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Abstract.

A basic framework for exploiting sparsity via positive semidefinite matrix completion is
presented for an optimization problem with linear and nonlinear matrix inequalities. The
sparsity, characterized with a chordal graph structure, can be detected in the variable matrix
or in a linear or nonlinear matrix-inequality constraint of the problem. We classify the
sparsity in two types, the domain-space sparsity (d-space sparsity) for the symmetric matrix
variable in the objective and/or constraint functions of the problem, which is required to be
positive semidefinite, and the range-space sparsity (r-space sparsity) for a linear or nonlinear
matrix-inequality constraint of the problem. Four conversion methods are proposed in this
framework: two for exploiting the d-space sparsity and the other two for exploiting the r-
space sparsity. When applied to a polynomial semidefinite program (SDP), these conversion
methods enhance the structured sparsity of the problem called the correlative sparsity. As a
result, the resulting polynomial SDP can be solved more effectively by applying the sparse
SDP relaxation. Preliminary numerical results on the conversion methods for quadratic
semidefinite programs indicate their potential for improving the efficiency of solving various
problems.
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1 Introduction

Optimization problems with nonlinear matrix inequalities, including quadratic and polyno-
mial matrix inequalities, are known as hard problems. They frequently belong to large-scale
optimization problems. Exploiting sparsity thus has been one of the essential tools for solv-
ing such large-scale optimization problems. We present a basic framework for exploiting the
sparsity characterized in terms of a chordal graph structure via positive semidefinite matrix
completion [3]. Depending on where the sparsity is observed, two types of sparsities are
studied: the domain-space sparsity (d-space sparsity) for a symmetric matrix X that ap-
pears as a variable in objective and/or constraint functions of a given optimization problem
and is required to be positive semidefinite, and the range-space sparsity (r-space sparsity)
for a matrix inequality involved in the constraint of the problem.

The d-space sparsity is basically equivalent to the sparsity studied by Fukuda et. al [2]
for an equality standard form SDP!. See also [13]. Two methods, the completion method
and the conversion method, were proposed to exploit the aggregated sparsity pattern over all
coefficient matrices of the linear objective and constraint functions via the positive semidef-
inite matrix completion. Their conversion method transforms an equality standard form
of SDP with a single (large) matrix variable X in the space S" of n x n real symmetric
matrices to an SDP with multiple smaller matrix variables X!, X2, ..., X? and some ad-
ditional linear equality constraints. We can interpret their aggregated sparsity pattern as
the set of row and column index pairs (7, 7) such that the value of X;; is relevant (or nec-
essary) in the evaluation of the linear objective and/or constraint functions. Thus we call
their aggregated sparsity as the d-space sparsity and their method as a d-space conversion
method in this paper. With this interpretation, their conversion method can be directly
extended to a d-space conversion method for more general optimization problems. One of
the two d-space conversion methods proposed in this paper corresponds to this extension,
and the other d-space conversion method is an extension of the method used for the sparse
SDP relaxation of polynomial optimization problems in [16, 17] and for the sparse SDP
relaxation of a sensor network localization problem in [6].

The r-space sparsity concerns with a matrix inequality

M(y) = O, (1)

involved in a general nonlinear optimization problem. Here M denotes a mapping from
the s-dimensional Euclidean space R® into S, and A = O implies that A € S" is positive
semidefinite. If M is linear, (1) is known as a linear matrix inequality (LMI), which appears
in the constraint of a dual standard form of SDP. If each element of M (y) is a multivariate
polynomial function in y € R* (1) is called a polynomial matrix inequality and the SDP
relaxation [4, 5, 8, 9, 10, 12], which is an extension of the SDP relaxation [11] for polynomial
optimization problems, can be applied to (1). We assume a similar chordal graph structured
sparsity as the d-space sparsity (or the aggregated sparsity by Fukuda et al. [2]) on the
set of row and column index pairs (i, j) of the mapping M such that M;; is not identically
zero, i.e., M;;j(y) # 0 for some y € R*. A representative example satisfying the r-space
sparsity can be found with tridiagonal M. We do not impose any additional assumption

' This paper is concerned with linear, nonlinear, polynomial and quadratic SDPs. We simply say an SDP
for a linear SDP



on (1) to derive a r-space conversion method. When M is polynomial in y € R* we
can effectively combine it with the sparse SDP relaxation method [8, 10] for polynomial
optimization problems over symmetric cones to solve (1).

We propose two methods to exploit the r-space sparsity. One may be regarded as a
dual of the d-space conversion method by Fukuda et. al [2]. More precisely, it exploits
the sparsity of the mapping M in the range space via a dual of the positive semidefinite
matrix completion to transform the matrix inequality (1) to a system of multiple matrix
inequalities with smaller sizes and an auxiliary vector variable z of some dimension ¢. The
resulting matrix inequality system is of the form

—~k ~

M (y)-L(2)z0 (k=12,...,p), (2)

—~k
and y € R* is a solution of (1) if and only if it satisfies (2) for some z. Here M denotes

~k
a mapping from R’ into the space of symmetric matrices with some size and L a linear
mapping from R? into the space of symmetric matrices with the same size. The sizes of

~k
symmetric matrix valued mappings M (k= 1,2,...,p) and the dimension ¢ of the auxiliary
variable vector z are determined by the r-space sparsity pattern of M. For example, if M is

tridiagonal, the sizes of M ; are all 2x 2 and ¢ = n—2. The other r-space conversion method
corresponds to a dual of the second d-space conversion method mentioned previously.
Another type of sparsity discussed in this paper is the correlative sparsity [7], which has
been used under two different circumstances. First, in the primal-dual interior-point method
for solving a linear optimization problem over symmetric cones that includes an SDP as a
special case, the correlative sparsity of the problem characterizes the sparsity of the Schur
complement matrix. We note that the Schur complement matrix is the coefficient matrix of
a system of linear equations that is solved at each iteration of the primal-dual interior-point
method by the Cholesky factorization to compute a search direction. As the Cholesky factor
of the Schur complement matrix becomes sparse, each iteration is executed more efficiently.
Second, in the sparse SDP relaxation [8, 10, 16, 17] of a polynomial optimization problem
and a polynomial SDP, the correlative sparsity is used for its application to the problem. In
addition, the correlative sparsity of the original problem is inherited to its SDP relaxation.
We discuss how the d-space and r-space conversion methods enhance the correlative sparsity.
The organization of the paper is as follows: In Section 2, to illustrate the d-sparsity,
the r-sparsity, and the correlative sparsity, a very sparse SDP is shown as an example. It
is followed by the introduction of the positive semidefinite matrix completion, a chordal
graph, and their basic properties. In Section 3, we describe two d-space conversion methods
using positive semidefinite matrix completion. Section 4 includes the discussion on duality
in positive semidefinite matrix completion, and Section 5 is devoted to two r-space con-
version methods based on the duality. In Section 6, we show how the d-space and r-space
conversion methods enhance the correlative sparsity. In Section 7, the r-space conversion
methods combined with the d-space conversion methods are applied to sparse quadratic
SDPs, and preliminary numerical results are provided. The numerical results are only to
assess the effectiveness of the proposed d- and r-space conversion methods for solving sparse
optimization problems with linear and nonlinear matrix inequalities. There remain impor-
tant issues on implementation of the methods and how to apply the methods to practical
problems. More comprehensive numerical experiments for various problems are necessary



to evaluate the numerical efficiency of the methods. These issues are discussed briefly in
Section 8.

2 Preliminaries

2.1 An SDP example

A simple SDP example is shown to illustrate the three types of sparsities considered in this
paper, the d-space sparsity, the r-space sparsity, and the correlative sparsity that character-
izes the sparsity of the Schur complement matrix. These sparsities are discussed in Sections
3, 5 and 6, respectively.

Let A° be a tridiagonal matrix in S" such that A%, = 0 if |i — j| > 1, and define a
mapping M from S" into S" by

1- X, 0 0 ... 0 X1
0 1—Xo 0 ... 0 Xo3
0 0 0 11— Xn—l,n—l Xn—l,n
X21 X32 X43 s Xn,n—l 11— Xnn

for every X € S". Consider an SDP
minimize A” @ X subject to M(X) > O, X > O. (3)

Among the elements X;; (¢ =1,2,...,n, j =1,2,...,n) of the matrix variable X € S",
the elements X;; with |i — j| < 1 are relevant and all other elements X;; with |i — j| > 1
are unnecessary in evaluating the objective function A" e X and the matrix inequality
M(X) » O. Hence, we can describe the d-sparsity pattern as a symbolic tridiagonal
matrix with the nonzero symbol %

x % 0 ... 0 0
* * % ... 0 0

* ok 0 0
0 0 * %
0 0 *  x

On the other hand, the r-space sparsity pattern is described as

* 0o ... 0 *
0 0
0O 0 ... % %
*x k... Kk %



Applying the d-space conversion method using basis representation described in Section
3.2, and the r-space conversion method using clique trees presented in Section 5.1, we can
reduce the SDP (3) to

n—1 .
minimize Z (A?iXM +9 A?,H Xt 1) + Agm X,
i=1
] 1 O Xll _X12
- -
subject to 0 0 ) ( e 0.
7 >_ - ) -_—
1 O Xn—l n—1 —An—1n
’ ’ -
01 ~Xpm1 Xpn+2no | = o,
00 —Xii —Xii1 .
B 7 >_ = ) - .

This problem has (3n — 3) real variables X;; (i = 1,2,...,n), X;;11 (i = 1,2,...,n —1)
and z; (i = 1,2,...,n—2), and (2n — 1) linear matrix inequalities with size 2 x 2. Since
the original SDP (3) involves an n x n matrix variable X and an n x n matrix inequality
M(X) = O, we can expect to solve the SDP (4) much more efficiently than the SDP (3)
as n becomes larger.

We can formulate both SDPs in terms of a dual standard form for SeDuMi [15]:

maximize b’y subject to ¢ — ATy > 0,

where b denotes an /-dimensional column vector, A an ¢ x m matrix and ¢ an m-dimensional
column vector for some positive integers ¢ and m. See (36) for the case of SDP (3). Table 1
shows numerical results on the SDPs (3) and (4) solved by SeDuMi. We observe that the
SDP (4) greatly reduces the size of the coefficient matrix A, the number of nonzeros in
A and the maximum SDP block compared to the original SDP (3). In addition, it should
be emphasized that the ¢ x ¢ Schur complement matrix is sparse in the SDP (4) while it
is fully dense in the the original SDP (3). As shown in Figure 1, the Schur complement
matrix in the SDP (4) allows a very sparse Cholesky factorization. The sparsity of the Schur
complement matrix is characterized by the correlative sparsity whose definition is given in
Section 6. Notice “a hidden correlative sparsity” in the SDP (3), that is, each element Xj;
of the matrix variable X appears at most once in the elements of M (X). This leads to the
correlative sparsity when the SDP (3) is decomposed into the SDP (4). The sparsity of the
Schur complement matrix and the reduction in the size of matrix variable from 10000 to 2
are the main reasons that SeDuMi can solve the largest SDP in Table 1 with a 29997 x 79992
coefficient matrix A in less than 100 seconds. In Section 6, we discuss in detail how the
exploitation of the d- and r-space sparsities contributes to increasing the sparsity of the
Schur complement matrix.

2.2 Notation and symbols

Let N = {1,2,...,n} denote the set of row and column indices of n x n symmetric matrices.
A problem of positive semidefinite matrix completion is: Given an n X n partial symmetric
matrix X with entries specified in a proper subset F' of N x N, find an n X n positive
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SeDuMi CPU time in seconds (sizeA, nnzA, maxBl, nnzSchur)
n the SDP (3) the SDP (4)
10 0.2 (55x200,128,10,3025) 0.1 (27x72, 80,2,161)
100 || 1091.4 (5050x20000,10298,100,25502500) 0.6 (297x792,890,2,1871)
1000 - 6.3 (2997x7992,8990,2,18971)
10000 - 99.2 (29997x79992,89990,2,189971)

Table 1: Numerical results on the SDPs (3) and (4). Here sizeA denotes the size of the
coefficient matrix A, nnzA the number of nonzero elements in A, maxBl the maximum

SDP block size, and nnzSchur the number of nonzeros in the Schur complement matrix. “-
” means out of memory error.

101

151

20

251

0 5 10 15 20 25 0 50 100 150 200 250
nz=94 nz = 1084

Figure 1: The sparsity pattern of the Cholesky factor of the Schur complement matrix for
the SDP (4) with n = 10 and n = 100.



semidefinite symmetric matrix X satisfying X;; = X;; ((i,7) € F) if it exists. If X is a
solution of this problem, we say that X is completed to a positive semidefinite symmetric
matrix X. For example, the following 3 x 3 partial symmetric matrix

is completed to a 3 x 3 positive semidefinite symmetric matrix

B 33 2
X = | 332
2 2 2

For a class of problems of positive semidefinite matrix completion, we discuss the exis-
tence of a solution and its characterization in this section. This provides a theoretical basis
for both d- and r-space conversion methods.

Let us use a graph G(N, E) with the node set N = {1,2,...,n} and an edge set F C
N x N to describe a class of n X n partial symmetric matrices. We assume that (i,7) & E,
i.e., the graph G(N, E) has no loop. We also assume that if (i,j) € F, then (j,7) € E, and
(1,7) and (j,7) are interchangeably identified. Define

E* = EU{(i,i):1€ N},
S"(E,?) = the set of n x n partial symmetric matrices with entries
specified in E*,
ST(E,?) = {X eS"E,?):3X eSt; X;; = X5 if (i,7) € E°}
(the set of n x n partial symmetric matrices with entries
specified in E* that can be completed to positive

semidefinite symmetric matrices).

For a graph G(N, E) shown in Figure 2 as an illustrative example, we have

([ Xu Xi6 )
X9 Xog
X33 X X
6 2\ — 33 34 36 A B .. °
S*(E,7?) Xu Xu Xi X €R (i,5) e E* ). (5)
Xsa Xs5 Xse
Xo1 Xe2 Xeg3 Xes  Xeo

\

Let

#C' = the number of elements in C for every C' C N,
S¢Y = {Xe€S": X;; =0if (4,5) € C x C} for every C C N,
S¢ = {X €S°: X = O} for every C C N,
X(C) = X eS% such that X;; = X,; ((i,j) € C x C)
for every X € S" and every C' C N,
J(C) = {(i,5) eCxC:1<i<j<n} forevery C CN.

6



Note that X € SY is an n x n matrix although X;j = 0 for every (i,7) ¢ C x C. Thus,
X € S and X’ € S can be added even when C and C' are distinct subsets of N.
When all matrices involved in an equality or a matrix inequality belong to S¢, matrices in
S¢ are frequently identified with the #C x #C matrix whose elements are indexed with
(i,j) € C x C. If N = {1,2,3} and C = {1,3}, then a matrix variable X € S° C S" has
full and compact representations as follows:

Xll 0 X13
X = 0 0 0 andxz<§“ ?3).
X3 0 Xs o

It should be noted that X € S C S™ has elements X;; with (i,7) € C' x C in the 2 x 2
compact representation on the right. Let

E;; = the n x n symmetric matrix with 1 in (¢, j)th and (j,7)th

elements and 0 elsewhere

for every (i,7) € N x N. Then E;; (1 < i < j < n) form a basis of S". Obviously, if
i, j € C C N, then E;; € SY. We also observe the identity

X(C) = Z E;; X;; for every C C N. (6)
(4,5)€J(C)

This identity is utilized in Section 3.

2.3 Positive semidefinite matrix completion

Let G(N, E) be a graph and Cy (k = 1,2,...,p) be the maximal cliques of G(N, E). We
assume that X € S"(E,?). The condition X (Cy) € S{* (k = 1,2,...,p) is necessary
for X € S%(FE,?7). For the graph G(N, E) shown in Figure 2, the maximal cliques are
Cy ={1,6}, Cy = {2,6}, C3 = {3,4}, Cy = {3,6}, C5 = {4,5} and Cs = {5,6}. Hence,
the necessary condition for X € S°(E,?) to be completed to a positive semidefinite matrix
is that its 6 principal submatrices X (Cy) (k = 1,2,...,6) are positive semidefinite. This
condition is not sufficient in general. However, when G (N, E) is chordal, it also provides a
sufficient condition for X € S (£, 7). A graph is said chordal if every (simple) cycle of the
graph with more than three edges has a chord. See [1] for basic properties on choral graphs.

Lemma 2.1. (Theorem 7 of Grone et. al [3]) Let Cy, (k= 1,2,...,p) be the mazimal cliques
of a chordal graph G(N, E). Suppose that X € S"(E,?). Then X € ST (E,?) if and only if
X(Cy) € ST (k=1,2,...,p).

Since the graph G(N, E) in Figure 2 is not a chordal graph, we can not apply Lemma 2.1
to determine whether X € S°(E, ?) of the form (5) belongs to S5 (F,?). In such a case, we
need to introduce a chordal extension of the graph G(N, E) to use the lemma effectively.
A graph G(N, E) is a chordal extension of G(N, E) if it is a chordal graph and £ C FE.
From the definition, Figure 3 shows two chordal extensions. If we choose the left graph
as a chordal extension G(N, E) of G(N, E), the maximal cliques are C; = {3,4,6}, Cy =
{4,5,6}, C3 = {1,6} and Cy = {2,6}, consequently, X € Si(E, ?) is characterized by
X (Cy) € ST (k=1,2,3,4).



Q W

O—6—6

Figure 2: A graph G(N, E) with N ={1,2,3,4,5,6}

2 9'9 Q. Q@
O——6® O @6
(a) (b)

Figure 3: Chordal extensions of the graph G(N, E) given in Figure 2. (a) The maximal
cliques are C7 = {3,4,6}, Cy = {4,5,6}, C3 = {1,6} and Cy = {2,6}. (b) The maximal
cliques are C7 = {3,4,5}, Cy = {3,5,6}, C3 ={1,6} and Cy = {2,6}.

3 Exploiting the domain-space sparsity

In this section, we consider a general nonlinear optimization problem involving a matrix

variable X € S™:
minimize fo(z, X) subject to f(x, X) € Q and X € ST, (7)

where fo : R* xS" — R, f:R* x§" — R™ and €2 C R™. Let F denote the set of distinct
row and column index pairs (7, j) such that a value of X;; is necessary to evaluate fo(x, X)
and/or f(x, X). More precisely, for X}, = X7, (k,¢) # (,7), fo(x, X") # fo(x, X?) and /or
f(x, X") # f(x, X?) hold for some = € R*, X' € S" and X? € S”. Consider a graph
G(N,E). We call E the d-space sparsity pattern and G(N, E) the d-space sparsity pattern
graph. If G(N, E) is an extension of G(N, E), then we may replace the condition X € S}
by X € S7(E,?). To apply Lemma 2.1, we choose a chordal extension G(N, E) of G(N, E).
Let C4,Cs,...,C, be its maximal cliques. Then we may regard fy and f as functions in
x € R® and X(Cy) (k =1,2,...,p), i.e., there are functions f, and f in the variables @
and X (Cy) (k=1,2,...,p) such that

fo(x, X) = fo(iB,X(Ol),X(CQ), ..., X(Cp)) for every (x, X) € R* x §", (8)
flx, X) = f(z, X(C1), X (Cy),...,X(C,)) for every (x, X) € R* x S".
Therefore, the problem (7) is equivalent to
minimize fo(m, X (C4),X(Cy),...,X(C)))
subject to  f(x, X (C1), X (Cy),..., X(C,)) € Q and 9)
X(Cy) eSS (k=1,2,...,p).

As an illustrative example, we consider the problem whose d-space sparsity pattern



graph G(N, E) is shown in Figure 2:

minimize — Z Xij
6( JEE, i<j (10)
subject to Z(X’ —;)? <6, X € Si,

=1

where o; > 0 (i = 1,2,...,6). As a chordal extension, we choose the graph G(N, E) in (a)
of Figure 3. Then, the problem (9) becomes

4

minimize Z fOk(X(Ck))
5l (1)

subject to ka(X(C’k)) <6, X(Cy) € Si’“ (k=1,2,3,4),
k=1

where
for(X(C1)) = —Xsa— Xze, foo(X(C2)) = —Xu5 — Xso, )
[03<X(C3)) = _X167 f04(X(C4)) = _X26a
AX(C) = (Xa3—a3)® + (Xas — au)? + (Xos — ae)?, (12)
L(X(C) = (X5 —a5) f5(X(C3) = (X1 —ar)?,
[1(X(C) = (X2 — ).

V

The positive semidefinite condition X (Cy) € ST* (k =1,2,...,p) in the problem (9) is
not an ordinary positive semidefinite condition in the sense that overlapping variables X;
((3,7) € C, N Cy) exist in two distinct positive semidefinite constraints X (Cy) € S¢* and
X(Cy) € S? if C, N C,; # (. We describe two methods to transform the condition into an
ordinary positive semidefinite condition. The first one was given in the papers [2, 13| where
a d-space conversion method was proposed, and the second one was originally used for the
sparse SDP relaxation of polynomial optimization problems [16, 17] and also in the paper
[6] where a d-space conversion method was applied to an SDP relaxation of a sensor network
localization problem. We call the first one the d-space conversion method using clique trees
and the second one the d-space conversion method using basis representation.

3.1 The d-space conversion method using clique trees

We can replace X (Cy) (k = 1,2,...,p) by p independent matrix variables X* (k =
1,2,...,p) if we add all equality constraints ij = ij for every (i,j) € C N C, with
i < j and every pair of C; and C, such that Cj N Cy # (. For the chordal graph G(N, E)
given in (a) of Figure 3, those equalities turn out to be the 8 equalities

X —Xgg =0 (1 <k <l<4), Xj,=X3,, Xj5= X

These equalities are linearly dependent, and we can choose a maximal number of linearly
independent equalities that are equivalent to the original equalities. For example, either of
a set of b equalities

Xi4 - X24 =0, XiG - X426 =0, X616 - X626 =0, X616 - Xg6 =0, X616 - X§6 =0. (13)

9



C1={ 3,4, 6} C4={2, 6} C1={3, 4, 6}

C,=(2,6} C,={1,6} C,={4,5,6) C,={ 1, 6}——C,={4, 5, 6}

Figure 4: Two clique trees with K = {C} = {1,2}, Cy = {1,4}, C3 ={1,6}, Cy ={1,3,5}}

and a set of 5 equalities
Xiy— X5 =0, XiG - Xfﬁ =0, Xé@’ - XgG =0, X626 - Xgﬁ =0, Xgﬁ - Xgﬁ =0 (14)

is equivalent to the set of 8 equalities above.

In general, we use a clique tree 7 (K, &) with K = {C},Cy,...,C,} and € C K x K
to consistently choose a set of maximal number of linearly independent equalities. Here
T(K,E) is called a clique tree if it satisfies the clique-intersection property, that is, for each
pair of nodes C, € K and C; € K, the set C}, N} is contained in every node on the (unique)
path connecting Cy and C,. See [1] for basic properties on clique trees. We fix one clique for
a root node of the tree 7 (K, £), say Cy. For simplicity, we assume that the nodes Cs, ..., C,
are indexed so that if a sequence of nodes Cy, Cy,, ..., Cy, forms a path from the root node
Cy to a leaf node Cy,, then 1 < ¢y < --- < {, and each edge is directed from the node
with a smaller index to the other node with a larger index. Thus, the clique tree 7 (K, E)
is directed from the root node C} to its leaf nodes. Each edge (Cy,Cy) of the clique tree
T (K, &) induces a set of equalities

Xk = X5 =0((i,)) € J(C, N Cy)),
or equivalently,

where J(C) = {(i,j) € C x C : i < j} for every C C N. We add equalities of the form
above for all (Cy, Cy) € £ when we replace X (Cy) (k=1,2,...,p) by p independent matrix
variables X" (k=1,2,...,p). We thus obtain a problem

minimize  fo(x, X!, X2, ..., XP)
subject to  f(x, X', X?,..., X?) € Q,

Eij.Xk_Eij.XEZO((i7j7k7‘€)EA)7 (15)
Xk est (k=1,2,...,p),
where
A= {(ga hakvg) : (ga h) € ‘](Ck’ mCE), (Ck’acf) € g} (16)

This is equivalent to the problem (9). See Section 4 of [13] for more details.
Now we illustrate the conversion process above by the simple example (10). Figure 4
shows two clique trees for the graph given in (a) of Figure 3. The left clique tree in Figure 4

10



leads to the 5 equalities in (13), while the right clique tree in Figure 4 induces the 5 equalities
in (14). In both cases, the problem (15) has the following form

4
minimize Z For (X
k=1
4
subject to ka(Xk) <6,
k=1

the 5 equalities in (13) or (14),
X* e st (k=1,2,3,4),

where
f01(X1) = _X§4 - X?}ﬁa f02(X2) = _XZS - X§67
fq3(X3) = —X75, fo(Xh) = —Xy,
fl(Xl) = (X§3 - O‘3>2 + (Xi4 - 054) + (Xéﬁ - 0‘6)27
L(X?) = (X35 —as)?, f3(X°) = (X7, —an)?, fu(X?) = (X35 — )’

Remark 3.1. The d-space conversion method using clique trees can be implemented in
many different ways. The fact that the chordal extension G(N, E) of G(N, E) is not unique
offers flexibility in constructing an optimization problem of the form (15). More precisely,
a choice of chordal extension G(N, E) of G(N, E) decides how “small” and “sparse” an op-
timization problem of the form (15) is, which is an important issue for solving the problem
more efficiently. For the size of the problem (15), we need to consider the sizes of the matrix
variables X* (k= 1,2,...,p) and the number of equalities in (15). Note that the sizes of
the matrix variables X* (k =1,2,...,p) are determined by the sizes of the maximal cliques
Cr (k=1,2,...,p). This indicates that a chordal extension G(N, E) with smaller maximal
cliques Cy (k= 1,2,...,p) may be better theoretically. (In computation, however, this is
not necessarily true because of overhead of processing too many small positive semidefinite
matrix variables.) The number of equalities in (15) or the cardinality of A is also determined
by the chordal extension G(N, E) of G(N, E). Choosing a chordal extension G(N, E) with
smaller maximal cliques increases the number of equalities. Balancing these two contra-
dicting targets, decreasing the sizes of the matrix variables and decreasing the number of
equalities was studied in the paper [13] by combining some adjacent cliques along the clique
tree 7(KC,E). See Section 4 of [13] for more details. In addition to the choice of a chordal
extension G(N, E) of G(N, E), the representation of the functions and the choice of a clique
tree add flexibilities in the construction of the problem (15). That is, the representation of
the functions fy : R* x §" — R and f : R* x " — R™ in the vector variable & and the
matrix variables X (Cy) (k = 1,2,...,p) as in (8); for example, we could move the term
(X6 — ag)? from fi(x, X (C})) to either of fi(z, X (Cy)) (k = 2,3,4). These choices of the
functions fy, f and a clique tree affect the sparse structure of the resulting problem (15),
which is also important for efficient computation.
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3.2 The domain-space conversion method using basis representa-
tion

Define

(Xy;: (i,j) € J) = the vector variable consisting of X;; ((i,7) € J),
)) = fo(x, X) for every (x, X) € R* x §",
flz, (X :(i,5) € J) = f(z,X) for every (z,X) € R® x S".

We represent each X (Cj) in terms of a linear combination of the basis E;; ((i,7) € J(Cy)) of
the space S as in (6) with C' = Cy, (k = 1,2,...,p). Substituting this basis representation
into the problem (9), we obtain

minimize  fo(w, (X : (i,7) € J))

subject to  f(x, (X : (i,5) € J) € Q,

17
S EyX, eSO (k=12 ..p) (17)
(.)€ J(C)
We observe that the illustrative example (10) is converted into the problem
minimize — Z Xij )
(i.j)€E, i<j
6
subject to Z(X” — ;)? <6, (18)

=1
> EyX; €87 (k=1,2,34).
()€ (Cr) J

Remark 3.2. Compared to the d-space conversion method using clique trees, the d-space
conversion method using basis representation described above provides limited flexibilities.
To make the size of the problem (17) smaller, we need to select a chordal extension G(N, E)
of G(N, FE) with smaller maximal cliques Cy (k = 1,2,...,p). As a result, the sizes of
semidefinite constraints become smaller. As we mentioned in Remark 3.1, however, too
many smaller positive semidefinite matrix variables may yield heavy overhead in computa-
tion.

4 Duality in positive semidefinite matrix completion

Throughout this section, we assume that G(N, E) denotes a chordal graph. In Lemma 2.1,
we have described a necessary and sufficient condition for a partial symmetric matrix X €
S™(F,?) to be completed to a positive semidefinite symmetric matrix. Let

SME,0) = {AeS": A; =0if (i,)) & E*},
S'(E,0) = {A€S"(E,0): A= O}

12



In this section, we derive a necessary and sufficient condition for a symmetric matrix A €
S"(E,0) to be positive semidefinite, i.e., A € S (FE,0). This condition is used for the
range-space conversion methods in Section 5. We note that these two issues have primal-
dual relationship:

A € S (F,0) if and only if Z Ay X5 > 0 for every X € ST(E,?). (19)
(i,j)eE*®
This relation and Lemma 2.1 are used in the following.
Suppose A € S"(E,0). Let C1,Cs,...,C, be the maximal cliques of G(N, E). Then,
we can consistently decompose A € S"(F,0) into A € S% (k = 1,2,...,p) such that

P

A= Z Ak. We know that A is positive semidefinite if and only if A ¢ X > 0 for every
k=1

X € S". Since A € S"(E,0), this condition can be relaxed to the condition (19). Therefore,

A is positive semidefinite if and only if the following SDP has the optimal value 0.

p
minimize Z [Z Ak] Xi; subject to X € ST (E, 7). (20)
¥

(i.j)eBs Li=1

We can rewrite the objective function as

> lizklz Xy = Xp: > ALX

(i,j)eE® Lk=1 ij k=1 | (i.j)eE"

p
= Z (A]C . X(Ck)> for every X € S (E, 7).
k=1

Note that the second equality follows from 2&’“ € S% (k=1,2,...,p). Applying Lemma 2.1
to the constraint X € S} (£,?) of the SDP (20), we obtain an SDP

P
minimize Z (Ak o X(C’k)> subject to X (Cy) € ST (k=1,2,...,p), (21)
k=1

which is equivalent to the SDP (20).

The SDP (21) involves multiple positive semidefinite matrix variables with overlapping
elements. We have described two methods to convert such multiple matrix variables into
independent ones with no overlapping elements in Sections 3.1 and 3.2, respectively. We
apply the method given in Section 3.1 to the SDP (21). Let 7 (K, €) be a clique tree with
K={C,Cs,...,Cp} and £ C K x K. Then, we obtain an SDP

p
minimize Z (Ak ° Xk>

k=1 . , (22)
subject to E;; e X" —E;; e X" =0 ((1,7,k,0) € A),

Xk est (k=1,2,...,p),

which is equivalent to the SDP (21). Here A is given in (16).

13



Theorem 4.1. A € S"(E,0) is positive semidefinite if and only if the system of LMIs
A" 'z =0 k=12..p). (23)

has a solution z = (Zgnke = (g, h,k,0) € N). Here z = (zgnie = (g, h,k,0) € A) denotes a
vector variable consisting of zgnke ((g, h, k,€) € A), and

~k
L (z) = — Z E;;zijn + Z E;;zijke
for every z = (zijpe = (,5,k,0) € A) (k=1,2,...,p). (24)

Proof:  In the previous discussions, we have shown that A € S"(FE, 0) is positive semidef-
inite if and only if the SDP (22) has the optimal value 0. The dual of the SDP (22) is

maximize 0 subject to (23). (25)

The primal SDP (22) attains the objective value 0 at a trivial feasible solution (X1, Xo,..., X,) =
(0,0,...,0). If the dual SDP (25) is feasible or the system of LMIs (23) has a solution,

then the primal SDP (22) has the optimal value 0 by the week duality theorem. Thus we

have shown the “if part” of the theorem. Now suppose that the primal SDP (22) has the
optimal value 0. The primal SDP (22) has an interior-feasible solution; for example, take

X" to be the #C} x #C}, identity matrix in S% (k =1,2,...,p). By the strong duality
theorem (Theorem 4.2.1 of [14]), the optimal value of the dual SDP (25) is zero, which
implies that (25) is feasible.

As a corollary, we obtain the following.
Theorem 4.2. A € S"(E,0) is positive semidefinite if and only if there exist Y* € SE’C

P
(k=1,2,...,p) which decompose A as A = ZY’“.
k=1
Proof: ~ Since the “if part” is straightforward, we prove the “only if” part. Assume
that A is positive semidefinite. By Theorem 4.1, the LMI (23) has a solution z. Let
p
~k ~k ~k
Y'=A-L(2)(k=1,2,...,p). ThenY* € S* (k=1,2,...,p). SinceZL (2)=0
k=1
by construction, we obtain the desired result. y

We conclude this section by applying Theorem 4.1 to the case of the chordal graph
G(N, E) given in (a) of Figure 3. The maximal cliques are Cy = {3,4,6}, Cy = {4,5,6}, C3 =
{1,6} and C,; = {2,6}, so that A € S’(FE,0) is decomposed into 4 matrices

00 O 0 0 0
00 0 0 0 0
o 0 0 Azz Azs 0 Asg {3,4,6}
A =100 Ag Aw 0 Ag |5
00 0 0 0 0
0 0 A63 A64 0 AGG
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000 O 0 0
000 O 0 0
= |loo0oo0 0 0 o0 w56
“ 1000 0 45 o |57
0 0 0 Asy Ass Asg
0 00 0 Ag O
Ai; 00 0 0 A
0O 00O0O0 O
~3 O 00O0O0O O
_ {1,6}
=l o o000 0o |€57
0O 00O0O0 O
Asit 00 0 0 O
0O 0 000 O
0 AQQ 0 O O AQG
i+ o 0o 000 o0 26)
= 1o 0 o000 o |5
0O 0 000 O
0 A 0 0 0 O
or,
1 Asg Asy Asg y 0 Agps 0
A = Az Au A | €SP AT = Ay Ass Asg | € SIPO
Aﬁg A64 A66 0 A65 0 (26)
~3 A Ase ey 3t _ [ Az A {2,6}
A _(Am 0 eSS A = Ay 0 €S

in the compact representation. We note that this decomposition is not unique. For ex-
ample, we can move the (6,6) element Ags from Al to any other Ak We showed two
clique trees with K = {C},(Cs,C5,Cy} in Figure 4. For the left clique tree, we have
A=1{(4,4,1,2),(4,6,1,2),(6,6,1,2),(6,6,1,3),(6,6,1,4))}. Thus, the system of LMIs (23)
becomes

Azg Az Asg )
Agz Ags — zamo  Ase — 2612 = O,
Az Ags — zam2  Ass — Ze612 — 26613 — 26614

Zaaa Ass  Zagi2 (27)
Asy  Ass Ase = O,
zi612 Aes  Ze612

<A11 A16 >>_0 (A22 A26 )>‘O

A1 %6613 Aga  Z6614

/

For the right clique tree, we have A = {(4,4,1,2), (4,6, 1,2),(6,6,1,2),(6,6,2,3),(6,6,3,4)}
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and

Asg Az Asg )
Ayz Aug — zamo  Ase — 21612 = O,
Az Aes — zam2  Aes — Ze612
zam2  Aus 24612 (28)
Asy  Ass Asg = 0,
za612 Aes 26612 — Z6623
( A Ag ) ~ 0 ( Ay Ags > ~ 0.
A1 Ze623 — Ze634 ) Ao 26630 ) )

5 Exploiting the range-space sparsity

In this section, we present two range-space conversion methods, the r-space conversion
method using clique trees based on Theorem 4.1 and the r-space conversion method using
matrix decomposition based on Theorem 4.2.

5.1 The range-space conversion method using clique trees
Let
F = {(i,7) € Nx N:M,(y) #0 for some y € R®, i# j}.

We call F' the r-space sparsity pattern and G(N, F') the r-space sparsity pattern graph of the
mapping M : R* — S". Apparently, M (y) € S"(F,0) for every y € R* but the graph
G(N, F) may not be chordal. Let G(N, E) be a chordal extension of G(N, F'). Then

M (y) € S"(E,0) for every y € R®. (29)

Let Cy,Cy, ..., C, be the maximal cliques of G(N, E).

~k
To apply Theorem 4.1, we choose mappings M (k = 1,2,...,p) to decompose the
mapping M : R®* — S" such that

p
M(y) = ZMk(y) for every y € R?, MR SO (k=1,2,....,p).  (30)
k=1

Let 7 (K, €) be a clique tree where K = {C,Cy,...,C,} and € C K x K. By Theorem 4.1,
y is a solution of (1) if and only if it is a solution of

—~k ~

M@y -L'(z)=0(k=12..p (31)
for some z = (zgnke : (g9, h, k,€) € A), where A is given in (16) and ' in (24).

We may regard the r-space conversion method using clique trees described above as a
dual of the d-space conversion method using clique trees applied to the SDP

minimize M (y) @ X subject to X = O, (32)
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where X € S" denotes a variable matrix and y € R® a fixed vector. We know that
M (y) > O if and only if the optimal value of the SDP (32) is zero, so that (32) serves
as a dual of the matrix inequality M (y) > O. Each element z;;,, of the vector variable z
corresponds to a dual variable of the equality constraint E;; ¢ X b E; ;e X ® =0 in the
problem (15), while each matrix variable X* € S in the problem (15) corresponds to a

dual matrix variable of the kth matrix inequality M k(y) - IN}k(z) = 0.

Remark 5.1. On the flexibilities in implementing the r-space conversion method using
clique trees, the comments in Remark 3.1 are valid if we replace the sizes of the matrix

—~k

variable X* by the size of the mapping M : R® — S and the number of equalities by the
number of elements z;;x, of the vector variable z. The correlative sparsity of (31) depends on
the choice of the clique tree and the decomposition (30). This is illustrated in Remark 6.1.

As an example, we consider the case where M is tridiagonal, i.e., the (4, j)th element M,;
of M is zero if |i — j| > 2, to illustrate the range space conversion of the matrix inequality
(1) into the system of matrix inequalities (31). By letting £ = {(i,5) : |i — j| = 1}, we
have a simple chordal graph G(N, E) with no cycle satisfying (29), its maximal cliques
Cr=A{k,k+1} (k=1,2,...,n—1), and a clique tree 7 (K, &) with

K:{Cl,CQ,...7Cn,1} aHdSI{(Ck,Ck+1) GICX’CIIC:LZ,...,TL—Q}.

For every y € R, let

Mie(y)  Mips1(y) c :
7 s ifl<k<n-2
( Miyis(y) 0 Po=Een

Mn—l n—l(y) Mn—l n(y) > C :
’ ’ eSS ifk=n-—1
< Mn,n—l(@/) Mnn(y) ' "

~k
Then, we can decompose M : R® — S*(E,0) into M : R® — S% (k=1,2,...,n—1) as
in (30) with p =n — 1. We also see that

A= {(k+1L,k+1,kk+1): k=12 . n—2}

) Eoy 29910 € SCl if k=1,
_ o
L (z) = —FE i Zipk—1k + i1 pt1 2ot hr1pbin €SF fk=23,...,n—2,
C, _ .
_En—l,n—l Zn—1n—1n—2n-1 € Strt if k=n— ]-7

Thus the resulting system of matrix inequalities (31) is

M (y) Mia(y) )

M (y) —za212 ) =0,

Me(y) + 2k pp—16 Miri1(y) > -0 (k=23 n—2)
Mk+1,k(y) —Zk+1,k+1,k,k+1 - I ’

( Mn—l,n—1<y) + Zn—1,n—1,n—2,n—1 Mn—l,n(y) ) . O
M n-1(y) M (y) -

17



5.2 The range-space conversion method using matrix decomposi-
tion

By Theorem 4.2, we obtain that y € R® is a solution of the matrix inequality (1) if and only
if there exist Y* € 8% (k =1,2,...,p) such that

p
ZYk:M(y) and Y e S (k=1,2,...,p).
k=1

Let J =U_,J(Cy) and T'(3,5) = {k : i € Cy, j € Cy} ((i,4) € J). Then we can rewrite the
condition above as

Y EyeY'—E;eM(y)=0(Gj)e]) and Y eS{* (k=12....p). (33)

kel(3,5)

We may regard the r-space conversion method using matrix decomposition as a dual
of the d-space conversion method using basis representation applied to the SDP (32) with
a fixed y € R°. Each variable X;; ((¢,j) € J) in the problem (17) corresponds to a
dual real variable of the (i, )th equality constraint of the problem (33), while each matrix
variable Y* in the problem (33) corresponds to a dual matrix variable of the constraint

c

Y E;X;esi
(1.)€J(Ck)

Remark 5.2. On the flexibilities in implementing the r-space conversion method using

matrix decomposition, the comments in Remsark 3.2 are valid if we replace the sizes of the
semidefinite constraints by the sizes of the matrix variables Y* (k= 1,2,...,p).

We illustrate the r-space conversion method using matrix decomposition with the same
example where M is tridiagonal as in Section 5.1. In this case, we see that

b = TL-].,
Cy = {kk+1} (k=1,2,...,n—1),
) = {(kk), (kk+1), (k+1Lk+1)} (k=12,...,n—1),
J o= {(kk) k=12 o} {kE+1): k=12 ,n-1}

{1} ifi=75=1,

i) - {k} ifi=k j=k+land 1 <k<n-1,

DT Y {k—1,k} ifi=j=kand2<k<n-—1,

{n—1} ifi=j=n.

Hence, the matrix inequality (1) with the tridiagonal M : R* — S" is converted into

E11'Y1—E11°M(y):07

Epjp10Y" —E; My =0(k=1,2,...,n—1),
EoeY ' L E oY —EpeM(y) =0(k=2,...,n—1),
Enn.Ynil _Enn.M(y) =0,

k Yk’i Ykkk+1 Ck
Y" = A A €S+ (kzl,?,...,n—l).
Yk:-l-l,k Yk+1,k+1
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6 Correlative sparsity

When we are concerned with the SDP relaxation of polynomial SDPs (including ordinary
polynomial optimization problems) and linear SDPs, another type of sparsity called the
correlative sparsity plays an important role in solving the SDPs efficiently. The correlative
sparsity was dealt with extensively in the paper [7]. It is known that the sparse SDP
relaxation [10, 12, 16, 17] for a correlatively sparse polynomial optimization problem leads to
an SDP that can maintain the sparsity for primal-dual interior-point methods. See Section 6
of [7]. In this section, we focus on how the d-space and r-space conversion methods enhance
the correlative sparsity. We consider a polynomial SDP of the form

maximize fo(y) subject to Fi(y) € ST* (k=1,2,...,p). (34)

Here fy denotes a real valued polynomial function in y € R", F'; a mapping from R" into

S™* with all polynomial components in y € R". For simplicity, we assume that f; is a linear

function of the form fy(y) = b y for some b € R™. The correlative sparsity pattern graph
is defined as a graph G(N, E) with the node set N = {1,2,...,n} and the edge set

) 1 # j, both values y; and y; are necessary

E= {(Z,J) ENXN: to evaluate the value of Fy(y) for some k [

When a chordal extension G(N, E) of the correlative sparsity pattern graph G(N, E)
is sparse or all the maximal cliques of G(N, E) are small-sized, we can effectively apply
the sparse SDP relaxation [10, 12, 16, 17] to the polynomial SDP (34). As a result, we
have a linear SDP satisfying a correlative sparsity characterized by the same chordal graph
structure as G(N, E). More details can be found in Section 6 of [7]. Even when the
correlative sparsity pattern graph G(N, E) or its chordal extension G(N, E) is not sparse,
the polynomial SDP may have “a hidden correlative sparsity” that can be recognized by
applying the d-space and/or r-space conversion methods to the problem to decompose a
large size matrix variable (and/or inequality) into multiple smaller size matrix variables
(and/or inequalities). To illustrate this, let us consider a polynomial SDP of the form

minimize b’y subject to F(y) € ST,

where F' denotes a mapping from R" into S" defined by

1-— yil 0 0 cos 0 Y1Ya2
0 l—ys 0 ... 0 Y213
0 0 0
F(y) — . Y3Y4
0 0 0 L=yl Ynayn
ViYe  YoYs  YsYa .- Yn-1Yn 1 —yi

This polynomial SDP is not correlatively sparse at all (i.e., G(N, E') becomes a complete
graph) because all variables y1, ¥, . . . , ¥, are involved in the single matrix inequality F(y) €
S”. Hence, the sparse SDP relaxation [10] is not effective for this problem. Applying the
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Figure 5: The correlative sparsity pattern of the polynomial SDP (35) with n = 20, and its
Cholesky factor with a symmetric minimum degree ordering of its rows and columns.

r-space conversion method using clique trees to the polynomial SDP under consideration,
we have a polynomial SDP

minimize bTy \
4
subject to ( b ) = 0,
Y1y2 <1
e, ] . 35
Y YiYi+1 =0 (i=2,3,...,n—2), (35)
Yilhirr  —Zio1 T %
oA
1 Yn—1 yn4_1yn i 07
Yn-1Yn L= Yp — 2n—2

V

which is equivalent to the original polynomial SDP. The resulting polynomial SDP now
satisfies the correlative sparsity as shown in Figure 5. Thus the sparse SDP relaxation [10]
is efficient for solving (35).

The correlative sparsity is important in linear SDPs, too. We have seen such a case in
Section 2.1. We can rewrite the SDP (3) as

n—1 )
maximize — Z (AZOZXu + 2A2i+1Xi,i+l) — AngTm
1=1
n n—1
SUbjeCt to I — Z EuXu + Z EinXi,i—i—l t O, (36)
i=1 i=1
Z E;;Xi; = O,
1<i<j<n y

where I denotes the n X n identity matrix. Since the coefficient matrices of all real variables
Xij (1 <1 < j < n) are nonzero in the last constraint, the correlative sparsity pattern
graph G(N, F) forms a complete graph. Applying the d-space conversion method using
basis representation and the r-space conversion method using clique trees to the original
SDP (3), we have reduced it to the SDP (4) in Section 2.1. We rewrite the constraints of
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Figure 6: The correlative sparsity pattern of the SDP (37) induced from (4) with n = 10
and n = 100, and its Cholesky factor with a symmetric minimum degree ordering of its rows
and columns.

the SDP (4) as an ordinary LMI form:

maximize b’y

subject to  AF — ZAfLyh =0 (k=1,2,...,p). (37)
h=1

Here p = 2n —2, s = 3n — 3, each A is 2 x 2 matrix (k=1,2,...,p, h=0,1,...,3n—3),
b e R™3 y e R*™3 and each element y;, of y corresponds to some X;; or some z;.
Comparing the SDP (36) with the SDP (37), we notice that the number of variables is
reduced from n(n + 1)/2 to 3n — 3, and the maximum size of the matrix inequality is
reduced from n to 2. Furthermore, the correlative sparsity pattern graph becomes sparse.
See Figure 6.

Now we consider an SDP of the form (37) in general. The edge set E of the correlative
sparsity pattern graph G(N, E') is written as

E={(g.h) e NXxN: g#h, A+ 0O and A} # O for some k },

where N = {1,2,...,s}. It is known that the graph G(N, F) characterizes the sparsity pat-
tern of the Schur complement matrix of the SDP (37). More precisely, if R denotes the s x s
sparsity pattern of the Schur complement matrix, then Ry, = 0if (¢, h) ¢ E*. Furthermore,
if the graph G(N, E) is chordal, then there exists a perfect elimination ordering, a simul-
taneous row and column ordering of the Schur complement matrix that allows a Cholesky
factorization with no fill-in. For the SDP induced from (4), we have seen the correlative
sparsity pattern with a symmetric minimum degree ordering of its rows and columns in
Figure 6, which coincides with the sparsity pattern of the Schur complement matrix whose
symbolic Cholesky factorization is shown in Figure 1.

Remark 6.1. As mentioned in Remark 5.1, the application of r-space conversion method
using clique trees to reduce the SDP (3) to the SDP (4) can be implemented in many
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Figure 7: The correlative sparsity pattern of the SDP (37) induced from (38) with n = 10
and n = 100 where the rows and columns are simultaneously reordered by the MATLAB
function symamd (a symmetric minimum degree ordering).

different ways. In practice, it should be implemented to have a better correlative sparsity
in the resulting problem. For example, we can reduce the SDP (3) to

n—1 )
minimize (AP X + 240, 1 X 1) + Ap i Xon
i=1
] 1 0 X1 —Xi
_ -
subject to ( 0 0 ( Xy 2 ) =~ O,
1 0 Xii —Xiit1 . 38
_ ’ > = . —
( 00 ) ( Xy —% ) =0 E=23.,n=2) .
1 0 Xn—l n—1 —An—1n
7 : -
O 1 ( _Xn,n—l XTL,TL + Z?:_IQ Zi ) N O’

00 —Xii —Xiit1 )
N 7 >_ = o o. . —

which is different from the SDP (4). This is obtained by choosing a different clique tree in
the r-space conversion method using clique trees for the SDP (3). In this case, all auxiliary
variables z; (i = 1,2,...,n — 2) are contained in a single matrix inequality. This implies
that the corresponding correlative sparsity pattern graph G(V, E) involves a clique with
the size n — 2. See Figure 7. Thus the correlative sparsity becomes worse than the previous
conversion. Among various ways of implementing the d- and r-space conversion methods,
determining which one is effective for a better correlative sparsity will be a subject which
requires further study.

Ve
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7 Preliminary numerical results

We present numerical results to show the effectiveness of the d- and r-space conversion
methods. For test problems, we consider a quadratic SDP of the form

minimize Zcixi subject to M (x) = O, (39)

=1

where ¢; € [0,1] (1 = 1,2,...,s), M : R® — S", and each non-zero element f M;; of the
mapping M : R®* — S" is a polynomial in & = (21,29, ...,z,) € R® with degree at most 2.

7.1 SDP relaxations of a quadratic SDP

In this subsection, we apply the d- and r-space conversion methods to the quadratic SDP
(39), and derive 4 kinds of SDP relaxations:

(a) a dense SDP relaxation without exploiting any sparsity.

(b) a sparse SDP relaxation by applying the d-space conversion method using basis rep-
resentation given in Section 3.2.

(c) a sparse SDP relaxation by applying the r-space conversion method using clique trees
in Section 5.1.

(d) a sparse SDP relaxation by applying both of the d-space conversion method using
basis representation and the r-space conversion method using clique trees.

Some preliminary numerical results on these SDP relaxations are provided to compare their
efficiency in Sections 7.2 and 7.3.
We write each non-zero element M;;(x) as

1 x7
x xx’

Mij(x) = Qe < ) for every x € R”.

for some Q,; € S'. Assume that the rows and columns of each Q,;; are indexed from 0 to

s. Let us introduce a linearization (or lifting) ]\/4\”- : R* x §* — R of the quadratic function
Mz] R — R:

—~ 1 £UT . \
Mij(z, X) = Qij'(w X)forevery:ce]R and X € S°,

which induces a linearization (or lifting) M R xS —S"of M : R® — S" whose (,7)th
element is M;;. Then we can describe the dense SDP relaxation (a) as

n - T
minimizeZcixZ— subject to M (x, X) = O and ( i azX ) = 0.
i=1

For simplicity, we rewrite the dense SDP relaxation above as
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(a) minimizeZc,»WOi subject to ]/\ZT(W) =0, Weo=1 and W > O,
i=1
where

T
(Wor, Woa,y ..., Wos) = wTeRsandW:<i ?)ESH’S.

Let G(N’, F') be the d-space sparsity pattern graph for the SDP (a) with N’ = {0, 1,..., s},
and F” = the set of distinct row and column index pairs (¢,7) of W;; that is necessary to
evaluate the objective function Y | ¢;Wy; and/or the LMI M (W) = O. Let G(N', E') be
a chordal extension of G(N', F'), and C{,CY,...,C! be the maximal cliques of G(N’, E’).
Applying the d-space conversion method using basis representation described in Section 3.2,
we obtain the SDP relaxation

( n
minimize Z c;Woi
i=1
(b) subject to M ((Wy; : (i,5) € J)) = O, Wy = 1,
Z Eij‘/VijESik (k:1,2,...,’l").
. (1.4)€J(Cy)

Here J = U;_, J(C}.), (Wi : (i,7) € J) = the vector variable of the elements W;; ((i,) € J)
and

—~ —

M((Wy;:(i,5) € J)) = M(W) for every W € S°(E',0).

To apply the r-space conversion method using clique trees given in Section 5.1 to the
quadratic SDP (39), we assume that M : R® — S"(FE,0) for some chordal graph G(N, E)
where N ={1,2,...,n} and £ C N x N. Then, we convert the matrix inequality M (x) =
O in (39) into an equivalent system of matrix inequalities (31). The application of the LMI
relaxation described above to (31) leads to the SDP relaxation

minimize Z ciWoi
(c) 1 )
subject to Mk(W) —L(2)=0 (k=1,2,...,p), Weo =1, W = O,

where M : S'™* — S% denotes a linearization (or lifting) of M ’ . R* — S%. We may
apply the linearization to (39) first to derive the dense SDP relaxation (a), and then apply
the r-space conversion method using clique trees to (a). This results in the same sparse
SDP relaxation (c) of (39). Note that both M and M take values from S™(E,0), thus, they
provide the same r-space sparsity pattern characterized by the chordal graph G(N, E).

Finally, the sparse SDP relaxation (d) is derived by applying the d-space conversion
method using basis representation to the the sparse LMI relaxation (c). We note that the
d-space sparsity pattern graph for the SDP (c) with respect to the matrix variable W € S'**
is the same as the one for the SDP (a). Hence, the sparse SDP relaxation (d) is obtained
in the same way as the SDP (b) is obtained from the SDP (a). Consequently, we have the
sparse SDP relaxation
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4 n
minimize Z ;Wi
(d) subject to M (W : (i,§) € 7)) —L'(2) = O (k=1.2,....p), Weo = 1,
Y EWaseSY (j=12,....1).
\ (a,8) €T (CL)

Here J = U;_, J(C}.), (Wi : (i,7) € J) = the vector variable of the elements W;; ((i, ) € J)

and

M (W :(i,j) €T)) = M (W) for every W € S*(E',0).

7.2 A tridiagonal quadratic SDP

In this and next subsection, two sparse cases of the quadratic SDP (39) are considered with
numerical results on the SDP relaxations (a) ~ (d). The SDP relaxation problems were
solved by SeDuMi on 2.66 GHz Dual-Core Intel Xeon with 12GB memory.

For everyi =1,2,...,nand j = 1,2,...,n, define an (14 s) x (1 + s) symmetric matrix
Q;; such that

( (1 oF i
0 _Dz =7,
0 al/2 e o
Q. = (ai/Q 0 ifj=i+1 andi=1,2,...,n—1,
0 al/2 . :
j ifi=qi— =
(aj/Q 0 ) ifj=i—1 andi=2,3,...,n
| O otherwise.
D; = an s x s diagonal matrix with diagonal elements chosen
randomly from the interval (0, 1).
a; = an s dimensional column vector with elements chosen

randomly from the interval (—1,1).

We see that, for every x € R?,

Mzz(m) = Qii. (; mwT) Z ]] J;

7=1
M;j(x) = (az I )za?wifj:iJrl,z':1,2,...,n—1
Mij(z) = :v) (i=1,2,...,n,5=1,2,...,n).

Figure 8 shows the d- and r-space sparsity patterns when s = 40 and n = 40.

Table 2 shows the SeDuMi CPU time in seconds, the size of the Schur complement
matrix, and the maximum size of matrix variables of the SDP relaxation problems (a), (b),
(c) and (d) of the tridiagonal quadratic SDP. The size of the Schur complement matrix
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Figure 8: The d-space sparsity pattern (the left figure) and the r-space sparsity pattern (the
right figure) of the the tridiagonal quadratic SDP with s = 40 and n = 40.

and the maximum size of matrix variables are essential factors affecting the CPU time.
Comparing the CPU time of (b) with that of (a), we observe that the d-space conversion
method using basis representation used in (b) works very effectively. In (b), the (14 s) x
(1+ s) matrix variable W' is decomposed into s 2 x 2 matrix variables, while the size of the
matrix inequality remains the same. The reduction in the SeDuMi CPU time to solve the
SDP relaxation problem is mainly due to the reduction in the size of the Schur complement
matrix. On the other hand, using only the r-space conversion method using clique trees in
(c) fails in reducing the maximum size of matrix variables, the size of the Schur complement
matrix, and the SeDuMi CPU time. But when combined with the d-space conversion
method using basis representation as in (d), both of the (1 + s) x (1 + s) matrix variable
W and the matrix inequality are decomposed into 2 x 2 matrices, and the size of the Schur
complement matrix decreases more than those in (a) and (c). These contribute to a further
reduction in the SeDuMi CPU time from (b).

SeDuMi CPU time in seconds
(the size of the Schur complement matrix, the maximum size of matrix variables)
s n @ (b) © @
40 | 40 8.38 0.97 8.83 0.68
(860, 41) (80, 40) (898, 41) (118, 2)
80 | 80 384.43 11.72 402.86 1.58
(3320, 81) (160, 80) (3398, 81) (238, 2)
160 | 160 - 33.26 - 4.71
(320, 160) (478, 2)
320 | 320 - 100.36 - 24.57
(640, 320) (958, 2)

Table 2: Numerical results on the tridiagonal SDP with s = n and “” indicates out of

memory error in Matlab.
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Table 3 shows numerical results on the tridiagonal quadratic SDP with the dimension s
of the domain space of the variable vector x fixed to 40. In this case, we observe that the
r-space conversion method using clique trees in (c¢) works more effectively than the d-space
conversion method using basis representation as the dimension n of the range space of the
matrix inequality M (x) = O becomes larger. We also see that (d) attains the shortest
SeDuMi CPU time.

SeDuMi CPU time in seconds
(the size of the Schur complement matrix, the maximum size of matrix variables)
s| n (2) (b) (c) ()
40 | 80 30.76 6.27 28.70 1.52
(860, 80) (80, 80) (938, 41) (158, 2)
40 | 160 41.9 21.86 32.44 2.82
(860, 160) (80, 160) (1081, 41) (238, 2)
40 | 320 95.46 69.98 40.15 5.25
(860, 320) (80, 320) (1178, 41) (398, 2)
40 | 640 474.51 393.23 46.26 11.60
(860, 640) (80, 640) (1498, 41) (718, 2)

Table 3: Numerical results on the tridiagonal SDP with the dimension s of the domain
space of the variable vector  fixed to 40.

7.3 A bordered block-diagonal quadratic SDP

In this subsection, we report numerical results on a bordered block-diagonal quadratic SDP
with varying sizes. Let

n = 2p+1, Cp, ={2k—1,2k,2p+ 1} (k=1,2,...,p),
p
E = [ J{Gj) € CuxCrii#j},

E* = E|(J{G,9):i=1,2,... n}

For every ¢ = 1,2,...,n and j = 1,2,...,n, define an (1 + s) x (1 + s) symmetric matrix
Q;; such that

( (1 o7 i
0 —-D, 1=z
0 al/2 ) e .
! ifje{i+1,n} and (¢,5) € F,
0 a;/2 o . o
J
( a2 B ) ifie{j+1,n} and (i,j) € E,
. O otherwise.
D; = an s x s diagonal matrix with diagonal elements chosen

randomly from the interval (0, 1),
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Figure 9: The d-space sparsity pattern (left) and the r-space sparsity pattern (right) of the
the bordered block-diagonal quadratic SDP with s = 40 and n = 41.

Bij —

a;,; —

randomly from the interval (—1, 1),

elements chosen randomly from (—1,1).

an s dimensional column vector with elements chosen

an s X s symmetric tridiagonal matrix with nonzero

Figure 9 displays the d- and r-space sparsity patterns when s = 40 and n = 41. Table 4
shows numerical results on the bordered block-diagonal quadratic SDP with n = s + 1
(s =40, 80, 160, 320), and Table 5 numerical results on the SDP with the dimension s of
the domain space of the variable vector  fixed to 40. Similar observation can be made for
the numerical results in Table 4 and 5 as for the results in Table 2 and 3.

SeDuMi cpu time in second
(the Schur complement matrix size, the maximum size of matrix variables)
S| n @) (b) © @
40 | 41 13.89 1.85 13.59 1.14
(860, 41) (119, 41) (879, 41) (138, 3)
80| 81 532.73 19.26 529.99 2.98
(3320, 81) (239, 81) (3359, 81) (278, 3)
160 | 161 - 64.62 - 13.77
(479, 161) (558, 3)
320 | 321 - 253.49 - 76.15
(959, 321) (1118, 3)

Table 4: Numerical results on the bordered block-diagonal tridiagonal SDP with the dimen-

sion s of the domain space of the variable vector x fixed to 40.
€error.
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SeDuMi CPU time in seconds
(the Schur complement matrix size, the maximum size of matrix variables)
| @) (b) © ()
40 | 81 30.41 12.26 12.28 0.94
(860, 81) (119, 81) (899, 41) (158,3)
40 | 161 38.71 27.63 9.22 1.45
(860, 161) (119, 161) (939, 41) (198, 3)
40 | 321 211.04 132.99 18.42 3.14
(860, 321) (119, 321) (1019, 41) (278, 3)
40 | 641 091.10 551.37 24.10 8.13
(860, 641) (119, 641) (1179, 41) (438, 3)

Table 5: Numerical results on the bordered block-diagonal tridiagonal SDP with s = 40.

8 Concluding discussions

Our focus has been on developing a theoretical framework consisting of the d- and r-space
conversion methods to exploit structured sparsity, characterized by a chordal graph struc-
ture, via the positive semidefinite matrix completion for an optimization problem involving
linear and nonlinear matrix inequalities. The two d-space conversion methods are provided
for a matrix variable X in objective and/or constraint functions of the problem, which
is required to be positive semidefinite. The methods decompose X into multiple smaller
matrix variables. The two r-space conversion methods are aimed at a matrix inequality in
the constraint of the problem. In these methods, the matrix inequality is converted into
multiple smaller matrix inequalities. We have also discussed how the conversion methods
enhance the correlative sparsity in linear and polynomial SDPs.

We have not described technical details of practical implementation in this paper. As
mentioned in Remarks 3.1, 5.1 and 6.1, the d-space conversion method using clique trees and
the r-space conversion method using clique trees have plenty of flexibilities in implementa-
tion. This should be explored further for computational efficiency. In addition, how the four
methods should be combined to solve a given optimization problem in practice needs to be
studied. Preliminary numerical results show that computational performance is improved
greatly by applying the d-space conversion method using basis representation and the r-
space conversion method using clique trees for simple, yet, representative quadratic SDPs.
Extensive numerical experiments are necessary before presenting practical implementation
of the four conversion methods.
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