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Abstract

We consider a random linguistic model where words are placed randomly and sequentially in a

given text or corpus. The word frequency follows the Zipf-type distribution; that is, the probability

with which the ith most popular word occurs is asymptotically proportional to 1/iα, α > 0. In

this model, we derive the limiting distributions of size indices, where the size index of degree k at

time t represents the number of distinct words appearing exactly k times during (0, t]. While the

past studies only treated the case where the parameter α of the Zipf-type distribution is greater than

unity, we here consider the case of α ≤ 1 as well as α > 1. We first investigate the limiting size index

distributions for the independent word occurrence model and then extend the derived results to the

case where the word occurrences are generally dependent. Simulation experiments demonstrate not

only that our analysis is valid but also that the derived limiting distributions well approximate the

size index distributions for relatively short texts.
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1 Introduction

We consider a random linguistic model where words are placed randomly and sequentially in a given text
or corpus. One of important criteria characterizing the feature of texts and corpora is the distribution of
size indices, which are also called frequency spectra or frequencies of frequencies (see, e.g., Baayen [1] and
Sibuya [10]). Now, let m (∈ N = N∪{+∞}) denote the size of vocabulary; that is, the number of elements
in a given set of words, and let N

(m)
i (t), i = 1, . . . ,m, t ≥ 0, denote the number of word i appearing in

the text during an observation period (0, t]. Then, the size index S
(m)
k (t) of degree k (= 1, 2, . . .) at time t

is defined as S
(m)
k (t) =

∑m
i=1 1{N(m)

i (t)=k}, where 1E denotes the indicator function for event E; that is,

S
(m)
k (t) denotes the number of distinct words appearing exactly k times in the text during (0, t]. The

size indices are indeed important for applications to, for example, efficient coding or data compression of
computerized texts. In this paper, we investigate the limiting distributions of size indices with respect
to an increase of the observation period (and an increase of the vocabulary size when m < ∞); that
is, we derive the almost sure limits of S

(∞)
k (t)/S

(∞)

1 (t), k = 1, 2, . . ., as t → ∞ when m = +∞ and

those of S
(m)
k (t(m))/m, k = 0, 1, 2, . . ., as m → ∞ when m < ∞, where S

(m)

k (t) =
∑

l≥k S
(m)
l (t),

S
(m)
0 (t) = m− S

(m)

1 (t) and t(m) is some function of m satisfying t(m) →∞ as m →∞.
The study concerning the asymptotics of the size indices dates back to 1960–70’s. Karlin [3] considered

the case where the vocabulary size is infinite and the occurrences of words are i.i.d. for both the discrete-
time model; that is, a word is placed at every time unit, and the Poisson embedded model; that is,
words are placed according to a homogeneous Poisson process. Among many other results, he derived
the asymptotics of ES

(∞)
k (t), k = 1, 2, . . ., as t →∞ and also showed that S

(∞)
k (t)/ES

(∞)
k (t) → 1 almost

surely as t → ∞, where E denotes the expectation. While it is easy to derive the limit of the empirical
size index distribution S

(∞)
k (t)/S

(∞)

1 (t), k = 1, 2, . . ., as t →∞ from Karlin’s results, Rouault [7] further
extended it to the case where the words occurrences are Markov dependent under the assumption that the
word frequency distribution follows the generalized Zipf-type law; that is, the distribution with regularly
varying tail.

From the past, extensive studies have developed lexical models with Zipf-like law for word fre-
quency (see, e.g., [1] and references therein). We then employ the Zipf-type distribution as the model of
word frequency; that is, the probability with which word i is chosen is asymptotically proportional to
1/iα with α > 0 for large i and m. Note here that, if the vocabulary size m is infinite, then the parameter
α of the Zipf-type distribution must be greater than unity. In this paper, we extend the results in [3, 7]
mentioned above towards two directions. In one direction, we consider the case of α ≤ 1 and m < ∞,
where the vocabulary size m increases together with the observation period. It is illustrated that, by
determining an appropriate function t(m), m ∈ N, we can obtain the limit of the empirical size index
distribution S

(m)
k (t(m))/m, k = 0, 1, 2, . . ., as m → ∞. As a byproduct, we also find that such a size

index distribution offers a natural solution to the so-called zero-frequency problem (see, e.g., Witten and
Bell [11]) in the particular case of the Zipf-type word frequency with α ≤ 1. The other extension is that
the word occurrences are generally dependent while their marginal distributions are a common Zipf-type
one, where we show that the results derived for the independent word occurrence model are still valid for
the dependent word occurrence model under some additional conditions. The model we here consider is
the Poisson embedded one; that is, words are placed according to a homogeneous Poisson process with
intensity 1, and at each point of the Poisson process, a word is chosen according to the given Zipf-type
probability.

The organization of the paper is as follows. In the next section, we consider the independent word
occurrence model, where we first describe the model and review the existing results for the case of α > 1
and m = +∞. We then consider the cases of α < 1 and α = 1 with m < +∞ and derive the limiting
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size index distributions in the form of limm→∞ S
(m)
k (t(m))/m, k = 0, 1, 2, . . ., for some t(m), m ∈ N. In

Section 3, we extend the model as the word occurrences are dependent in some general sense and verify
that all results in Section 2 are still valid under some additional conditions. The derived results are
validated through simulation experiments in Section 4, where we also find that the limiting distributions
well approximate the size index distributions for relatively short texts.

2 Independent word occurrence model

Throughout this and the next sections, we suppose that all random elements are defined on a common
probability space (Ω,F,P). In the analysis, we use the following standard notation; that is, for any two
real functions f(x) and g(x) for x ∈ R, f(x) ∼ g(x) as x → a stands for limx→a f(x)/g(x) = 1, where a

is possibly +∞.

2.1 Model description

Let {N(t)}t≥0 denote a homogeneous Poisson process with intensity 1, where N(t), t ≥ 0, represents
the number of points of the Poisson process during (0, t]. At each point of {N(t)}t≥0, a word is chosen
randomly from the vocabulary set {1, . . . , m} when m < +∞, or {1, 2, . . .} when m = +∞, and is
placed in the text. Let Wn, n ∈ N, denote the random variable representing the word which is chosen
at the nth point of {N(t)}t≥0. We suppose that Wn, n ∈ N, are mutually independent and are also
independent of the Poisson process {N(t)}t≥0. The probability with which word i (= 1, . . . , m) is chosen
is denoted by p

(m)
i = P(W1 = i), where p

(m)
i ≥ 0, i = 1, . . . , m, and p

(m)
1 + · · ·+ p

(m)
m = 1. Let N

(m)
i (t),

i = 1, . . . ,m, denote the number of word i appearing in (0, t], so that
∑m

i=1 N
(m)
i (t) = N(t), t ≥ 0. By

the fundamental property of Poisson processes, N
(m)
i (t), i = 1, . . . ,m, are mutually independent and

also follow the Poisson distributions with mean p
(m)
i t; that is,

P
(
N

(m)
1 (t) = k1, . . . , N

(m)
m (t) = km

)
=

m∏

i=1

(p(m)
i t)ki

ki!
e−p

(m)
i t, t ≥ 0, k1, . . . , km ∈ Z+.

We assume that the word frequency distribution p(m) = (p(m)
1 , . . . , p

(m)
m ) is Zipf-type; that is, p

(m)
i is

asymptotically proportional to 1/iα, α > 0, for large i and m. Within this setting, we investigate below
the limiting distributions of size indices S

(m)
k (t) =

∑m
i=1 1{N(m)

i (t)=k}, k = 1, 2, . . ., for the cases of α > 1,
α < 1 and α = 1 separately.

2.2 Case of α > 1

In this subsection, we review the results for the independent word occurrence model with Zipf-type
frequency in the case where the vocabulary size m is infinite and the parameter α of the Zipf-type
distribution is greater than unity. The results are obtained directly from [3, 7]. We here suppress the
superscript “(∞)” and write, for example, pi, Ni(t) for p

(∞)
i , N

(∞)
i (t) and so on. In this case, the

Zipf-type word frequency distribution p = (p1, p2, . . .) is provided as the following.

Assumption 1 pi ∼ c/iα as i → ∞ with α > 1 and c > 0. Namely, for any ε > 0, there exists an
integer iε > 0 such that, for all i ≥ iε, inequality (1− ε) c/iα ≤ pi ≤ (1 + ε) c/iα holds.

As defined above, let Sk(t), t ≥ 0, denote the size index of degree k (= 1, 2, . . .) at time t (≥ 0); that
is, the number of distinct words appearing exactly k times during (0, t]. Let also Sk(t) =

∑
l≥k Sl(t);

that is, the number of distinct words appearing at least k times during (0, t]. Then, Karlin [3] derived
the following result in more general form.
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Proposition 2.1 Under Assumption 1, we have for k = 1, 2, . . .,

ESk(t) ∼ c1/α t1/α
[
Γ
(
1− 1

α

)
−

k−1∑

l=1

1
α l!

Γ
(
l − 1

α

)]
as t →∞, (2.1)

where
∑0

l=1 · = 0 conventionally and Γ denotes Euler’s Gamma function; that is, Γ(x) =
∫∞
0

e−u ux−1 du.

Applying Sk(t) = Sk(t) − Sk+1(t) a.s. in Proposition 2.1, we can readily obtain the limits of
ESk(t)/ES1(t), k = 1, 2, . . ., as t → ∞ under Assumption 1. Furthermore, Karlin [3] proved that
Sk(t)/ESk(t) → 1 a.s. as t →∞. These results immediately yield the following.

Proposition 2.2 Under Assumption 1, we have for k = 1, 2, . . .,

lim
t→∞

Sk(t)
S1(t)

=
Γ(k − 1/α)

α k! Γ(1− 1/α)
=

1
α k

k−1∏

l=1

(
1− 1

α l

)
a.s. (2.2)

Let Ψk(α), α > 1, k = 1, 2, . . ., denote the right-hand side of (2.2). We can check that Ψk(α),
k = 1, 2, . . ., gives a proper distribution on N with Ψk(α) ∼ k−1−1/α/[α Γ(1−1/α)] as k →∞. Rouault [7]
provided the same formula for the discrete-time model and further extended as it is also valid when the
word occurrences are Markov dependent. The same distribution was derived by Sibuya [9] independently
in another problem, so that we refer to the distribution given by Ψk(α), k = 1, 2, . . ., as the Karlin-
Rouault-Sibuya (KRS) distribution. Propositions 2.1 and 2.2 are extended to the case where the word
occurrences are generally dependent in Section 3.

2.3 Case of α < 1

We here consider the case where the parameter α of the Zipf-type distribution is less than unity and the
vocabulary size m is finite. We derive the limiting size index distribution with respect to an increase
of m together with the observation period. The word frequency distribution is supposed to satisfy the
following.

Assumption 2 For any ε > 0, there exists an integer iε > 0 such that, for all m and i satisfying
m ≥ i ≥ iε, inequality (1− ε) c/(m1−α iα) ≤ p

(m)
i ≤ (1 + ε) c/(m1−α iα) holds with α ∈ (0, 1) and c > 0.

Note that Assumption 2 represents the Zipf-type distribution with α < 1. Indeed, if p
(m)
i = cm/iα

for i = 1, . . . , m with the normalization constant cm, we then have cm = (
∑m

i=1 1/iα)−1 ∼ (1−α)/m1−α

as m → ∞ and Assumption 2 is fulfilled with c = 1 − α. Under this assumption, we first derive
the asymptotic result for the expected size indices, which attracts an independent interest and is also
exploited even in the extension to the dependent word occurrence model in the next section.

Lemma 2.1 Under Assumption 2, we have for any fixed constant δ > 0 and k = 1, 2, . . .,

ES
(m)

k

(δ m

c

)
∼ m

[
1−

k−1∑

l=0

δ1/α

α l!
Γ
(
l − 1

α
, δ

)]
as m →∞, (2.3)

where Γ(x, y), y > 0, is the incomplete Gamma function; that is, Γ(x, y) =
∫∞

y
e−u ux−1 du (see, e.g.,

Davis [2]).

Proof: Since ES
(m)

k (t) =
∑m

i=1 P(N (m)
i (t) ≥ k) and N

(m)
i (t), i = 1, . . . , m, are Poisson random variables

with mean p
(m)
i t, we have

ES
(m)

k (t) =
m∑

i=1

[
1−

k−1∑

l=0

(p(m)
i t)l

l!
e−p

(m)
i t

]
. (2.4)
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Here, under Assumption 2, for any ε ∈ (0, 1) and sufficiently large m,

ES
(m)

k (t) ≤ m−
m∑

i=iε

k−1∑

l=0

1
l!

( (1− ε) c t

m1−α iα

)l

exp
(
− (1 + ε) c t

m1−α iα

)

≤ m−
k−1∑

l=0

1
l!

∫ m

iε

( (1− ε) c t

m1−α xα

)l

exp
(
− (1 + ε) c t

m1−α xα

)
dx +

k−1∑

l=1

1
l!

( (1− ε) l

(1 + ε) e

)l

, (2.5)

where the last term arises from the possibility that the unique maximum of the integrand lies in (iε,m)
for l = 1, . . . , k − 1. Similarly, for any ε ∈ (0, 1) and sufficiently large m,

ES
(m)

k (t) ≥ m− iε −
m∑

i=iε

k−1∑

l=0

1
l!

( (1 + ε) c t

m1−α iα

)l

exp
(
− (1− ε) c t

m1−α iα

)

≥ m− iε −
k−1∑

l=0

1
l!

∫ m+1

iε

( (1 + ε) c t

m1−α xα

)l

exp
(
− (1− ε) c t

m1−α xα

)
dx−

k−1∑

l=1

1
l!

( (1 + ε) l

(1− ε) e

)l

. (2.6)

Now, let t = δ m/c with a constant δ > 0 and change the variable to u = (1 + ε) δ mα/xα in (2.5) and
u = (1− ε) δ mα/xα in (2.6) respectively. We then have

ES
(m)

k

(δ m

c

)
≤ m−

k−1∑

l=0

(1− ε)l δ1/α m

(1 + ε)l−1/α α l!

∫ (1+ε)δmα/iε
α

(1+ε)δ

ul−1/α−1 e−u du + o(m), (2.7)

ES
(m)

k

(δ m

c

)
≥ m−

k−1∑

l=0

(1 + ε)l δ1/α m

(1− ε)l−1/α α l!

∫ (1−ε)δmα/iε
α

(1−ε)δmα/(m+1)α

ul−1/α−1 e−u du + o(m). (2.8)

Thus, dividing both sides of (2.7) and (2.8) by m, taking m →∞ and finally ε ↓ 0, we obtain (2.3).

Since S
(m)
0 = m− S

(m)

1 (t) and S
(m)
k (t) = S

(m)

k (t)− S
(m)

k+1(t) a.s. for k = 1, 2, . . ., we can easily derive
the limits of ES

(m)
k (δm/c)/m, k = 0, 1, 2, . . ., as m →∞ for any constant δ > 0 from (2.3) in Lemma 2.1;

that is, Lemma 2.1 yields the limit of the expected size index distribution for α < 1. We now prove its
almost sure convergence.

Theorem 2.1 Under Assumption 2, we have for any fixed constant δ > 0 and k = 0, 1, 2, . . .,

lim
m→∞

1
m

S
(m)
k

(δ m

c

)
=

δ1/α

α k!
Γ
(
k − 1

α
, δ

)
a.s. (2.9)

Remark 1 Let Φk(α, δ) denote the right-hand side of (2.9). Then, we can confirm that Φk(α, δ), k =
0, 1, 2, . . ., gives a proper distribution on Z+ with Φk(α, δ) ∼ (δ1/α/α) k−1−1/α as k →∞ even for α > 0
(extending the range of α). Furthermore, we can show that, for α > 0, Φk(α, δ) degenerates as

lim
δ↓0

Φk(α, δ) =





1, k = 0,

0, k = 1, 2, . . . .
(2.10)

These results are verified in Appendix.

Proof: Since S
(m)

k (t) =
∑m

i=1 1{N(m)
i (t)≥k} a.s. and N

(m)
i (t), i = 1, . . . ,m, are mutually independent,

the Chernoff-Hoeffding bound for the sum of 0-1 independent random variables (see, e.g., Motwani and
Raghavan [4, Chapter 4]) implies that, for any ε > 0, there exists a θε > 0 such that

P
(∣∣S(m)

k (t)− ES
(m)

k (t)
∣∣ > ε ES

(m)

k (t)
)
≤ 2 e−θεES

(m)
k (t). (2.11)
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Furthermore, Lemma 2.1 says that ES
(m)

k (δ m/c) = Θ(m) as m →∞ under Assumption 2, so that (2.11)
leads to

∞∑
m=1

P
(∣∣∣∣

S
(m)

k (δ m/c)

ES
(m)

k (δ m/c)
− 1

∣∣∣∣ > ε

)
< ∞. (2.12)

Hence, the Borel-Cantelli lemma implies that S
(m)

k (δ m/c)
/
ES

(m)

k (δ m/c) → 1 a.s. as m → ∞, and
applying Lemma 2.1 again, we have for k = 1, 2, . . .,

lim
m→∞

1
m

S
(m)

k

(δ m

c

)
= 1−

k−1∑

l=0

δ1/α

α l!
Γ
(
l − 1

α
, δ

)
a.s.,

which readily leads to (2.9).

To compare with the result for the case of α > 1, we here present the limiting size index distribution
in the form of limm→∞ S

(m)
k (δ m/c)

/
S

(m)

1 (δ m/c), k = 1, 2, . . ..

Corollary 2.1 Under Assumption 2, we have for any fixed constant δ > 0 and k = 1, 2, . . .,

lim
m→∞

S
(m)
k (δ m/c)

S
(m)

1 (δ m/c)
=

Γ
(
k − 1/α, δ

)

α k!
[
Γ
(
1− 1/α, δ

)
+ δ−1/α (1− e−δ)

] a.s. (2.13)

Remark 2 Let Ψk(α, δ) denote the right-hand side of (2.13). Then, it is clear from Remark 1 that
Ψk(α, δ), k = 1, 2, . . ., also gives a proper distribution on N with Ψk(α, δ) = Θ(k−1−1/α) as k →∞ even
for α > 0 (extending the range of α). Furthermore, we can show that, when α > 1, limδ↓0 Ψk(α, δ),
k = 1, 2, . . ., reduces to the KRS distribution given on the right-hand side of (2.2), but when α ∈ (0, 1],
it degenerates as

lim
δ↓0

Ψk(α, δ) =





1, k = 1,

0, k = 2, 3, . . . .
(2.14)

This is verified in Appendix.

2.4 Case of α = 1

In the final subsection for the independent word occurrence model, we consider the case of α = 1 and
m < ∞. The word frequency distribution is given by the following.

Assumption 3 For any ε > 0, there exists an integer iε > 0 such that, for all m and i satisfying
m ≥ i ≥ iε, inequality (1− ε) c/(i ln m) ≤ p

(m)
i ≤ (1 + ε) c/(i ln m) holds with c > 0.

Similar to Assumption 2 in the preceding subsection, Assumption 3 represents the Zipf-type distri-
bution with α = 1. Indeed, if p

(m)
i = cm/i for i = 1, . . . , m with the normalization constant cm, we have

cm = (
∑m

i=1 1/i)−1 ∼ 1/ ln m as m → ∞ and Assumption 3 is fulfilled with c = 1. As in the preceding
subsection, we first provide the asymptotics of the expected size indices.

Lemma 2.2 Under Assumption 3, for any fixed constant δ > 0 and k = 1, 2, . . .,

ES
(m)

k

(δ m ln m

c

)
∼ m

[
1−

k−1∑

l=0

δ

l!
Γ(l − 1, δ)

]
as m →∞. (2.15)

Note here that the right-hand side of (2.15) in Lemma 2.2 is just the version of α = 1 on the right-hand
side of (2.3) in Lemma 2.1 while the functions t = t(m), m ∈ N, are different for the two cases.
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Proof: The proof is similar to that of Lemma 2.1. The differences are in that, under Assumption 3,
inequalities (2.5) and (2.6) are respectively replaced by

ES
(m)

k (t) ≤ m−
k−1∑

l=0

1
l!

∫ m

iε

( (1− ε) c t

x ln m

)l

exp
(
− (1 + ε) c t

x ln m

)
dx +

k−1∑

l=1

1
l!

( (1− ε) l

(1 + ε) e

)l

, (2.16)

ES
(m)

k (t) ≥ m− iε −
k−1∑

l=0

1
l!

∫ m+1

iε

( (1 + ε) c t

x ln m

)l

exp
(
− (1− ε) c t

x ln m

)
dx−

k−1∑

l=1

1
l!

( (1 + ε) l

(1− ε) e

)l

. (2.17)

Thus, letting t = (δ m ln m)/c with δ > 0 and changing the variable to u = (1 + ε) δ m/x in (2.16) and
u = (1− ε) δ m/x in (2.17) respectively, we have

ES
(m)

k

(δ m ln m

c

)
≤ m−

k−1∑

l=0

(1− ε)l δ m

(1 + ε)l−1 l!

∫ (1+ε)δm/iε

(1+ε)δ

ul−2 e−u du + o(m),

ES
(m)

k

(δ m ln m

c

)
≥ m−

k−1∑

l=0

(1 + ε)l δ m

(1− ε)l−1 l!

∫ (1−ε)δm/iε

(1−ε)δm/(m+1)

ul−2 e−u du + o(m).

Hence, dividing the both sides by m, taking m →∞ and then ε ↓ 0, we obtain (2.15).

Applying Lemma 2.2, a similar procedure to the proof of Theorem 2.1 yields the following.

Theorem 2.2 Under Assumption 3, for any fixed constant δ > 0 and k = 0, 1, 2, . . .,

lim
m→∞

1
m

S
(m)
k

(δ m ln m

c

)
=

δ

k!
Γ(k − 1, δ) a.s. (2.18)

Proof: The difference from the proof of Theorem 2.1 is just that, applying Lemma 2.2 under Assumption 3
(instead of Lemma 2.1 under Assumption 2), (2.12) is replaced by

∞∑
m=1

P
(∣∣∣∣

S
(m)

k (δ m ln m/c)

ES
(m)

k (δ m ln m/c)
− 1

∣∣∣∣ > ε

)
< ∞.

The remaining procedure is quite the same.

Remark 3 As seen in Remark 1, the right-hand side of (2.18) in Theorem 2.2 gives a proper distribution
on Z+. What is interesting in (2.9) and (2.18) is that they assign the positive probability to the words
which never emerge in the text. This suggests that the distributions given on the right-hand sides of
(2.9) and (2.18) offer a natural solution to the so-called zero-frequency problem (see, e.g., [11]) in the
particular case of the Zipf-type word frequency with α ≤ 1.

Even in the case of α = 1, of course, the following holds.

Corollary 2.2 Under Assumption 3, we have for any fixed constant δ > 0 and k = 1, 2, . . .,

lim
m→∞

S
(m)
k

(
(δ m ln m)/c

)

S
(m)

1

(
(δ m ln m)/c

) =
Γ(k − 1, δ)

k!
[
Γ(0, δ) + δ−1 (1− e−δ)

] a.s. (2.19)

3 Dependent word occurrence model

We here extend the results in the preceding section to the dependent word occurrence model. We will
find that the derived limiting size index distributions are still valid even in the case where the word
occurrences are dependent in some general sense.
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3.1 Model description

As in the independent word occurrence model, words are placed according to a homogeneous Poisson
process with intensity 1, but the choice of a word at each point of the Poisson process is governed by the
following doubly stochastic structure. Let {q(m)(t)}t≥0 denote a stochastic process on [0, 1]m independent
of the Poisson process {N(t)}t≥0 such that q(m)(t) = (q(m)

1 (t), . . . , q(m)
m (t)) satisfies

∑m
i=1 q

(m)
i = 1 a.s.

for t ≥ 0. We suppose that Eq
(m)
i (t) = p

(m)
i for i = 1, . . . ,m and t ≥ 0. Let Tn, n = 1, 2, . . ., denote the

nth point of the Poisson process {N(t)}t≥0. Then, once q(m)(Tn) is given at time Tn, n = 1, 2, . . ., the
word Wn is conditionally independent of {Wl}l 6=n and {q(m)(t)}t 6=Tn

, and word i (= 1, . . . , m) is chosen
with conditional probability q

(m)
i (Tn) = P(Wn = i | q(m)(Tn)). Within this setting, each {N (m)

i (t)}t≥0,
i = 1, . . . ,m, is a Cox (doubly stochastic Poisson) process with random intensity process {q(m)

i (t)}t≥0,
and N

(m)
i (t), i = 1, . . . ,m, are mutually conditionally independent given {q(m)(s)}s≤t; that is,

P
(
N

(m)
1 (t) = k1, . . . , N

(m)
m (t) = km | q(m)(s), s ≤ t

)
=

m∏

i=1

[
Q

(m)
i (t)

]ki

ki!
e−Q

(m)
i (t) a.s., (3.1)

where Q
(m)
i (t) =

∫ t

0
q
(m)
i (s) ds for i = 1, . . . , m.

3.2 Case of α > 1

We here extend Propositions 2.1 and 2.2 in Section 2.2 to the dependent word occurrence model. As
in Section 2.2, we suppress the superscript “(∞)” and write, for example, q(t) for q(∞)(t) and so on.
Assuming that {q(t)}t≥0 is ergodic, the ergodic theorem implies that Qi(t)/t → pi a.s. as t → ∞ for
i = 1, 2, . . .. Now, for any t > 0 and ε > 0, we define Aε(t) ∈ F such that

Aε(t) =
{

ω ∈ Ω
∣∣∣ sup

i∈N

∣∣∣∣
Qi(ω, t)

pi t
− 1

∣∣∣∣ ≤ ε

}
. (3.2)

Note that the ergodicity implies P(Aε(t)) → 1 as t →∞. We first show the asymptotics of the expected
size indices, where some convergence speed of P

(
Aε(t)c

) → 0 as t →∞ is required.

Lemma 3.1 Under Assumption 1, if P(Aε(t)c) = o(t−1+1/α), then (2.1) holds for k = 1, 2, . . ..

Proof: We first consider the case of k = 1; that is, we verify that, under the condition of the lemma,

ES1(t) ∼ c1/α t1/α Γ
(
1− 1

α

)
as t →∞. (3.3)

Since E(S1(t) | q(s), s ≤ t) =
∑∞

i=1 P(Ni(t) ≥ 1 | qi(s), s ≤ t) a.s., we have from (3.1) that

E(S1(t) | q(s), s ≤ t) =
∞∑

i=1

[
1− eQi(t)

]
a.s. (3.4)

Here, for any ε ∈ (0, 1) and i = 1, 2, . . ., we have (1− ε) pi t ≤ Qi(t) ≤ (1 + ε) pi t on Aε(t) in (3.2), and
thus, under Assumption 1,

E(S1(t) | q(s), s ≤ t) ≤
∞∑

i=1

[
1− e−(1+ε)pit

]
+ t 1Aε(t)c

≤ iε +
∞∑

i=iε+1

[
1− exp

(
− (1 + ε)2 c t

iα

)]
+ t 1Aε(t)c

≤ iε +
∫ ∞

iε

[
1− exp

(
− (1 + ε)2 c t

xα

)]
dx + t 1Aε(t)c a.s., (3.5)
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where the first inequality follows from S1(t) ≤ N(t) a.s. and E(N(t) | q(s), s ≤ t) = EN(t) = t, and the
last inequality follows from that 1− exp

(−(1 + ε)2 c t/iα
)

is decreasing in i > 1. For the integral in the
last expression of (3.5), changing the variable to u = (1 + ε)2 c t/xα and then integrating by parts, we
have

∫ ∞

iε

[
1− exp

(
− (1 + ε)2 c t

xα

)]
dx = −iε

[
1− exp

(
− (1 + ε)2 c t

iε
α

)]

+ (1 + ε)2/α c1/α t1/α

∫ (1+ε)2ct/iε
α

0

u−1/α e−u du.

Therefore, after substituting this into (3.5), taking the expectation on the both sides of it, dividing by
t1/α, then taking t →∞ and ε ↓ 0, we have under the condition that P(Aε(t)c) = o(t−1+1/α),

lim sup
t→∞

ES1(t)
t1/α

≤ c1/α Γ
(
1− 1

α

)
.

To verify (3.3), it remains to show the asymptotic lower bound. Similar to the above argument, we have
from (3.4) that, under Assumption 1,

E(S1(t) | q(s), s ≤ t) ≥
∞∑

i=1

[1− e−(1−ε)pit] 1Aε(t)

≥
∞∑

i=iε

[
1− exp

(
− (1− ε)2 c t

iα

)]
1Aε(t)

≥
∫ ∞

iε

[
1− exp

(
− (1− ε)2 c t

xα

)]
dx 1Aε(t) a.s. (3.6)

Hence, similar to obtaining the asymptotic upper bound, we have

lim inf
t→∞

ES1(t)
t1/α

≥ c1/α Γ
(
1− 1

α

)
,

since P(Aε(t)) → 1 as t →∞, so that (3.3) is obtained.
We next show that, under the condition of the lemma,

ESk(t) ∼ c1/α

α k!
t1/α Γ

(
k − 1

α

)
as t →∞, k = 1, 2, . . . . (3.7)

By a similar argument to the above, we have from (3.1) and (3.2) that, under Assumption 1, for any
ε ∈ (0, 1),

E
(
Sk(t) | q(s), s ≤ t

) ≤
∞∑

i=1

[(1 + ε) pi t]k

k!
e−(1−ε)pit + t 1Aε(t)c

≤ iε +
1
k!

∞∑

i=iε+1

[ (1 + ε)2 c t

iα

]k

exp
(
− (1− ε)2 c t

iα

)
+ t 1Aε(t)c a.s. (3.8)

Here, the summand of (3.8) is decreasing in sufficiently large i and we can choose iε > 0 such that it is
decreasing in i ≥ iε. Then,

E
(
Sk(t) | q(s), s ≤ t

) ≤ iε +
1
k!

∫ ∞

iε+1

[ (1 + ε)2 c t

xα

]k

exp
(
− (1− ε)2 c t

xα

)
dx + t 1Aε(t)c

= iε +
(1 + ε)2k c1/α t1/α

(1− ε)2(k−1/α) α k!

∫ (1−ε)2ct/iε
α

0

uk−1/α−1 e−u du + t 1Aε(t)c a.s., (3.9)
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where the last equality follows from changing the variable to u = (1 − ε)2 c t/xα. Thus, taking the
expectation on both sides of (3.9), dividing by t1/α, further taking t →∞ and ε ↓ 0, we have under the
condition that P(Aε(t)c) = o(t−1+1/α),

lim sup
t→∞

ESk(t)
t1/α

≤ c1/α

α k!
Γ
(
k − 1

α

)
.

Similarly, we have under Assumption 1,

E
(
Sk(t) | q(s), s ≤ t

) ≥
∞∑

i=1

[(1− ε) pi t]k

k!
e−(1+ε)pit 1Aε(t)

≥ 1
k!

∞∑

i=iε

[ (1− ε)2 c t

iα

]k

exp
(
− (1 + ε)2 c t

iα

)
1Aε(t) a.s.,

from which, a similar procedure to the above yields

lim inf
t→∞

ESk(t)
t1/α

≥ c1/α

α k!
Γ
(
k − 1

α

)
,

since P(Aε(t)) → 1 as t → ∞, and hence, (3.7) is obtained. Finally, (2.1) is immediate from (3.3) and
(3.7).

By Lemma 3.1 and the same argument as that after Proposition 2.1, we can derive the KRS distri-
bution; that is, the right-hand side of (2.2), as the limit of ESk(t)/ES1(t) as t → ∞ under the same
condition as that of the lemma. Now, we show the almost sure convergence under a somewhat stronger
condition.

Theorem 3.1 Under Assumption 1, if
∑∞

n=1 P(Aε(n)c) < ∞, then (2.2) holds for k = 1, 2, . . ..

To prove Theorem 3.1, we use the next lemma, where and thereafter, {N†
i (t)}t≥0, i = 1, 2, . . .,

denotes a homogeneous Poisson process with intensity pi and S
†
k(t) =

∑∞
i=1 1{N†

i (t)≥k} for k = 1, 2, . . ..

Namely, {N†
i (t)}t≥0 and S

†
k(t) considered here are respectively nothing but {Ni(t)}t≥0 and Sk(t) for the

independent word occurrence model considered in the preceding section.

Lemma 3.2 For any ε > 0, there exists a θε > 0 such that

P
(
Sk(t) > (1 + ε) ES

†
k((1 + ε) t)

) ≤ e−θεES
†
k((1+ε)t) + P(Aε(t)c), (3.10)

P
(
Sk(t) < (1− ε) ES

†
k((1− ε) t)

) ≤ e−θεES
†
k((1−ε) t) + P(Aε(t)c). (3.11)

Lemma 3.2 plays the role of (2.11) in the case of dependent word occurrences. (3.10) and (3.11) are
also available when m < ∞ and are indeed exploited in the following subsections.

Proof: It is clear that

P
(
Sk(t) > (1 + ε) ES

†
k((1 + ε) t)

) ≤ P
({

Sk(t) > (1 + ε) ES
†
k((1 + ε) t)

} ∩Aε(t)
)

+ P(Aε(t)c),

and we consider the first term on the right-hand side above. Since a Poisson random variable is
stochastically increasing in its mean, Theorem 1.A.14 in Shaked and Shanthikumar [8] implies that
Ni(t) 1{Qi(t)≤(1+ε)pit} ≤st N†

i ((1 + ε) t) 1{Qi(t)≤(1+ε)pit}, i = 1, 2, . . ., where “≤st” represents the usual
stochastic order (see, e.g., Müller and Stoyan [5] or [8]). Thus, since Sk(t) is a.s. nondecreasing in Ni(t),
i = 1, 2, . . ., we have Sk(t) 1Aε(t) ≤st S

†
k((1 + ε) t) 1Aε(t), which implies that

P
({

Sk(t) > (1 + ε) ES
†
k((1 + ε) t)

} ∩Aε(t)
) ≤ P

(
S
†
k((1 + ε) t) > (1 + ε) ES

†
k((1 + ε) t)

)
.

Hence, the Chernoff-Hoeffding bound for the sum of 0-1 independent random variables yields (3.10).
Inequality (3.11) is verified similarly.
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Proof of Theorem 3.1: By (3.10) in Lemma 3.2, we have

P
( Sk(t)

ES
†
k((1 + ε) t)

− 1 > ε
)
≤ e−θεES

†
k((1+ε)t) + P

(
Aε(t)c

)
. (3.12)

Here, since S
†
k((1+ε) t) is nothing but Sk((1+ε) t) for the independent word occurrence model considered

in the preceding section, Proposition 2.1 implies that ES
†
k((1 + ε) t) = Θ(t1/α) as t →∞, so that, under

the condition of the theorem, (3.12) leads to

∞∑
n=1

P
( Sk(n)

ES
†
k((1 + ε)n)

− 1 > ε
)

< ∞.

Therefore, the Borel-Cantelli lemma implies that lim supn→∞ Sk(n)/ES
†
k((1 + ε) n) ≤ 1 + ε a.s. A

similar argument based on (3.11) yields lim infn→∞ Sk(n)/ES
†
k((1 − ε)n) ≥ 1 − ε a.s. Hence, applying

Proposition 2.1 again and taking ε ↓ 0, we have Sk(n) ∼ ES
†
k(n) a.s. as n → ∞ on n ∈ N, which leads

to (2.2) in the case where t goes to ∞ on t ∈ N, but the extension to that on t ∈ R is easy.

3.3 Case of α < 1

We extend the results in Section 2.3. First, for t ≥ 0 and ε > 0, we define

A(m)
ε (t) =

{
ω ∈ Ω

∣∣∣ max
i∈{1,...,m}

∣∣∣∣
Q

(m)
i (ω, t)

p
(m)
i t

− 1
∣∣∣∣ ≤ ε

}
. (3.13)

As in the independent word occurrence model, we first show the asymptotics of the expected size indices.

Lemma 3.3 Under Assumption 2, if P
(
A

(m)
ε (δ m/c)

) → 1 as m →∞ for some δ > 0, then (2.3) holds
for such δ and k = 1, 2, . . ..

Note that, unlike the case of α > 1, we here require that P
(
A

(m)
ε (δ m/c)c

)
only vanishes as m →∞

but do not require the speed of vanishing for deriving the asymptotics of the expected size indices.

Proof: By (3.1), we have

E
(
S

(m)

k | q(m)(s), s ≤ t
)

=
m∑

i=1

[
1−

k−1∑

l=0

Q
(m)
i (t)l

l!
e−Q

(m)
i (t)

]
a.s.

For any ε > 0, we have (1 − ε) p
(m)
i t ≤ Q

(m)
i (t) ≤ (1 + ε) p

(m)
i t on A

(m)
ε (t) in (3.13), and thus, under

Assumption 2,

E
(
S

(m)

k | q(m)(s), s ≤ t
) ≤ m−

m∑

i=iε

k−1∑

l=0

1
l!

( (1− ε)2 c t

m1−α iα

)l

exp
(
− (1 + ε)2 c t

m1−α iα

)
1

A
(m)
ε (t)

a.s., (3.14)

E
(
S

(m)

k | q(m)(s), s ≤ t
) ≥ (m− iε) 1

A
(m)
ε (t)

−
m∑

i=iε

k−1∑

l=0

1
l!

( (1 + ε)2 c t

m1−α iα

)l

exp
(
− (1− ε)2 c t

m1−α iα

)
a.s. (3.15)

Take the expectation on both sides of (3.14) and (3.15) and let t = δ m/c with δ > 0. Then, since
P

(
A

(m)
ε (δ m/c)

) → 1 as m → ∞ under the condition of the lemma, the remaining procedure is almost
the same as that in the proof of Lemma 2.1.

Next, we extend Theorem 2.1 and Corollary 2.1, where some vanishing speed of P
(
A

(m)
ε (δ m/c)c

) → 0
as m →∞ is required.
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Theorem 3.2 Under Assumption 2, if
∑∞

m=1 P(A(m)
ε (δ m/c)c) < ∞ for some δ > 0, then (2.9) holds

for such δ and k = 0, 1, 2, . . ., and also (2.13) holds for k = 1, 2, . . ..

Proof: As in the proof of Theorem 3.1, let S
†(m)

k (t), k = 1, 2, . . ., just represent S
(m)

k (t) for the indepen-
dent word occurrence model. Applying (3.10) in Lemma 3.2, we have

P
( S

(m)

k (δ m/c)

ES
†(m)

k ((1 + ε) δ m/c)
− 1 > ε

)
≤ e−θεES

†(m)
k ((1+ε)δm/c) + P

(
Aε(δ m/c)c

)
.

Here, (2.3) in Lemma 2.1 implies that ES
†(m)

k ((1 + ε) δ m/c) = Θ(m) as m →∞, so that, we have under
the condition of the theorem,

∞∑
m=1

P
( S

(m)

k (δ m/c)

ES
†(m)

k ((1 + ε) δ m/c)
− 1 > ε

)
< ∞.

Therefore, the Borel-Cantelli lemma yields that lim supm→∞ S
(m)

k (δ m/c)
/
ES

†(m)

k ((1 + ε) δ m/c) ≤ 1 + ε

a.s. Similarly, by applying (3.11) in Lemma 3.2, we have lim infm→∞ S
(m)

k (δ m/c)
/
ES

†(m)

k ((1 −
ε) δ m/c) ≥ 1−ε a.s. Hence, applying Lemma 2.1 and taking ε ↓ 0, we have S

(m)

k (δ m/c) ∼ ES
†(m)

k (δ m/c)
a.s. as m →∞, which implies (2.9) and (2.13).

3.4 Case of α = 1

Even in the case of α = 1, a similar argument to the preceding subsections leads to the following results.
The differences in the proofs are just that we apply Assumption 3 instead of Assumption 2 and replace
t = δ m/c with t = (δ m ln m)/c, so that the proofs are omitted.

Lemma 3.4 Under Assumption 3, if P
(
A

(m)
ε ((δ m ln m)/c)

) → 1 as m → ∞ for some δ > 0, then
(2.15) holds for such δ and k = 1, 2, . . ..

Theorem 3.3 Under Assumption 3, if
∑∞

m=1 P
(
A

(m)
ε ((δ m ln m)/c)c

)
< ∞ for some δ > 0, then (2.18)

holds for such δ and k = 0, 1, 2, . . ., and also (2.19) holds for k = 1, 2, . . ..

4 Simulation experiments

We here validate the theoretical results discussed in the previous sections through simulation experiments;
that is, we compare the limiting size index distributions derived in Sections 2 and 3 with the estimates
of the empirical size index distributions by simulations. For the simulation experiments, the software R
for statistical computing ([6]) was used. In each experiment, 100 independent replica of sample paths
with length t = 1000 were executed, and the means and the 95% confidence intervals are displayed.
Through the experiments, we will find not only that our analysis is valid but also that the derived
limiting distributions well approximate the size index distributions even for relatively short (about 1000
words) texts.

4.1 Independent word occurrence model

Example 1 (Case of α > 1) In the first example, we examine the independent word occurrence model
with α > 1. In the experiment, the word frequency distribution was given by pi = c/iα, i = 1, 2, . . ., and
two cases of α = 1.1 and α = 1.5 were executed. The value of the normalization constant c was calculated
as c−1 =

∑i0
i=1 1/iα+i0

−α+1/(α−1) with i0 = 2×107, which is based on
∑

i>i0
1/iα ∼ i0

−α+1/(α−1) as
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i0 →∞, and the empirical size index distribution Sk(t)/S1(t), k = 1, 2, . . ., with t = 1000 was estimated
by simulation. To compare the simulation estimates with the theoretical result, but to distinguish the
two kinds of plots, we extend the range of the function on the right-hand side of (2.2) in Proposition 2.2
to R+; that is, applying k! = Γ(k + 1), the curves of the following function were evaluated;

Ψ(x; α) =
Γ(x− 1/α)

α Γ(x + 1) Γ(1− 1/α)
, x > 0. (4.1)

The value of Ψ(x;α) above, of course, coincides with that of the function on the right-hand side of (2.2)
at x = 1, 2, . . .. The result is displayed in Figure 1, where we can see good agreement of the theoretical
result with the simulation estimates for both cases of α = 1.1 and α = 1.5.

Example 2 (Case of α < 1) In the second example, we examine the independent word occurrence
model with α < 1. In the experiment, the word frequency distribution was given by p

(m)
i = cm/iα,

i = 1, 2, . . . ,m, with α = 0.7. We recall that t and m are related by t = δ m/c in the result for α < 1
in Section 2.3, and two cases of m = 2 t and m = 10 t with t = 1000 were executed. The value of the
normalization constant cm was calculated as cm

−1 =
∑m

i=1 1/iα and the empirical size index distribution

S
(m)
k (t)/S

(m)

1 (t), k = 1, 2, . . ., was estimated by simulation. On the other hand, to evaluate the limiting
size index distribution given on the right-hand side of (2.13) in Corollary 2.1, the value of constant δ was
determined as follows. The value of c was first given by cm = c/m1−α from Assumption 2 and the value
of δ was then determined by δ = c t/m = cm t/mα. As in the preceding example, we extend the range of
the function on the right-hand side of (2.13) to R+, and applying the values of δ determined as above,
the curves of the following function were evaluated;

Ψ(x;α, δ) =
δ1/α Γ(x− 1/α, δ)

α Γ(x + 1)
[
δ1/α Γ(1− 1/α, δ) + 1− e−δ

] , x ≥ 0. (4.2)

The comparison result is displayed in Figure 2, where we can also see good agreement for both cases of
m = 2 t and m = 10 t. Furthermore, in the view of δ

∣∣
m=10t

= c10t t1−α/10α < c2t t1−α/2α = δ
∣∣
m=2t

,
we can observe through the experimental result that the size index distribution tends to its degenerated
form (2.14) as the value of δ decreases.

Example 3 (Case of α = 1) The third example is almost the same as Example 2 but the case of α = 1
is examined. As in the preceding example, two cases of m = 2 t and m = 10 t were executed with t = 1000.
The value of the normalization constant cm was calculated as cm

−1 =
∑m

i=1 1/i for the simulation runs.
Then, to evaluate the theoretical formula (2.19) in Corollary 2.2, the value of δ was determined according
to the relation t = (δ m ln m)/c; that is, the value of c was given by cm = c/ ln m from Assumption 3 and
the value of δ was determined by δ = c t/(m ln m) = cm t/m. The experimental result is displayed in
Figure 3, where the curves of the function (4.2) with α = 1 are plotted for the comparison with the plots
of the simulation estimates. Again, we can see good agreement for both cases of m = 2 t and m = 10 t.

4.2 Dependent word occurrence model

We here examine the dependent word occurrence model. To realize the dependence, we consider the
random intensity process {q(t)}t≥0 governed by a two-state Markov chain {M(t)}t≥0 on {0, 1} such that

q
(m)
i (t) =





c
(even)
m /iα 1{M(t)=0}, i is even,

c
(odd)
m /iα 1{M(t)=1}, i is odd,

t ≥ 0; (4.3)
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Figure 1: Experimental result for Example 1 (Inde-
pendent word occurrence model with α > 1)
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Figure 2: Experimental result for Example 2 (Inde-
pendent word occurrence model with α = 0.7)

that is, when the Markov chain is in state 0, only words with even indices are chosen and, when it is
in state 1, only words with odd indices are chosen. In the experiments below, the parameter of sojourn
times at each state was set at 1/5; that is, the Markov chain stays at a state during a time according to
the exponential distribution with mean 5 and moves to the other state. The stationary distribution of
this Markov chain is given as (1/2, 1/2).

Example 4 (Case of α > 1) As in Example 1, two cases of α = 1.1 and α = 1.5 were executed,
where the values of c(even) and c(odd) in (4.3) were respectively calculated as c(even)−1

=
∑i0

i=1 1/(2 i)α +
(2 i0)−α+1/[2 (α − 1)] and c(odd)−1

=
∑i0

i=1 1/(2 i − 1)α + (2 i0 − 1)−α+1/[2 (α − 1)] with i0 = 107. The
experimental result is displayed in Figure 4, where the solid line and the dashed line are the same as
those in Figure 1 since the right-hand side of (4.1) is irrelevant to the values of c(even) and c(odd). Even in
the dependent word occurrence model, we can see the same feature as the independent word occurrence
model; that is, good agreement of the theoretical result with the simulation experiment.

Example 5 (Case of α < 1) As in Example 2, the parameter of the Zipf-type distribution was set at
α = 0.7, and two cases of m = 2 t and m = 10 t were executed for t = 1000. The values of c

(even)
m and

c
(odd)
m in (4.3) were respectively calculated as c

(even)
m

−1
=

∑m/2
i=1 1/(2 i)α and c

(odd)
m

−1
=

∑m/2
i=1 1/(2 i−1)α.

To evaluate the theoretical formula (4.2), the value of constant δ was determined as follows. Since the
stationary distribution of the Markov chain {M(t)}t≥0 is given as (1/2, 1/2), we have

p
(m)
i =





(1/2) c
(even)
m /iα, i is even,

(1/2) c
(odd)
m /iα, i is odd.

The value of cm was set at the middle of c
(even)
m /2 and c

(odd)
m /2; that is, cm = (c(even)

m + c
(odd)
m )/4, and the

value of δ was then determined by δ = cm t/mα as in Example 2. Applying the values of δ determined
as such, the curves of the function on the right-hand side of (4.2) are plotted on Figure 5, as well as
the simulation estimates. Even in this case, we can see good agreement for both cases of m = 2 t and
m = 10 t.
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Figure 3: Experimental result for Example 3 (Inde-
pendent word occurrence model with α = 1)
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Figure 4: Experimental result for Example 4 (De-
pendent word occurrence model with α > 1)

Example 6 (Case of α = 1) Finally, we examine the dependent word occurrence model with α = 1.
The value of cm was determined as the preceding example with α = 1 and the value of δ was set at
δ = cm t/m as in Example 3. The experimental result is displayed in Figure 6, where we can also see
good agreement.
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A Properties of Φk(α, δ) and Ψk(α, δ)

We here verify the assertions in Remarks 1 and 2 in Section 2. For α > 0 and δ > 0, Φk(α, δ),
k = 0, 1, 2, . . ., and Ψk(α, δ), k = 1, 2, . . ., are defined by

Φk(α, δ) =
δ1/α

α k!
Γ
(
k − 1

α
, δ

)
, k = 0, 1, 2, . . . , (A.1)

Ψk(α, δ) =
Φk(α, δ)∑∞
l=1 Φl(α, δ)

=
Γ
(
k − 1/α, δ

)

α k!
[
Γ
(
1− 1/α, δ

)
+ δ−1/α (1− e−δ)

] , k = 1, 2, . . . . (A.2)

Lemma A.1 (i) Φk(α, δ), k = 0, 1, 2, . . ., in (A.1) gives a proper distribution on Z+ with Φk(α, δ) ∼
(δ1/α/α) k−1−1/α as k →∞ for α > 0 and δ > 0. Furthermore, as δ ↓ 0, Φk(α, δ), k = 0, 1, 2, . . .,
degenerates as (2.10) for α > 0.

(ii) When α > 1, Ψk(α, δ), k = 1, 2, . . ., in (A.2) reduces to the KRS distribution; that is, the right-hand
side of (2.2), as δ ↓ 0, but when α ∈ (0, 1], it degenerates as (2.14).

Proof of (i): We first show that Φk(α, δ), k = 0, 1, 2, . . ., gives a proper distribution when 1/α 6= 1, 2, . . ..
Applying the relation Γ(x, y) = x−1

[
Γ(x + 1, y)− yx e−y

]
, x 6= 0, repeatedly, we have for 1/α 6= 1, 2, . . .,

k∑

l=0

Φl(α, δ) = e−δ
k−1∑

l=0

δl

l!
− δ1/α

k!

(
k − 1

α

)
Γ
(
k − 1

α
, δ

)
.

Thus, to check that
∑∞

k=0 Φk(α, δ) = 1, it suffices to show that the second term on the right-hand side
above vanishes as k →∞. Note here that, for k > 1/α,

0 ≤ k − 1/α

k!
Γ
(
k − 1

α
, δ

)
≤ k − 1/α

k!
Γ
(
k − 1

α

)
.
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Thus, applying Γ(x+1) = xΓ(x) and k! kx/[x (x+1) · · · (x+k)] → Γ(x) as k →∞ for x 6= 0,−1,−2, . . .

(see, e.g., [2]), we have

k − 1/α

k!
Γ
(
k − 1

α

)
=

(k − 1/α) (k − 1− 1/α) · · · (−1/α)
k!

Γ
(
− 1

α

)
∼ k−1/α → 0 as k →∞. (A.3)

On the other hand, when 1/α = 1, 2, . . ., we use the following relations which are confirmed inductively;

Γ(n, y) = e−y (n− 1)!
n−1∑

k=0

yk

k!
, n = 1, 2, . . . , (A.4)

Γ(−n, y) =
e−y

n!

n∑

k=1

(−1)n−k (k − 1)! y−k +
(−1)n

n!
Γ(0, y), n = 0, 1, 2, . . . . (A.5)

Letting 1/α = n ∈ N, we split the sum of Φk(α, δ) in (A.1) over k = 0, 1, 2, . . . into two terms;

∞∑

k=0

Φk(1/n, δ) =
n∑

k=0

n δn

k!
Γ(−(n− k), δ) +

∞∑

k=n+1

n δn

k!
Γ(k − n, δ). (A.6)

We first consider the second term on the right-hand side above. Applying (A.4), we have

∞∑

k=n+1

n δn

k!
Γ(k − n, δ) = n e−δ

∞∑

k=n+1

(k − n− 1)!
k!

k−n−1∑

l=0

δn+l

l!

= n e−δ
∞∑

l=0

δn+l

l!

∞∑

k=n+l+1

(k − n− 1)!
k!

= e−δ
∞∑

l=0

δn+l

(n + l)!
, (A.7)

where the third equality follows since

∞∑

k=n+l+1

(k − n− 1)!
k!

=
1
n

∞∑

k=n+l+1

[ 1
(k − 1) · · · (k − n)

− 1
k · · · (k − n + 1)

]

=
1
n

1
(n + l) · · · (l + 1)

.

Now, we consider the first term on the right-hand side of (A.6). Applying (A.5), we have

n∑

k=0

n δn

k!
Γ(−(n− k), δ) =

n∑

k=0

n e−δ

k! (n− k)!

n−k∑

l=1

(−1)n−k−l (l − 1)! δn−l + n δn Γ(0, δ)
n∑

k=0

(−1)n−k

k! (n− k)!
,

and the second term on the right-hand side above is clearly zero by the binomial theorem. For the first
term above, we have

n∑

k=0

n e−δ

k! (n− k)!

n−k∑

l=1

(−1)n−k−l (l − 1)! δn−l = n e−δ
n∑

l=1

(l − 1)! δn−l
n−l∑

k=0

(−1)n−l−k

k! (n− k)!

= e−δ
n∑

l=1

δn−l

(n− l)!

= e−δ
n−1∑

l=0

δl

l!
, (A.8)

where, in the second equality, we use
∑l

k=0

(
n
k

)
(−1)k =

(
n−1

l

)
(−1)l, l = 0, 1, . . . , n − 1, which is

confirmed by the observation that, when the coefficient of xk in (1 − x)n−1 is denoted by ak, k =
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0, . . . , n − 1, then the coefficient of xk in (1 − x)n is given by bk = ak − ak−1 for k = 1, . . . , n − 1 and
b0 = a0 = 1 since (1− x)n = (1− x)n−1 − x (1− x)n−1. Hence, substituting (A.7) and (A.8) into (A.6),
we have

∑∞
k=0 Φ(1/n, δ) = 1 for n = 1, 2, . . ..

Next, we confirm the asymptotics of Φk(α, δ) as k →∞. By (A.1), we have for k > 1/α,

Φk(α, δ) =
δ1/α

α k!
Γ
(
k − 1

α

)
− δ1/α

α k!

∫ δ

0

e−u uk−1/α−1 du. (A.9)

The integrand above takes the maximum at u = k−1/α−1, which is greater than δ for sufficiently large
k. Thus, for large k,

δ1/α

α k!

∫ δ

0

e−u uk−1/α−1 du ≤ e−δ δk

α k!
∼ e−δ

√
2 π α

(δ e)k

kk+1/2
= o(k−1−1/α) as k →∞,

where “∼” follows from Stirling’s formula k! ∼ √
2 π kk+1/2 e−k as k → ∞. On the other hand, for the

first term on the right-hand side of (A.9), if 1/α 6= 1, 2, . . ., similar to obtaining (A.3), we have

δ1/α

α k!
Γ
(
k − 1

α

)
=

δ1/α

α

k − 1/α− 1) · · · (−1/α)
k!

Γ
(
− 1

α

)
∼ δ1/α

α
k−1−1/α as k →∞.

Also, if 1/α = 1, 2, . . ., then

δ1/α

α k!
Γ
(
k − 1

α

)
=

δ1/α

α

(k − 1/α− 1)!
k!

∼ δ1/α

α
k−1−1/α as k →∞.

Now, we show the limits of Φk(α, δ), k = 0, 1, 2, . . ., as δ ↓ 0. Since Γ(x, y) → Γ(x) < ∞ as y ↓ 0 for
x > 0, it is clear from (A.1) that Φk(α, δ) → 0 as δ ↓ 0 for k > 1/α. For k ≤ 1/α, since Γ(x, y) → ∞
as y ↓ 0 for x ≤ 0, applying de l’Hospital’s rule, we have Φk(α, δ) ∼ e−δ δk/k! as δ ↓ 0, so that (2.10) is
derived.

Proof of (ii): We investigate the limiting property of Ψ(α, δ), k = 1, 2, . . ., as δ ↓ 0. Applying
de l’Hospital’s rule to the second term in the brackets of the denominator in (A.2), we have

δ−1/α (1− e−δ) ∼ α e−δ

δ1/α−1
→





0, α > 1,

1, α = 1,

+∞, 0 < α < 1,

as δ ↓ 0. (A.10)

Thus, since Γ(x, y) → Γ(x) < ∞ as y ↓ 0 for x > 0, the limit of Ψk(α, δ) as δ ↓ 0 clearly reduces to the
KRS distribution when α > 1. When α = 1, since Γ(0, y) → ∞ as y ↓ 0, it is also clear from (A.2) and
(A.10) that (2.14) holds. Consider the case of 0 < α < 1. Note that Γ(x, y) → Γ(x) < ∞ for x > 0 and
Γ(x, y) →∞ for x ≤ 0 as y ↓ 0. Thus, when k > 1/α, clearly Ψk(α, δ) → 0 as δ ↓ 0 by (A.2) and (A.10).
To consider the case of k ≤ 1/α, we deform the right-hand side of (A.2) as

Ψk(α, δ) =
1

α k!
Γ(k − 1/α, δ)
Γ(1− 1/α, δ)

[
1 +

δ−1/α (1− e−δ)
Γ(1− 1/α, δ)

]−1

.

Here, applying de l’Hospital’s rule to the second term in the brackets, we have

δ−1/α (1− e−δ)
Γ(1− 1/α, δ)

∼ (1/α) δ−1 (1− e−δ)− e−δ

e−δ
→ 1

α
− 1 as δ ↓ 0,

where we use (A.10). Furthermore, applying de l’Hospital’s rule again, we have Γ(k − 1/α, δ)/Γ(1 −
1/α, δ) ∼ δk−1 as δ ↓ 0. Hence, we eventually have (2.14) for 0 < α < 1.
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