
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

Subexponential interval graphs generated by
immigration-death processes

Naoto Miyoshi, Mariko Ogura, Takeya Shigezumi
and Ryuhei Uehara

December 2008, B–451



Subexponential interval graphs generated by

immigration-death processes

Naoto Miyoshi1∗, Mariko Ogura1, Takeya Shigezumi1 and Ryuhei Uehara2

1Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

2School of Information Science
Japan Advanced Institute of Science and Technology

Abstract

Scale-free graphs have recently attracted much attention since so-called scale-free phenomena

have really appeared in various physical and social networks, where a graph is said to be scale-free if
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1 Introduction

Scale-free graphs have recently attracted much attention since so-called scale-free phenomena have really
appeared in various physical and social networks, where we say that a graph is scale-free if the distribution
of degrees (the numbers of edges incident to respective vertices) has a power-law tail. To throw light
on such phenomena in real world, many models of random graphs realizing the scale-free property have
so far been proposed and investigated since the early works by Watts & Strogatz ([16]) and Barabási &
Albert ([3]). Among them, the authors’ previous work [12] proposed a model of random interval graphs
generated by immigration-death processes (also known as M/G/∞ queueing processes; see, e.g., Cox &
Isham [6, Section 5.6]) and showed that, when the interval lengths follow a power-law distribution, the
generated interval graph is scale-free. Here, a graph G = (V,E) is said to be an interval graph when
G has an interval representation I, the set of intervals on the real line, such that each vertex v ∈ V

corresponds to an interval Iv ∈ I and there is an edge (u, v) ∈ E connecting two vertices u, v ∈ V

if and only if Iu ∩ Iu 6= ∅. In [12], each interval is then given as the period of a customer’s stay in
the M/G/∞ queue; that is, the interval lengths correspond to the service (sojourn) times of customers.
Interval graphs form one of the most important classes of graphs and have been studied thoroughly in
the graph theory (see, e.g., Golumbic [10, Chapter 8]).

In the current paper, we generalize the result in [12] to the model where the distribution of interval
lengths is subexponential (see, e.g., Embrechts et al. [8, Sections 1.3 & A3] or Rolski et al. [14, Section 2.5]
for subexponential distributions). Namely, we consider random interval graphs generated by immigration-
death processes with subexponential lifetime distributions, which we call subexponential interval graphs.
We provide a condition on the lifetime (service time or interval length) distribution F under which
the stationary degree distribution of the generated interval graph has an equivalent tail to that of
1−F (x/λ); that is, the stationary degree distribution is also subexponential, where λ denotes the arrival
rate of intervals. This derivation is based on the recent results on sampling of a stochastic process at
random times according to subexponential distributions (see Asmussen et al. [2], Foss & Korshunov [9]
and Jelenković et al. [11]). Furthermore, we consider the conditional expectation of the cluster coefficient
of a vertex given its degree. In a given graph, the cluster coefficient of a vertex represents the fraction
of couples of its neighbors such that the couple is connected by an edge, and it is observed that many
scale-free graphs have high cluster coefficients (see, e.g., Newman [13]). We derive the limit of the
conditionally expected cluster coefficient given the degree as the degree goes to infinity under the same
condition as that for obtaining the tail asymptotics of the degree distribution. We will see that a simple
example indeed exhibits the high cluster coefficient in such a limit.

The rest of the paper is organized as follows. In the next section, we describe the immigration-
death process and present an algorithm constructing random interval graphs based on that process. In
section 3, we analyze the subexponential interval graph generated by the immigration-death process in
the steady state, where we discuss the tail asymptotics of the stationary degree distribution and the
limit of the conditionally expected cluster coefficient given the degree of a vertex as the degree goes to
infinity. Finally, Section 4 makes a concluding remark.

2 Interval graphs generated by immigration-death processes

In this section, we describe an immigration-death process (also known as an M/G/∞ queueing process;
see, e.g., [6, Section 5.6]) and construct a random interval graph based on that process. Let {Tn}n∈Z
denote a random sequence on R+ satisfying 0 = T0 < T1 < T2 < · · · , at each of which an individual
arrives and enters a system. We refer to the individual arriving at Tn as individual n ∈ Z+. The lifetime
(service time) of individual n in the system is denoted by Ln (≥ 0), so that the individual n departs
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from the system at Tn + Ln. We assume that {Tn}n∈N follows a homogeneous Poisson process with
intensity λ ∈ (0,∞) and {Ln}n∈Z+ is a sequence of mutually independent nonnegative random variables
according to an identical distribution F , where {Tn}n∈N and {Ln}n∈Z+ are also independent each other.
The distribution F is assumed to have its mean µ−1 =

∫∞
0

F (x) dx < ∞, where F (x) = 1−F (x), x ≥ 0.
Let In = [Tn, Tn +Ln], n ∈ Z+, and Z(t) =

∑
n∈Z+

1In
(t), t ≥ 0, where 1A denotes the indicator function

for set A. Note that Z(t) represents the number of individuals in the system at time t ≥ 0 (the reason
for the choice of In = [Tn, Tn + Ln] rather than [Tn, Tn + Ln) is clarified in Remark 1 below). It is well
known that {Z(t)}t≥0 has a stationary regime when both λ and µ are nonzero and finite (see, e.g., [6,
Section 5.6] or Takács [15, Section 3.2]).

Based on this immigration-death process, we consider a random interval graph G0 = (V0, E0) with
interval representation I0 = {In}n∈V0 , where V0 = {0, 1, . . . , n0 − 1} and n0 is a predetermined positive
integer. Namely, each individual in V0 corresponds to a vertex of the graph and two vertices n and
m ∈ V0 are connected by an edge if and only if In∩ Im 6= ∅. Note that such a graph has no multiedges or
self-loops. Given n0, λ and distribution F , a simple algorithm constructing such random interval graphs
is as follows, where Sample(F ) denotes the sampled value extracted according to F and Exp(λ) denotes
the exponential distribution with parameter λ.

procedure generate graph(n0, λ, F )

T = 0, V = {0}, E = ∅, Q = {0}, U0 = Sample(F ), n = 1; {Q: Set of individuals in the system;
Un: departure time of individual n}
while n < n0 do

T ← T + Sample(Exp(λ)); V ← V ∪ {n}; {Individual n arrives ⇒ Add vertex n}
for i such that i ∈ Q do

if Ui < T then
Q ← Q \ {i};

else
E ← E∪{(i, n)}; {Individual i is still in the system at individual n’s arrival⇒ Add edge (i, n)}

end if
end for
Un = T + Sample(F ); Q ← Q ∪ {n};
n ← n + 1;

end while

Remark 1 When n0 is large, the random interval graph constructed by the above algorithm ends
up having many connected components with random but finite sizes and the size of any connected
component does not tend to infinity even as n0 → ∞. Against such a feature, one may want to have
one big connected graph. In such a case, it can be realized by adding extra intervals Jn = [An, Bn],
n ∈ N, where An = inf{t > Bn−1 | Z(t) = 0} and Bn = infk∈N{Tk > An} with B0 = 0; that is, {An}n∈N
and {Bn}n∈N represent, respectively, the beginnings and the ends of idle periods for the corresponding
M/G/∞ queue. Two connected components in the original graph G0 are then connected through a vertex
with two edges in the modified graph G̃0, which has the interval representation {In}n∈V0∪{Jm}m∈U0 with
U0 = {m ∈ N : Bm < Tn0} (note that, for any m ∈ U0, there exists an n ∈ V0 such that Am = Tn + Ln

and Bm = Tn+1).

2



3 Stationary analysis

In this section, we analyze the subexponential interval graphs; that is, the random interval graphs
proposed in the preceding section such that the lifetime (interval length) distribution is subexponential.
In the analysis, we extend the time range of the immigration-death process to the whole real line R and
consider it to be stationary. Namely, a sequence {Tn}n∈Z follows a homogeneous Poisson process with
intensity λ ∈ (0,∞) satisfying · · · < T0 ≤ 0 < T1 < · · · and {Ln}n∈Z denotes a sequence of mutually
independent nonnegative random variables according to the distribution F with mean µ ∈ (0,∞), where
{Ln}n∈Z is also independent of {Tn}n∈Z. Let Q(t), t ∈ R, denote the set of individuals in the system at
time t; that is, Q(t) = {n ∈ Z : t ∈ In} for In = [Tn, Tn+Ln]. Then, clearly |Q(t)| = Z(t) =

∑
n∈Z 1In

(t),
t ∈ R, where |A| denotes the cardinality of set A. When Z(t) > 0, let ni(t), i = 1, . . . , Z(t), denote the
ith element of Q(t) satisfying ni(t) < nj(t) when i < j. Let also R(i)(t) = Tni(t) + Lni(t) − t (≥ 0),
i = 1, . . . , Z(t); that is, the residual lifetime of individual ni(t) at time t ∈ R. It is then known that
(see, e.g., [15, Section 3.2]), when both λ and µ are positive and finite, the stationary distribution of
{Z(t), R(i)(t), i = 1, . . . , Z(t)}t∈R is given by

P
(
Z(0) = l, R(1)(0) ≤ x1, . . . , R(l)(0) ≤ xl

)
=

(λ/µ)l

l!
e−λ/µ

l∏

i=1

Fe(xi), l ∈ Z+, x1, . . . , xl ∈ R+, (1)

where Fe denotes the equilibrium residual lifetime distribution of F defined by Fe(x) = µ
∫ x

0
F (y) dy,

x ≥ 0, and when l = 0, the left-hand side just means P(Z(0) = 0) and conventionally
∏0

i=1 · = 1 on the
right-hand side. Formula (1) states that, in the steady-state, the number of individuals in the system
follows the Poisson distribution with mean λ/µ, and the residual lifetimes of the individuals in the system
are mutually independent and identically distributed according to Fe. By the PASTA (Poisson arrivals
see time averages) property (see Wolff [17]), the right-hand side of (1) also gives the distribution of
{Z(Tn−), R(i)(Tn−), i = 1, . . . , Z(Tn−)}n∈Z just before the arrivals of individuals.

In the following two subsections, we consider the infinite size of random interval graph G = (V,E),
V = Z, with interval representation I = {In}n∈Z and the subexponential interval length (lifetime)
distribution F . We discuss the tail asymptotics of the stationary degree distribution and the limit of the
conditionally expected cluster coefficient of a vertex given its degree as the degree goes to infinity. In the
analysis, we use the standard notation that, for any two real functions f(x) and g(x) on R, f(x) ∼ g(x)
as x → a stands for limx→a f(x)/g(x) = 1, where a is possibly infinity.

3.1 Degree distribution

A random graph G = (V, E) is said to be scale-free if its degree distribution has a power-law tail; that
is, for some constants C > 0 and γ > 0,

P(D0 = k) ∼ C

kγ
as k →∞, (2)

where Dn =
∑

i∈V 1E(n, i) denotes the degree of vertex n ∈ V . Note that D0 satisfying (2) has the
mth moment if γ > m + 1. The authors [12] showed that, in a discrete-time model setting, the random
interval graph G = (V,E) with interval representation I = {In}n∈Z is scale-free in the steady state when
the interval length distribution F has a power-law tail. We here extend this by applying the recent
results on sampling of a stochastic process at random times according to subexponential distributions
(see [2, 9, 11]) and provide a more general condition on F under which the stationary degree distribution
satisfies

P(D0 > k) ∼ F
(k

λ

)
as k →∞. (3)
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We will see that the power-law distribution F such that F (x) ∼ c/xα as x → ∞ with c > 0 and α > 1
fulfills the provided condition, so that (3) leads to P(D0 > k) ∼ c (λ/k)α as k → ∞, which implies (2)
with C = c α λα and γ = α + 1.

To provide the condition on the lifetime distribution under which (3) holds, we first give the definition
of subexponential distributions. A distribution F and the corresponding random variable are said to be
subexponential (see, e.g., Chistyakov [4] or [8, Sections 1.3 & A3], [14, Section 2.5]) if F (x) > 0 for all
x ≥ 0 and

lim
x→∞

F ∗2(x)
F (x)

= 2, (4)

where F ∗n denotes the nth-fold convolution of F with itself. Note that, if F is subexponential, then
F (x + a) ∼ F (x) as x → ∞ for any a ∈ R; that is, subexponential distributions are long-tailed. The
following is a well-known and basic property of the subexponential distributions.

Lemma 1 (see, e.g., Cline [5]) Let F denote a subexponential distribution and let Gi, i = 1, 2, denote
distributions on [0,∞) such that limx→∞Gi(x)/F (x) = ci ∈ [0,∞). Then, limx→∞G1 ∗G2(x)/F (x) =
c1 + c2, where G1 ∗G2 denotes the convolution of G1 and G2.

Another important class of heavy-tailed distributions is recently introduced by [11] in problems
of random time sampling and reduced load equivalence (see also [2, 9]). A distribution F and the
corresponding random variable are said to be square-root insensitive if F (x) > 0 for all x ≥ 0 and

lim
x→∞

F (x−√x)
F (x)

= 1. (5)

Note that, if F is square-root insensitive, then F (x − a
√

x) ∼ F (x) as x → ∞ for any a ∈ R. Also, if
a random variable X is square-root insensitive, then P(

√
X > x + a) ∼ P(

√
X > x) as x → ∞ for any

a ∈ R. It is known that distribution F is square-root insensitive when its tail is heavier than exp(−xβ)
with β < 1/2, whereas any distribution with a tail lighter than e−

√
x is not square-root insensitive ([2]).

Lemma 2 (see [2, 9, 11]) Let N denote a (delayed or non-delayed) renewal process with inter-renewal
sequence {τi}i∈Z+ satisfying E(τ1

2) < ∞ and let L denote a nonnegative random variable independent of
N . If L follows a square-root insensitive distribution F , then P(N((0, L]) > k) ∼ P(λL > k) = F (k/λ)
as k →∞, where λ = 1/Eτ1.

The proof of Lemma 2 is given in Appendix only for the non-delayed case. The tail-equivalence of
the delayed and non-delayed cases is shown in Lemma 2.3 of [9]. Asmussen et al. [2] and Jelenković
et al. [11] consider a more general case including that N in Lemma 2 is a regenerative process. Foss
& Korshunov [9] also consider another general case where E(τ1

β) < ∞ for β ∈ [1, 2). In this paper,
however, the above form of the lemma is sufficient to show the following.

Theorem 1 If the lifetime distribution F is subexponential and square-root insensitive; that is, F fulfills
(4) and (5), then the stationary degree distribution of the random interval graph G = (V, E) satisfies (3).

Theorem 1 states that, if the lifetime distribution F is subexponential and square-root insensitive,
then so is the stationary degree distribution of the obtained random interval graph. The power-law
distributions are subexponential and square-root insensitive, so that Theorem 1 covers the previous
result in [12]. In the proof below and thereafter, N denotes the counting measure corresponding to
{Tn}n∈Z; that is, N(A) represents the number of points of {Tn}n∈Z in A ∈ B(R), where B(R) denotes
the Borel σ-field on R.
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Proof: We here consider the Palm version satisfying T0 = 0; that is, an arrival occurs at the origin. It
is then known that {Tn}n6=0 is also the Poisson process with the same intensity λ (see, e.g., Daley &
Vere-Jones [7, Example 13.1(c)]). We can observe that the degree of vertex 0 consists of the number of
individuals in the system just before the arrival of individual 0 and the number of new arrivals during
the lifetime of individual 0; that is,

D0 =
∑
n<0

1E(0, n) +
∑
n>0

1E(0, n) = Z(0−) + N(I0) a.s. (6)

Since a Poisson process has independent increments and the lifetimes of individuals are mutually inde-
pendent, Z(0−) and N(I0) are also independent each other, so that the distribution of D0 is given as
the convolution of those of Z(0−) and N(I0). Since F is square-root insensitive, Lemma 2 implies that
P(N(I0) > k) ∼ F (k/λ) as k → ∞. By (1), on the other hand, Z(0−) follows the Poisson distribution
with mean λ/µ, so that P(Z(0−) > k)/F (k/λ) → 0 as k → ∞ since F is subexponential. Hence, we
have by Lemma 1 that

P(D0 > k) = P(Z(0−) + N(I0) > k) ∼ F
( k

λ

)
as k →∞.

3.2 Cluster coefficient

In a given graph, the cluster coefficient of a vertex represents the fraction of couples of its neighbors such
that the couple is connected by an edge. The cluster coefficient of vertex 0 of graph G = (V,E), V = Z,
is then given by

C0 =

∑

n∈Z

∑
m>n

1E(0, n) 1E(0,m) 1E(n, m)

(D0

2

) . (7)

We here evaluate the limit of the conditional expectation E(C0 | D0 > k) as k → ∞ under the same
condition as in Theorem 1.

Theorem 2 If the lifetime distribution F is subexponential and square-root insensitive; that is, F fulfills
(4) and (5), then limk→∞ E(C0 | D0 > k) = η exists and is given by

η =
∫ ∞

0

2
x2

∫ x

0

∫ x−y

0

F (z) dz dy dF (x) = 1− E
[{(

1− L1

L0

)+}2]
, (8)

where Li, i = 0, 1, are mutually independent random variables according to F and x+ = max(x, 0),
x ∈ R.

For example, if the distribution F is Pareto distribution such that F (x) = x−α, x ≥ 1, with α > 1,
then we have η = 1−1/[(α+1) (α+2)]. When α = 1.5 (γ = 2.5 in (2)), it takes η = 31/35 = 0.885714 · · · .

Proof: We consider the Palm version satisfying T0 = 0 as in the proof of Theorem 1 and verify that
E(C0 1{D0>k}) ∼ η P(D0 > k) as k →∞. For simplicity of the notation, we write the event A(0, n, m) =
{(0, n) ∈ E, (0,m) ∈ E, (n,m) ∈ E}. Recall that D0 = Z(0−)+N(I0) a.s. as seen in (6). We then have
from (7) that

E(C0 1{D0>k}) =
∞∑

l=k+1

2
l (l − 1)

E
[∑

n∈Z

∑
m>n

1E(0, n) 1E(0,m) 1E(n,m) 1{D0=l}

]
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=
∞∑

l=k+1

2
l (l − 1)

l∑

j=0

∑

n∈Z

∑
m>n

P
(
A(0, n, m) | Z(0−) = j,N(I0) = l − j

)

× P
(
Z(0−) = j, N(I0) = l − j

)
. (9)

In the following, we consider the last expression above by separating the sum over −∞ < n < m < +∞
into three cases; i) n < m < 0, ii) n < 0 < m and iii) 0 < n < m. We will see that the first two cases
leads to the terms which are o(P(D0 > k)) and the third case yields the term which is tail-equivalent to
P(D0 > k) as k →∞.

i) Case of n < m < 0. Whenever (0, n) ∈ E and (0, m) ∈ E for n, m < 0, it is necessary that
(n,m) ∈ E since individuals n and m are in the system when individual 0 arrives, so that,

−2∑
n=−∞

−1∑
m=n+1

P
(
A(0, n, m) | Z(0−) = j,N(I0) = l − j

)
=

( j

2

)
.

Substituting this into (9), we have

∞∑

l=k+1

l∑

j=2

j (j − 1)
l (l − 1)

P
(
Z(0−) = j, N(I0) = l − j

)

=
(λ

µ

)2 ∞∑

j=k+1

P(Z(0−) = j − 2)
∞∑

l=j

P(N(I0) = l − j)
l (l − 1)

+
(λ

µ

)2 k∑

j=2

P(Z(0−) = j − 2)
∞∑

l=k+1

P(N(I0) = l − j)
l (l − 1)

, (10)

where we use the fact that Z(0−) follows the Poisson distribution with mean λ/µ and j (j−1)P(Z(0−) =
j) = (λ/µ)2 P(Z(0−) = j − 2), j = 2, 3, . . .. For the first term on the right-hand side above, since
1/[l (l − 1)] ≤ 1 for l > 1 and D0 is subexponential by Theorem 1, we have

(1st term on RHS of (10)) ≤
(λ

µ

)2

P(Z(0−) > k − 2) = o(P(D0 > k)) as k →∞.

We now consider the second term on the right-hand side of (10). For any ε > 0, there exists a kε > 0
such that 1/[l (l − 1)] < ε for l > kε. Thus, we have for k ≥ kε,

(2nd term on RHS of (10)) ≤ ε
(λ

µ

)2

P(D0 > k − 1).

Since ε is arbitrarily small, this implies that the second term on the right-hand side of (10) is o(P(D0 > k))
as k →∞.

ii) Case of n < 0 < m. Given that Z(0−) = j, we have by (1) that the residual lifetimes of these
j individuals at time 0 are independent and identically distributed according to Fe. Also, given that
N(I0) = l− j and L0 = x (> 0), the property of Poisson processes implies that the arrival times of these
l − j individuals are independent and uniformly distributed on [0, x] (see, e.g., [7, Section 2.1]). Note
that interval In, n < 0, has an overlap with interval Im, m > 0, which has its left endpoint at y ∈ [0, x],
when the residual lifetime of individual n at time 0 is longer than y. Therefore,

−1∑
n=−∞

+∞∑
m=1

P
(
A(0, n,m) | Z(0−) = j, N(I0) = l − j

)
= j (l − j)

∫ ∞

0

1
x

∫ x

0

Fe(y) dy dF (x). (11)

We write η1 for the integral on the right-hand side, which can also be expressed as η1 = E
[
1∧(R(1)/L0)

]
,

where L and R(1) are mutually independent and according to the distributions F and Fe, respectively,
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and x ∧ y = min(x, y) for x, y ∈ R. Substituting (11) into (9), we have

∞∑

l=k+1

l−1∑

j=1

2 η1 j (l − j)
l (l − 1)

P(Z(0−) = j, N(I0) = l − j)

=
2 η1 λ

µ

∞∑

j=k

P(Z(0−) = j − 1)
∞∑

l=j+1

(l − j) P(N(I0) = l − j)
l (l − 1)

+
2 η1 λ

µ

k−1∑

j=1

P(Z(0−) = j − 1)
∞∑

l=k+1

(l − j) P(N(I0) = l − j)
l (l − 1)

. (12)

For the first term on the right-hand side above, since (l − j)/[l (l − 1)] ≤ 1 for l > j ≥ 1,

(1st term on RHS of (12)) ≤ 2 η1 λ

µ
P(Z(0−) > k − 2) = o(P(D0 > k)) as k →∞.

For the second term on the right-hand side of (12), we have for any ε > 0, there exists a kε > 0 such
that (l − j)/[l (l − 1)] ≤ ε for l > kε and j ≥ 1. Thus, for k ≥ kε,

(2nd term on RHS of (12)) ≤ 2 ε η1 λ

µ
P(D0 > k − 1),

where ε is arbitrarily small, so that this leads to o(P(D0 > k)) as k →∞.
iii) Case of 0 < n < m. Given that N(I0) = l − j and L0 = x (> 0), the arrival times of these

l − j individuals are independent and uniformly distributed on [0, x]. The event that interval In whose
left endpoint is at y ∈ [0, x] has an overlap with interval Im whose left endpoint is at z ∈ [y, x] is realized
when Ln > z − y, so that

+∞∑
n=1

+∞∑
m=n+1

P
(
A(0, n,m) | Z(0−) = j, N(I0) = l−j

)
=

( l − j

2

) ∫ ∞

0

2
x2

∫ x

0

∫ x

y

F (z−y) dz dy dF (x), (13)

and the integral on the right-hand side above is given by η in (8). We now substitute (13) into (9) and
show that both the upper and lower bounds are asymptotically equal to η P(D0 > k) as k →∞. For the
upper bound, since (l − j) (l − j − 1)/[l (l − 1)] ≤ 1 for l > 1 and 0 ≤ j < 1, we have clearly

∞∑

l=k+1

l−2∑

j=0

η (l − j) (l − j − 1)
l (l − 1)

P(Z(0−) = j, N(I0) = l − j) ≤ η P(D0 > k).

On the other hand, for the asymptotic lower bound,

∞∑

l=k+1

l−2∑

j=0

η (l − j) (l − j − 1)
l (l − 1)

P(Z(0−) = j, N(I0) = l − j)

≥ η

k−1∑

j=0

P(Z(0−) = j)
∞∑

l=k+1

(l − j) (l − j − 1)
l (l − 1)

P(N(I0) = l − j).

Here, for any ε > 0, there exists a kε > 0 such that P(Z(0−) < kε) ≥ 1 − ε. Furthermore, there exists
an lε > kε such that (l − j) (l − j − 1)/[l (l − 1)] ≥ 1− ε for l > lε and 0 ≤ j < kε. Thus, for k > lε, the
right-hand side above is bounded below by

(1− ε) η

kε−1∑

j=0

P(Z(0−) = j) P(N(I0) > k − j) ≥ (1− ε)2 η P(N(I0) > k).

Since Theorem 1 states that P(N(I0) > k) ∼ P(D0 > k) as k → ∞ and ε is arbitrary, this case yields
the term which is tail-equivalent to η P(D0 > k) as k →∞.
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Remark 2 In considering the connected interval graph G̃ in Remark 1, we have to modify slightly the
result on the stationary degree distribution in Theorem 1. The fact that P(Z(0−) = 0) = e−λ/µ by (1)
states that {An}n∈Z is a stationary point process with intensity λ e−λ/µ. Thus, since the superposed point
process {Tn}n∈Z∪{An}n∈Z has intensity λ (1+e−λ/µ), the probability that an arbitrary chosen vertex is
not the one which is extraneously added in Remark 1 is given by (1+e−λ/µ)−1, so that the tail asymptotics
of the stationary degree distribution in the modified graph G̃ becomes P(D̃0 > k) ∼ (1+e−λ/µ)−1 F (k/λ)
as k → ∞. The limit of the conditionally expected cluster coefficient, on the other hand, remains the
same as that given on the right-hand side of (8) in Theorem 2.

4 Concluding remark

In this paper, we have analyzed the stationary subexponential interval graphs generated by immigration-
death processes. Namely, we have derived the tail asymptotics of the stationary degree distribution when
the lifetime distribution of the immigration-death process is subexponential and square-root insensitive.
Furthermore, we have derived the limit of the conditionally expected cluster coefficient given the degree
as the degree goes to infinity under the same condition as that for obtaining the tail asymptotics of the
stationary degree distribution. In future works, we can consider problems like evaluating the stationary
distribution of the sizes of connected components and the diameter of a connected component, which
represents the length of the shortest path connecting any pair of vertices in the connected component.
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[11] P. Jelenković, P. Momčilović, and B. Zwart. Reduced load equivalence under subexponentiality. Queueing

Syst., 46:97–112, 2004.

8



[12] N. Miyoshi, T. Shigezumi, R. Uehara, and O. Watanabe. Scale free interval graphs. Submitted for publica-

tion, 2008.

[13] M. Newman. The structure and function of complex networks. SIAM Review, 45:167–256, 2003.

[14] T. Rolski, H. Schmidli, V. Schmidt, and J. Teugels. Stochastic Processes for Insurance and Finance. John

Wiley & Sons, Chichester, 1999.
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A Proof of Lemma 2

We here provide the proof of Lemma 2 only for the case where N is a non-delayed renewal process. The
tail equivalence of P(N(0, L]) > k) as k → ∞ for delayed and non-delayed N is shown in Lemma 2.3
of [9]. The proof mainly follows [11]. In the following, for any two real functions f(x) and g(x) on
R, f(x) . g(x) and f(x) & g(x) as x → a stand for, respectively, lim supx→a f(x)/g(x) ≤ 1 and
lim infx→a f(x)/g(x) ≥ 1, where a is possibly infinity. We first verify the following preliminary lemma.

Lemma 3 Let N denote a non-delayed renewal process with inter-renewal sequence {τi}i∈N satisfying
E(τ1

2) < ∞.

(i) For any δ > 0, there exists a cδ > 0 such that

P
(
N((0, t])− t

Eτ1
> u

)
≤ e−cδu2/t, t > 0, 0 ≤ u ≤ δ t.

(ii) There exist c1 > 0 and c2 > 0 such that

P
(
N((0, t])− t

Eτ1
> u

)
≤ e−c1u2/t + e−c2t, t > 0, u ≥ 0.

Proof: We first verify (i). Markov’s inequality yields for s > 0,

P
(
N((0, t])− t

Eτ1
> u

)
= P

(
N((0, t]) ≥

⌊
u +

t

Eτ1

⌋
+ 1

)

= P
(bu+t/Eτ1c+1∑

i=1

τi ≤ t
)
≤ est (Ee−sτ1)(u+t/Eτ1),

where bxc = max{n ∈ Z : n ≤ x}, the maximal integer not greater than x ∈ R. Here, applying
e−x ≤ 1− x + x2, x ∈ R, and then 1 + y ≤ ey, y ∈ R, into the last expression above, we have

P
(
N((0, t])− t

Eτ1
> u

)
≤ exp

{
−s uEτ1 + s2 E(τ1

2)
(
u +

t

Eτ1

)}
.

Now, we choose s = u (Eτ1)2/[2 t (1 + δ Eτ1) E(τ1
2)]. Then, the inside of the braces on the right-hand

side above leads to

− (Eτ1)3

4 (1 + δ Eτ1) E(τ1
2)

(
2− 1 + (u/t) Eτ1

1 + δ Eτ1

) u2

t
≤ − (Eτ1)3

4 (1 + δ Eτ1) E(τ1
2)

u2

t
,

where the inequality follows from u/t ≤ δ.
We next show (ii). Fix some δ > 0. If u ≤ δ t, then (i) provides

P
(
N((0, t])− t

Eτ1
> u

)
≤ e−cδu2/t.
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If u > δt, on the other hand, then we have

P
(
N((0, t])− t

Eτ1
> u

)
≤ P

(
N((0, t])− t

Eτ1
> δ t

)
≤ e−cδδ2t,

where the second inequality follows from (i) with u = δ t.

We are now at the position to verify Lemma 2. We evaluate the asymptotic upper bound and lower
bound separately for P(N(0, L]) > k) as k →∞.

A.1 Asymptotic upper bound

We first show the asymptotic upper bound,

P(N((0, L]) > k) . F
(k

λ

)
as k →∞. (14)

We have for a ∈ (0,
√

λ k), b ∈ (0, 1/λ), and k > a2/[λ (1− λ b)2],

P(N((0, L]) > k) ≤ P
(
L >

k

λ
− a

λ

√
k

λ

)
+P

(
N((0, L]) > k, b k < L ≤ k

λ
− a

λ

√
k

λ

)
+P

(
N((0, b k]) > k

)
.

(15)
Since F is square-root insensitive, the first term on the right-hand side above leads to

P
(
L >

k

λ
− a

λ

√
k

λ

)
∼ P

(
L >

k

λ

)
= F

(k

λ

)
as k →∞.

Thus, one needs to show that the last two terms on the right-hand side of (15) are o(F (k/λ)) as k →∞.
We start with the third term. Since b ∈ (0, 1/λ), there exists a δ > 0 such that 0 ≤ 1− λ b ≤ δ b, so that
by Lemma 3(i),

P
(
N((0, b k]) > k

)
= P

(
N((0, b k])− λ b k > (1− λ b) k

) ≤ e−cδ(1−λb)2k/b = o
(
F

(k

λ

))
as k →∞.

To deal with the second term on the right-hand side of (15), note that in view of Lemma 3(ii),

(2nd term on RHS of (15)) =
∫ k/λ−(a/λ)

√
k/λ

bk

P
(
N((0, x]) > k

)
dF (x)

≤
∫ k/λ−(a/λ)

√
k/λ

bk

e−c1(k−λx)2/x dF (x) +
∫ k/λ−(a/λ)

√
k/λ

bk

e−c2x dF (x).

(16)

Here, it is easy to see that

(2nd term on RHS of (16)) ≤ e−c2bk = o
(
F

(k

λ

))
as k →∞.

Consider the first term on the right-hand side of (16). Note that, for any x ∈ (b k, k/λ − (a/λ)
√

k/λ),
we have e−c1(k−λx)2/x ≤ e−c1λ(k−λx)2/k, so that integration by parts and change of variables (y =√

λ/k (k − λ x)) result in

(1st term on RHS of (16)) ≤
∫ k/λ−(a/λ)

√
k/λ

0

e−c1λ(k−λx)2/k dF (x)

≤ e−c1λk +
∫ k/λ−(a/λ)

√
k/λ

0

2 c1 λ2 (k − λ x)
k

e−c1λ(k−λx)2/k F (x) dx
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= e−c1λk +
∫ √

λk

a

2 c1 y e−c1y2
F

(k

λ
− y

λ

√
k

λ

)
dy, (17)

and the first term on the right-hand side above is o(F (k/λ)) as k →∞. For the integrand above, since√
L is long-tailed when L is square-root insensitive (see [11]), we have for y ≤

√
λk, ε > 0, and sufficiently

large k,

F
(k

λ
− y

λ

√
k

λ

)
= P

(
L >

k

λ
− y

λ

√
k

λ

)
≤ P

(√
L >

√
k

λ
− y

λ

)
≤ cε eεy F

(k

λ

)
,

where the first inequality follows from
√

x− u
√

x ≥ √
x − u for u ≤ √

x and the last inequality follows
from the property of long-tailed distributions; that is, for any long-tailed random variable X and any
ε > 0, there exist cε > 0 and xε > 0 such that P(X > x− u) ≤ cε eεu P(X > x) for all x− u > xε. Thus,
we obtain

(2nd term on RHS of (17)) ≤ cε F
(k

λ

) ∫ ∞

a

eεy 2 c1 y e−c1y2
dy = cε F

(k

λ

)
E[eεY 1{Y >a}],

where Y denotes a random variable according to Weibull distribution P(Y > y) = e−c1y2
, y ≥ 0. Since

E[eεY ] < ∞, there exists an aε > 0 such that the second term on the right-hand side of (17) is bounded
by ε F (k/λ) for a ≥ aε; that is, it is o(F (k/λ)) as k →∞, and eventually we have (14).

A.2 Asymptotic lower bound

We next show the asymptotic lower bound,

P(N((0, L]) > k) & F
(k

λ

)
as k →∞. (18)

We have for a > 0,

P(N((0, L]) > k) ≥ P
(
N((0, L]) > k, L >

k

λ
+ a

√
k

λ

)

≥ P
(
N

((
0,

k

λ
+ a

√
k

λ

])
> k

)
F

(k

λ
+ a

√
k

λ

)
.

Here, one obtains for k ≥ λa2,

P
(
N

((
0,

k

λ
+ a

√
k

λ

])
> k

)
= P

(N((0, k/λ + a
√

k/λ ])− (k + a
√

λ k)√
k/λ + a

√
k/λ

> − λa√
1 + a

√
λ/k

)

≥ P
(N((0, k/λ + a

√
k/λ ])− (k + a

√
λ k)√

k/λ + a
√

k/λ
> −λa√

2

)

Therefore, the square-root insensitivity and the central limit theorem for renewal processes (see, e.g.,
Asmussen [1, Chap. V, Theorem 6.3]) result in for an appropriate σ > 0,

P(N(0, L]) > k) & Φ
( λ a

σ
√

2

)
F

(k

λ

)
as k →∞,

where Φ denotes the standard normal distribution. Finally, letting a →∞ leads to (18).
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