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Abstract

Structural equation models has been widely used to study causal rela-
tionships between continuous variables. In such frameworks, linear acyclic
models are typically used to model the data-generating process of vari-
ables. Recently, it was shown that use of non-Gaussianity identifies a
causal ordering of variables in a linear acyclic model without using any
prior knowledge on the network structure, which is not the case with con-
ventional methods. However, existing estimation methods are based on
iterative search algorithms and may not converge to a correct solution
in a finite number of steps. In this paper, we propose a new method to
estimate a causal ordering based on non-Gaussianity. The new method
overcomes the difficulty of the previous methods.
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1 Introduction

Many empirical sciences aim to discover and understand causal mechanisms
underlying their objective systems such as natural phenomena and human so-
cial behavior. An effective way to study causal relationships is to conduct a
controlled experiment. However, performing controlled experiments is often
ethically impossible or too expensive in many fields including social sciences [1],
bioinformatics [2] and neuroinformatics [3]. Thus, it is necessary and important
to develop methods for causal inference based on the data that do not come
from such controlled experiments.

Structural equation models (SEM) [1] and Bayesian networks (BN) [4,5] are
widely applied to analyze causal relationships in many empirical studies. A
linear acyclic model that is a special case of SEM and BN is typically used to
analyze causal effects between continuous variables. Estimation of the model
commonly uses covariance structure of data only and in most cases cannot
identify the full structure, i.e., a causal ordering and connection strengths, of
the model with no prior knowledge on the structure [4, 5].

In [6], a non-Gaussian variant of SEM and BN called a linear non-Gaussian
acyclic model (LiNGAM) was proposed, and its full structure was shown to be
identifiable without pre-specifying a causal order of the variables. This feature
is a significant advantage over the conventional methods [4,5]. A non-Gaussian
method to estimate the new model was also developed in [6] and is closely related
to independent component analysis (ICA) [7]. In the subsequent studies, the
non-Gaussian framework has been extended in various directions for learning
wider variety of SEM and BN [8–10]. In what follows, we refer to the non-
Gaussian model as LiNGAM model and the estimation method as LiNGAM
algorithm.

Most of major ICA algorithms including [11, 12] are iterative search meth-
ods [7]. Therefore, the LiNGAM algorithms based on the ICA algorithms need
some additional information including initial guess, step sizes and convergence
criteria. However, such algorithmic parameters are hardly optimized in a sys-
tematic way. Thus, the ICA-based algorithms often get stuck in local optima
and may not converge to a reasonable solution if the initial guess or step size is
badly chosen [13].

In this paper, we propose a new direct method to estimate a causal ordering
of variables in the LiNGAM model without prior knowledge on the structure.
The new method derives a reasonable causal order of variables by successively
reducing each independent component from given data in the model, and this
process is completed in steps equal to the number of the variables in the model.
It is not based on iterative search in the parameter space and needs no step size or
similar algorithmic parameters. It is guaranteed to converge to the right solution
within a small fixed number of steps if the data strictly follows the model. These
features of the new method enable the derivation of a more accurate causal
order of the variables in a disambiguated and direct procedure. Once the causal
orders of variables is identified, the connection strengths between the variables
are easily estimated using some conventional covariance-based methods such as
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least squares and maximum likelihood approaches [1].
The paper is structured as follows. First, in Section 2, we briefly review

LiNGAM model and the ICA-based LiNGAM algorithm. We then in Section 3
introduce a new direct method. The performance of the new method is examined
by experiments on artificial data in Section 4, and an experiment on real-world
data in Section 5. Conclusions are given in Section 6.

2 Background

2.1 A linear non-Gaussian acyclic model

In [6], a non-Gaussian variant of SEM and BN, which is called LiNGAM, was
proposed. Assume that observed data are generated from a process represented
graphically by a directed acyclic graph, i.e., DAG. Let us denote by k(i) a causal
order of variables xi so that no later variable influences any earlier variable.
For example, a variable xj is not influenced by a variable xi if k(j) < k(i).1

Further, assume that the relations between variables are linear. Without loss
of generality, each observed variable xi is assumed to have zero mean. Then we
have

xi =
∑

k(j)<k(i)

bijxj + ei, (1)

where bij is a connection strength from xj to xi, and ei is an external influence.
All external influences ei are continuous random variables having non-Gaussian
distributions with zero means and non-zero variances, and ei are independent
of each other, which implies there is no unobserved confounding variables [5].

We rewrite the model (1) in a matrix form as follows:

x = Bx + e, (2)

where x is a p-dimensional variable vector, B is a matrix that contains the
connection strength bij and that could be permuted by simultaneous equal row
and column permutations to be strictly lower triangular due to the acyclicity
assumption [1]. Strict lower triangularity is here defined as to have a lower
triangular structure with all zeros on the diagonal.

We emphasize that xi is equal to ei if it is not influenced by any other
observed variable xj (j 6=i) inside the model, i.e., all the bij (j 6=i) are zeros. In
such a case, an external influence ei is observed as xi. Such an xi is called an
exogenous observed variable.2 Otherwise, ei is called an error. For example,

1Note that k(j)<k(i) does not necessarily imply that xj influences xi. The causal ordering
k(i) only defines a partial order of variables, which is enough to define a DAG.

2An exogenous variable is defined as a variable that is not influenced by any other variable
inside the model. The definition does not require that it is equal to an external influence.
However, in the LiNGAM model (2), an exogenous observed variable is always equal to an
external influence due to the assumption of no unobserved confounders.
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consider the model defined by

x1 = e1

x2 = 1.5x1 + e2

x3 = 0.8x1 − 1.5x2 + e3,

where x1 is equal to e1 since it is not influenced by either x2 or x3. Thus, x1 is
an exogenous observed variable, and e2 and e3 are errors. Note that there exists
such at least one exogenous observed variable xi(=ei) due to the acyclicity and
the assumption of no unobserved confounders.

2.2 Identifiability of the model

We next explain how the connection strengths of the LiNGAM model (2) can
be identified as shown in [6]. Let us first solve Eq. (2) for x. Then we obtain

x = Ae, (3)

where A = (I − B)−1 is a mixing matrix whose elements are called mixing
coefficients and is lower triangular due to the aforementioned feature of B and
the nature of matrix inversion. Since the components of e are independent
and non-Gaussian, Eq. (3) defines the independent component analysis (ICA)
model [7], which is known to be identifiable [14].

ICA essentially can estimate A (and W = A−1 = I − B), but has permu-
tation and scaling indeterminacies. ICA actually gives WICA=PDW, where
P is an unknown permutation matrix, and D is an unknown diagonal scaling
matrix. But in LiNGAM, the correct permutation matrix P can be found [6]:
the correct P is the only one that gives no zeros in the diagonal of WICA since
B should be a matrix that can be permuted to be strictly lower triangular and
W = I − B. Further, one can find the correct scaling of the independent com-
ponents by using the unity on the diagonal of W=I−B. One only has to divide
the rows of DW by its corresponding diagonal elements to obtain W. Finally,
one can compute the connection strength matrix B = I − W.

2.3 Original LiNGAM algorithm

The original LiNGAM algorithm presented in [6] is described as follows:

(Original) LiNGAM algorithm

1. Given a p-dimensional variable vector x and its p × n data matrix X, apply
an ICA algorithm (FastICA [12] here) to obtain an estimate of A.

2. Find the unique permutation of rows of W=A−1 which yields a matrix W̃
without any zeros on the main diagonal. The permutation is sought which

minimizes
∑

i 1/|W̃ii|.
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3. Divide each row of W̃ by its corresponding diagonal element, to yield a new

matrix W̃′ with all ones on the diagonal.

4. Compute an estimate B̂ of B using B̂ = I − W̃′.

5. To derive a causal order k(i), find the permutation matrix P̃ of B̂ yielding a

matrix B̃ = P̃B̂P̃T which is as close as possible to a strictly lower triangular
structure. The following approximative algorithm is used, which sets small
absolute valued elements in B̃ to zero and tests if the resulting matrix is
possible to be permuted to be strictly lower triangular:

(a) Set the p(p + 1)/2 smallest (in absolute value) elements of B̂ to zero.

(b) Repeat

i. Test if B̂ can be permuted to be strictly lower triangular. If the
answer is yes, stop and return the permuted B̂, that is, B̃.

ii. Additionally set the next smallest (in absolute value) element of B̂
to zero.

2.4 Potential problems of original LiNGAM

The original ICA-based LiNGAM algorithm has several potential problems: i)
Most ICA algorithms including FastICA [12] and gradient-based algorithms [11]
may not converge to a correct solution in a finite number of steps if the initially
guessed state is badly chosen [13] or if the step size is not suitably selected for
those gradient-based methods. The appropriate selection of such algorithmic
parameters is not easy. In contrast, our algorithm proposed in the next section
is guaranteed to converge in a fixed number of steps equal to the number of vari-
ables. ii) The permutation algorithms in Steps 2 and 5 are not scale-invariant.
Hence they could give a different or even wrong ordering of variables depending
on scales or standard deviations of variables especially when they have a wide
range of scales. However, scales are essentially not relevant to the ordering of
variables. Though such bias would vanish for enough large sample sizes, for
practical sample sizes, an estimated ordering could be affected when variables
are normalized to make unit variance, and hence the derivation of a reasonable
ordering becomes quite difficult.

3 A direct method: DirectLiNGAM

3.1 Identification of an exogenous variable based on non-
Gaussianity and independence

In this subsection, we present two lemmas and a corollary that ensure the va-
lidity of our algorithm proposed in the next subsection 3.2. The basic idea of
our method is as follows. We first find an exogenous variable as the top variable
in the causal order by applying Lemma 1. Next, we remove the component of
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the exogenous variable from the other variables using least squares regression.
Then, we show that a LiNGAM model also holds for the residuals (Lemma 2)
and that the ordering of the residuals is equivalent to that of the corresponding
original observed variables (Corollary 1). Therefore, we can find the second top
variable in the causal ordering of the original observed variables by analyzing the
residuals and their LiNGAM model, i.e., by applying Lemma 1 to the residuals
and finding an “exogenous” residual. The repeat of these component removal
and causal ordering derives the causal order of the original variables.

Lemma 1 Assume that the input data x follows the LiNGAM model (2). As-
sume that the distribution of x is faithful [5] to the generating graph.3 Denote
by r

(j)
i the residuals when xi are regressed on xj: r

(j)
i = xi − cov(xi,xj)

var(xj)
xj (i6=j).

Then a variable xj is exogenous if and only if xj is independent of its residuals
r
(j)
i .

Proof (i) Assume that xj is exogenous. Due to the model assumption and Eq.
(3), one can write xi=aijxj+ē

(j)
i , (i6=j), where ē

(j)
i =

∑
k 6=j aikek, xj and ē

(j)
i are

independent, and aij is a mixing coefficient from xj to xi in Eq. (3). The mixing
coefficient aij is equal to the regression coefficient when xi is regressed on xj

since cov(xi, xj)=aijvar(xj). Thus, the residual r
(j)
i is equal to the correspond-

ing error term, i.e., r
(j)
i =ē

(j)
i . Thus, xj and r

(j)
i (=ē

(j)
i ) are independent.

(ii) Assume that xj is not exogenous. Then there always exist such variables
xk that xj=

∑
bjkxk+ej (bjk 6=0), where xk and ej are independent. Let Pj

denote the set of such parent variables of xj . Then, for a variable xi∈Pj , we
have

r
(j)
i = xi −

cov(xi, xj)
var(xj)

xj

=
{

1 − bjicov(xi, xj)
var(xj)

}
xi −

cov(xi, xj)
var(xj)

ej

−cov(xi, xj)
var(xj)

∑
xk∈Pj ,k 6=i

bjkxk. (4)

Recall that the faithfulness is assumed. Since xi has a non-zero connection
strength bji to xj , their covariance cov(xi, xj) is not zero, and hence the coeffi-
cient of ej is not zero. Thus, xj and r

(j)
i are dependent due to ej .

From (i) and (ii), the lemma is proven.

Lemma 2 Assume the assumptions of Lemma 1. Assume that a variable xj is
exogenous. Denote by r(j) a (p-1)-dimensional vector that collects the residuals
when all xi of x are regressed on xj (i 6=j). Then a LiNGAM model holds for

3In this context, the faithfulness implies that independence and conditional independence
of variables xi are entailed by the graph structure, i.e., the zero/non-zero status of bij , not
by special parameter values of bij .
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the residual vector r(j): r(j) = B(j)r(j) + e(j), where B(j) is a matrix that can
be permuted to be strictly lower-triangular by a simultaneous row and column
permutation, and elements of e(j) are non-Gaussian and mutually independent.

Proof Without loss of generality, assume that B in the LiNGAM model (2)
is already permuted to be strictly lower triangular and that xj=x1. Note that
A in Eq. (3) is also lower triangular (although its diagonal elements are all
unities). Since x1 is exogenous, ai1 are equal to the regression coefficients when
xi are regressed on x1. Therefore, after removing the effects of x1 from xi (i 6=1)
by least squares estimation, one get the first column of A to be a zero vector,
and the residuals r

(1)
i are not influenced by x1. (Due to the faithfulness, the

effect of x1 is always removed from xi when x1 influences xi because it does not
happen that their covariance cov(xi, x1) or the regression coefficient from x1 to
xi is accidentally zero due to a combined effect of multiple pathways. ) Thus,
we again obtain a lower triangular mixing matrix A(1) with all unities in the
diagonal for the residual vector r(1) and hence have a LiNGAM model for the
vector r(1).

Corollary 1 Assume the assumptions in Lemma 2. Denote by kr(j)(i) the or-
der of r

(j)
i . Recall that k(i) denotes the order of xi. Then, the ordering of

the residuals is equivalent to that of corresponding original observed variables:
kr(j)(l)<kr(j)(m) ⇔ k(l)<k(m).

Proof As shown in the proof of Lemma 2, when the effect of an exogenous
variable x1 is removed from the other observed variables, the second to p-th
columns of A remain the same, and the submatrix of A formed by deleting the
first row and first column is still lower triangular. This shows that the ordering
of the other variables is not changed and proves the corollary.

Lemma 2 indicates that the LiNGAM model for the (p−1)-dimensional resid-
ual vector r(j) can be handled as a new input model, and Lemma 1 can be further
applied to the model to derive the next exogenous variable (the next exogenous
residual in fact). This process can be repeated until all variables are ordered,
and the resulted order of the variable subscripts shows the causal order of the
original observed variables according to Corollary 1.

Next, we define an independence (not merely uncorrelatedness) measure.4

Let us denote by U the set of the subscripts of variables xi, i.e., U={1, · · · ,
p}. We use the following statistic to evaluate nonlinear correlation between a
variable xj and its residuals r

(j)
i = xi − cov(xi,xj)

var(xj)
xj when xi is regressed on xj :

T (xj ; U) =
∑

i∈U,i 6=j

[
|corr{g(r(j)

i ), xj}|

+ |corr{r(j)
i , g(xj)}|

]
, (5)

4Least squares regression gives residuals always uncorrelated with but not necessarily in-
dependent of explanatory variables [15].
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where g is a nonlinear and non-quadratic function, e.g., g(·)=tanh(·). The
statistic T in Eq. (5) is zero if xj and r

(j)
i are independent. Strictly speaking,

independence is a much stronger condition than requiring the statistic T to be
zero. Although one could use a more sophisticated independence measure [16]
that involves non-parametric density estimation, in many cases evaluating such
a nonlinear correlation as Eq. (5) would work enough well as implied in the
ICA literature [7]. This also leads to a fair comparison of our method with the
original LiNGAM algorithm that uses FastICA [12]. FastICA minimizes almost
the same type of nonlinear correlation of estimated independent components
E{g(êi)êj} (i6=j) in absolute value sense [17].

3.2 DirectLiNGAM algorithm

We now propose a new direct algorithm called DirectLiNGAM to estimate a
causal ordering and the connection strengths in the LiNGAM model (2) under
the faithfulness assumption:

DirectLiNGAM algorithm

1. Given a p-dimensional variable vector x, a set of its variable subscripts U and
a p × n data matrix of the variable vector as X, initialize the ordered list of
variables K = ∅ and m := 1.

2. Repeat until p−1 subscripts are appended to K:

(a) Perform least squares regressions of xi on xj for all i∈U−K (i6=j) and
derive the residual vectors r(j) and its residual data matrix R(j) from
the data matrix X for all j∈U−K. Find a variable xm that is most
independent of its residuals:

xm = arg min
j∈U−K

T (xj ;U − K), (6)

where T is the independence measure defined in Eq. (5).

(b) Append m to the end of K.

(c) Let x := r(j), X := R(j) and m := m + 1.

3. Append the remaining variable to the end of K.

4. Construct a strictly lower triangular matrix B by following the order in K, and
estimate the connection strengths bij by using some conventional covariance-
based regression such as least squares and maximum likelihood approaches
on the original variable vector x and the original data matrix X.

We note that out DirectLiNGAM can be applied to situations with more
variables than observations (p>n), whereas the original LiNGAM would fail
completely. However, in Step 4, a small tip is necessary to estimate connection
strengths when regression analysis is performed to variables that have more
parent variables than observations. In that case, lasso-type estimation methods
[18] would be useful.
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Figure 1: Median numbers of errors in estimated K of original LiNGAM and
DirectLiNGAM under (a) 10 variables; (b) 20 variables; (c) 50 variables; (d)
100 variables.

3.3 Computational complexity

Here, we consider the computational complexity of DirectLiNGAM compared
with the original LiNGAM with respect to sample size n and number of vari-
ables p. A dominant part of DirectLiNGAM is to compute Eq. (5) for each xj

in Step 2(a). Since it requires O(np2) operations in p−1 iterations, complex-
ity of the step is O(np3). Another dominant part is the regression to derive
the matrix B in Step 4. The complexity of many representative regressions
including the least square algorithm is O(np3). Hence, we have a total bud-
get of O(np3). Meanwhile, the original LiNGAM requires O(p4) time to find
a causal order in Step 5. Complexity of an iteration in FastICA procedure at
Step 1 is known to be O(np2). Assuming a constant number C of the iterations
in FastICA steps, the complexity of the original LiNGAM is considered to be
O(Cnp2 +p4). Though general evaluation of the required iteration number C is
difficult, it is usually conjectured to grow linearly with regards to p. Hence the
complexity of the original LiNGAM is presumed to be O(np3 + p4). Accord-
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ingly, the computational cost of DirectLiNGAM is considered to be almost same
with or, especially in cases where p increases, superior to that of the original
LiNGAM because of its order O(p3) against O(p4). In fact, while the origi-
nal LiNGAM requires p¿n to perform FastICA, DirectLiNGAM requires the
computation of covariance between variables only and can be carried out even
when p>n that sometimes occurs in real-world applications. Moreover, we here
emphasize the fact that DirectLiNGAM has guaranteed convergence in a fixed
number of steps and of known complexity, whereas for typical ICA algorithms,
the run-time complexity and the very convergence are not guaranteed.

4 Simulations

4.1 Comparison with original LiNGAM

We randomly generated 501 datasets under each combination of number of
variables p and sample size n (p=10, 20, 50, 100; n=200, 500, 1000, 2000, 5000)
as follows:

1. We randomly constructed a p×p strictly lower-triangular matrix B so that
standard deviations of variables xi owing to parent variables ranged in the
interval [0.5, 1.5]. Either of a fully connected network or a sparse network
was randomly created. We also randomly selected standard deviations of
the external influences ei from [0.5, 1.5].

2. We generated data with sample size n by independently drawing the ex-
ternal influence variables ei from various non-Gaussian distributions with
zero mean and unit variance. We first generated Gaussian variables zi

with zero means and unit variances and subsequently transformed it to
non-Gaussian variables by ei = sign(zi)|zi|qi . The nonlinear exponents
qi were randomly selected from the interval [0.5, 0.8] ∪ [1.2, 2.0]. Nonlin-
ear exponents qi selected from [0.5, 0.8] gave sub-Gaussian variables, and
exponents selected from [1.2, 2.0] provided super-Gaussian variables. Fi-
nally, the transformed variables were standardized to have zero means and
unit variances.

3. The values of the observed variables xi were generated according to the
LiNGAM model (2). Finally, we randomly permuted the order of xi.

This is the same procedure as the one used to test the original LiNGAM in [6],
and we did not do anything to make parameter values satisfy the faithfulness
assumption.

Then we tested the original LiNGAM and our DirectLiNGAM on the datasets
using the same non-linearity g(·)=tanh(·) for the statistic T in Eq. (5) and Fas-
tICA [12] respectively to evaluate nonlinear correlation. For each trial, we first
permuted the true connection strength matrix B according to estimated order-
ings K by the original LiNGAM and our DirectLiNGAM. We then counted the
number of errors, i.e., how many elements in its strictly upper triangular part
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are not zeros. If the ordering is correctly estimated, the elements in the strictly
upper triangular part are all zeros. The medians of the numbers of non-zero
strictly upper triangular elements were plotted in Fig. 1. The median errors of
our DirectLiNGAM were much smaller than the original LiNGAM for most of
the practical experimental conditions.

In Fig. 2, numbers of non-zero strictly upper triangular elements in the
permuted true B based on estimated K under 50 variables and 500 observations
are shown in form of boxplots.5 We also computed the distance between the true
B and ones estimated by the original LiNGAM and DirectLiNGAM using the

Frobenius norm defined as
√

trace{(Btrue − B̂)T (Btrue − B̂)}. The matrices B
were estimated by using FastICA in the original LiNGAM and the least square
regression in DirectLiNGAM. Boxplots of the distances are also shown in Fig. 3.
DirectLiNGAM was better in both median numbers of errors in K and distances
of B and has their smaller variability than the original LiNGAM.
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Figure 2: Boxplots of numbers of non-zero strictly upper triangular elements
based on estimated K of original LiNGAM and DirectLiNGAM under 50 vari-
ables and 500 observations.

4.2 Experiments on datasets with p>n

We created 101 datasets with 100 variables for each condition of sample size n
(n=30, 50, 80, 200, 500, 1000, 2000, 5000) similarly to the experiments above. In
Fig. 4, numbers of non-zero strictly upper triangular elements are shown in form
of boxplots. The variability of numbers of errors monotonically decreased when
the sample size increased from fewer sample size (n=30, 50, 80) to more sample
size (n=200, 500, 1000) than number of variables p=100. Meanwhile, there was
a substantial variability in the medians. It is probably because those sample
sizes would not be large enough for 100 variables and many of experimental

5In a boxplot, a red line indicates a median q1, the bottom edge of a blue box a 25th
percentile q2, its top edge a 75th percentile q3, a lower black line a percentile q2−1.5(q3−q2)
or the minimum and an upper black line a percentile q3+1.5(q3−q2) or the maximum. The
height of the blue box measures dispersion of data points.
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Figure 3: Boxplots of distances between true B and estimated B of original
LiNGAM and DirectLiNGAM under 50 variables and 500 observations.

conditions including network structures and distributions of external influences
were randomized.
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Figure 4: Boxplots of numbers of non-zero strictly upper triangular elements
based on estimated K of DirectLiNGAM under p>n or p<n.

5 Application to magnetoencephalography data

As an illustration of the applicability of the method on real data, we applied
it on magnetoencephalography (MEG) data, i.e., measurements of the electric
activity in the brain. The raw data consisted of the 306 MEG channels mea-
sured by the Vectorview helmet-shaped neuromagnetometer (Neuromag Ltd.,
Helsinki, Finland) in a magnetically shielded room at the Brain Research Unit,
Low Temperature Laboratory, Helsinki University of Technology. The measure-
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ments consisted of 300 seconds of resting state brain activity earlier used in [19].
The subject was sitting with eyes closed, and did not perform any specific task
nor was there any specific sensory stimulation.

First, we performed a blind separation of sources using the method called
Fourier-ICA [19]. This gave the nine sources obtained in [19]. For further
analysis we chose those sources that were clearly localized in the brain, which
meant discarding two of the estimated sources #1 and #9. Our goal was to
analyze the causal relations between the powers of the source, so we divided
the data into windows of length of one second (half overlapping, i.e., the initial
points were at a distance of 0.5 seconds each) and computed the local standard
deviation of every source in each window. This gave a total of 604 observations
of a seven-dimensional random vector, on which we applied our method.

For each of the orderings of variables estimated by the original LiNGAM and
DirectLiNGAM, we estimated the connection strengths and computed their 99%
confidence intervals by using least squares regression and bootstrapping [20].
The estimated networks by the original LiNGAM and DirectLiNGAM were
shown in Figures 5 and 6 respectively, where only significant arrows were shown
with 1% significance level. The difference between the two estimated networks is
essentially only that the former indicates the endogeneity of #8 while the latter
shows its exogeneity. Variable #8 is probably exogenous since DirectLiNGAM
considers is exogenous, and DirectLiNGAM is specifically adapted, by construc-
tion, to detect exogenous variables. Original LiNGAM does not consider vari-
able #8 exogenous, possibly because it got stuck in a local optima. Variable #8
is, in fact, an interesting and complicated source because its frequency contents
are different from all the other sources.

# 2

# 3

# 4

# 5# 6

# 7

# 8

Figure 5: The estimated network by original LiNGAM.
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Figure 6: The estimated network by DirectLiNGAM.

6 Conclusions

We presented a new estimation algorithm for the LiNGAM model (2) that has
guaranteed convergence in a fixed number of steps and known computational
complexity unlike most ICA methods. This is the first algorithm specialized
to estimate the LiNGAM model. Experiments on artificial data implied that
the new method often provides much better statistical performance than state
of the art methods based on ICA. In a real-world application to MEG data,
a promising result was also obtained. A drawback would be the faithfulness
assumption, but this might be not very problematic in practice as implied in
the simulations.
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