 1, 1
(1−β)m

e) follows from (9). The vector μ∗ in the

above equation corresponds to slack variables for inequalities λ∗
i ≤ 1

(1−β)m
, i ∈ M . Firstly, the

feasible perturbation Δd satisfies

Δw�w∗ = −1

2
‖Δw‖2 (10)

because of (w∗ + Δw)�(w∗ + Δw) = 1. From the following discussion, we have the second
condition:

η∗�V Δd > 0. (11)

Using the notation of d� ≡ (w�, b, α, z�) ∈ IRn, where n = r + m + 2, we describe the
linear constraints of Problem (4) as V d ≥ 0. We separate the active constraints V Bd∗ = 0,
where V B is a (n − 1) × n submatrix of V , from V d∗ ≥ 0 at d∗� = (w∗�, b∗, α∗, z∗�).
Then, for a feasible perturbation Δd, the vector V BΔd (≥ 0) has at least one positive
component, since (10) excludes the direction Δd = γd∗ with small γ �= 0, which is the



7Table 1. The UCI datasets used in the experiments

m n β̄ β∗ 1-ν∗ β∗-SVC [%] ν∗-SVC [%]

diabetes 768 6 0.50 0.55 0.45 23.17 23.30

heart 270 13 0.70 0.70 0.65 15.93 15.93

liver-disorders 345 6 0.30 0.50 0.25 28.45 31.61

wdbc 569 ∗3 0.95 0.95 0.85 2.99 3.34

only one satisfying V BΔd = 0, from feasible directions. Therefore, we see that a feasible
perturbation Δd satisfies (11), that is, η∗�V Δd = η∗�

B V BΔd > 0, where η∗
B (> 0) are the

corresponding KKT multipliers for V Bd∗ = 0. From (10) and (11), we have Δq > 0 for any
sufficiently small feasible perturbation (Δw, Δb, Δα, Δz) even if δ∗ is negative. Consequently,
(w∗, b∗, α∗, z∗) is proved to be locally optimal.

4 Numerical Results

To demonstrate the performance improvement of Modified Extended ν-SVC Algorithm, we
apply it and the original Extended ν-SVC Algorithm of [6] to several datasets of the UCI
Machine Learning Data Repository [1]. Performance is evaluated in terms of the average
number of LPs, solved in Step 1 of those algorithms.

We used SeDuMi [9] software to solve a convex quadratic optimization problem of convex
β-SVC, and LPs successively induced from nonconvex β-SVC. The SeDuMi solver is a Matlab
implemented interior-point method for optimization over symmetric cones. All computations
were conducted on an Opteron 850 (2.4GHz) with 8GB of physical memory.

Table 1 summarizes the UCI datasets used in the experiments. Each examples in the
Wisconsin breast cancer wdbc has 30 attributes, but we use three attributes: “mean texture”,
“worst area” and “worst smoothness”, since several researchers demonstrated highly accurate
classification results using these three attributes (for example, [4]). m denotes the number of
training examples in a dataset, and n does that of the attributes. The data are scaled linearly
such that the values of each attribute lie between −1 and 1. Then, we solved the problem of
β-SVC with a linear kernel using Modified Extended ν-SVC Algorithm, and measured test
error rates using 10-fold cross-validation over different values β. β̄ indicates the turning point
from convexity to nonconvexity. In this numerical experiments, β̄ was defined such that β-SVC
is convex during β ∈ [βmin, β̄ − 0.05] and nonconvex during β ∈ [β̄, 0.95]. The values of β∗

and ν∗ are the best for nonconvex β-SVC and ν-SVC, respectively, in terms of the minimum
test error rates. Those value of β∗ was found by increasing 0.05 from β̄ to 0.95. On the other
hand, 1 − ν∗ were found similarly from βmin to β̄ − 0.05. β∗-SVC and ν∗-SVC indicate the
minimum test error rates of β∗-SVC and ν∗-SVC, respectively. The test error rates of β-SVC
with a linear kernel are not larger than those of ν-SVC in three datasets.

Table 2 shows the average number of LPs, which were solved for β∗-SVC by original
Extended ν-SVC Algorithm of [6] and its modified one, over 10 runs. The best parameter
values β∗ of each dataset are given in Table 1. An initial feasible solution w0 in both algorithms
is set to a previously obtained local minimizer of β-SVC with β = β∗−0.05. The difference in
the results is due to the setting of wk+1, (6) or (7). For wk+1 of (7), γ = 9/10 is recommended



8 Table 2. The average number of LPs for β∗-SVC

modified orig. (γ = 1/10) orig. (γ = 5/10) orig. (γ = 9/10)

diabetes 3.7 10.2 10.1 54.4

heart 3.9 32.9 11.2 63.5

liver-disorders 2.7 4.0 7.7 40.5

wdbc 2.0 32.0 6.7 36.3
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Fig. 2. Results for liver-disorders dataset (Left: the average number of LPs, Right: test error rates [%])

in [6], but we tried three values of γ, γ = 1/10, 5/10 and 9/10. The major computations in the
algorithm are for solving LPs. The average number of LPs also implies the average iteration
number of (modified) Extended ν-SVC Algorithm. We see that the choice (6) of wk+1 causes
the proposed algorithm to finish faster. By solving a few LPs constructed in the proposed
modified algorithm, we obtained a local minimum for the nonconvex QP of β-SVC.

As for liver-disorders, Fig. 2 (left) shows the change in the average number of LPs with
respect to β ≥ β̄ = 0.30. The modified algorithm generates smaller number of LPs with any
β. When γ = 1/10 is chosen in Extended ν-SVC algorithm, a peek occurs in the graph at the
threshold β = β̄, where an optimal solution of convex β-SVC with β = β̄ − 0.05 is used for
w0, not only in liver-disorders but also in other datasets. Fig. 2 (right) implies that Extended
ν-SVC algorithm and the modified one achieved small test error with nonconvex value β ≥ β̄.
There are small differences in test error rates due to different local minimizers.

5 Concluding Remarks

We proposed a modification for the existing algorithm of Extended ν-SVC. The modification
is theoretically rather than practically important. Indeed, it makes possible to analyze the
finite convergence and local optimality of the algorithm. From the experimental results, we
also see that the modification causes the algorithm to finish faster after solving a few LPs
without choosing a suitable parameter value such as γ of Extended ν-SVC Algorithm.
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