
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

Exploiting Sparsity in SDP Relaxation

for Sensor Network Localization

Sunyoung Kim, Masakazu Kojima

and Hayato Waki

January 2008, B–447



B-447 Exploiting Sparsity in SDP Relaxation for Sensor Network Localiza-
tion
Sunyoung Kim⋆, Masakazu Kojima†, and Hayato Waki‡

January 2008

Abstract.
A sensor network localization problem can be formulated as a quadratic optimization prob-
lem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relax-
ation by Lasserre with relaxation order 1 for general polynomial optimization problems
(POPs) is known to be equivalent to the sparse SDP relaxation by Waki et al. with re-
laxation order 1, except the size and sparsity of the resulting SDP relaxation problems.
We show that the sparse SDP relaxation applied to the QOP is at least as strong as the
Biswas-Ye SDP relaxation for the sensor network localization problem. A sparse variant
of the Biswas-Ye SDP relaxation, which is equivalent to the original Biswas-Ye SDP relax-
ation, is also derived. Numerical results are compared with the Biswas-Ye SDP relaxation
and the edge-based SDP relaxation by Wang et al.. We show that the proposed sparse SDP
relaxation is faster than the Biswas-Ye SDP relaxation. In fact, the computational efficiency
in solving the resulting SDP problems increases as the number of anchors and/or the radio
range grow. The proposed sparse SDP relaxation also provides more accurate solutions than
the edge-based SDP relaxation when exact distances are given between sensors and anchors
and there are only a small number of anchors.

Key words. Sensor network localization problem, polynomial optimization problem,
semidefinite relaxation, sparsity

⋆ Department of Mathematics, Ewha W. University, 11-1 Dahyun-dong, Sudaemoon-
gu, Seoul 120-750 Korea. The research was supported by Kosef R01-2005-000-
10271-0 and KRF-2007-313-C00089.
skim@ewha.ac.kr

† Department of Mathematical and Computing Sciences, Tokyo Institute of Technol-
ogy, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. This research was
partially supported by Grant-in-Aid for Scientific Research (B) 19310096.
kojima@is.titech.ac.jp

‡ Department of Mathematical and Computing Sciences, Tokyo Institute of Tech-
nology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan.This research was
partially supported by Grant-in-Aid for JSPS Fellows 18005736.
waki9@is.titech.ac.jp



1 Introduction

Sensor network localization problem arises in monitoring and controlling applications using
wireless sensor networks such as inventory management and gathering environment data.
Positioning sensors accurately in a wireless sensor network is an important problem for the
efficiency of the applications where including GPS capability on every sensor in a network of
inexpensive sensors is not an option. It is also closely related to distance geometry problems
arising in predicting molecule structures and to graph rigidity.

The problem is to locate m sensors that fit the distances when a subset of distances
and some sensors of known position (called anchors) are provided in a sensor network of
n sensors, where n > m. Finding the solutions of this problem is a difficult problem. It
is known NP-hard in general [20]. Various approaches thus have been proposed for the
problem [1, 9, 10, 13, 14] to approximate the solutions.

Biswas and Ye [2] proposed a semidefinite programming (SDP) relaxation for the sensor
network localization problem. A great deal of studies [3, 4, 5, 23, 28, 31] has followed in
recent years. Compared with other methods for the problem, the SDP relaxation by [2]
aimed to compute an accurate solution of the problem. Solving a large-scale SDP relax-
ation using software packages based on the primal-dual interior-point method [27, 32] is,
however, known to be a computational challenge. As a result, the size of the sensor network
localization problem that can be handled by the SDP relaxation is limited as mentioned
in [3]. For the sensor network localization problem with a larger number of sensors, a dis-
tributed method in [3] was introduced, and a method combined with a gradient method
[19] was proposed to improve the accuracy. The second-order cone programming (SOCP)
relaxation was studied first in [9], and [28]. The solutions obtained by the SOCP relaxation
are inaccurate compared to that by the SDP relaxation [28]. Edge-based SDP (ESDP) and
node-based SDP (NSDP) relaxations were introduced in [31] to improve the computational
efficiency of the original Biswas-Ye SDP relaxation in [2]. These SDP relaxations are weaker
than the original SDP relaxation in theory, however, computational results show that the
quality of the solution is comparable to that of the original Biswas-Ye SDP relaxation. It
is also shown that much larger-sized problems can be handled.

In the sum-of-squares (SOS) method by Nie in [23], the sensor network localization
problem was formulated as minimizing a polynomial with degree 4, and the solutions were
found at the global minimizer. Sparsity of the polynomial objective function with degree
4 was utilized to reduce the size of the SOS relaxation. The advantage of this approach is
that it provides highly accurate solutions. Numerical results for n = 500 in [23] showed that
accurate solutions were found if exact distance information was given.

When solving a polynomial optimization problem (POP) as in [23], one of the deciding
factors of the computational efficiency is the degree of the polynomials in the POP. The
degree (and sparsity if exploited) decides the size of the SDP relaxation problem generated
from the POP. Whether the global minimizer of a POP can be obtained computationally
depends on the solvability of the SDP relaxation problem. It is thus imperative to have
polynomials of lower degree in POPs to find the global minimizer of the POPs.

For general POPs, Lasserre [17] presented the hierarchical SDP relaxation whose con-
vergence to a global minimizer is theoretically guaranteed. More accurate solutions can be
computed if increasingly larger-sized SDP relaxations, whose size is decided by a positive
number called the relaxation order, are solved. The size of POPs that can be solved by

1



Lasserre’s SDP relaxation remains relatively small because the size of the SDP relaxation
grows rapidly with the degree of the polynomials and the number of variables. A sparse SDP
relaxation for POPs using the correlative sparsity of POPs was introduced to reduce the
size of the SDP relaxation in [30]. We call Lasserre’s relaxation the dense SDP relaxation
as opposed to the sparse SDP relaxation in [30]. Although the theoretical convergence of
the sparse SDP relaxation is shown in [18] for correlatively sparse POPs, the sparse SDP
relaxation is theoretically weaker than the dense SDP relaxation in general.

For quadratic optimization problems (QOP), however, the sparse SDP relaxation with
the relaxation order 1 and the dense SDP relaxation with the same relaxation order 1
are equivalent except the size and the sparsity of the resulting SDP relaxation problems as
mentioned in Section 4.5 of [30]. Thus, the solution obtained using the sparse SDP relaxation
is as accurate as the one by the dense SDP relaxation. Motivated by this observation, we
study a QOP formulation for the sensor network localization problem. Our main objective
is to improve the speed of solving the sensor network localization problem by exploiting the
sparsity in the QOP formulation. The relationship between the Biswas-Ye SDP relaxation [2]
and the dense SDP relaxation [17] of the proposed QOP formulation is examined. We show
that the dense SDP relaxation with the relaxation order 1 (or the sparse SDP relaxation with
the relaxation order 1) applied to the QOP formulation of the sensor network localization
problem is at least as strong as the Biswas-Ye SDP relaxation in [2]. We also derive a sparse
variant of the Biswas-Ye SDP relaxation and show that it is equivalent to the original Biswas-
Ye SDP relaxation. We note that the dense SDP relaxation with the relaxation order 1 is
a special case of the SDP relaxation by Shor [24, 25] for general quadratic optimization
problems. See also the work of Fujie and Kojima in [11].

The QOP is solved numerically by SparsePOP [29], a matlab package for solving POPs
using the correlative sparsity. A technique introduced in [16] is employed to improve the
computational efficiency. Numerical results are compared with those with the Biswas-Ye
SDP relaxation and the edge-based SDP relaxation in [31]. We show that (i) the proposed
sparse SDP relaxation is faster than the Biswas-Ye SDP relaxation, (ii) less cpu time is
required as the number of anchors and/or the radio range of sensors increase, (iii) more
accurate solutions can be obtained using the sparse SDP relaxation than the edge-based
SDP relaxation when exact distances are given between sensors and anchors and there are
only a small number of anchors.

The sensor network localization problem is stated in detail in Section 2. A QOP formula-
tion for the sensor network localization problem with exact and noisy distance measurements
is presented. In Section 3, the dense and the sparse SDP relaxations are explained. A sparse
variant of the Biswas-Ye SDP relaxation is described. We show that the dense SDP relax-
ation is at least as strong as the Biswas-Ye SDP relaxation. Additional techniques to reduce
the size of the SDP relaxation, to refine solutions, and to choose the objective functions are
shown in Section 4. Section 5 includes numerical results comparing with the results from
the Biswas-Ye and the edge-based SDP relaxations. Section 6 contains concluding remarks
and future directions.

2



2 Sensor network localization problems

Consider m sensors and ma anchors, both located in the ℓ-dimensional Euclidean space Rℓ,
where ℓ is 2 or 3 in practice. Let n = m + ma. The sensors are indexed with p = 1, . . . ,m
and the anchors with r = m + 1, . . . , n. We assume that the location ar ∈ Rℓ of anchor r is
known for every r = m + 1, . . . , n, but the location ap ∈ Rℓ of sensor p is unknown for any
p = 1, . . . ,m. We denote the exact distance ∥ap − aq∥ > 0 between sensors p and q by dpq

and the exact distance ∥ap −ar∥ > 0 between sensors p and r by dpr. The exact values are
not usually known in practice. Let N x be a subset of {(p, q) : 1 ≤ p < q ≤ m} (the set of
pairs of sensors) and N a be a subset of {(p, r) : 1 ≤ p ≤ m, m+1 ≤ r ≤ n} (the set of pairs
of sensors and anchors). Then, a sensor network localization problem is described as follows:
Given distances (often containing noise) d̂pq ≈ dpq between sensors p and q ((p, q) ∈ N x and

distances d̂pr ≈ dpr between sensors p and r ((p, r) ∈ N a), compute or estimate locations ap

of sensor p (p = 1, . . . ,m). We consider the problem with exact distances in Section 2.1 and
the problem with noisy distances in Section 2.2. Both problems are reduced to quadratic
optimization problems (QOPs). The sparse SDP relaxation [30] with the relaxation order 1,
which is equivalent to the dense SDP relaxation [18] as mentioned in Section 3.2, can be
applied to the QOPs.

Naturally, we can represent a sensor network localization problem in terms of a geo-
metrical network. Let N = {1, 2, . . . , n} denote the node set of sensors p = 1, 2 . . . ,m and
anchors r = m + 1, m + 2, . . . , n, and N x ∪ N a the set of undirected edges. We assume
that all the nodes are located in the ℓ-dimensional space. To construct a geometrical net-
work representation of the problem, we consider a graph G(N,N x ∪N a) and add a positive
number d̂pq on each edge (p, q) ∈ N x and a positive number d̂pr on each edge (p, r) ∈ N a.
Note that the node set N is partitioned into two subsets, the set of sensors p = 1, 2, . . . ,m
whose locations are to be approximated and the set of anchors r = m + 1,m + 2, . . . , n
whose locations are known. Our main concern is to compute the locations of sensors with
accuracy and speed. Thus, we focus on the methods of extracting a small-sized and sparse
subgraph G(N,E ′) from G(N,E) in Section 4.1. We then replace the graph G(N,N x∪N a)
by such a subgraph G(N,E ′) in numerical computation. In this section, however, we for-
mulate a sensor network localization problem with the graph G(N,N x ∪N a) in a quadratic
optimization problem (QOP).

2.1 Problems with exact distances

When all of the given distances d̂pq ((p, q) ∈ N x) and d̂pr ((p, r) ∈ N a) are exact, that

is, d̂pq = dpq ((p, q) ∈ N x), d̂pr = dpr ((p, r) ∈ N a), the locations xp = ap of sensors
p = 1, . . . ,m are characterized in terms of a system of nonlinear equations

dpq = ∥xp − xq∥ (p, q) ∈ N x and dpr = ∥xp − ar∥ (p, r) ∈ N a.

To apply SDP relaxation, we transform this system into an equivalent system of quadratic
equations

d2
pq = ∥xp − xq∥2 (p, q) ∈ N x and d2

pr = ∥xp − ar∥2 (p, r) ∈ N a. (1)

3



In practice, a radio range ρ > 0 often determines N x and N a.

N x = {(p, q) : 1 ≤ p < q ≤ m, ∥ap − aq∥ ≤ ρ},
N a = {(p, r) : 1 ≤ p ≤ m, m + 1 ≤ r ≤ n, ∥ap − ar∥ ≤ ρ}.

}
(2)

If the radio range ρ > 0 is sufficiently large, the sets N x and N a coincide with the entire
sets {(p, q) : 1 ≤ p < q ≤ m} and {(p, r) : 1 ≤ p ≤ m, m + 1 ≤ r ≤ n}, respectively.
Decreasing the radio range ρ > 0 reduces the size of the sets N x and N a monotonically.
For smaller size N x and N a, the system of quadratic equations (1), which is rewritten as
(3) below, is more likely to satisfy a structured sparsity called the correlative sparsity in the
literature [15, 30]. This sparsity can be utilized to increase the effectiveness of the sparse
SDP relaxation [30] when applied to the POPs (4) and (6).

Introduce an ℓ × m matrix variable X = (x1, . . . , xm) ∈ Rℓ×m. Then, the system of
equations above can be written as

d2
pq =

ℓ∑
i=1

X2
ip − 2

ℓ∑
i=1

XipXiq +
ℓ∑

i=1

X2
iq (p, q) ∈ N x,

d2
pr =

ℓ∑
i=1

X2
ip − 2

ℓ∑
i=1

Xipair + ∥ar∥2 (r, q) ∈ N a.

 (3)

Here, Xip denotes the (i, p)th element of the matrix X or the ith element of xp. We call
(3) a system of sensor network localization equations, and a matrix variable or a solution
X = (x1, . . . , xm) ∈ Rℓ×m of the system (3) a sensor location matrix. By introducing an
objective function that is identically zero, QOP for the sensor network localization without
noise is obtained:

minimize 0 subject to the equality constraints (3). (4)

Let L0 denote the set of solutions X ∈ Rℓ×m of the system of sensor network localization
equations (3) (or the POP (4)).

2.2 Problems with noisy distances

When the given distances d̂pq > 0 ((p, q) ∈ N x) and d̂pr > 0 ((p, r) ∈ N a) contain noise,

the system of sensor network localization equations (3) with dpq = d̂pq ((p, q) ∈ N x) and

dpq = d̂pr ((p, r) ∈ N a) may not be feasible. In such a case, we can estimate the locations
of sensors with a least square solution X of (3), i.e., an optimal solution of the problem

minimize
∑

(p, q) ∈ N x

(d̂2
pq − ∥xp − xq∥2)2 +

∑
(p, r) ∈ N a

(d̂2
pr − ∥xp − ar∥2)2

(5)

Notice that this is an unconstrained POP. Nie [23] applied the SDP relaxation [17] to the
POP of this form. He also proposed a sparse SDP relaxation exploiting a special structure
of the POP (5), and reported some numerical results. His sparse SDP relaxation possesses
a nice theoretical property that if the system of sensor network localization equations (3)
with dpq = d̂pq ((p, q) ∈ N x) and dpr = d̂pr ((p, r) ∈ N a) is feasible or if the POP (5) attains
the optimal value 0, then so dose its sparse SDP relaxation. As a result, the sparse SDP

4



relaxation is exact. A disadvantage of this formulation (5) lies in the high degree of the
polynomial objective function, degree 4, in the unconstrained POP (5). Note that degree 4
is twice the degree of polynomials in the system of quadratic equations (3). This increases
the size of the sparse SDP relaxation of the unconstrained POP (5).

We can reformulate the POP (5) as a quadratic optimization problem (QOP)

minimize
∑

(p,q)∈N x

ξ2
pq +

∑
(p,r)∈N a

ξ2
pr

subject to d̂2
pq =

ℓ∑
i=1

X2
ip − 2

ℓ∑
i=1

XipXiq +
ℓ∑

i=1

X2
iq + ξpq (p, q) ∈ N x,

d̂2
pr =

ℓ∑
i=1

X2
ip − 2

ℓ∑
i=1

Xipair + ∥ar∥2 + ξpr (r, q) ∈ N a,


(6)

where ξpq denotes an error variable. Now, the polynomials in the problem (6) are of degree
2, a half of the degree of the objective polynomial of the POP (5), which makes the size of
the resulting dense SDP relaxation [17] smaller. In addition, the sparse SDP relaxation [30]
with the relaxation order 1 is equivalent to the dense SDP relaxation with the same order.

Further discussions on the problems with noisy distances and a new QOP formulation
are included in Section 4.5.

3 SDP relaxations

We describe SDP relaxations for the POP (4) derived from sensor network localization
with exact distances. The SDP relaxation described for the QOP (4) in Section 3.1 is a
special case of the SDP relaxation proposed by Lasserre [17] (the dense SDP relaxation)
for general POPs in the sense that the relaxation order is fixed to 1 for the QOP (4). We
also mention that the dense SDP relaxation described there is essentially a classical SDP
relaxation proposed by Shor [24, 25] for QOPs. Instead of just referring to [11, 17, 24, 25], we
describe the dense SDP relaxation in detail to compare with the Biswas-Ye SDP relaxation
[2, 26] of the POP (4) in Section 3.2. In Section 3.3, we discuss sparse variants of the
dense SDP relaxation given in Section 3.1 and the Biswas-Ye SDP relaxation [2]. Most of
the discussions here are valid for the POP (6) for sensor network localization with noisy
distances, but the details are omitted.

The following symbols are used to describe the dense and sparse SDP relaxations. Let

I = {ip : 1 ≤ i ≤ ℓ, 1 ≤ p ≤ m} , (7)

the set of subscripts of the matrix variable X.

#C = the number of elements in C (C ⊆ I).

For every sensor location matrix variable X = (x1, . . . , xm) ∈ Rℓ×m and C ⊆ I, define

(Xip : ip ∈ C) = the row vector variable consisting of Xip (ip ∈ C), where the

elements are arranged according to the lexicographical

order of the subscripts ip ∈ C; for example

if C = {11, 12, 21, 22}, then (Xip : ip ∈ C) = (X11, X12, X21, X22),

5



and

(Xip : ip ∈ C)(Xip : ip ∈ C)T =
∑
ip∈C

∑
jq∈C

E(C)ipjqXipXjq, (8)

where E(C)ipjq denotes the #C × #C matrix whose (ip, jq)th element is 1 and all others 0.
Specifically, we write Eipjq = E(I)ipjq ((ip, jq) ∈ I × I);

(Xip : ip ∈ I)(Xip : ip ∈ I)T =
∑
ip∈I

∑
jq∈I

EipjqXipXjq. (9)

If C ⊆ I and ip, jq ∈ C, then each E(C)ipjq forms a submatrix of Eipjq. Hence, the matrix
on the right-hand side of (8) is a submatrix of that of (9). We also note that

E(C)jqip = E(C)T
ipjq (ip, jq ∈ C),

as a result, the matrices in (8) and (9) are symmetric.
Replacing each XipXjq by a single variable Uipjq in (9), we define a #I × #I matrix

variable U =
∑

ip∈I
∑

jq∈I EipjqUipjq. From the identity XipXjq = XjqXip, (ip, jq ∈ I),
we impose Uipjq = Ujqip, or that the matrix U is symmetric. The matrix variable U serves
as a linearization of the polynomial (quadratic) matrix (Xip : ip ∈ I)(Xip : ip ∈ I)T . We
also use the notation U (C) for the submatrix variable of U consisting of elements Uipjq

(ip, jq ∈ C): U (C) =
∑

ip∈C
∑

jq∈C E(C)ipjqUipjq.

3.1 The dense SDP relaxation

A polynomial (quadratic) matrix inequality

O ≼
(

1 (Xip : (ip ∈ I))
(Xip : (ip ∈ I))T (Xip : (ip ∈ I))T (Xip : (ip ∈ I))

)
∈ S#I + 1 (10)

is added to the system of sensor network localization equations (3) to derive the dense SDP
relaxation. Since (10) holds for any sensor location matrix X ∈ Rℓ×m, the solution set L0

of (3) or the set of feasible solutions the POP (4) remains the same. Using (9), we rewrite
the polynomial matrix inequality (10) as

O ≼

 1 (Xip : (ip ∈ I))

(Xip : (ip ∈ I))T
∑
ip∈I

∑
jq∈I

EipjqXipXjq

 ∈ S#I + 1. (11)

Now we linearize (3) and (11) by replacing every XipXjq with a single variable Uipjq (ip, jq ∈
I) and obtain SDP relaxations of the system (3) and the POP (4):

d2
pq =

ℓ∑
i=1

Uipip − 2
ℓ∑

i=1

Uipiq +
ℓ∑

i=1

Uiqiq (p, q) ∈ N x,

d2
pr =

ℓ∑
i=1

Uipip − 2
ℓ∑

i=1

Xipair + ∥ar∥2 (p, r) ∈ N a,

O ≼
(

1 (Xip : (ip ∈ I))
(Xip : (ip ∈ I))T U

)
.


(12)

6



and
minimize 0 subject to the constraints (12). (13)

Let

L1d =

{
X ∈ Rℓ×m :

(X, U) is a solution of (12)
for some U ∈ Sℓm×ℓm

}
Proposition 3.1. L0 ⊆ L1d.

Proof: Let X ∈ L0. Then, X satisfies (3) and (10). Let U be #I × #I symmetric
matrix whose components are given by Uipjq = XipXjq (ip, jq ∈ I). Then, (X,U) satisfies
(12). Therefore, X ∈ L1d.

3.2 Comparison of the dense SDP relaxation with the Biswas-Ye
SDP relaxation

The Biswas-Ye SDP relaxation [2] of the system of sensor network localization equations
(3) is of the form

d2
pq = Ypp + Yqq − 2Ypq (p, q) ∈ N x,

d2
pr = ∥ar∥2 − 2

ℓ∑
i=1

Xipair + Ypp (p, r) ∈ N a,

O ≼
(

Iℓ X
XT Y

)
.


(14)

Here Iℓ denotes the ℓ × ℓ identity matrix and

Y =


Y11 . . . Y1q . . . Y1m
...

...
...

Yp1 . . . Ypq . . . Ypm
...

...
...

Ym1 . . . Ymq . . . Ymm

 ∈ Sm (15)

a matrix variable. Let

L2d =

{
X ∈ Rℓ×m :

(X,Y ) is a solution of (14)
for some Y ∈ Sm×m

}
Proposition 3.2. L1d ⊆ L2d.

Proof: Suppose that X ∈ L1d. Then, there exists a U ∈ S#I such that (X,U) satisfies
(12). Let Ci = {ip : 1 ≤ p ≤ m} (1 ≤ i ≤ ℓ). Then, #Ci = m. Define an m × m
symmetric matrix Y by Y =

∑ℓ
i=1 U(Ci) or Ypq =

∑ℓ
i=1 Uipiq (1 ≤ p ≤ m, 1 ≤ q ≤ m).

We show that (X, Y ) satisfies (14); then X ∈ L2d follows. By definition, we observe that

Ypp =
ℓ∑

i=1

Uipip, Ypq =
ℓ∑

i=1

Uipiq and Yqq =
ℓ∑

i=1

Uiqiq

7



for every p = 1, . . . ,m and q = 1, . . . ,m. Thus, the first two relations of (14) follow from
the first two relations of (12), respectively. Now, we consider the matrices(

1 (Xip : (i, p) ∈ Ci)
(Xip : (i, p) ∈ Ci)

T U(Ci)

)
(1 ≤ i ≤ m). (16)

Note that the matrices in (16) are positive semidefinite because they are submatrices of
the positive semidefinite matrix(

1 (Xip : (ip ∈ I))
(Xip : (ip ∈ I))T U

)
in (12). The positive semidefiniteness of the matrices in (16) implies that

O ≼ U(Ci) − (Xip : (i, p) ∈ Ci)(Xip : (i, p) ∈ Ci)
T (1 ≤ i ≤ ℓ).

As a result,

O ≼
ℓ∑

i=1

(
U(Ci) − (Xip : (i, p) ∈ Ci)(Xip : (i, p) ∈ Ci)

T
)

= Y − XT X.

Finally, the relation O ≼ Y − XT X is equivalent to the last relation of (14).

From the proof above, we can say that the Biswas-Ye SDP relaxation is an aggregation
of the dense SDP relaxation described in Section 3.1. Propositions 3.2 makes it possible to
apply some of the results on the Biswas-Ye SDP relaxation in [2] to the dense SDP relaxation
given in Section 3.1. Among many results, it is worthy to mention that if the system of
sensor network localization equations (3) is uniquely localizable, then L0 = L1d = L2d. See
Definition 1 and Theorem 2 of [26].

3.3 Exploiting sparsity in the SDP relaxation problems (13) and
(14)

It is convenient to introduce an undirected graph G(V,N x) associated with the sensor
network localization problem to discuss sparsity exploitation in its SDP relaxations, where
V = {1, . . . ,m} denotes the set of sensors and N x indicates the set {{p, q} : (p, q) ∈ N x}
of undirected edges of the graph. Let G(V, E) be a chordal extension of G(V,E), and
C1, . . . , Ck be the family of all maximal cliques of G(V, E). A graph is called chordal if
every cycle of length ≥ 4 has a chord (an edge joining two nonconsecutive vertices of the
cycle). For the definition and basic properties of chordal graphs, we refer to [6]. We note
that k ≤ m since G(V, E) is chordal. We assume that G(V, E) is sparse or that the size of
each maximal clique of G(V, E) is small. When the set N x is determined by (2) for a small
radio range ρ > 0, this assumption is expected to hold.

It should be noted that G(V,N x) is obtained as a subgraph of the graph G(N,N x∪N a),
which has been introduced as a geometrical representation of a sensor network localization
problem, by eliminating all anchor nodes {m+1,m+2, . . . , n} from N and all edges in N a.
This means that anchors are not relevant at all to the discussion in this section on exploiting
sparsity in the SDP relaxation problems. However, the edges in N a play a crucial role in

8



extracting a smaller and sparser subgraph G(V,N x ∩E) of G(V,N x), to which the method
of this section can be applied for some E ⊆ N x ∪ N a. The main purpose of extracting a
subgraph is that the sensor network localization problem with the reduced graph G(N, E)
can be solved more efficiently, resulting in highly accurate approximations of the locations
of sensors. This will be discussed in Section 4.1.

A sparse SDP relaxation problem of the QOP (4) can be derived in two different ways.
The one is an application of the sparse SDP relaxation by Waki, Kim, Kojima and Mura-
matsu [30] for solving a general sparse POPs to the QOP (4), and the other is an application
of the positive definite matrix completion based on [12, 21] to the dense SDP relaxation
problem (13). The correlative sparsity in POPs is an essential property in the former ap-
proach, while the aggregated sparsity plays a crucial role in the latter.

We derive a sparse relaxation simultaneously using the positive definite matrix comple-
tion from the dense SDP relaxation problems (13) and (14). The derivation of a sparse SDP
relaxation problem of the QOP (4) via the positive definite matrix completion has not dealt
previously. It is simple to describe, more importantly, it is consistent with the derivation of
a sparse counterpart of the Biswas-Ye SDP relaxation problem (14).

First, we rewite the SDPs (13) and (14) in an equality standard primal SDP of the form

minimize A0 • Z subject to At • Z = bt (t ∈ T ) Z ≽ O, (17)

where T denotes a finite index set. For (13), we define

Z =

(
X00 (Xip : (ip ∈ I))

(Xip : (ip ∈ I))T U

)
, (18)

and for (14),

Z =

(
W X
XT Y

)
. (19)

After the equality standard form SDP is obtained, the positive definite matrix completion
method [12], or the conversion method using positive definite matrix completion [21] can be
applied. Specifically, the application of the conversion method to (17) leads to a sparse SDP
relaxation problem of (13) and a sparse variant of the Biswas-Ye SDP relaxation problem
(14). The sparse SDP relaxation derived here is essentially the same as the sparse SDP
relaxation [30] with the relaxation order 1 for the QOP (4). It should be emphasized that
the resulting SDP problems are equivalent to the dense relaxation problems (13) and (14).
We explain the derivation in detail below.

Let V denote the index set of rows (and columns) of the matrix variable Z. We
assume that the rows and columns of the matrix Z in (18) are indexed by 00 and ip
(i = 1, . . . , ℓ, p = 1, . . . ,m) in the lexicographical order and those of the matrix Z in (19)
by 01, . . . , 0ℓ, ∗1, . . . , ∗m. Hence, V = {00, ip (i = 1, . . . , ℓ, p = 1, . . . ,m)} for (13), and
V = {10, . . . , ℓ0, ∗1, . . . , ∗m} for (14), where ∗ denotes a fixed symbol or integer larger than
ℓ so that each element of At can be written as [At]ipjq.

As in [12], we introduce the aggregated sparsity pattern E of the data matrices

E = {(ip, jq) ∈ V × V : [At]ipjq ̸= 0 for some t ∈ T},

9



where [At]ipjq denotes the (ip, jq)th element of the matrix At. The aggregated sparsity
pattern can be represented geometrically with a graph G(V , E). Note that the edge set of
the graph {{ip, jq} ∈ E : ip is lexicographically smaller than jq} has been identified as E
itself.

Now, construct a chordal extension G(V , E) of G(V , E) by simulating the chordal exten-
sion from G(V,E) to G(V, E). For (13), define

E = {{00, ip} (1 ≤ i ≤ ℓ, 1 ≤ p ≤ m)}
∪{{ip, jq} ((p, q) ∈ E, 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ℓ)}
∪{{ip, jp} (1 ≤ p ≤ m, 1 ≤ i < j ≤ ℓ)},

Ch = {00, 1p, . . . , ℓp (p ∈ Ch)} (1 ≤ h ≤ k),

and for (14),

E = {{i0, j0} (1 ≤ i < j ≤ ℓ)}
∪{{i0, ∗p} (1 ≤ i ≤ ℓ, 1 ≤ p ≤ m)}
∪{{∗p, ∗q} ((p, q) ∈ E)},

Ch = {10, . . . , ℓ0, ∗p (p ∈ Ch)} (1 ≤ h ≤ k).

Then, we can verify that G(V , E) forms a chordal extension of G(V , E), and that C1, . . . , Ck

are its maximal cliques in both cases.
If we apply the conversion method [21] to (17) using the information on the chordal

graph G(V , E) and its maximal cliques C1, . . . , Ck, then we obtain an SDP problem

minimize A0 • Z
subject to At • Z = bt (t ∈ T ), ZCh,Ch

≽ O (1 ≤ h ≤ k).

}
(20)

Here ZCi,Ch
denotes a submatrix of Z consisting of the elements Zipqj ((i, p) ∈ Ch, (j, p) ∈

Ch). If the size of every Ch is small, we can solve the SDP (20) more efficiently than the
original SDP (17)

For (13), the SDP (20) is rewriiten as

minimize 0

d2
pq =

ℓ∑
i=1

Uipip − 2
ℓ∑

i=1

Uipiq +
ℓ∑

i=1

Uiqiq (p, q) ∈ N x,

d2
pr =

ℓ∑
i=1

Uipip − 2
ℓ∑

i=1

Xipair + ∥ar∥2 (p, r) ∈ N a,

O ≼

(
1 (Xip : (ip ∈ C̃h))

(Xip : (ip ∈ C̃h))
T U(C̃h)

)
(1 ≤ h ≤ k),


(21)

where C̃h = Ch\{00} = {1p, . . . , ℓp (p ∈ Ch)}. For (14), the (20) is rewritten as

minimize 0
d2

pq = Ypp + Yqq − 2Ypq (p, q) ∈ N x,

d2
pr = ∥ar∥2 − 2

ℓ∑
i=1

Xipair + Ypp (p, r) ∈ N a,

O ≼
(

Iℓ (xp : p ∈ Ch)
(xp : p ∈ Ch)

T Y Ch,Ch

)
(1 ≤ h ≤ k),


(22)

10



where (xp : p ∈ Ch) denotes the ℓ × #Ch matrix variable consisting of xp (p ∈ Ch) and
Y Ch,Ch

a submatrix of Y consisting of elements Y pq (p ∈ Ch, q ∈ Ch). Let

L1s =

{
X ∈ Rℓ×m :

(X,U) is a solution of (21)
for some U ∈ Sℓm×ℓm

}
,

L2s =

{
X ∈ Rℓ×m :

(X,Y ) is a solution of (22)
for some Y ∈ Sm×m

}
.

Proposition 3.3. L1s = L1d ⊆ L2s = L2d

Proof: By Proposition 3.2, we know that L1d ⊆ L2d. The equivalence of the SDPs (17)
and (20) is established in [12]. Hence L1s = L1d and L2s = L2d follow.

We briefly mention a generalization of the sparse variant (22) of the Biswas-Ye SDP
relaxation, which includes the node-based and edge-based SDP relaxations of sensor network
localization problems proposed in [31]. They are regarded as further relaxations of the
Biswas-Ye SDP relaxation. We call them NSDP and ESDP, respectively, as in [31]. Our
sparse SDP relaxation described above is compared with ESDP with numerical results in
Section 5.

Let Γ be a family of nonempty subsets of the set {1, . . . ,m} of sensors. Then, a relaxation
of the Biswas-Ye SDP relaxation (14) is

minimize 0
d2

pq = Ypp + Yqq − 2Ypq (p, q) ∈ N x,

d2
pr = ∥ar∥2 − 2

ℓ∑
i=1

Xipair + Ypp (p, r) ∈ N a,

O ≼
(

Iℓ X(C)
X(C)T Y (C)

)
(C ∈ Γ).


(23)

Obviously, if we take the family of maximum cliques C1, . . . , Ck of the chordal extension
G(V,E) of the aggregated sparsity pattern graph G(V,E) for Γ, the SDP (23) coincides with
the SDP (22). On the other hand, if Γ = {{q ∈ V : (p, q) ∈ N x} : p ∈ V } in the SDP (23),
it becomes the NSDP relaxation, and if Γ = {{p, q} : (p, q) ∈ N x} , the ESDP relaxation
is obtained. In case of the ESDP relaxation, each member of the family Γ consists of two
elements, and the matrix in the positive semidefinite condition of (23) is (ℓ + 2) × (ℓ + 2).
Let Ln and Le denote the solution sets of the NSDP and ESDP relaxation, respectively.
By construction, we know that L2d ⊆ Ln ⊆ Le. It was shown in [31] that if the underlying
graph G(V, E) is chordal, then L2d = Ln. In this case, we know that G(V, E) = G(V, E) and
that L2d = L2s = Ln also follows from Proposition 3.3.

4 Additional techniques

We present two methods for reducing the size of the sparse SDP relaxation problem (21) to
increase the computational efficiency. In the method described in Section 4.1, the size of the
system of sensor network localization equations (3) is reduced before applying the sparse
SDP relaxation. The method in Section 4.2 is to decrease the size of the SDP relaxation

11



problem by eliminating free variables [16]. We also address the issues of strengthening the
sparse SDP relaxation by adding inequalities for the search region, refining solutions of
the SDP relaxation using a nonlinear least square method, and modifying the objective
function of the QOP (6) in Sections 4.3, 4.4 and 4.5, respectively. Except for the last
section Section 4.5, only the sparse SDP relaxation (21) of the QOP (4) from the sensor
network localization problem with exact distances is considered. All the discussions there,
however, can be applied to the sparse SDP relaxation of the POP(6) for the sensor network
localization problem with noisy distance.

4.1 Reducing the size of the system of sensor network localization
equations (3)

Recall that G(N,N x ∪ N a) denotes a graph associated with the system of sensor network
localization equations (3), where N = {1, . . . , n} denotes the node set consisting of all
sensors and anchors. Consider subgraphs G(N,E ′) of G(N,N x ∪ N a) with the same node
set N and an edge subset E ′ of N x ∪ N a. Let deg(p, E ′) denote the degree of a node
p ∈ N in a subgraph G(N,E ′), i.e., the number of edges incident to a node p ∈ N . In the
ℓ-dimensional sensor network localization problem, deg(p, E) ≥ ℓ+1 for every sensor node p
is necessary (but not sufficient) to determine their locations when they are located in generic
positions. Therefore, we consider the family Gκ of subgraphs G(N,E ′) of G(N,N x ∪ N a)
such that deg(p, E ′) is not less min{deg(p,N x ∪N a), κ} for every sensor node p, where κ
is a positive integer not less than ℓ + 1. We choose a minimal subgraph G(N, E) from the
family Gκ, and replace N x and N a by N x ∩ E and N a ∩ E, respectively, in the system of
sensor network localization equations (3).

When choosing edges from N x and N a for a reduced edge set E, we give the priority
to the edges in N a over ones in N x. More precisely, for every sensor p = 1, 2, . . . ,m, we
first choose at most s + 1 edges (p, r) ∈ N a, and then choose edges from N x to produce
a minimal subgraph G(N, E) satisfying the desired property. As N a involves more edges,
the resulting subgraph G(V,N x ∩ E) becomes sparser and small. Thus, the sparse SDP
relaxation in Section 3.3 for the reduced problem with the graph G(V,N x ∩ E) can be
solved more efficiently. This will be confirmed through numerical results in Section 5.

With an increasingly larger value for κ, we can expect to obtain more accurate locations
of the sensors though it takes longer to solve the sparse SDP relaxation. In the numerical
experiments in Section 5, we took κ = ℓ + 2.

A different way of reducing the size of the system of sensor network localization equations
(3) was proposed by Wang et al. [31]. They restricted the degree of each sensor node to a
small positive integer λ. Let Gλ denote the family of subgraphs G(N,E ′) of G(N,E) such
that deg(p, E ′) ≤ λ for every sensor p. It was suggested to take λ ∈ {7, 8, 9, 10} in their
MATLAB program ESDP of an SDP relaxation method proposed for the 2-dimensional
sensor network localization problem in [31].

We tested these two methods, the one choosing a minimal subgraph from the family Gκ,
and the other choosing a maximal subgraph from the family Gλ, and found that the former
method is more effective when it is combined with the sparse SDP relaxation (21) described
in Section 3.3 and also with the Biswas-Ye SDP relaxation (14) described in Section 3.2.

12



4.2 Reducing the size of the SDP relaxation problem (21)

We rewrite the sparse SDP relaxation problem (21) as a dual form SDP with equalities

maximize
k∑

i=1

biyi

subject to a0 −
∑k

i=1 aiyi = 0, A0 −
k∑

i=1

Aiyi ≽ O.

 (24)

for some vectors ai (i = 0, 1, . . . , k), symmetric matrices Ai (i = 0, 1, . . . , k) and real
numbers bi = 0 (i = 1, . . . , k). The corresponding primal SDP is of the form

minimize aT
0 z + A0 • Z

subject to aT
i z + Ai • Z = bi (i = 1, . . . , k), Z ≽ O,

}
(25)

which contains free vector variable z. In [16], Kobayashi, Nakata and Kojima proposed a
method to reduce the size of the primal-dual pair SDPs of this form by eliminating the free
variable vector z from the primal SDP (25) (and the equality constraint a0−

∑k
i=1 aiyi = 0

from the dual (24)). We used an improved version of their method before applying SeDuMi
[27] to solve primal-dual pair SDPs (25) and (24) in the numerical experiments in Section
5. The method worked very effectively to reduce the computational time for solving the
SDPs (24) and (25). The improved method will be reported in a forthcoming paper, and
the details are omitted here.

4.3 Adding linear or quadratic inequalities describing the search
region

Suppose that unknown locations x1, . . . , xm of the sensors satisfy linear or quadratic inequal-
ities gi(x1, . . . , xm) ≤ 0 (i = 1, . . . , k). Then, these inequality constraints can be added to
the POPs (4) to strengthen the SDP relaxation. If gi(x1, . . . , xm) ≤ 0 (i = 1, . . . , k) are
convex, then any feasible solution (X, U) = (x1, . . . , xm,U ) of the sparse SDP relaxation
problem (21) satisfies the inequalities. For example, if the unit square [0, 1] × [0, 1] or the
unit circle {(x, y) : x2 + y2 ≤ 1} is the region for searching sensors x1, . . . , xp, we can add
0 ≤ xip ≤ 1 (p = 1, . . . ,m, i = 1, 2) or 1 − (xp)

T xp ≥ 0 (p = 1, . . . ,m), respectively to the
POP (4).

4.4 Refining solutions by a nonlinear least square method

A nonlinear optimization method can be used to refine the solution obtained by an SDP
relaxation of the sensor network localization problem as suggested in [5], where the gradient
method is used. In the numerical experiments in Section 5, the MATLAB function “lsqnon-
lin” an implementation of the trust-region reflective Newton method [7, 8] for nonlinear
least square problems with bound constraints is used.

13



4.5 Modification of the objective function for the sensor network
localization problem with noisy distances

When the given distances d̂pq ((p, q) ∈ N x∪N a) contain noise, the system of sensor network
localization equations (3) may not have any solution. To deal with noise, an objective
function should be introduced. If the true sensor locations ap (p = 1, . . . ,m) were known
in advance, the root mean square distance (rmsd)

1

m

(
m∑

p=1

∥xp − ap∥2

)1/2

(26)

could be an objective function. In fact, the rmsd has been used to evaluate the quality of
computed locations xp of sensors p = 1, . . . ,m generated by numerical methods in [2, 3, 4,
28, 31]. Thus, it is reasonable to choose an objective function that can decrease the value
of the rmsd.

In Section 2.2, we have introduced the objective function (5), which was employed in
Nie [23]. The objective function used in [31] is∑

(p, q) ∈ N x

∣∣∣d̂2
pq − ∥xp − xq∥2

∣∣∣ +
∑

(p, r) ∈ N a

∣∣∣d̂2
pr − ∥xp − ar∥2

∣∣∣ . (27)

Both of the objective functions involve the deviation ∥xp − xq∥2 from d̂2
pq (or ∥xp − xr∥2

from d̂2
pr). We also tested the objective function∑

(p, q) ∈ N x

(d̂pq − ∥xp − xq∥)2 +
∑

(p, r) ∈ N a

(d̂pr − ∥xp − ar∥)2. (28)

This may be a better choice than the objective function (5) because deviations between d̂pq

and ∥xp − xq∥ ((p, q) ∈ N x ∪ N a) are involved more directly than the deviation between
their squares in (5) and (27). The minimization of this objective function can be formulated
as a QOP

minimize
∑

(p, q) ∈ N x

(d̂pq − vpq)
2 +

∑
(p, r) ∈ N a

(d̂pr − vpr)
2

subject to v2
pq − ∥xp − xq∥2 = 0, vpq ≥ 0 ((p, q) ∈ N x),

v2
pr − ∥xp − ar∥2 = 0, vpr ≥ 0 ((p, r) ∈ N a),

(1 − φ)d̂pq ≤ vpq ≤ (1 + ψ)d̂pq ((p, q) ∈ N x),

(1 − φ)d̂pr ≤ vpr ≤ (1 + ψ)d̂pr ((p, r) ∈ N a),


(29)

where φ ∈ [0, 1] and ψ ≥ 0 are fixed real numbers. We note that the last two lines of
upper and lower bound constraints in (29) are added to strengthen the SDP relaxation (see
Section 5.6 of [30]), and that if we take φ = ψ = 0, then the QOP (29) coincides with the
QOP (4). The sparse SDP relaxation of the QOP (29) provided smaller rmsd values and
better solution quality than the sparse SDP relaxation of the QOP (6) in the numerical
experiments although it required slightly more cpu time since the objective function in (29)
is not as simple as that in (6).

14



5 Numerical results

We compare the sparse SDP relaxation (SSDP) with an implementation of the Biswas-Ye
SDP relaxation [3] (FSDP) and the edge-based SDP relaxation [31] (ESDP). Recall that
SSDP is an application of the sparse SDP relaxation by Waki, Kim, Kojima and Muramatsu
[30] for a general sparse polynomial optimization problem to the QOP (4) for sensor network
localization problems with exact distances, and to the QOP (29) for problems with noisy
distances. For problems with exact distances, see also (21) for SSDP, (14) for FSDP and
(23) with Γ = {{p, q} : (p, q) ∈ N x} for ESDP, respectively. ESDP is shown to be more
efficient than FSDP, the POP method in [23], and the SOCP relaxation in [28]. MATLAB
codes for ESDP and FSDP are downloaded from the website [33].

SDP relaxation problems are constructed by applying SparsePOP [30] to the QOPs (4)
and (29), and solved by SeDuMi [27] in SparsePOP. Both FSDP and ESDP use SeDuMi.
For refining the obtained solutions, ESDP utilizes the gradient method while SSDP uses a
nonlinear least square method provided by the MATLAB function lsqnonlin, which is an
implementation of the trust region Newton method [7, 8] for nonlinear least square problems
with bound constraints. As mentioned in Section 4.2, an improved version of the method
in [16] for handling equality constraints to reduce the size of the SSDP relaxation problem
is employed before applying SeDuMi for the numerical experiments.

Numerical test problems are generated as follows: m sensors ap (p = 1, 2, . . . ,m) are
distributed randomly in the 2-dimemensional unit square [0, 1]×[0, 1] or the 3-dimemensional
unit cube [0, 1]3, where m = 500 and 1000 are used in the 2-dimensional problems and
m = 250 in the 3-dimensional problems. Anchors are placed as follows:

center3 : 3 anchors at (0.5, 0.5), (0.6., 0.5), (0.5, 0.6),

bd3 : 3 anchors on the boundary points (0, 0), (0.5, 0), (0, 0.5),

corner4 : 4 anchors on the corners (a1, a2), ai ∈ {0, 1},
5 × 5 : 25 anchors on the grid (a1, a2), ai ∈ {0, 1/4, 2/4, 3/4, 1},

rand50 : 50 randomly placed anchors in [0, 1] × [0, 1],

rand100 : 100 randomly placed anchors in [0, 1] × [0, 1]

for 2-dimensional problems, and

center4 : 4 anchors at (0.5, 0.5, 0.5), (0.5, 0.6., 0.5), (0.5, 0.5, 0.6),

(0.5, 0.5, 0.6),

bd4 : 4 anchors on the boundary (0, 0, 0), (0.5, 0, 0), (0, 0.5, 0),

(0, 0, 0.5),

corner8 : 8 anchors on the corners (a1, a2, a2), ai ∈ {0, 1},
3 × 3 × 3 : 27 anchors on the grid (a1, a2, a3), ai ∈ {0, 1/2, 1},

rand25 : 25 randomly placed anchors.

for the 3-dimensional problems. A radio range ρ chosen from {0.1, 0.2, 0.3} for the 2-
dimensional problems or from {0.3, 0.4, 0.5} for the 3-dimensional problems determines
the sets N x and N a by (2). The exact distances

dpq = ∥ap − aq∥ ((p, q) ∈ N x) and dpr = ∥ap − ar∥ ((p, r) ∈ N a)

15



are computed. For numerical problems with noisy distances, we further perturb the distances
as

d̂pq = (1 + σϵpq)dpq ((p, q) ∈ N x) and d̂pr = (1 + σϵpr)dpr ((p, r) ∈ N a). (30)

Here σ denotes a nonnegative constant, and ϵpq and ϵpr are chosen from the standard normal
distribution N(0, 1). We call σ a noisy factor, and we take σ = 0.01 and σ = 0.1 for noisy
problems in Sections 5.2 and 5.3.

Throughout Section 5, ρ denotes radio range, λ an upper bound for the degree of any
sensor node described in Section 4.1 for ESDP, κ a lower bound for the degree of any sensor
node described in Section 4.1 for FSDP and SSDP, “cpu” cpu time in seconds consumed
by SeDuMi with the accuracy parameter pars.eps = 1.0e-5. The root mean square distance
(rmsd) (see (26)) is used to measure the accuracy of the locations of sensor p = 1, 2, . . . ,m
computed by SeDuMi and to measure the accuracy of their refinement by the gradient
method in ESDP or the MATLAB function lsqnonlin in FSDP and SSDP. The values of
rmsd after the refinement are included in the parentheses. We note that ESDP provides
only rmsd after refining the locations of sensors. Numerical experiments were performed on
PowerPC 1.88GHz with 2GB memory.

5.1 Problems with exact distances

Tables 1 shows numerical results on the problems with 500 sensors randomly generated in
[0, 1] × [0, 1] and exact distances. If we compare the values of rmsd, we see that

(a) FSDP(4) and SSDP(4) attain similar quality of rmsd in all test problems, however,
cpu time consumed by FSDP(4) to solve SDP relaxation problems using SeDuMi is
larger than SSDP(4). In particular, the difference in cpu time becomes larger as ρ
increases to 0.2 and 0.3.

Based on this observation, ESDP and SSDP are compared on larger-scale problems with or
without noise in 2-dimensional and 3-dimensional space in the following discussion. Table 2
shows numerical results on the problems with 1000 sensors randomly generated in [0, 1] ×
[0, 1] and exact distances. From Tables 1 and 2, we notice the following.

(b) For center3 and bd3 with ρ = 0.1, very large values of rmsd are obtained with ESDP(7),
ESDP(10) and SSDP(4). See Figures 1 for center3 with ρ = 0.1 in Table 1.

(c) In cases of center3 with ρ = 0.2 and bd3 with ρ = 0.2 and 0.3, SSDP(4) attained rmsd
small enough to locate the sensors accurately while ESDP(7) and ESDP(10) did not.
See Figure 2.

(d) As the number of sensors is increased from 500 in Table 1 to 1, 000 in Tablel 2, the
values of rmsd become smaller in many cases including center3 with ρ = 0.3 and
corner4 with ρ = 0.1.

(e) Except the cases mentioned in (b), (c) and (d), ESDP(7), ESDP(10) and SSDP(4)
attain small values of rmsd.

16



(f) SSDP(4) spend more cpu time to solve SDP relaxation problems by SeDuMi for corner4,
5× 5, bd3 and center3 with ρ = 0.1, and less cpu time in all the other problems than
ESDP(7) and/or ESDP(10).

(g) In all test problems, cpu time consumed by SSDP(4) to solve SDP relaxation problems
using SeDuMi decreases as the radio range ρ increases. Note that as the radio range ρ
increases, N a involves more edges, and the reduced problem after applying the method
in Section 4.1 becomes sparse and small. As a result, its SDP relaxation can be solved
faster. This can be observed in Table 3 where information on the sparsity of the SDP
relaxation problems constructed by SSDP is exhibited. It is known that the size of the
Schur complement matrix and the number of nonzeros of its sparse Cholesky factor,
which are denoted as sizeR and #nnzL, respectively, are key factors to measure the
size and the sparsity of the SDP relaxation problems. As ρ changes from 0.1 to 0.3,
the considerable decrease in sizeR and #nnzL leads to shorter cpu time by SeDuMi.

anchor ρ=0.1 ρ=0.2 ρ=0.3
SDP(λ|κ) location rmsd cpu rmsd cpu rmsd cpu
ESDP(7) center3 (1.4e-02) 107.9 (6.1e-03) 107.9 (5.2e-04) 98.7
ESDP(10) center3 (1.3e-02) 117.0 (4.6e-03) 193.0 (9.0e-06) 161.0
FSDP(4) center3 1.3e-02(1.2e-02) 393.1 3.7e-04(4.6e-08) 519.7 (5.5e-09) 508.3
SSDP(4) center3 8.4e-03(7.7e-03) 164.1 1.7e-04(1.2e-07) 56.2 (8.3e-09) 30.9

ESDP(7) bd3 (2.8e-02) 30.0 (2.1e-02) 163.2 (1.3e-02) 100.1
ESDP(10) bd3 (2.9e-02) 47.6 (2.1e-02) 262.0 (1.0e-02) 169.3
FSDP(4) bd3 1.3e-02(1.9e-03) 461.6 5.2e-06(1.4e-07) 399.7 (4.9e-09) 548.9
SSDP(4) bd3 3.2e-02(2.8e-02) 172.6 2.6e-03(3.2e-08) 60.3 (2.6e-08) 34.1

ESDP(7) corner4 (1.8e-03) 39.4 (7.1e-06) 217.8 (4.1e-07) 106.9
ESDP(10) corner4 (1.1e-03) 82.2 (1.8e-07) 237.5 (8.4e-09) 106.6
FSDP(4) corner4 7.8e-04(3.0e-04) 515.8 4.5e-06(8.3e-09) 474.2 (4.7e-10) 399.5
SSDP(4) corner4 1.1e-03(3.0e-04) 243.8 4.7e-06(4.8e-09) 49.2 (7.6e-10) 26.8

ESDP(7) 5 × 5 (8.9e-06) 98.0 (1.9e-09) 147.1 (6.6e-10) 46.5
ESDP(10) 5 × 5 (1.1e-07) 68.3 (2.7e-09) 93.9 (5.3e-10) 133.4
FSDP(4) 5 × 5 2.3e-05(6.4e-09) 340.6 1.2e-06(3.1e-10) 317.2 (1.9e-09) 367.4
SSDP(4) 5 × 5 1.8e-05(3.4e-09) 83.0 2.6e-06(1.9e-09) 7.6 (2.9e-09) 5.5

ESDP(7) rand50 (2.1e-05) 87.4 (5.0e-09) 75.8 (6.7e-10) 70.2
ESDP(10) rand50 (9.0e-07) 144.1 (9.3e-10) 104.9 (9.8e-10) 196.1
FSDP(4) rand50 2.5e-04(3.4e-09) 352.0 1.3e-07(7.2e-09) 386.9 (4.3e-10) 410.2
SSDP(4) rand50 5.4e-05(1.6e-08) 27.9 6.2e-08(3.2e-09) 6.9 (2.2e-15) 5.4

Table 1: Numerical results on a 2-dimensional problem with randomly generated 500 sensors
in [0, 1] × [0, 1] and exact distances.

Tables 1 and 2 show that SSDP(4) does not attain small values of rmsd for the problems
of center3 and bd3 with ρ = 0.1, and Table 4 displays how rmsd is improved as λ increases
to 5, 6 and 8. See also Figure 3.

17



anchor ρ=0.1 ρ=0.2 ρ=0.3
SDP(λ|κ) location rmsd cpu rmsd cpu rmsd cpu
ESDP(7) center3 (8.5e-03) 256.7 (4.9e-03) 296.9 (2.1e-05) 280.4
ESDP(10) center3 (9.0e-03) 480.2 (3.9e-03) 635.1 (5.0e-06) 514.2
SSDP(4) center3 4.7e-03(4.3e-03) 574.4 1.4e-04(5.6e-10) 119.7 (3.4e-09) 71.6

ESDP(7) bd3 (2.0e-02) 126.4 (1.5e-02) 321.0 (8.2e-03) 202.6
ESDP(10) bd3 (2.0e-02) 283.1 (1.4e-02) 560.4 (6.3e-03) 370.0
SSDP(4) bd3 1.5e-02(1.4e-02) 557.9 9.6e-04(2.3e-08) 107.0 (1.0e-09) 84.2

ESDP(7) corner4 (2.4e-04) 193.6 (4.3e-06) 349.7 (4.1e-08) 165.0
ESDP(10) corner4 (9.7e-05) 351.8 (1.8e-07) 593.8 (2.0e-08) 278.7
SSDP(4) corner4 3.5e-05(3.9e-08) 892.7 3.5e-06(1.1e-08) 101.3 (9.0e-10) 55.2

ESDP(7) 5 × 5 (4.5e-08) 147.6 (1.3e-09) 205.9 (2.5e-09) 183.8
ESDP(10) 5 × 5 (6.2e-08) 283.5 (1.2e-09) 428.1 (2.9e-10) 466.4
SSDP(4) 5 × 5 2.0e-05(4.3e-09) 239.7 1.0e-06(9.6e-10) 19.3 (1.8e-10) 14.2

ESDP(7) rand100 (4.4e-06) 179.7 (7.0e-10) 210.1 (8.4e-11) 225.0
ESDP(10) rand100 (3.4e-08) 297.9 (1.2e-09) 445.1 (3.7e-10) 663.0
SSDP(4) rand100 3.7e-05(1.1e-09) 35.8 5.0e-08(1.1e-09) 15.4 (9.4e-17) 15.2

Table 2: A randomly generated 2-dimensional problem with 1000 sensors and noisyFac =
0.0. par.eps = 1.0e-5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: ESDP(10) after applying the gradient method and SSDP(4) after applying lsqnon-
lin for 500 sensors, 3 anchors near the center and ρ = 0.1. Here a circle denotes the true
location of a sensor, ⋆ the computed location of a sensor, and a line segment a deviation
from true and computed locations.

18



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: ESDP(10) after applying the gradient method and SSDP(4) after applying lsqnon-
lin for 500 sensors, 3 anchors near the center and ρ = 0.2.

anchor ρ=0.1 ρ=0.2 ρ=0.3
location sizeR #nnzL sizeR #nnzL sizeR #nnzL

ESDP(7) corner4 22,722 1,039,584 25,227 1,945,155 25,784 1,647,843
ESDP(10) corner4 29,113 1,945,365 32,872 3,776,211 33,748 3,250,629
FSDP(4) corner4 1,690 1,428,895 1,911 1,826,916 1,966 1,933,916
SSDP(4) corner4 13,137 3,632,361 9,592 1,096,530 8,481 575,600

ESDP(7) 5 × 5 23,172 1,081,915 27,145 2,042,682 29,804 1,836,950
ESDP(10) 5 × 5 29,563 1,925,326 34,790 4,139,700 37,768 3,771,251
FSDP(4) 5 × 5 1,754 1,539,135 2,051 2,104,326 2,493 3,108,771
SSDP(4) 5 × 5 10,737 1,618,590 5,245 145,918 4,206 61,440

Table 3: The size of the Schur complement matrix (sizeR) and the number of nonzeros in
its sparse Cholesky factorization (#nnzL) when executing SeDuMi.

anchor λ = 5 λ = 6 λ = 8
location rmsd cpu rmsd cpu rmsd cpu
center3 7.2e-03(6.8e-03) 235.2 1.0e-03(9.6e-07) 965.7 1.6e-03(1.4e-07) 1235.7

bd3 2.2e-02(2.0e-02) 381.7 1.4e-02(5.0e-03) 658.5 5.7e-03(3.2e-04) 1767.5

Table 4: Numerical results on SSDP with λ = 5, 6 and 8 applied to randomly generated
2-dimensional problems with 500 sensors and noisyFac = 0.0. par.eps = 1.0e-5.

19



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: SSDP(8) after applying nsqnonlin for 500 sensors, 3 anchors near the center and
ρ = 0.1, and SSDP(8) after applying nsqnonlin for 500 sensors, 3 anchors near the boundary
and ρ = 0.1.

5.2 Problems with noisy distances

For numerical experiments in this subsection, the noisy distances are generated by (30),
where σ = 0.01 is used in Table 5 and σ = 0.1 in Table 6. SSDP for problems with noisy
distances is obtained by applying SparsePOP to the QOP (29), where φ = ψ = 4σ. In most
problems in Table 5 and Table 6, we observe the following.

(h) ESDP(7) and/or ESDP(10) spend less cpu time to solve SDP relaxation problems
using SeDuMi than SSDP(4).

(i) For the problems of center3 with ρ = 0.2, 0.3 and bd3 with ρ = 0.2, 0.3 of Table 5,
neither ESDP(7) nor ESDP(10) attains rmsd small enough to locate sensors accurately,
while SSDP(4) attains small rmsd. See Figures 4 and 5 for the comparison between
ESDP(10) and SSDP(4) applied to center3 with ρ = 0.2. If we compare the figures
on the left with the ones on the right in Figures 4 and 5, we see the effectiveness of
the gradient method and lsqnonlin for refining the solutions obtained from the SDP
relaxations, respectively. Except these two cases, the values for rmsd obtained by both
methods are comparable.

From the numerical results in Sections 5.1 and 5.2, we observe the computational ad-
vantage of SSDP(4) in getting accurate solutions faster over ESDP(7) or ESDP(10) for the
problems with exact distances. For the problems with noisy distances, the computational
performance of ESDP(4) is comparable to that of ESDP(7) and ESDP(10).

5.3 Three-dimensional problems

Solving 3-dimensional problems are far more difficult than the 2-dimensional problems.
Thus, we only show numerical results on problems with 250 sensors in Table 7. In the
column of ρ = 0.3 of Table 7, out-of-memory error, denoted by -, often occurred for ρ = 0.3.
From Table 7, we notice the following.

20



anchor ρ=0.1 ρ=0.2 ρ=0.3
SDP(λ|κ) location rmsd cpu rmsd cpu rmsd cpu
ESDP(7) center3 (1.0e-02) 245.5 (8.0e-03) 267.2 (4.8e-03) 144.8
ESDP(10) center3 (1.0e-02) 529.0 (7.6e-03) 547.6 (4.1e-03) 337.3
SSDP(4) center3 1.0e-02(8.2e-03) 1816.9 3.0e-03(5.6e-05) 535.4 (7.0e-05) 393.2

ESDP(7) bd3 (2.0e-02) 162.7 (1.9e-02) 196.3 (1.7e-02) 135.3
ESDP(10) bd3 (1.9e-02) 471.5 (1.7e-02) 433.6 (1.5e-02) 295.3
SSDP(4) bd3 1.2e-02(1.1e-02) 1610.6 4.6e-03(4.7e-05) 463.7 (7.0e-05) 413.1

ESDP(7) corner4 (3.3e-04) 177.1 (5.0e-05) 226.2 (6.4e-05) 139.4
ESDP(10) corner4 (9.7e-05) 514.1 (4.0e-05) 670.4 (4.8e-05) 274.9
SSDP(4) corner4 3.3e-04(4.1e-05) 1758.6 2.4e-04(5.1e-05) 540.1 (7.2e-05) 364.5

ESDP(7) 5 × 5 (1.3e-04) 207.4 (3.2e-05) 198.3 (3.9e-05) 140.1
ESDP(10) 5 × 5 (9.5e-05) 384.8 (2.8e-05) 641.6 (3.5e-05) 285.3
SSDP(4) 5 × 5 1.7e-04(2.3e-05) 620.5 1.1e-04(4.5e-05) 189.5 (6.2e-05) 192.0

ESDP(7) rand100 (1.3e-04) 180.9 (2.1e-05) 235.6 (2.4e-05) 275.4
ESDP(10) rand100 (1.5e-05) 311.3 (2.0e-05) 648.8 (2.4e-05) 515.3
SSDP(4) rand100 1.4e-04(2.1e-05) 262.6 1.8e-04(4.4e-05) 205.8 (6.3e-05) 238.0

Table 5: Numerical results on a 2-dimensional problem with randomly generated 1000
sensors in [0, 1] × [0, 1] and noisy distances (the noise factor σ = 0.01).

anchor ρ=0.1 ρ=0.2 ρ=0.3
SDP(λ|κ) location rmsd cpu rmsd cpu rmsd cpu
ESDP(7) center3 (1.1e-02) 201.7 (9.7e-03) 166.8 (7.8e-03) 114.7
ESDP(10) center3 (1.1e-02) 369.0 (8.7e-03) 408.4 (5.3e-03) 235.3
SSDP(4) center3 1.2e-02(1.0e-02) 1450.5 8.8e-03(7.4e-03) 413.5 (3.0e-03) 358.2

ESDP(7) bd3 (1.9e-02) 161.8 (1.9e-02) 137.4 (1.9e-02) 97.6
ESD(10) bd3 (2.0e-02) 308.6 (2.1e-02) 297.2 (1.9e-02) 181.7
SSDP(4) bd3 1.4e-02(1.1e-02) 1354.6 1.3e-02(1.1e-02) 420.3 (1.4e-02) 389.8

ESDP(7) corner4 (4.8e-04) 229.3 (5.4e-04) 149.4 (6.5e-04) 98.1
ESDP(10) corner4 (4.3e-04) 347.1 (4.1e-04) 381.4 (4.8e-04) 192.7
SSDP(4) corner4 1.3e-03(3.8e-04) 1611.2 1.4e-03(5.0e-04) 509.3 (7.6e-04) 305.3

ESDP(7) 5 × 5 (2.2e-04) 155.2 (3.1e-04) 116.5 (3.9e-04) 97.6
ESDP(10) 5 × 5 (2.0e-04) 295.5 (2.8e-04) 337.1 (3.6e-04) 192.0
SSDP(4) 5 × 5 5.4e-04(2.3e-04) 666.9 6.6e-04(4.5e-04) 182.1 (6.2e-04) 197.4

ESDP(7) rand100 (2.8e-04) 146.5 (2.1e-04) 154.9 (2.4e-04) 169.1
ESDP(10) rand100 (2.6e-04) 200.6 (2.0e-04) 406.2 (2.4e-04) 277.1
SSDP(4) rand100 5.1e-04(2.1e-04) 231.0 9.5e-04(4.6e-04) 208.0 (7.9e-04) 223.0

Table 6: Numerical results on a 2-dimensional problem with randomly generated 1000
sensors in [0, 1] × [0, 1] and noisy distances (the noise factor σ = 0.1).

21



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4: ESDP(10) before and after applying the gradient method for 1000 sensors , 3
anchors near the center and ρ = 0.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: SSDP(4) before and after applying the matlab function lsqnonlin for 1000 sensors,
3 anchors near the center and ρ = 0.2.

22



(j) When the number of anchors are small (center4, bd4 and conrner8) and/or the radio
range ρ is small (ρ = 0.3), it takes very long for SeDuMi to solve SDP relaxation
problems.

(k) For problems with no noise (σ = 0) and ρ = 0.4, 0.5, SSDP(5) attains very small
rmsd values, however, as the noisy factor σ grows, the values of rmsd increase. See
Figure 6 and Figure 7. In Figure 6, we also observe the effectiveness of lsqnonlin in
improving rmsd.

anchors’ ρ=0.3 ρ=0.4 ρ=0.5
σ location rmsd cpu rmsd cpu rmsd cpu
0.00 center4 8.9e-03(9.5e-03) 4448.5 1.0e-03(7.9e-09) 2013.5 (1.2e-08) 268.6
0.00 bd4 - 8.0e-03(4.5e-08) 2937.9 (6.4e-09) 606.4
0.00 corner8 - 6.6e-06(3.8e-09) 1856.3 (5.3e-09) 194.0
0.00 3 × 3 × 3 1.7e-04(3.0e-04) 2206.4 8.3e-06(7.3e-10) 56.4 (6.2e-10) 8.4
0.00 rand25 2.2e-04(3.0e-09) 501.0 2.3e-05(4.3e-09) 43.3 (4.4e-10) 11.1

0.01 center4 - 7.6e-03(3.0e-04) 3128.4 (3.1e-04) 433.4
0.01 bd4 - 2.3e-02(2.7e-04) 3105.7 (2.0e-03) 748.6
0.01 corner8 - 1.2e-03(2.7e-04) 2285.9 (2.9e-04) 390.0
0.01 3 × 3 × 3 - 7.8e-04(2.5e-04) 123.3 (2.9e-04) 45.9
0.01 rand25 3.1e-03(8.3e-04) 1031.8 2.6e-03(2.3e-04) 124.6 (2.8e-04) 56.1

0.10 center4 - 2.1e-02(1.8e-02) 2160.7 (6.1e-03) 366.9
0.10 bd4 - 3.4e-02(2.3e-02) 3106.8 (6.1e-03) 622.5
0.10 corner8 - 6.0e-03(2.6e-03) 2152.9 (3.3e-03) 350.0
0.10 3 × 3 × 3 - 3.5e-03(2.5e-03) 139.4 (2.8e-03) 46.2
0.10 rand25 8.3e-03(6.8e-03) 646.9 9.1e-03(7.4e-03) 99.9 (4.7e-03) 55.3

Table 7: Numerical results on a 3-dimensional problem with randomly generated 250 sensors
in [0, 1]3.

6 Concluding remarks

We have formulated the sensor network localization problem with exact distances as a QOP
(4) and the problem with noisy distances as a QOP (29), and proposed to apply the sparse
SDP relaxation [30] with the relaxation order 1 to the QOPs. We have shown that the sparse
SDP relaxation is equivalent to the dense relaxation [17] with the same relaxation order 1,
and that it is at least as strong as the Biswas-Ye SDP relaxation [2] theoretically. We have
also derived a sparse variant of the Biswas-Ye SDP relaxation. For the solutions of QOPs
derived from the problems with exact distances and with noisy distances, a matlab package
SparsePOP is applied and a matlab function “lsqnonlin” is used for refining the obtained
solution. Numerical results demonstrate that exploiting sparsity in our method is very
effective in computing accurate solutions in less cpu time, especially for the problems with
exact distances. In particular, (i) the sparse SDP relaxation is faster than the Biswas-Ye

23



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Figure 6: SSDP(5) before and after applying lsqnonlin for 250 sensors, 3 anchors on the
boundary, σ = 0.0 and ρ = 0.4.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Figure 7: The figure on the left: SSDP(5) after applying lsqnonlin for 250 sensors, 4 anchors
on the boundary, σ = 0.01 and ρ = 0.4. The figure on the right: SSDP(5) after applying
lsqnonlin for 250 sensors, 4 anchors on the boundary, σ = 0.1 and ρ = 0.4

24



SDP relaxation, (ii) it requires less cpu time as the number of anchors and/or the radio range
increase, and (iii) it provides more accurate solutions than the edge-based SDP relaxation
[31] for the problems with exact distances and a small number of anchors.

We have applied SparsePOP to the QOPs (4) and (29) to construct their sparse SDP
relaxation problems with the relaxation order 1. We should, however, note that SparsePOP
is designed for solving general sparse POPs. Thus, its application to the QOPs (4) and (29)
is not very efficient. For better computational efficiency, it is necessary to develop codes
specialized for generating sparse SDP relaxation problems with the relaxation order 1 from
the QOPs (4) and (29). It is also interesting to apply the positive definite matrix comple-
tion method [12, 21] and its parallel implementation SDPARA-C [22] to the (dense) SDP
relaxation (13) and the Biswas-Ye SDP relaxation as discussed in Section 3.3.

References

[1] A. Y. Alfakih, A. Khandani, and H. Wolkowicz (1999) “Solving Euclidean matrix
completion problem via semidefinite programming,” Comput. Opt. and Appl., 12, 13-
30.

[2] P. Biswas and Y. Ye (2004) “Semidefinite programming for ad hoc wireless sensor net-
work localization,” in Proceeings of the third international symposium on information
processing in sensor networks, ACM press, 46-54.

[3] P. Biswas and Y. Ye (2006) “A distributed method for solving semidefinite programs
arising from Ad Hoc Wireless Sensor Network Localization,” in Multiscale Optimization
Methods and Applications, 69-84, Springer.

[4] P. Biswas, T.-C. Liang, T.-C. Wang, Y. Ye (2006) “Semidefinite programming based
algorithms for sensor network localization,” ACM Transaction on Sensor Networks, 2,
188-220.

[5] P. Biswas, T.-C. Liang, K.-C. Toh, T.-C. Wang, and Y. Ye (2006) “Semidefinite
programming approaches for sensor network localization with noisy distance measure-
ments,” IEEE Transactions on Automation Science and Engineering, 3, pp. 360–371.

[6] J. R. S. Blair and B. Peyton (1993) “An introduction to chordal graphs and lieque
trees,” In: A. George, J. R. Gilbert and J. W. H. Liu des, Graph Theory and Sparse
Matrix Computation, Springer, New York, pp.1-29.

[7] T. F. Coleman and Y. Li (1994) “On the Convergence of Reflective Newton Methods for
Large-Scale Nonlinear Minimization Subject to Bounds,” Mathematical Programming,
67, 2, 189-224.

[8] T. F. Coleman and Y. Li (1996) “An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds,” SIAM Journal on Optimization, 6, 418-445.

[9] L. Doherty, K. S. J. Pister, and L. El Ghaoui (2001) “Convex position estimation in
wireless sensor networks,” Proceedings of 20th INFOCOM, 3, 1655-1663.

25



[10] T. Eren, D. K. Goldenberg, W. Whiteley, Y. R. Wang, A. S. Morse, B. D. O. Anderson,
and P. N. Belhumeur (2004) “Rigidity, computation, and randomization in network
localization,” in Proceedings of IEEE Infocom.

[11] Fujie, T., Kojima, M. (1997): “Semidefinite relaxation for nonconvex programs,”
Journal of Global Optimization 10, 367–380

[12] M. Fukuda, M. Kojima, K. Murota and K. Nakata (2000) “Exploiting sparsity in
semidefinite programming via matrix completion I: General framework,” SIAM Journal
on Optimization, 11, 647-674.

[13] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S.Wicker (2002)
“An empirical study of epidemic algorithms in large scale multihop wireless network,”
March.

[14] A. Howard, M. Matarić and G. Sukhatme (2001) “Relaxation on a mesh: a formal-
ism for generalized localization,” In IEEE/RSJ International conference on intelligent
robots and systems, Wailea, Hawaii, 1055-1060.

[15] K. Kobayashi, S. Kim and M. Kojima, Correlative sparsity in primal-dual interior-point
methods for LP, SDP and SOCP, to appear in Applied Mathematics and Optimization.

[16] K. Kobayashi, K. Nakata, and M. Kojima (2007) “A conversion of an SDP having free
variables into the standard form SDP,” Computational Optimization and Applications,
36, 289-307.

[17] J. B. Lasserre (2001) “Global optimization with polynomials and the problems of
moments,” SIAM Journal on Optimization, 11, 796–817.

[18] J. B. Lasserre (2006) “Convergent SDP-relaxations in polynomial optimization with
sparsity,” SIAM Journal on Optimization, 17, 3, 822-843.

[19] T.-C. Lian, T.-C. Wang, and Y. Ye (2004) “A gradient search method to round the
semidefinite programming relaxation solution for ad hoc wireless sensor network local-
ization,” Technical report, Dept. of Management Science and Engineering, Stanford
University.

[20] J. J. Moré, Z. Wu (1997) “Global continuation for distance geometry problems,” SIAM
Journal on Optimization, 7, 814-836.

[21] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima and K. Murota (2003) “Exploiting
sparsity in semidefinite programming via matrix completion II: Implementation and
numerical results,” Mathematical Programming, 95, 303-327.

[22] K. Nakata, M. Yamashita, K. Fujisawa and M. Kojima (2006) “A parallel primal-
dual interior-point method for semidefinite programs using positive definite matrix
completion,” Parallel Computing, 32, 24-43.

[23] J. Nie (2006) “Sum of sqaures method for sensor network localization,” preprint.

26



[24] N. Z. Shor (1987) “Quadratic optimization problems,” Soviset journal of Computer
and Systems Sciences, 25, 1-11.

[25] N. Z. Shor (1990) “dual quadratic estimates in polynomial and boolean programming,”
Annals of Operations Research, 25, 163-168.

[26] A. M. So and Y. Ye (2007) “Theory of semidefinite programming for sensor network
localization,” Mathematical Programming, Ser. B, 109, 367-384.

[27] J. F. Strum, “SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones,” Optimization Methods and Software, 11 & 12 (1999) 625-653.

[28] P. Tseng, (2007) “Second order cone programming relaxation of sensor network local-
ization,” to appear in SIAM Journal on Optimization.

[29] H. Waki, S. Kim, M. Kojima and M. Muramatsu (2007) “SparsePOP : a Sparse Semidef-
inite Programming Relaxation of Polynomial Optimization Problems,” Research report
B-414, Dept. of Math. & Computing Sciences, Tokyo Institute of Technology, August.

[30] H. Waki, S. Kim, M. Kojima, M. Muramatsu and H. Sugimoto (2006) “Sums of Squares
and Semidefinite Programming Relaxations for Polynomial Optimization Problems
with Structured Sparsity,” SIAM Journal on Optimization, 17, 218–242.

[31] Z. Wang, S. Zheng, S. Boyd, and Y. Ye (2007) “Further relaxations of the SDP approach
to sensor network localization,” preprint.

[32] M. Yamashita, K. Fujisawa and M. Kojima (2003) “Implementation and evaluation
of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0),” Optimization Methods and
Software, 18, 491-505.

[33] Y. Ye’s website, http://www.stanford.edu/∼yyye.

27


