
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

Solving Polynomial Least Squares Problems

via Semidefinite Programming Relaxations

Sunyoung Kim and Masakazu Kojima

August 2007, B–444

B-444 Solving polynomial least squares problems via semidefinite program-
ming relaxations
Sunyoung Kim⋆ and Masakazu Kojima†

August 2007

Abstract.
A polynomial optimization problem whose objective function is represented as a sum of
positive and even powers of polynomials, called a polynomial least squares problem, is con-
sidered. Methods to transform a polynomial least squares problem to polynomial semidefi-
nite programs to reduce degrees of the polynomials are discussed. Computational efficiency
of solving the original polynomial least squares problem and the transformed polynomial
semidefinite programs is compared. Numerical results on selected polynomial least squares
problems show better computational performance of a transformed polynomial semidefinite
program, especially when degrees of the polynomials are larger.

Key words.

Nonconvex optimization problems, polynomial least squares problems, polynomial semidef-
inite programs, polynomial second-order cone programs, sparsity.

⋆ Department of Mathematics, Ewha W. University, 11-1 Dahyun-dong, Sudaemoon-
gu, Seoul 120-750 Korea. The research was supported by Kosef R01-2005-000-
10271-0 and KRF-2006-312-C00062.
skim@ewha.ac.kr

† Department of Mathematical and Computing Sciences, Tokyo Institute of Technol-
ogy, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. The research was
supported by by Grant-in-Aid for Scientific Research (B) 19310096.
kojima@is.titech.ac.jp

1 Introduction

We consider solving a polynomial least squares problem

minimize
∑
i∈M

fi(x)2pi , (1)

where fi(x) (i ∈ M) are polynomials in x ∈ Rn, pi ∈ {1, 2, . . . } (i ∈ M) and M =
{1, 2, . . . ,m}. The problem (1) is a polynomial optimization problem (POP) with an objec-
tive function represented as a sum of positive and even powers of polynomials. In particular,
if pi = 1 (i ∈ M), the problem (1) becomes a standard nonlinear least squares problem:

minimize
∑
i∈M

fi(x)2. (2)

The nonlinear least squares problem (2) has been studied extensively and many methods
have been proposed. Popular approaches for nonlinear least squares problems are the Gauss-
Newton and the Levenberg-Marquardt methods, which find a local (not global in general)
minimum of (2). See, for example, [25]. As opposed to finding a local minimum of (2)
in those existing methods, we propose global approaches for a more general form (1) of
polynomial least squares problems.

The number of variables, the degree of polynomials, and the sparsity of polynomials
of the problem (1) determine its solvability as a POP. Solving the least squares problem
(1) using the semidefinite programming (SDP) relaxation proposed by Lasserre [19], which
is called the dense SDP relaxation in this paper, is so expensive that only small to some
medium-sized problems can be handled, despite the powerful convergence result in theory. A
sparse SDP relaxation for solving correlatively sparse POPs was proposed in [31] to overcome
this computational difficulty, and shown to be very effective in solving some large-scale
POPs. Unconstrained POPs with the correlative sparsity could be solved up to n = 1000
by the sparse SDP relaxation in [31]. The convergence result of the sparse SDP relaxation
applied to correlatively sparse POPs in [20] supports the use of the sparse SDP relaxation.
We should mention that the sparse SDP relaxation provides less accurate solutions than the
dense SDP relaxation in general. Exploiting the sparsity of polynomials is, nevertheless,
essential when solving large-scale POPs. If the sparsity is not utilized, the size and the
degree of polynomial optimization problems that can be solved is limited to small and
medium-sized problems.

Most of computational challenges for solving POPs come from the fact that the size of
the resulting SDP relaxation problem is too large to handle with SDP solvers such as CSDP
[2], SDPA [4], SDPT3 [28], and SeDuMi [27]. Various techniques thus have been introduced
to increase the size of problems that can be solved. The sparsity of POPs was utilized to
reduce the size of the resulting SDP relaxation problems [14, 31]. Transformation of POPs
to easy-to-handle formulations for a certain class of problems was also studied. For instance,
it is shown in [13] that second-order cone programming can be used efficiently for a class of
convex POPs.

The problem (1) can be transformed to a polynomial SDP, i.e. a problem of minimiz-
ing a polynomial objective function subject to polynomial matrix inequalities, to improve
computational efficiency. Although polynomial SDPs arise in many applications in system

2

and control theory, their global optimization has not been dealt with extensively. Recently,
solving polynomial SDPs with the use of SDP relaxations has been studied in [7, 8, 15]. The
aim of this paper is to show how (1) is transformed to various polynomial SDPs and to com-
pare the computational performance of solving the transformed problems with solving the
problem (1) itself. We also present an efficient polynomial SDP formulation among them.
In both the original and transformed formulations, valid polynomial matrix inequalities are
added to construct a polynomial SDP of increased size and the resulting polynomial SDP
is linearized, which is then solved by a primal-dual interior-point method. We discuss the
effects of the sparsity, the size of SDP blocks, and the size of the coefficient matrix of the
linearized SDP on the computational performance.

Solving the original problem is compared with solving a transformed polynomial SDP
numerically using SparsePOP [30]. Recent advancement in the study of POPs has ac-
companied by software packages implementing solution methods for POPs. SOStools [26],
GloptiPoly [6], and SparsePOP are developed currently. SparsePOP is a collection of mat-
lab modules utilizing the correlative sparsity structure of polynomials. The size of SDP
created by SparsePOP is thus smaller than that of GloptiPoly, which makes it possible to
solve larger-sized problems.

This paper is organized as follows: After introducing symbols and notation, we present
several ways of formulating the problem (1) as polynomial SDPs in Section 2. In Section 3,
a sparse SDP relaxation of a polynomial SDP formulation is described. Section 4 includes
comparison of various polynomial SDP formulations in terms of degrees of the polynomials,
the sparsity, the size of the resulting SDPs, and the relaxation orders used to solve the
polynomial SDPs. In Section 5, numerical experiments are shown. Concluding remarks are
presented in Section 6.

2 Various formulations of the polynomial least squares

problems

2.1 A sparse POP formulation

Let Rn, Z+ and Zn
+ denote the n-dimensional Euclidean space, the set of nonnegative integer

numbers and the set of n-dimensional nonnegative integer vectors, respectively. For every
α ∈ Zn

+ and every x = (x1.x2, . . . , xn) ∈ Rn, xα denotes a monomial xα1
1 xα2

2 · · · xαn
n .

Let us denote Sr and Sr
+ the space of r × r symmetric matrices and the cone of r × r

positive semidefinite symmetric matrices, respectively. We use the notation S ≽ O to mean
S ∈ Sr

+. Let N = {1, 2, . . . , n}, M = {1, 2, . . . ,m}, and Ci ⊆ N (i ∈ M). The sparsity of
polynomials in the polynomial least squares problem (1) is represented using Ci ⊆ N . Let
xCi

= (xj : j ∈ Ci) (i ∈ M) the column vector variable of the elements xj, and RCi the
#Ci-dimensional Euclidean space of the vector variable xCi

. We assume that each fi(x) is
a polynomial in variables xj (j ∈ Ci), and use the notation fi(xCi

) instead of fi(x) (i ∈ M).
Then, (1) can be written as

minimize
∑
i∈M

fi(xCi
)2pi . (3)

We call (3) a sparse POP formulation of the polynomial least squares problem (1).

3

2.2 Polynomial SDP formulations of the polynomial least squares
problem

A different approach of solving (3) is formulating the problem as a polynomial SDP whose
degree is lower than (3). For description of a polynomial SDP, let F be a nonempty finite
subset of Zn′

+ for some n′ ≥ n, N ′ = {1, . . . , n′}, and Fα ∈ Sr (α ∈ F). A polynomial
F (yC′) of yC′ = (yj : j ∈ C ′), for some C ′ ⊆ N ′, with coefficients Fα ∈ Sr (α ∈ Sr) is
written as

F (yC′) =
∑
α∈F

Fαyα
C′ . (4)

We call F (yC′) a symmetric polynomial matrix, and F a support of F (yC′) if F (yC′) is
represented as (4). Note that each element Fkℓ(yC′) of F (yC′) is a real-valued polynomial
in yC′ and that Fkℓ(yC′) = Fℓk(yC′) (1 ≤ k < ℓ ≤ r). When r = 1, F (yC′) coincides with
a real-valued polynomial in yC′ .

Let K = {1, . . . ,m′} = Ko∪Kc for some m′ ∈ Z+, C ′
i ⊆ N ′ (i ∈ K), and let F i(yC′

i
) be a

symmetric polynomial matrix with ri × ri coefficient matrices (i ∈ Kc). Then, a polynomial
SDP can be described as

minimize
∑
j∈Ko

gj(yC′
j
) subject to F i(yC′

i
) ≽ O (i ∈ Kc), (5)

We may regard the sparse POP formulation (3) of the polynomial least squares problem
as a special case of (5) where we take n′ = n, m′ = m, N ′ = N , K = Ko = M , C ′

i = Ci

(i ∈ K), gj(yC′
j
) = fj(xCj

)pj (j ∈ Ko) and Kc = ∅.
To derive polynomial SDPs which are equivalent to the polynomial least squares problem

(3), we utilize a special case of the so-called Schur complement relation:

s1s2 ≥ wT w, s1 ≥ 0 and s2 ≥ 0 if and only if

(
s1I w
wT s2

)
≽ O (6)

holds for every s1 ∈ R, s2 ∈ R and w ∈ Rk, where I denotes the k × k identity matrix. By
letting k = 1, s1 = 1, s2 = ti and w = fi(xCi

), it follows that

ti ≥ fi(xCi
)2 if and only if

(
1 fi(xCi

)
fi(xCi

) ti

)
≽ O

holds for every i ∈ M . Using this equivalence, we can transform the polynomial least
squares problem (3) into the following equivalent polynomial SDP:

minimize
∑
j∈M

t
pj

j

subject to

(
1 fi(xCj

)
fi(xCj

) ti

)
≽ O (j ∈ M).

 (7)

The problem (7) can be represented in the form of (5) if we let n′ = n + m, m′ = m,
N ′ = {1, . . . , n′}, K = Ko = Kc = M , C ′

i = Ci ∪ {n + i} (i ∈ K), gj(yC′
j
) = y

pj

n+j (j ∈ Ko)

and

F i(yC′
i
) =

(
1 fi(xCi

)
fi(xCi

) ti

)
(i ∈ Kc).

The equivalence between (3) and the polynomial SDP (7) can be shown as Lemma 2.1.

4

Lemma 2.1. The POP (3) is equivalent to the polynomial SDP (7).

Proof: Suppose that v =
∑

i∈M fi(xCi
)2pi . Let ti = fi(xCi

)2 (i ∈ M). Then (x, t) ∈
Rn+m is a feasible solution of the polynomial SDP (7) which attains the objective value v.
Conversely, suppose that (x, t) ∈ Rn+m is a feasible solution of the polynomial SDP (7)
with the objective value v =

∑
i∈M tpi

i . Then, it follows from ti ≥ fi(xCi
)2 (i ∈ M) that

v =
∑
i∈M

tpi

i ≥
∑
i∈M

fi(xCi
)2pi .

Therefore, we have shown the equivalence of (3) and the polynomial SDP (7).

Using the relation (6) in the same way, we obtain some other polynomial SDP formula-
tions:

minimize
m∑

j=1

tj

subject to

(
1 fi(xCi

)pi

fi(xCi
)pi ti

)
≽ O (i ∈ M),

 (8)

minimize t

subject to

1 0 · · · 0 f1(xC1)

p1

0 1 · · · 0 f1(xC2)
p2

...
...

. . .
...

...
0 0 · · · 1 fm(xCm)pm

f1(xC1)
p1 f1(xC2)

p2 · · · fm(xCm)pm t

 ≽ O.

(9)

As variations of (7), (8) and (9), we also obtain the polynomial SDPs:

minimize
m∑

j=1

t
2pj

j

subject to

(
ti fi(xCi

)
fi(xCi

) ti

)
≽ O, ti ≥ 0 (i ∈ M),

 (10)

minimize
m∑

j=1

t2j

subject to

(
ti fi(xCi

)pi

fi(xCi
)pi ti

)
≽ O, ti ≥ 0 (i ∈ M),

 (11)

minimize t2

subject to

t 0 · · · 0 f1(xC1)

p1

0 t · · · 0 f1(xC2)
p2

...
...

. . .
...

...
0 0 · · · t fm(xCm)pm

f1(xC1)
p1 f1(xC2)

p2 · · · fm(xCm)pm t

 ≽ O,

t ≥ 0.

(12)

Intuitively the formulating the problem (3) as (10), (11) and (12) does not seem to have
advantages in comparison with (7), (8) and (9), respectively, because the degree of the

5

objective function is doubled and more auxiliary variables ti (i ∈ M) and t are contained
in the diagonal of polynomial matrix inequality constraints. In Section 4, we show that the
size of the SDP relaxation of (10) is the same as the size of the SDP relaxation of (7), but
the number of nonzeros in the coefficient matrix is slightly larger and the accuracy attained
is worse than the one by the relaxation problem of (7) through numerical results.

We can rewrite the polynomial SDPs (10), (11) and (12) as the following polynomial
second order cone programs (SOCPs):

minimize
m∑

j=1

t
2pj

j subject to (ti, fi(xCi
)) ∈ K2 (i ∈ M).

}
(13)

minimize
m∑

j=1

t2j subject to (ti, fi(xCi
)pi) ∈ K2 (i ∈ M).

}
(14)

minimize t2 subject to (t, f1(xC1)
p1 , . . . , fm(xCm)pm)) ∈ K1+m. (15)

Here K2 and K1+m denote 2- and (m + 1)-diensional SOCP cones. We may replace the
objective function t2 of the last SOCP (15) by t.

minimize t subject to (t, f1(xC1)
p1 , . . . , fm(xCm)pm)) ∈ K1+m. (16)

When all polynomials fi(xCi
) (i ∈ M) are linear and pi = 1 (i ∈ M), the problem (16) is,

in fact, a linear SOCP that can be directly solved by a primal-dual interior-point method
without using any relaxation technique. In such a case, solving (16) is more efficient than
solving all the other formulations (7) – (15). Also for some special cases of polynomial least
squares problems with all fi(xCi

) (i ∈ M) linear and each pi = 2qi for some qi = 0, 1, . . .,
they can be transformed to linear SOCPs. See [13] for more details.

In general cases where some of fi(xCi
)s are nonlinear polynomials, (13), (14) and (15)

become polynomial (but not linear) SOCPs. The sparse SDP relaxation method proposed
by Kojima et al. [16, 17] can be applied to such SOCPs. A basis of the Euclidean space
where the underlying second-order cone lies is chosen in their method, and different choices
of basis induce different SDP relaxation problems. When the standard Euclidean basis
consisting of the unit coordinate vectors is chosen, the SDP relaxation problems induced
from the SOCPs (13), (14) and (15) can be shown to be the same as those induced from
(10), (11) and (12), respectively, by applying the SDP relaxation method [15] described in
Section 3. Therefore, we will not consider the polynomial SOCP formulations (13), (14)
and (15) in the subsequent discussion, and we focus on the polynomial SDP formulations
(7) – (12). We show in Section 4 that the polynomial SDP formulation (7) is more efficient
than all others.

3 A sparse SDP relaxation of the polynomial SDP

We briefly describe the sparse SDP relaxation [15, 31] of the sparse POP formulation (3)
and all polynomial SDP formulations (7) – (12) of the polynomial least squares problem (3).
Consider (5) to deal with them simultaneously. For example, (5) represents (3) if n′ = n,
m′ = m, N ′ = N , K = Ko = M , C ′

i = Ci (i ∈ K), gj(yC′
j
) = fj(xCj

)pj (j ∈ Ko) and Kc = ∅,

6

and (7) if n′ = n + m, m′ = m, N ′ = {1, . . . , n′}, K = Ko = Kc = M , C ′
i = Ci ∪ {n + i}

(i ∈ K), gj(yC′
j
) = y

pj

n+j (j ∈ Ko) and

F i(yC′
i
) =

(
1 fi(xCi

)
fi(xCi

) ti

)
(i ∈ Kc).

The sparsity of polynomials in (5) is first considered with a graph G(N ′, E) representing
the sparsity structure of (5). More specifically, a graph G(N ′, E) is constructed such that
a pair {k, ℓ} with k ̸= ℓ selected from the node set N ′ is an edge or {k, ℓ} ∈ E if and
only if k ∈ C ′

i, ℓ ∈ C ′
i for some i ∈ K. We call the graph G(N ′, E) a correlative sparsity

pattern (csp) graph. Each C ′
i is a clique of G(N ′, E) (i ∈ K). The next step is to generate a

chordal extension G(N ′, E ′) of G(N ′, E). (For the definition and basic properties of chordal
graphs, we refer to [1]). For simplicity of notation, we assume that C ′

1, . . . , C
′
m form the set

of maximal cliques of a chordal extension G(N ′, E ′) of the underlying csp graph G(N ′, E) of
the polynomial SDP (5); if this is not the case, we replace C ′

i by a maximal clique containing
C ′

i. For more details, see [31].
For every C ⊂ N ′ and ψ ∈ Z+, we define

AC
ψ =

{
α ∈ Zn

+ : αj = 0 if j ̸∈ C,
∑
i∈C

αi ≤ ψ

}
.

Depending on how a column vector of the monomials yα is chosen, the sparse relaxation
[31] or the dense relaxation [19] is derived. The dense relaxation is obtained using a column
vector u(y,AN ′

ψ) that contains all the possible monomials yα of degree up to ψ. Selecting

a column vector u(y,AC
ψ) of the monomials yα (α ∈ AC

ψ) where elements yα (α ∈ AC
ψ)

are arranged in lexicographically increasing order of α’s leads to the sparse SDP relaxation
if we take C ⊂ N ′ with a small cardinality or the dense SDP relaxation if we take C = N ′.
The first element of the column vector u(y,AC

ψ) is always y0 = 1 since 0 ∈ AC
ψ . The size

of u(y,AN ′

ψ) of the dense relaxation is

(
n′ + ψ

ψ

)
, and the size of u(y,AC

ψ) of the sparse

relaxation is

(
#C + ψ

ψ

)
. As a result, the size of u(y,AN ′

ψ) of the dense relaxation is

always larger than that of u(y,AC
ψ) of the sparse relaxation unless C = N ′.

Let ω0 = ⌈deg(
∑

j∈M gj(yC′
j
))/2⌉, ωi = ⌈deg(F i(yC′

i
))/2⌉ for every i ∈ Kc, and

ωmax = max{ωi : i ∈ {0} ∪ Kc}. (17)

Then the polynomial SDP (5) is transformed into an equivalent polynomial SDP

minimize
∑

j∈Ko
gj(yC′

j
)

subject to u(y,AC′
i

ω−ωi
)u(y,AC′

i
ω−ωi

)T ⊗ F i(yC′
i
) ≽ O (i ∈ Kc),

u(y,AC′
j

ω)u(y,AC′
j

ω)T ≽ O (j ∈ K)

 (18)

with some relaxation order ω ≥ ωmax, where ⊗ denotes the Kronecker product of the two

matrices u(y,AC′
i

ω−ωi
)u(y,AC′

i
ω−ωi

)T and F i(yC′
i
).

7

The matrices u(y,AC′
i

ω−ωi
)u(y,AC′

i
ω−ωi

)T (i ∈ Kc) and u(y,AC′
j

ω)u(y,AC′
j

ω)T (j ∈ K) are
positive semidefinite symmetric matrices of rank one for any y, and the element in the
upper-left corner of the matrices is 1. The equivalence between the polynomial SDP (5)
and the polynomial SDP (18) is therefore shown.

Since the objective function of the polynomial SDP (18) is a real-valued polynomial and
the left hand side of the matrix inequality constraints of the polynomial SDP (18) are real
symmetric polynomial matrices, we can rewrite the polynomial SDP (18) as

minimize
∑
α∈fF

c̃0(α)yα

subject to Li(0, ω) −
∑
α∈fF

Li(α, ω)yα ≽ O (i ∈ Kc),

M j(0, ω) −
∑
α∈fF

M j(α, ω)yα ≽ O (j ∈ K).

for some F̃ ⊂ Zn

+\{0}, c̃0(α) ∈ R (α ∈ F̃) and real symmetric matrices Li(α, ω), M j(α, ω)

(α ∈ F̃ ∪ {0}, i ∈ Kc, j ∈ K). Note that the size of the matrices Li(α, ω), M j(α, ω)

(α ∈ F̃ ∪{0}, i ∈ Kc, j ∈ K) and the number of monomials yα (α ∈ F̃) are determined by
the relaxation order ω. Each monomial yα is replaced by a single real variable zα, and we
have an SDP relaxation problem of the polynomial SDP (5), called a sparse SDP relaxation:

minimize
∑
α∈fF

c̃0(α)zα

subject to Li(0, ω) −
∑
α∈fF

Li(α, ω)zα ≽ O (i ∈ Kc),

M j(0, ω) −
∑
α∈fF

M j(α, ω)zα ≽ O (j ∈ K).

(19)

Here y0 = z0 = 1. We mention that the dense SDP relaxation is obtained if we take
C ′

i = N ′ (i ∈ Kc) and C ′
j = N ′ (j ∈ K) in (18).

We call each
∑

α∈fF Li(α, ω)zα a localizing matrix , and each
∑

α∈fF M j(α, ω)zα a

moment matrix in (19). If F i(yC′
i
) is ri × ri, then the size (= the number of rows = the

number of columns) of the localizing matrix
∑

α∈fF Li(α, ω)zα is(
#C ′

i + ω − ωi

ω − ωi

)
ri

(i ∈ Kc). Similarly, the size of the moment matrix
∑

α∈fF M j(α, ω)zα is(
#C ′

j + ω
ω

)
(j ∈ K). Since the sizes of the localizing and moment matrices affect very much compu-
tational performance, their sizes of the various formulations in Section 2 are compared in
Section 4.

8

The SDP relaxation problem (19) is solved by SeDuMi in our numerical experiment
whose results are reported in Section 5. The problem is formulated as the dual standard
form

maximize bT y subject to c − AT y ≽ 0. (20)

Here each column index of AT (hence each row index of A) corresponds to an α ∈ F̃ , y

the column vector of zα (α ∈ F̃) and b the column vector of −c̃0(α) (α ∈ F̃). Note that

the coefficient matrices L(α, ω), M (α, ω) (α ∈ F̃ ∪ {0}), which is called SDP blocks in
the numerical results in Section 5, are reshaped into column vectors and arranged in c and
AT . Computational performance of solving (20) with SeDuMi depends on the size of the
coefficient matrix A, the sparsity of the coefficient matrix A and the size of SDP blocks.
The most time-consuming part in primal-dual interior-point methods is solving the Schur
complement matrix that is constructed from A. We note that the size of the Schur com-
plement matrix coincides with the number of rows of A and that its sparsity is determined
by the sparsity of A. For details on the relationship between the Schur complement matrix
and A, we refer to [12]. Whether formulating polynomial SDPs with a small number of
large-sized SDP constraints is a better approach than formulating polynomial SDPs with
a large number of small-sized SDP constraints should be decided based on the size of the
coefficient matrix A, the sparsity of the coefficient matrix A and the size of SDP blocks.

4 Comparison of various formulations

There exist several advantages of formulating the problems (3) as polynomial SDPs. We
compare the maximum degree of polynomials, the minimum relaxation oder defined by
(17), the ability to exploit the sparsity, the size of the moment matrices, and the size of the
localizing matrices of the various formulation presented in Secion 2.

As seen in Section 3, the maximum of the degree of the objective function and the
degrees of polynomial SDP constraints, determine the minimum relaxation order which is
denoted as ωmax in (17). We usually choose the value ωmax for the relaxation order ω when an
SDP relaxation problem (19) of the given polynomial SDP (or POP) (5) is constructed. The
chosen value ωmax may not be large enough to get an accurate optimal solution in some cases.
If a solution of desired accuracy is not obtained after the application of SparsePOP, then ω
is increasesd by 1 and solve the SDP relaxation problem with the updated relaxation order
ω again. This does not guarantee attaining an optimal solution in theory, but a solution of
better accuracy is usually obtained in practice. In view of computational efficiency, however,
taking a smaller value for the relaxation order ω works more efficiently than a large value
because the size of the SDP relaxation problem grows very rapidly as we take a increasingly
large value for the relaxation order ω. It is thus important to have a smaller minimum
relaxation order ωmax that leads to a smaller size of the starting SDP relaxation problem.
In Table 1, the maximum degree of polynomials and the minimum relaxation order for the
formulations (3) and (7) – (12) are summarized. The following notation is used.

δ̄ = max{pideg(fi(xCi
)) (i ∈ M)},

δ̂ = max{deg(fi(xCi
)) (i ∈ M), pi (i ∈ M)}.

9

formulation max. the min. relaxation
degree order ωmax in (17)

(3) 2δ̄ ω
(3)
max = δ̄

(7) & (10) δ̂ ω
(7)
max = ⌈δ̂/2 ⌉

(8) & (11) δ̄ ω
(8)
max = ⌈δ̄/2 ⌉

(9) & (12) δ̄ ω
(9)
max = ⌈δ̄/2 ⌉

Table 1: Comparison of the maximum degree of polynomials and the relaxation order of
the various formulations.

In Table 1, the sparse POP formulation (3) has the largest maximum degree of polyno-
mials among the formulations, and the sparse polynomial SDP formulations (7) and (10)
have the smallest maximum degree. In particular, the maximum degree 2δ̄ in (3) is at least
twice larger than the other formulations. Since the smallest relaxation order that can be
taken is roughly the half of the maximum degree of polynomials, we see that the minimum
relaxation order for the sparse polynomials SDP formulations (7) and (10) is the smallest.
This is the main advantage of (7) and (10) in comparison with (3).

Table 2 shows how the relaxation order ω, the degree of polynomials fi(xCi
), pi (i ∈ M)

and the size of maximal cliques Ci (i ∈ M) determine the maximum size of moment matrices
and the size of localizing matrices. We use the following notation:

γmax = max{# Cj (j ∈ K)},
η̂i = ⌈deg(fi(xCi

))/2⌉ (i ∈ M),

η̄i = ⌈pideg(fi(xCi
))/2⌉ (i ∈ M),

η̄ = ⌈δ̄/2⌉ = max{η̄i (i ∈ M)}.

In addition, ω(3), ω(7), ω(8), ω(9) indicate the relaxation order used for (3), (7) & (10), (8) &
(11) and (9) & (12), respectively.

formulation exploiting the max. size of the size of
sparsity moment matrices localizing matrices

(3) ⃝
(

γmax + ω(3)

ω(3)

)
N/A

(7) & (10) ⃝
(

γmax + 1 + ω(7)

ω(7)

) (
#Ci + 1 + ω(7) − η̂i

ω(7) − η̂i

)
× 2

(8) & (11) ⃝
(

γmax + 1 + ω(8)

ω(8)

) (
#Ci + 1 + ω(8) − η̄i

ω(8) − η̄i

)
× 2

(9) & (12) ×
(

n + 1 + ω(9)

ω(9)

) (
n + 1 + ω(9) − η̄

ω(9) − η̄

)
× (m + 1)

Table 2: Comparison of various formulations. N/A: not applicable.

Recall that the relaxation order ω(3), ω(7), ω(8), ω(9) must satisfy

ω(k) ≥ ω(k)
max (k = 3, 7, 8, 9),

10

and that

ω(7)
max ≤ ω(8)

max = ω(9)
max < ω(3)

max.

Hence, if we take ω(k) = ω
(k)
max (k = 3, 7, 8, 9) for the starting SDP relaxation for the for-

mulations, the largest size of moment matrices of (7) and (10) is the smallest among the
largest size of moment matrices produced from the formulations, and the largest size of
moment matrices of (3) is the largest although (3) does not involve any localizing matrices.
We confirm again that the sparse SDP formulations (7) and (10) have an clear advantage
over the sparse POP formulation (3) and the other sparse SDP formulations (8) & (11).

Let us now compare (7) & (10) and (8) & (11) further. When pi = 1 (i ∈ M), there is
no difference in these two pairs of formulations; (7) ≡ (8) and (10) ≡ (11). Suppose that

pi = 2 (i ∈ M). Then, 2δ̂ = δ̄. It follows that 2ω
(7)
max − 1 ≤ ω

(8)
max. Consequently, the size

of the starting SDP relaxation in the sparse polynomial SDP formulations (7) and (10) is
smaller than that in the sparse polynomial SDP formulations (8) and (11).

The sparsity of polynomials in the formulations (9) and (12) can not be exploited, thus,
the maximum size of moment matrix and the size of the localizing matrices are expected to
become larger than (7), (10), (8) and (11) unless γmax = n.

The pairs of polynomial SDP formulations (7) & (10), (8) & (11), (9) & (12) are equiva-
lent in the maximum degree, the maximum size of moment matrices, and the size of localizing
matrices as indicated in Table 2. Their computational accuracy is, however, different. In
fact, (7), (8), and (9) provide higher accuracy than their counterpart. As an example, the
comparison of numerical accuracy for the Broyden tridiagonal function between (7) and (10)
is shown in Table 3. We see that (7) results in smaller relative errors. Notice that the size
of A for (7) is equivalent to that for (10). See Table 4 for the notation used in Table 3.

Polynomial SDP formulation (7)
n ω sizeA #nzA sdpBl rel.err cpu

100 2 4158 × 26877 46269 12(8.9) 4.6e-10 19.2
150 2 6258 × 40427 69619 12(9.0) 1.0e-10 23.3
200 2 8358 × 53977 92969 12(9.0) 2.4e-9 34.2

Polynomial SDP formulation (10)
n ω sizeA #nzA sdpBl rel.err cpu

100 2 4158 × 26877 48751 12(8.9) 1.4e-8 16.8
150 2 6258 × 40427 73351 12(9.0) 2.1e-8 23.3
200 2 8358 × 53977 97951 12(9.0) 2.0e-8 31.8

Table 3: Numerical results of the Broyden tridiagonal function. x1 ≥ 0 is added.

As observed with the size of the moment and localizing matrices in Table 2, computa-
tional accuracy in Table 3, the relaxation order in Table 1, we use (7) to compare with (3)
numerically in Section 5.

11

5 Numerical results

We compare numerical results of the spare POP formulation (3) and the sparse polynomial
SDP formulation (7) (PSDP) of several polynomial least squares problems from [3, 5, 9, 18,
23, 24, 29]. Problems for the numerical tests are randomly generated problems, the Broyden
tridiagonal function, the generalized Rosenbrock function, the chained Wood function, the
Broyden banded function, the Watson function, the partition problem described in [9],
and polynomial least squares problems using the cyclic-n polynomial and the economic-n
polynomial from [29]. All the problems were solved by Matlab codes using SparsePOP
[30] and SeDuMi [27] on the hardware Power Mac G5 of 2.5 GHz with 2GB memory. The
notation in Table 4 is used for the description of numerical experiments.

n the number of variables
sizeA the size of the coefficient matrix A of the SDP

relaxation problem in the SeDuMi input format (20)
ω the relaxation order

#nz the number of nonzeros in the coefficient matrix A
sdpBl the maximum size (average size) of SDP blocks in the

coefficient matrix A
rel.err the relative error of SDP and POP/PSDP objective values
cpu the cpu time to solve SDP by SeDuMi in seconds

Table 4: Notation

A smaller value of the starting relaxation order ω = ωmax given by (17) for the sparse
PSDP formulation (7) than the sparse POP formulation (3), as shown in Section 4, does
not always mean better performance of (7). Also the relaxation order ω = ωmax may not
be large enough to get optimal solutions with high accuracy. In such a case, increasing the
relaxation order, which gives an impact on numerical performance, and solving the problem
again is necessary. Note that no theoretical result on the speed of the convergence is known,
although the convergence of the SDP relaxation of increasing size to the optimal value of
the POP was proved by [19].

We show the effects of the size of the coefficient matrix A of the SDP relaxation problem
in the SeDuMi input format (20) (sizeA), the number of nonzero elements of A (#nz), and
the size of SDP blocks of A (sdpBl) on numerical performance. In the numerical experiments
comparing the sparse POP formulation (3) and the sparse polynomial SDP formulation (7),
we observe that the formulation that leads to larger sizeA, #nz and sdpBl takes longer cpu
time to find an optimal solution except the generalized Rosenbrock function. Among the
three factors, sizeA and #nz affect the computational efficiency more than sdpBl as will
be seen in Table 12. It should be mentioned that the three factors may not completely
determine computational efficiency particularly when cpu time is very small, for instance,
less than 5 seconds, for small-sized problems. SeDuMi usually takes a fixed amount of cpu
time regardless of the size of SDP, and finding an approximate solution of lower accuracy
may take shorter than obtaining an approximate solutions of higher accuracy. This will be
observed in some of the numerical tests on the generalized Rosenbrock function and a few
tests on the partition problem using transformation.

12

We begin with randomly generated unconstrained POPs with artificial correlative spar-
sity that show a clear advantage of the sparse PSDP formulation (7) against the saprse POP
formulation (3). As described in Section 3, the correlative sparsity affects sizeA, #nzA and
sdpBl. With a given clique size 2 ≤ c ≤ n, define cliques

Ci = {j ∈ N : i ≤ j ≤ i + c − 1} (i = 1, 2, . . . , n − c + 1),

where N = {1, 2, . . . , n}. We then generate a vector gi (i = 1, 2, . . . , n−c+1) using random
number generator in the interval (-1, 1) for coefficients. Let

fi(x) = gT
i u(x,ACi

di
) (i = 1, . . . , n − c + 1),

where di denotes the degree of fi(x). Then, we consider

minimize
n−c+1∑

i=1

fi(xCi
)2pi +

n∑
i=1

x2
i . (21)

where
∑n

i=1 x2
i is added in order to avoid multiple number of optimal solutions.

Tables 5 and 6 show numerical results for varying n, the size c of cliques, pi and di = deg
fi(xCi

) (i = 1, 2, . . . , n − c + 1). The notation “deg” denotes the degree of the polynomial
objective function of (21). For all tested cases, sizeA, #nzA, and sdpBl of the sparse PSDP
formulation (7) are smaller than those of the sparse POP formulation (3), providing optimal
solutions faster. See Table 1 for differences in ω = ωmax. In Table 6, we took di = 2 and
pi = 2 (i = 1, 2, . . . , n − c + 1), so that the degree of the polynomial objective function of
(21) is 2× 2× 2 = 8. In (3), we need to take the relaxation order ω not less than ωmax = 4,
while we can take the starting relaxation order ωmax = 1 in (7). Actually, ω = 4 is used for
(3) while ω = 1 is used for (7). This provideds big differences in sizeA, #nzA, and sdpBl.
As a result, cpu time for (7) is much smaller than that of (3).

The Broyden tridiagonal function [23] is

f(x) = ((3 − 2x1)x1 − 2x2 + 1)2 +
n−1∑
i=2

((3 − 2xi)xi − xi−1 − 2xi+1 + 1)2

+ ((3 − 2xn)xn − xn−1 + 1)2 .

The numerical results of the Broyden tridiagonal function are shown in Table 7. The sparse
PSDP formulation (7) requires the relaxation order 2 to get accurate optimal solutions.
The sizeA, #nzA and sdpBl for the sparse PSDP formulation (7) with ω = 2 are larger
than those for the sparse POP formulation (3), taking longer to get an optimal solution.
An inequality constraint x1 ≥ 0 is added to avoid numerical difficulty arising from multiple
number of solutions.

The generalized Rosenbrock function [24] is written as

f(x) = 1 +
n∑

i=2

{
100

(
xi − x2

i−1

)2
+ (1 − xi)

2
}

.

In Table 8, we notice that sizeA, #nzA, sdpBl of (7) are smaller than those of (3). Although
(7) took longer cpu time, the accuracy shown in the column of rel.err is better than (3).

13

The sparse POP formulation (3)
pi di deg c n ω = ωmax sizeA #nzA sdpBl rel.err cpu
1 2 4 3 30 2 574 × 4848 5270 10(5.9) 5.1e-9 2.4
1 2 4 3 50 2 974 × 8248 8950 10(5.9) 4.0e-9 3.1
1 2 4 3 100 2 1974 × 16748 18150 10(6.0) 9.2e-9 5.5
1 2 4 3 200 2 3974 × 33748 36550 10(6.0) 9.2e-9 8.1
1 3 6 5 50 3 6005 × 91985 103138 35(21.4) 3.2e-8 35.2
1 3 6 5 100 3 12305 × 188235 210538 35(21.5) 4.7e-9 73.7
1 3 6 5 200 3 49601 × 889858 977662 56(32.5) 9.3e-9 764.6

The sparse PSDP formulation (7)
pi di deg c n ω = ωmax sizeA #nzA sdpBl rel.err cpu
1 2 4 3 30 1 175 × 1150 1482 4(2.5) 5.5e-9 0.4
1 2 4 3 50 1 295 × 1950 2522 4(2.5) 7.5e-9 0.7
1 2 4 3 100 1 595 × 3950 5122 4(2.5) 4.4e-5 1.5
1 2 4 3 200 1 1195 × 7950 10322 4(2.5) 2.1e-5 2.8
1 3 6 5 50 2 2011 × 13042 18395 6(4.1) 2.7e-8 5.8
1 3 6 5 100 2 4111 × 26592 37595 6(4.1) 1.2e-8 13.1
1 3 6 5 200 2 8311 × 53692 75995 6(4.1) 3.6e-8 20.6

Table 5: Numerical experiments with the randomly generated problem (21) of degree 4
and 6.

The sparse POP formulation (3)
pi di deg c n ω = ωmax sizeA #nzA sdpBl rel.err cpu
2 2 8 3 30 4 3404 × 65048 76990 35(24.8) 3.3e-8 26.1
2 2 8 3 50 4 5804 × 110308 130210 35(24.9) 1.3e-7 45.7
2 2 8 3 100 4 11804 × 223458 263260 35(24.9) 1.2e-7 92.6

The sparse PSDP formulation (7)
pi di deg c n ω = ωmax sizeA #nzA sdpBl rel.err cpu
2 2 8 3 30 1 347 × 1896 2228 5(3.0) 1.5e-8 0.6
2 2 8 3 50 1 587 × 3216 3788 5(3.0) 1.2e-8 1.2
2 2 8 3 100 1 1187 × 6516 7688 5(3.0) 1.6e-8 2.2

Table 6: Numerical experiments with the randomly generated problem (21) of degree 8.

14

The sparse POP formulation (3)
n ω sizeA #nzA sdpBl rel.err cpu

200 2 3974 × 19819 19621 10(10.0) 8.9e-8 8.4
500 2 9974 × 49819 49321 10(10.0) 1.5e-6 11.7

1000 2 19974 × 99819 98821 10(10.0) 1.5e-6 22.5
The sparse PSDP formulation (7)

n ω sizeA #nzA sdpBl rel.err cpu
200 1 997 × 4188 4984 4(3.0) 1.0e+0 0.8
500 1 2497 × 10488 12484 4(3.0) 1.0e+0 3.1

1000 1 4997 × 20988 24984 4(3.0) 1.0e+0 5.9
200 2 8358 × 53977 92969 12(9.0) 2.4e-9 34.2
500 2 20958 × 135277 233069 12(9.0) 3.7e-7 67.4

1000 2 41958 × 270777 466569 12(9.0) 2.4e-7 165.2

Table 7: Numerical results of the Broyden tridiagonal function.

The sparse POP formulation (3)
n ω sizeA #nzA sdpBl rel.err cpu

200 2 1988 × 7156 6957 6(6.0) 5.1e-5 1.9
500 2 4988 × 17956 17457 6(6.0) 1.6e-4 4.1

1000 2 9988 × 35956 34957 6(6.0) 2.1e-4 8.0
The sparse PSDP formulation (7)

n ω sizeA #nzA sdpBl rel.err cpu
200 1 995 × 4570 4175 3(2.2) 5.3e-5 2.1
500 1 2495 × 11470 10475 3(2.2) 5.3e-7 4.8

1000 1 4995 × 22970 20975 3(2.2) 1.1e-6 9.9

Table 8: Numerical results of the generalized Rosenbrock function.

15

The difference in cpu time, however, is small. An inequality constraint x1 ≥ 0 is added as
for the Broyden tridiagonal function.

The chained Wood function [3] is

f(x) = 1 +
∑
i∈J

(
100(xi+1 − x2

i)
2 + (1 − xi)

2 + 90(xi+3 − x2
i+2)

2 + (1 − xi+2)
2

+10(xi+1 + xi+3 − 2)2 + 0.1(xi+1 − xi+3)
2
)
,

where J = {1, 3, 5, . . . , n − 3} and n is a multiple of 4. In Table 9, the sparse PSDP
formulation (7) takes longer to converge, and results in less accurate solutions for the tested
n’s except n = 1000. We notice that sizeA, #nzA, sdpBl are larger in (7) than those of (3).

The sparse POP formulation (3)
n ω sizeA #nzA sdpBl rel.err cpu

100 2 449 × 1241 1142 4(3.5) 8.1e-6 1.3
200 2 899 × 2491 2292 4(3.5) 5.3e-6 0.8
400 2 1799 × 4991 4592 4(3.5) 1.2e-5 1.4

1000 2 4499 × 12491 11492 4(3.5) 3.4e-5 3.8
The sparse PSDP formulation (7)

n ω sizeA #nzA sdpBl rel.err cpu
100 1 248 × 2891 1470 7(5.0) 6.5e-5 0.8
200 1 498 × 5841 2970 7(5.0) 1.8e-4 1.2
400 1 998 × 11741 5970 7(5.0) 3.9e-4 2.2

1000 1 4494 × 22954 21956 7(5.0) 1.8e-6 10.2

Table 9: Numerical results of the chained Wood function

The Broyden banded function [23] is written as

f(x) =
n∑

i=1

(
xi(2 + 5x2

i) + 1 −
∑
j∈Ji

(1 + xj)xj

)2

where Ji = {j | j ̸= i, max(1, i − 5) ≤ j ≤ min(n, i + 1)}. Note that the number of terms in(
xi(2 + 5x2

i) + 1 −
∑

j∈Ji
(1 + xj)xj

)2

can be varied by changing Ji. We let

fi(x) ≡

(
xi(2 + 5x2

i) + 1 −
∑
j∈Ji

(1 + xj)xj

)2

,

and vary the number of variables in fi(x) to investigate the performance of the sparse POP
formulation (3) and the sparse PSDP formulation (7). The numerical results of the Broyden
banded function are shown in Table 10. We used the relaxation order 3 for (7) because the
relaxation order 2 did not provide accurate optimal solutions. The sparse PSDP formulation
(7) provides accurate values indicated in the column of rel.err and performs better in terms
of cpu time. The numbers shown in the columns of sizeA, #nzA, and sdpBl of (7) are
smaller than those of (3).

16

The sparse POP formulation (3)
k n ω sizeA #nzA sdpBl rel.err cpu
5 7 3 1715 × 14400 14399 120(120.0) 6.0e-9 71.8
5 10 3 4091 × 57600 57596 120(120.0) 8.3e-8 351.2
5 15 3 8546 × 128025 128017 165(125.6) 2.9e-7 1158.5

The sparse PSDP formulation (7)
k n ω sizeA #nzA sdpBl rel.err cpu
5 7 3 2029 × 13702 20998 45(22.7) 2.3e-9 20.6
5 10 3 4130 × 28362 42858 45(27.3) 1.1e-8 46.8
5 15 3 8158 × 58099 85034 66(31.8) 1.5e-8 174.5

Table 10: Numerical experiments with Broyden banded functions

We now change Ji to observe the effects of the number of variables in each fi(x) upon
sdpBl and sparsity of A, and the performance of the two formulations. Because the number
of indices in Ji determines the number of variables that appear in fi(x), we use varying
k in Ji = {j | j ̸= i, max(1, i − k) ≤ j ≤ min(n, i + 1)} to change the number of variables
in fi(x). Table 11 shows the numerical results for k = 3. Notice that the sparse PSDP
formulation (7) gives optimal solutions faster than the sparse POP formulation (3). We see
smaller differences in sdpBl and the cpu time in Table 11 than in Table 10; sdpBl of (7)
is about half of that of (3). We notice that sizeA and #nzA of (7) are smaller than those
of (3).

The sparse POP formulation (3)
k n ω sizeA #nzA sdpBl rel.err cpu
3 7 3 965 × 9408 9405 56(56.0) 8.9e-9 5.4
3 10 3 1931 × 19600 19595 84(61.6) 4.8e-8 21.1
3 30 3 6761 × 81536 81510 56(56.0) 1.7e-7 46.8
3 100 3 24401 × 301056 300960 56(56.0) 5.5e-7 200.5

The sparse PSDP formulation (7)
k n ω sizeA #nzA sdpBl rel.err cpu
3 7 3 1387 × 8924 13624 28(19.1) 3.2e-9 7.9
3 10 3 2412 × 16096 24023 36(21.2) 1.8e-9 18.2
3 30 3 7761 × 48850 75790 28(22.2) 6.8e-9 44.9
3 100 3 27431 × 172610 267870 28(23.0) 1.1e-7 142.9

Table 11: Broyden banded functions with k = 3

With k = 1, as shown in Table 12, the sparse POP formulation (3) gives faster results
than the sparse PSDP formulation (7), however, the accuracy of optimal solutions by (7)
is higher than (3). Note that sizeA and #nzA of (3) are smaller than those of (7) though
sdpBl of (3) is bigger than that of (7). This indicates that cpu time is more affected by
sizeA and #nzA than sdpBl.

17

The sparse POP formulation (3)
k n ω sizeA #nzA sdpBl rel.err cpu
1 30 3 1595 × 11200 11172 20(20.0) 6.9e-8 1.9
1 100 3 5515 × 39200 39102 20(20.0) 1.3e-7 6.7

The sparse PSDP formulation (7)
k n ω sizeA #nzA sdpBl rel.err cpu
1 30 3 2778 × 16048 24584 15(13.1) 2.3e-9 11.4
1 100 3 9498 × 54828 84084 15(13.3) 9.9e-9 30.5

Table 12: Broyden banded functions with k = 1

The Watson function [18] is described as

fi(x) =
m∑

j=1

(j − 1)xjy
j−2
i − (

m∑
j=1

xjy
j−1
i)2 − 1)2 − 1 (i = 1, ...29)

f30(x) = x1, f(x)31 = x2 − x2
1 − 1.

The numerical results of the Watson function are shown in Table 13. Note that the difference
in cpu time between the sparse POP formulation (3) with m = 7 and ω = 2 and the sparse
PSDP formulation (7) with m = 7 and ω = 1 is small, and the rel.err of (3) is smaller than
(7). For n = 7 and ω = 2, (7) obtains more accurate optimal solution than (3) with m = 7
and ω = 2 while taking more cpu time. We see that smaller sizeA and #nzA of (3) result in
shorter cpu time. In the case of n = 10, (7) resulted in a smaller relative error with ω = 2
than (3) with ω = 2 and 3. In the case of ω = 4 of (3), the size of A of the sparse POP
formulation (3) was too large to handle, stopping in out of memory

The sparse POP formulation (3)
m ω sizeA #nzA sdpBl rel.err cpu
7 2 329 × 2836 3276 36(9.9) 9.7e-4 4.1
7 3 791 × 21008 30072 36(36.0) 6.6e-5 32.7

10 2 1000 × 8756 9955 66(13.6) 3.4e-2 43.1
10 3 3002 × 97460 141009 66(66.0) 1.1e-1 1049.9
10 4 - out of memory -

The sparse PSDP formulation (7)
m ω sizeA #nzA sdpBl rel.err cpu
7 1 66 × 2156 5011 8(4.8) 1.2e-1 3.1
7 2 4850 × 82744 328364 44(16.2) 7.6e-6 405.3

10 1 96 × 3829 8934 11(6.2) 1.0e+0 2.4
10 2 10862 × 217743 975265 77(23.8) 1.1e-5 3104.5

Table 13: Watson function

A difficult unconstrained optimization problem known as NP-complete is partitioning an
integer sequence a = (a1, a2, . . . , an). That is, if there exists x ∈ {±1}n such that aT x = 0,

18

then the sequence can be partitioned. It can be formulated as

min f(x) = (aT x)2 +
n∑

i=1

(x2
i − 1)2. (22)

Numerical results for several sequences of a are shown in [9]. We tested the sequences of a of
large dimension among the problems included in [9]. Tables 14 and 15 show the numerical
results for the sequences of dimension 10 and 11, respectively in [9]. The sparse PSDP
formulation (7) in Tables 14 and 15 finds approximate solutions faster than the sparse POP
formulation (3). Smaller values are displayed for sizeA and #nzA of (7) than those of (3).
The solutions obtained by (7) for both sequence a’s resulted in higher accuracy than the
solutions in [9].

The sparse POP formulation (3)
n ω sizeA #nzA sdpBl rel.err cpu

10 2 1000 × 8756 9955 66(13.6) 1.2e+0 37.8
10 3 3002 × 97460 141009 66(66.0) 1.2e+0 936.7

solution (1.0000 -0.9996 1.0000 0.9991 0.9991 0.9991 -0.9997 0.9991 0.9991 -0.6099)
10 3 - out of memory -

The sparse PSDP formulation (7)
m ω sizeA #nzA sdpBl rel.err cpu
10 1 76 × 357 371 11(2.4) 9.5e-1 0.3
10 2 1158 × 8597 11934 67(5.4) 8.3e-2 65.5

solution (1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -0.8442)
10 3 - out of memory -

Table 14: Numerical results for the problem of partitioning integer sequence a =
(1, 2, 3, 20, 5, 6, 7, 10, 11, 77)

The sparse POP formulation (3)
n ω sizeA #nzA sdpBl rel.err cpu

11 2 1364 × 11958 13530 78(14.9) 1.0e+0 95.5
11 3 4367 × 148644 215556 78(78.0) 1.0e+0 3490.3

solution (1.0000 -0.9999 1.0000 -0.9998 -0.9998 -0.9998 -1.0000 -0.9998 -0.9998 0.7792 -1.0000)
The sparse PSDP formulation (7)

m ω sizeA #nzA sdpBl rel.err cpu
11 1 89 × 414 430 12(2.4) 1.0e+0 0.3
11 2 1543 × 11362 15594 79(5.5) 4.8e-2 169.4

solution (1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -0.8832 1.0000)

Table 15: Numerical results for the problem of partitioning integer sequence a =
(1, 2, 3, 20, 5, 6, 7, 10, 11, 77, 3)

Solving the problem (22) of large dimension can be time-consuming because it does not
appear to have any sparsity in (22). However, if the technique proposed in [11] is applied,

19

it can be solved efficiently. More precisely, let

P =

a1 a2 · · · an−1 an

0 a2 · · · an−1 an

0 0 · · · an−1 an
...

...
...

0 0 0 0 an

 ,

and Px = y. Then, x = P−1y, or,

xi =
yi − yi+1

ai

for i = 1, . . . , n − 1,

xn =
yn

an

Consequently, (22) becomes

min g(x) = f(P−1y) = y2
1 +

n−1∑
i=1

{(
yi − yi+1

ai

)2

− 1

}2

+

{(
yn

an

)2

− 1

}2

. (23)

We notice that cpu time in Table 16 and 17 is much smaller than than of Table 14 and 15,
although the accuracy has deteriorated slightly. With the transformation, the sparse PSDP
formulation (7) performs better than the sparse POP formulation (3) in finding approximate
solutions with smaller relative errors. The formulation (7) with m = 10 and ω = 2 has larger
numbers in sizeA, #nzA and sdpBl than (3) with m = 10 and ω = 3 taking longer to obtain
a lower bound as shown in Table 16. Similar result is displayed in Table 17. The formulation
(3) with m = 10 and ω = 2 in Table 16 and (3) with m = 11 and ω = 2 in Table 17 take
slightly shorter cpu time than (7) with m = 10 and ω = 1 in Table 16 and (7) with m = 11
and ω = 1 in Table 17, respectively, but the rel.err is larger in (3). We also note that the
difference in cpu time is small. In these cases, sizeA, #nzA, and sdpBl do not serve as the
deciding factors for cpu time.

The sparse POP formulation (3)
m ω sizeA #nzA sdpBl rel.err cpu
10 2 94 × 672 743 6(3.9) 1.3e+1 1.0
10 3 140 × 1304 1645 6(6.0) 1.3e+1 1.6

solution not found
The sparse PSDP formulation (7)

m ω sizeA #nzA sdpBl rel.err cpu
10 1 40 × 213 265 3(2.4) 9.9e-1 2.1
10 2 263 × 2527 4174 9(5.2) 7.5e-2 13.4

solution (-1.0052 -1.0030 -1.0043 -1.0279 -1.0072 -1.0087 -1.0101
-1.0143 -1.0157 0.8597)

Table 16: Numerical results for the problem of partitioning integer sequence a =
(1, 2, 3, 20, 5, 6, 7, 10, 11, 77) using the transformation

20

The sparse POP formulation (3)
m ω sizeA #nzA sdpBl rel.err cpu
11 2 97 × 688 761 6(3.8) 1.3e+1 1.4
11 3 145 × 1339 1687 6(5.7) 1.3e+1 1.5

solution not found
The sparse PSDP formulation (7)

m ω sizeA #nzA sdpBl rel.err cpu
11 1 44 × 234 292 3(2.4) 9.6e-1 2.4
11 2 290 × 2786 4619 9(5.3) 4.3e-2 13.8

solution (1.0059 1.0030 1.0030 1.0217 1.0053 1.0065 1.0076
1.0109 1.0120 -0.8954 1.0000)

Table 17: Numerical results for the problem of partitioning integer sequence a =
(1, 2, 3, 20, 5, 6, 7, 10, 11, 77, 3) using the transformation

For additional test problems of partitioning sequences, we generated integer sequences
randomly as follows. Let u and ν be positive integers, and let r be a random number in
(0, 1). Then, we create ai = ⌈r · u⌉ for i = 1, . . . , ν and compute s =

∑ν
i=1 ai. Next,

aν+1, . . . , am are generated such that
∑m

i=ν+1 ai = s. More precisely, aν+1, . . . , am−1 are

computed by ai = ⌈r · u⌉, and am = s −
∑m−1

i=ν+1 ai. Note that u decides the magnitude of
ai and ν the number of elements in the sequence. Table 18 displays the numerical results
for a randomly generated integer sequence. In this case, increasing relaxation order did not
result in higher accuracy in both of the sparse POP formulation (3) and the sparse PSDP
formulation (7). Errors involved in the transformation may have caused the large relative
error. We note, however, the signs of solution values are correct. The rel.err and cup time
of (7) are smaller than (3). In Table 19, we see a big difference in cpu time between (3) and
(7). The accuracy of the sparse POP formulation is slightly better.

The sparse POP formulation (3)
m ω sizeA #nzA sdpBl rel.err cpu
13 2 124 × 888 980 6(3.9) 2.1e+1 0.9

(-1.3190 -1.3151 1.2849 1.2988 1.4303 1.4421 -1.1039
1.3206 -1.0170 1.6722 -1.3672 -2.0442 1.0000)

The sparse PSDP formulation (7)
m ω sizeA #nzA sdpBl rel.err cpu
13 1 52 × 276 346 3(2.4) 7.6e-1 0.5

solution (-0.9951 -0.9989 0.7459 0.9940 0.9986 0.9987 -0.9951
0.5032 -0.9900 0.9985 -0.9987 -0.9994 0.9999)

Table 18: Numerical results for the problem of partitioning randomly generated integer
sequence a = (3 1 2 1 1 1 1 3 3 2 1 3 4), u = 3, ν = 8 using the transformation.

We use polynomial systems in [29] to solve the following problem:

min
∑n

i=1 fi(x)2 subj. to li ≤ xi ≤ ui (24)

21

The sparse POP formulation (3)
m ω sizeA #nzA sdpBl rel.err cpu
15 2 3875 × 33896 37720 136(19.9) 2.1e-2 2869.6

(1.0000 -1.0000 1.0000 1.0000 1.0000 0.9998 -1.0000 -0.9999
-1.0000 0.9999 -1.0000 -1.0000 1.0000 0.9999 -0.9999)

The sparse PSDP formulation (7)
m ω sizeA #nzA sdpBl rel.err cpu
15 1 151 × 682 706 16(2.4) 7.9e-1 1.0

solution (1.0000 -0.9998 0.9999 0.9996 0.9997 -0.9984 -0.9999 -0.3342
-0.9998 0.9998 -0.9999 -0.9998 0.9999 0.9997 -0.9995)

Table 19: Numerical results for the problem of partitioning randomly generated integer
sequence a = (3 1 2 1 1 1 1 3 3 2 1 3 3 3 4), u = 3, k = 9.

where fi : Rn → R represents ith equation of polynomial system, li and ui denote lower
and upper bounds for xi, respectively. Many numerical methods exist for solving a system
of polynomial f(x) = 0. One of the most successful methods is the polyhedral homotopy
continuation method [21], which provides all isolated complex solutions of f(x) = 0. When
one or some of isolated real solutions in a certain interval are to be found, it is more
reasonable to formulate the problem as (24). We must say, however, that any comparison
of the presented method with the polyhedral continuation method is not of our interest;
the state-of-art software package [22] for the polyhedral homotopy continuation method
computes all complex solutions of economic-n and cyclic-n polynomial systems much faster
than the presented method that computes a single solution of (24). The main concern here
is comparing the sparse POP formulation (3) with the sparse PSDP formulation (7) through
polynomial systems.

Values given for lower bounds li and upper bounds ui for variables xi (i = 1, 2, . . . , n)
are crucial to have the convergence to an optimal value. See Section 5.6 of [31]. When
appropriate values for the bounds are not known in advance, we simply assign a very large
number and a very smaller number, for instance, 1.0e+10 and −1.0e+10, to the bounds
and solve (24). If an optimal value of desired accuracy is not obtained, then the attained
optimal solution values are used for the lower and upper bounds after perturbing the values
slightly. Then, the problem is solved again.

The two formulations are compared numerically in Table 20. We use fi(x) from the
corresponding polynomial whose name is described in the first column [29]. The number in
the column “iter” indicates the number of times that the problem is solved with updated
lower and upper bounds; 1 means initial application of the sparse POP formulation (3) or
the sparse PSDP formulation (7) for the problem (24). The initial bounds for the variables
were given as [−5, 5] for the tested problems. As shown in Table 20, (7) outperforms (3)
in obtaining optimal solutions in less cpu time. In cyclic-6, (3) resulted in out of memory
because sizeA was too large to handle.

22

The sparse POP formulation (3)
Prob. iter deg n ω sizeA #nzA sdpBl rel.err cpu
eco-6 1 3 6 3 506 × 11852 16549 38(28.8) 2.9e-2 7.2
eco-6 2 3 6 3 506 × 11852 16549 38(28.8) 2.2e-13 4.0
eco-8 1 3 8 3 1441 × 29566 41709 66(46.6) 1.9e-11 98.3
eco-10 1 3 10 3 3382 × 63586 89715 102(68.8) 5.5e-9 1319.3
cyclic-5 1 5 5 5 3002 × 228258 307632 252(137.5) 8.3e-14 1789.0
cyclic-6 1 6 6 6 - out of memory - -

The sparse PSDP formulation (7)
Prob. iter deg n ω sizeA #nzA sdpBl rel.err cpu
eco-6 1 3 6 2 265 × 2511 4244 14(6.9) 5.8e-3 1.7
eco-6 2 3 6 2 265 × 2511 4307 14(6.9) 3.7e-9 1.4
eco-8 1 3 8 2 529 × 4713 8267 18(8.5) 3.7e-9 3.9
eco-10 1 3 10 2 867 × 7908 14258 22(10.1) 4.0e-9 7.9
cyclic-5 1 5 5 3 2771 × 50700 83077 84(42.1) 3.3e-9 148.8
cyclic-6 1 6 6 3 2187 × 54084 148153 72(38.3) 5.8e-2 230.6

Table 20: Polynomials

6 Concluding remarks

We have discussed various ways of formulating polynomial least problems as polynomial
SDPs, and presented an efficient polynomial SDP formulation after comparing the degree
of polynomials, and the sizes of the moment and the localizing matrices. Solving the poly-
nomial SDP is expected to provide the computational efficiency over solving the given form
of polynomial least squares problem because the degree of polynomials in the former for-
mulation is smaller than the degree of polynomials in the latter.

Numerical tests performed on various test problems show that the size of the coefficient
matrix A, the number of nonzero elements of A and the size of SDP blocks of A are
important factors on computational efficiency. Overall performance of the polynomial SDP
formulation is shown to be better than the POP formulation except a few cases.

We finally note that our discussion on formulating polynomial least squares problem (1)
as a polynomial SDP can be extended to a constrained problem of the form:

minimize
∑
i∈M

fi(x)2pi

subject to gj(x) ≥ 0 (j = 1, . . . , m̂),

 (25)

where fi(x) and gj(x) are polynomials in x ∈ Rn.

References

[1] J. R. S. Blair and B. Peyton, “An introduction to chordal graphs and clique trees”, in
Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert and J. W. H.
Liu, eds., Springer-Verlag, New York, 1993, pp. 1-29.

23

[2] B. Borchers, “SDPLIB 1.2, a library of semidefinite programming test problems”,
Optimization Methods and Software, 11 & 12 (1999) 683-690.

[3] A. R. Conn, N. I. M. Gould and P. L. Toint, “Testing a class of methods for solving
minimization problems with simple bounds on the variables”, Math.Comp., 50 (1988)
399–430

[4] K. Fujisawa, M. Kojima, K. Nakata (1995) SDPA (SemiDefinite Programming Al-
gorithm) user’s manual, Version 5.0, Research Report B-308, Dept. of Mathematical
and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo
152-8552, Japan.

[5] N. I. M. Gould, D. Orban and Ph. L. Toint, (2003) “Cuter, a Constrained and Uncon-
strained Testing Environment, revisited”, TOMS, 29 373-394.

[6] D. Henrion and J. B. Lasserre, “GloptiPoly: Global optimization over polynomials with
Matlab and SeDuMi”, Laboratoire d’Analyse et d’Architecture des Syst‘emes, Centre
National de la Recherche Scientifique, 7 Avenue du Colonel Roche, 31 077 Toulouse,
cedex 4, France, February 2002.

[7] D. Henrion and J. B. Lasserre, Convergent relaxations of polynomial matrix inequalities
and static output feedback, IEEE Trans. Automat. Cont. 51 (2), 192-202 (2006).

[8] C. W. Hol, C. W. Scherer, Sums of squares relaxations for polynomial semi-definite
programming, In: B. De Moor, B. Motmans (eds), Proceedings of the 16th International
Symposium on Mathematical Theory of Networks and Systems, Leuven,, Belgium, 5-9
July, 1-10 (2004).

[9] D. Jibetean and M. Laurent, “Semidefinite approximation for global unconstrained
polynomial optimization,” SIAM J. Optim,, 16, 2 (2005) 490-514.

[10] S. Kim, M. Kojima and H.Waki, “Generalized Lagrangian duals and sums of squares
relaxations of sparse polynomial optimization problems”, SIAM J. Optim., 15 (2005)
697-719 .

[11] S. Kim, M. Kojima and Ph.L. Toint, “Recognizing underlying sparsity,” esearch Report
B-428, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology,
Oh-Okayama, Meguro, Tokyo 152-8552, Japan.

[12] K. Kobayashi, S. Kim, and M. Kojima (2006) “Correlative sparsity in primal-dual
interior point methods for LP, SOCP and SDP”, Research Report B-434, Dept. of
Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama,
Meguro, Tokyo 152-8552, Japan.

[13] K. Kobayashi, S. Kim, and M. Kojima (2007) “Sparse second order cone program-
ming approaches for convex opimitization problems”, Research Report B-440, Dept. of
Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama,
Meguro, Tokyo 152-8552, Japan.

24

[14] M. Kojima, S. Kim and H. Waki, “Sparsity in sums of squares of polynomials”, Math.
Program., 103 (2005) 45-62.

[15] M. Kojima, Sums of squares relaxations of polynomial semidefinite programs, Research
Report B-397, Dept. of Mathematical and Computing Sciences, Tokyo Institute of
Technology, Oh-Okayama, Meguro, Tokyo 152-8552, Japan (2003).

[16] M. Kojima and M. Muramatsu, An extension of sums of squares relaxations to polyno-
mial optimization problems over symmetric cones, Mathematical Programming, 110,
(2007) 315-326.

[17] M. Kojima and M. Muramatsu, A note on sparse SOS and SDP relaxations for poly-
nomial optimization problems over yymmetric cones, Computational Optimization and
Applications to appear.

[18] J. S. Kowalik and M. R. Osborne, Methods for unconstrained optimization problems,
Elseview North-Halland, New York, (1968).

[19] J. B. Lasserre, “Global optimization with polynomials and the problems of moments”,
SIAM Journal on Optimization, 11 (2001) 796–817.

[20] J. B. Lasserre: Convergent SDP-relaxations in polynomial optimization with sparsity,
SIAM Journal on Optimization, 17, 3 (2006) 822-843.

[21] T. Y. Li, “Solving polynomial systems by polyhedral homotopies”, Taiwan Journal of
Mathematics 3 (1999) 251–279.

[22] T. Y. Li, “HOM4PS in Fortran”, http://www.mth.msu.edu/ li/

[23] J. J. More, B. S. Garbow and K. E. Hillstrom, “Testing Unconstrained Optimization
Software”, ACM Trans. Math. Soft., 7, (1981) 17–41

[24] S. G. Nash, “Newton-Type Minimization via the Lanczos method”, SIAM J.Numer.
Anal.,21 (1984) 770–788.

[25] J. Nocedal and S. J. Wright (2006) Numerical Optimization, Springer.

[26] S. Prajna, A. Papachristodoulou and P. A. Parrilo, “SOSTOOLS: Sum of Squares
Optimization Toolbox for MATLAB – User’s Guide”, Control and Dynamical Systems,
California Institute of Technology, Pasadena, CA 91125 USA, 2002.

[27] F. J. Sturm (1999) “ Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones”, Optimization Methods and Software 11-12, 625–653.

[28] K. Toh, M. J. Todd, R. H. Tütüntü (1998) SDPT3 — a MATLAB software package for
semidefinite programming, Dept. of Mathematics, National University of Singapore,
Singapore.

[29] Test suite of polynomial systems ”http://www.math.uic.edu/ jan”.

25

[30] H. Waki, S. Kim, M. Kojima and M. Muramatsu, ”SparsePOP : a Sparse Semidefinite
Programming Relaxation of Polynomial Optimization Problems”, Research report B-
414, Dept. of Math. & Computing Sciences, Tokyo Institute of Technology, March
2005.

[31] H. Waki, S. Kim, M. Kojima and M. Muramatsu, (2006) “Sums of squares and semidef-
inite programming relaxations for polynomial optimization problems with structured
sparsity”, SIAM Journal on Optimization 17 (1) 218-242.

26

