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Abstract.
SFSDP is a Matlab package for solving a sensor network localization problem. These
types of problems arise in monitoring and controlling applications using wireless sensor
networks. SFSDP implements the semidefinite programming (SDP) relaxation proposed
in Kim et al. [2009] for sensor network localization problems, as a sparse version of the
full semidefinite programming relaxation (FSDP) by Biswas and Ye [2004]. To improve
the efficiency of FSDP, SFSDP exploits the aggregated and correlative sparsity of a sensor
network localization problem. As a result, SFSDP can handle much larger-sized problems
than other softwares, and three-dimensional anchor-free problems. SFSDP can analyze the
input data of a sensor network localization problem, solves the problem, and displays the
computed locations of sensors. SFSDP also includes the features of generating test problems
for numerical experiments.

Key words. Sensor network localization problems, semidefinite programming relaxation,
sparsity exploitation, Matlab software package.

⋆ Department of Mathematics, Ewha W. University, 11-1 Dahyun-dong, Sudaemoon-
gu, Seoul 120-750 Korea. The research was supported by KOSEF 2009-007-1314.
skim@ewha.ac.kr

† Department of Mathematical and Computing Sciences, Tokyo Institute of Technol-
ogy, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. This research was
partially supported by Grant-in-Aid for Scientific Research (B) 19310096.
kojima@is.titech.ac.jp

‡ Department of Computer Science, The University of Electro-Communications, 1-
5-1 Chofu-gaoka, Chofu-shi, Tokyo 182-8585 Japan. This research was partially
supported by Grant-in-Aid for JSPS Fellows 20003236.
hayato.waki@jsb.cs.uec.ac.jp

♯ Department of Mathematical and Computing Sciences, Tokyo Institute of Tech-
nology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. M. Yamashita’s
research was supported by Grant-in-Aid for Young Scientists (B) 21710148.
Makoto.Yamashita@is.titech.ac.jp



1 Introduction

We introduce a Matlab package SFSDP for solving sensor network localization problems
using semidefinite programming (SDP) relaxation. Sensor network localization problems
arise in monitoring and controlling applications using wireless sensor networks such as in-
ventory management and gathering environment data. Locating sensors accurately in a
wireless sensor network is an important problem for the efficiency of applications. It is also
closely related to distance geometry problems arising in predicting molecule structures and
to graph rigidity.

For a network of n sensors, a sensor network localization problem is to locate m sensors of
unknown position (m < n) that match the given distances if a subset of distances and n−m
sensors of known position (called anchors) are provided. Various approaches [1, 7, 8, 11,
12, 26] have been proposed for the problem to approximate the solution. Full semidefinite
programming relaxation (FSDP) was introduced by Biswas and Ye in [3], and a number of
solution methods based on SDP relaxation have followed [4, 5, 6, 21, 29].

The sensor network localization problem was formulated as a quadratic optimization
problem (QOP) by Biswas and Ye [3], and was solved with SDP relaxation. We call their
method as dense SDP relaxation in this paper. Solving nonlinear optimization problems
using SDP relaxation has been a widely popular approach for the accuracy of approximated
solutions and the efficiency of the computation. Software packages based on the primal-dual
interior-point method [9, 27, 25] are used for solving SDP relaxation.

For the sensor network localization problem with a larger number of sensors, a dis-
tributed method in [4] was introduced, and a method combined with a gradient method
[19] was proposed to improve the accuracy. The second-order cone programming (SOCP)
relaxation was studied first in [7] and [26]. The solutions obtained by the SOCP relaxation
are inaccurate compared to that by the SDP relaxation [26]. Edge-based SDP (ESDP) and
node-based SDP (NSDP) relaxations were introduced in [29] to improve the computational
efficiency of the original Biswas-Ye SDP relaxation in [3]. These SDP relaxations are weaker
than the original SDP relaxation in theory, however, computational results show that the
quality of solution is comparable to that of FSDP. It is also shown that much larger-sized
problems can be handled.

SFSDP is an implementation of the SDP relaxation proposed in Kim et al. [13], which
is called the sparse FSDP relaxation as opposed to the FSDP in [3]. Both SDP relaxations
are derived from the sensor network localization problem formulated as a QOP. When
solving a SDP relaxation problem using the primal-dual interior-point methods, the size of
SDP relaxation problem generated from a sensor network localization problem is one of the
important factors that decides the computational efficiency. As we try to solve a sensor
network localization problem with an increasing number of sensors or in higher dimension,
it is obvious that the size of SDP relaxation increases. It is, therefore, essential to reduce
the size of SDP relaxation to solve a larger-sized sensor network localization problem. This
motivates us to utilize the sparsity of problem, in particular, the aggregated and correlative
sparsity [10, 17, 20] of sensor network localization problems.

When we want to decrease of the size of dense SDP relaxation, the quality of obtained
solution becomes an important issue. For a QOP as the sensor network localization problem,
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it is shown in [28] that the solution quality of the sparse SDP relaxation is equivalent to that
of the dense SDP relaxation. In fact, the quality of obtained solution by SFSDP remains
equivalent to that by FSDP. See Proposition 3.3 of [13]. As a result, SFSDP can handle
larger-sized sensor network problems, e.g., up to 20000 sensors for 2-dimensional problems,
than FSDP without deteriorating the quality of solution.

For the sensor network localization problem, distance data usually contain noise. SFSDP
can solve the problem with both exact and noisy distance. It is designed for users who want
to solve their own sensor network localization problems and to experiment with various
test problems generated by SFSDP. One of the features of SFSDP is that users can select a
primal-dual interior-point solver, either SDPA [9], available at [24], or SeDuMi [25], available
at [23]. SDPA is known to be faster for solving large-sized problems, hence, shorter cpu
time can be expected if SDPA is used. When a sensor network localization probem is given,
SFSDP analyzes input data, and calls SDPA [9] or SeDuMi [25] to solve the SDP relaxation
problem. It also displays the figures of location of sensors at the end of the execution.

Main features and capabilities of SFSDP are presented in the remainder of the paper. We
provide some background information on sensor network localization problems in Section 2.
In Section 3, the dense and sparse SDP relaxation of the problem are discussed after the
description of how to extract the aggregated and correlative sparsity from the given problem.
In Section 4, we illustrate how SFSDP is used for solving a sensor network localization
problem with implementation details. Numerical results are presented in Section 5. Section
6 is for concluding remarks.

2 Sensor Network Localization Problems

We consider a problem with m sensors and ma (= n − m) anchors to describe a form of
the sensor network localization problem that can be solved by SFSDP. Let ρ > 0 be a radio
range, which determines the set N ρ

x for pairs of sensors p and q such that their (Euclidean)
distance dpq is not greater than ρ, and the set N ρ

a for pairs of a sensor p and an anchor r
such that their distance dpr does not exceed ρ;

N ρ
x = {(p, q) : 1 ≤ p < q ≤ m, ∥xp − xq∥ ≤ ρ},

N ρ
a = {(p, r) : 1 ≤ p ≤ m, m + 1 ≤ r ≤ n, ∥xp − ar∥ ≤ ρ},

}
where xp ∈ Rℓ denotes unknown location of sensor p and ar ∈ Rℓ known location of anchor
r. Let N x be a subset of N ρ

x and N a a subset of N ρ
a. SFSDP can solve the problem of

ℓ = 2 or 3.

By introducing zero objective function and the distance equations as constraints, we
have the following form of sensor network localization problem with exact distance.

minimize 0
subject to d2

pq = ∥xp − xq∥2 (p, q) ∈ N x,
d2

pr = ∥xp − ar∥2 (p, r) ∈ N a.

 (1)
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For the problems with noise, we consider the following.

minimize
∑

(p,q)∈N x

(
ϵ+
pq + ϵ−pq

)
+

∑
(p,r)∈N a

(
ϵ+
pr + ϵ−pr

)
subject to d̂2

pq = ∥xp − xq∥2 + ϵ+
pq − ϵ−pq (p, q) ∈ N x,

d̂2
pr = ∥xp − ar∥2 + ϵ+

pr − ϵ−pr (p, r) ∈ N a,
ϵ+
pq ≥ 0, ϵ−pq ≥ 0, (p, q) ∈ N x,

ϵ+
pr ≥ 0, ϵ−pr ≥ 0, (p, r) ∈ N a,


(2)

where ϵ+
pq + ϵ−pq (or ϵ+

pr + ϵ−pr) indicates 1-norm error in the estimated distance d̂pq between

sensors p and q (or an estimated distance d̂pr between sensor p and anchor r).

To transform the problems (1) and (2) to SDP relaxation [3], we first introduce an ℓ×m
matrix variable X = (x1, . . . , xm) ∈ Rℓ×m. Then, the system of equations above can be
written as

d2
pq =

ℓ∑
i=1

X2
ip − 2

ℓ∑
i=1

XipXiq +
ℓ∑

i=1

X2
iq (p, q) ∈ N x,

d2
pr =

ℓ∑
i=1

X2
ip − 2

ℓ∑
i=1

Xipair + ∥ar∥2 (p, r) ∈ N a,

 (3)

where Xip denotes the (i, p)th element of the matrix X or the ith element of xp. Now, a
QOP for the sensor network localization without noise is obtained.

minimize 0 subject to the equality constraints (3). (4)

Using the matrix variable X, the problem (2) becomes

minimize
∑

(p,q)∈N x

(ξ+
pq + ξ−pq) +

∑
(p,r)∈N a

(ξ+
pr + ξ−pr)

subject to d̂2
pq =

ℓ∑
i=1

X2
ip − 2

ℓ∑
i=1

XipXiq +
ℓ∑

i=1

X2
iq + ξ+

pq − ξ−pq (p, q) ∈ N x,

d̂2
pr =

ℓ∑
i=1

X2
ip − 2

ℓ∑
i=1

Xipair + ∥ar∥2 + ξ+
pr − ξ−pr (p, r) ∈ N a,

ξ+
pq ≥ 0, ξ−pq ≥ 0 (p, q) ∈ N x, ξ+

pr ≥ 0, ξ−pr ≥ 0 (p, r) ∈ N a.


(5)

When a sensor network problem of the form (4) or (5) has many equality constraints that
may be redundant, the resulting SDP relaxation problem can be too large to solve. To deal
with such a problem, SFSDP replaces N x and N a by smaller subsets of them, Ñ x and Ñ a,
respectively, before applying the sparse SDP relaxation to the problem (4) or (5). Then,
the resulting SDP relaxation problem becomes smaller and sparser. This process, which
will be discussed in details in Section 4.1, is a key to solving a large scale sensor network
localization problem efficiently by SFSDP. We assume that either (i) (noisy) distance is
available between a fairly large number of sensors and anchors in the original problem (4)
or (5) to extract a smaller-sized subproblem satisfying the sparsity (the aggregated and
correlative sparsity), or (ii) the original problem itself is sparse. If the radio range ρ is large
and if we take N ρ

x and N ρ
a (or their subsets large enough) for N x and N a, respectively, the

assumption (i) is usually satisfied. We should note, however, that SFSDP may fail to solve
the problem efficiently if neither (i) nor (ii) is satisfied.
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3 SDP Relaxations of the Sensor Network Localiza-

tion Problem

We describe the construction of FSDP and SFSDP for the sensor network localization
problem with exact distances. Most of the discussion is valid for (5) for the problem with
noisy distances. Let

Ypq =
ℓ∑

i=1

XipXiq (p, q) ∈ N x, or, Y = XT X ∈ Sm.

Then, the problem (4) can be written as

minimize 0
subject to d2

pq = Ypp + Yqq − 2Ypq (p, q) ∈ N x,

d2
pr = ∥ar∥2 − 2

ℓ∑
i=1

Xipair + Ypp (p, r) ∈ N a,

Y = XT X.


We now relax the nonconvex equality constraint Y = XT X to the matrix inequality con-
straint Y ≽ XT X. Then, using the relation

Y ≽ XT X ⇐⇒
(

Iℓ X
XT Y

)
≽ O,

we obtain the Biswas-Ye SDP relaxation [3], called full SDP (FSDP) relaxation,

minimize 0
subject to d2

pq = Ypp + Yqq − 2Ypq (p, q) ∈ N x,

d2
pr = ∥ar∥2 − 2

ℓ∑
i=1

Xipair + Ypp (p, r) ∈ N a,

O ≼
(

Iℓ X
XT Y

)
,


(6)

where Iℓ denotes the ℓ × ℓ identity matrix. Similary, we can obtain the SDP relaxation of
(5).

Now, we briefly present the derivation of the sparse SDP relaxation of the sensor network
localization problem. For details, we refer to [13]. Let Λ denote a finite index set and

Z =

(
W X
XT Y

)
. (7)

After rewriting the SDP (6) in an equality standard primal SDP of the form

minimize A0 • Z subject to At • Z = bt (t ∈ Λ) Z ≽ O, (8)

the conversion method [20] is applied to (8) as follows. Consider the index set V of rows
(and columns) of the matrix variable Z. Let us assume that the rows and columns of

4



matrix Z in (7) are indexed in the lexicographical order as 10, . . . , ℓ0, ∗1, . . . , ∗m. Then,
V = {10, . . . , ℓ0, ∗1, . . . , ∗m} for (6), where ∗ denotes a fixed symbol or integer larger than
ℓ, and each element of At can be written as [At]ipjq with ip ∈ V and jq ∈ V .

We introduce the aggregated sparsity pattern E of the data matrices as in [10] for the
description of sparsity exploitation in the sparse SDP relaxation with a chordal graph.

E = {(ip, jq) ∈ V × V : ip ̸= jq, [At]ipjq ̸= 0 for some t ∈ Λ}

A geometrical representation of the aggregated sparsity pattern is considered with a graph
G(V, E). To construct a chordal extension G(V , E) of G(V , E) by simulating a chordal
extension from G(V,E) to G(V, E), we let

E = {(i0, j0) : 1 ≤ i < j ≤ ℓ} ∪ {(i0, ∗p) : 1 ≤ i ≤ ℓ, 1 ≤ p ≤ m}
∪{(∗p, ∗q) : (p, q) ∈ E},

Ch = {10, . . . , ℓ0} ∪ {∗p : p ∈ Ch} (1 ≤ h ≤ k),

where G(V,E) denotes the graph with the node set V = {1, 2, . . . ,m} (the index set of
sensors) and E = N x, and C1, . . . , Ck the maximal cliques of the chordal extension G(V, E).
Using the information on the chordal graph G(V , E) and its maximal cliques C1, . . . , Ck,
application of the conversion method [20] to (8) leads to an SDP problem

minimize A0 • Z
subject to At • Z = bt (t ∈ Λ), ZCh,Ch

≽ O (1 ≤ h ≤ k),

}
(9)

where ZCh,Ch
denotes a submatrix of Z consisting of the elements Zipjq (ip ∈ Ch, jq ∈ Ch).

Rewriting (9), we obtain the sparse SDP relaxation as follows.

minimize 0
d2

pq = Ypp + Yqq − 2Ypq (p, q) ∈ N x,

d2
pr = ∥ar∥2 − 2

ℓ∑
i=1

Xipair + Ypp (p, r) ∈ N a,

O ≼
(

Iℓ (xp : p ∈ Ch)
(xp : p ∈ Ch)

T Y Ch,Ch

)
(1 ≤ h ≤ k),


(10)

where (xp : p ∈ Ch) denotes the ℓ × #Ch matrix variable with xp (p ∈ Ch) and Y Ch,Ch
a

submatrix of Y with elements Y pq (p ∈ Ch, q ∈ Ch).

Note that (10) is not the standard form of SDP since some of the variables xp (p ∈ V ) and
Ypq ((p, q) ∈ N x) appear more than once in the positive semidefinite constraints. To convert
(10) to the standard form of SDP, we use the domain-space conversion method [15, 16], which
was succefully implemented in SparsePOP, a Matlab package for polynomial optimization
problems [28]. The resulting SDP involves k small-sized positive semidefinite matrix vari-
ables induced from the k positive semidefinite constraints in (10). By contrast, the SDP (6)
involves a single large-sized (ℓ + m)× (ℓ + m) matrix variable Z given in (7). Furthermore,
the resulting SDP is expected to satisfy the correlative sparsity, which characterizes the
sparsity of the Schur complement matrix. We note that the Schur complement matrix is
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the coefficient matrix of a system of linear equations that is solved by the Cholesky factor-
ization for a search direction, at every iteration of the primal-dual interior-point method.
These two properties on the resulting SDP, multiple but small-sized positive-semidefinite
matrix variables and the correlative sparsity, greatly enhance the computational efficiency.
See Kobayashi et al [16] for more details of the correlative sparsity.

Let us denote

Ld =

{
X ∈ Rℓ×m :

(X,Y ) is a solution of (6)
for some Y ∈ Sm

}
.

In addtion, let Ls denote the set of solutions of the sparse SDP relaxation (10). We note
that Ld = Ls is shown in [13], which indicates that the same quality of solutions can be
obtained by the sparse SDP relaxation as FSDP. Hence, the sparse SDP relaxation can
achieve better computational performance for the same quality of solutions as FSDP.

The ESDP and NSDP relaxations of sensor network localization problems were proposed
in [29] as further relaxations of the Biswas-Ye SDP relaxation. In essence, a generalization
of the sparse SDP relaxation (10) includes NSDP and ESDP. In other words, if we denote
Ln and Le the solution sets of the NSDP and ESDP relaxation, respectively, then, by
construction, we know Ld ⊆ Ln ⊆ Le. It was shown in [29] that if the underlying graph
G(V, E) is chordal, then Ld = Ln. In this case, we know that G(V, E) = G(V, E) and that
Ld = Ls = Ln also follows from Proposition 3.3 in [13]. For details, we refer to [13]. We
used ESDP for the numerical experiments shown in Section 5 because it is known to be
more efficient than NSDP.

We mention that the technique used in SFSDP for exploiting the sparsity for the QOP
formulation is a fairly general technique for exploiting the sparsity in SDPs. When our
technique is applied to the sensor network localization problem, a chordal extension of the
entire underlying graph (not necessarily chordal) is artificially constructed, but not any
subgraph of the graph from the given sensor network. This extended chordal graph does
not correspond to any sensor network localization problem with distances given to all the
edges. The important feature of this technique is to convert a sparse SDP into another
equivalent SDP which can be solved efficiently by exploiting its sparsity.

From the construction of SDP relaxations, FSDP and SFSDP can be expected to attain
solutions of more accuracy than ESDP and NSDP. Thus, if sparsity is utilized to enhance
the computational efficiency, the performance of SFSDP can be expected better than other
SDP relaxations.

4 Implementation

Both the sparse and dense SDP relaxation can be implemented using SFSDP for solving the
sensor network localization problem in 2 or 3 dimensions. Anchor-free problems can also be
solved with SFSDP.
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4.1 Varying the Problem Size for Accuracy and Efficiency

SFSDP provides a way to reduce the size of given problem for the efficiency of the com-
putation or to gradually decrease the degree of exploiting the sparsity of sensor network
localization problem for the accuracy of solution.

Let G(N,N x∪N a) be a graph associated with the system of sensor network localization
equations (3), where N = {1, . . . , n} denotes the node set consisting of all sensors and
anchors. Consider subgraphs G(N,E ′) of G(N,N x ∪ N a) with the same node set N and
an edge subset E ′ of N x ∪N a. Let deg(p, E ′) be the degree of a node p ∈ N in a subgraph
G(N,E ′), i.e., the number of edges incident to a node p ∈ N . In the ℓ-dimensional sensor
network localization problem, deg(p, E) ≥ ℓ + 1 for every sensor node p is a necessary
condition to determine their locations when they are located in generic positions. Based
on this, we consider the family Gκ of subgraphs G(N,E ′) of G(N,N x ∪ N a) such that
deg(p, E ′) is not less than min{deg(p,N x ∪N a), κ} for every sensor node p, where κ is a
positive integer not less than ℓ + 1.

In SFSDP, a positive integer parameter κ not less than ℓ+1 is used for selecting subsets
Ñ x and Ñ a from N x and N a to reduce the size of the problem (4) or (5). A value for
the parameter named pars.minDegree can be set for this purpose. Obviously, the minimum
value for pars.minDegree is ℓ + 1. We note that a minimal subgraph G(N, Ẽ) is chosen

from the family Gκ, and N x and N a are replaced by Ñ x = N x ∩ Ẽ and Ñ a = N a ∩ Ẽ,
respectively, in (3). Since this method of reducing the size of (3) is based on heuristics, it
may weaken the quality of SDP relaxation. See Section 4.1 of [13].

With an increasingly larger value for κ or pars.minDegree, we can expect to obtain
more accurate locations of the sensors, although it takes longer to solve the sparse SDP
relaxation. Some applications of the sensor network localization problem, e.g., molecular
conformation, have not enough distance information to obtain accurate solutions. For these
applications, pars.minDegree in SFSDP can be set not to reduce the size of the problem.
If pars.minDegree is increased, a stronger SDP relaxation resulting in longer cpu time is
expected. In SFSDP, if it is equal to or larger than 100, then no reduction described
previously is conducted. The default value for pars.minDegree is ℓ + 2.

4.2 Selecting Objective Functions

SFSDP provides four objective functions to choose. Depending on whether the problem
contains noise and whether anchors exist, one of four objective functions can be selected by
setting a value of 0-3 for the parameter called pars.objSW.

The zero objective function is for the problem with at least ℓ + 1 anchors and exact
distance as (4), For the problem with at least ℓ+1 anchors and noisy distance, the objective
function of (5) ∑

(p,q)∈ fN x

(
ξ+
pq + ξ−pq

)
+

∑
(p,r)∈ fN a

(
ξ+
pr + ξ−pr

)
. (11)

is to be minimized.
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Functions Description
SFSDPplus.m A function that analyzes input data given and calls SFSDP.m.

SFSDP.m A solver that solves the problem and returns the location of
sensors, and can be called directly by users.

generateProblem.m A function that generates a sensor network localization problem
with the given parameters.

test SFSDP.m A function that tests the problem generated by generateProblem.m
using SFSDP.m.

Table 1: Functions provided in SFSDP

If there are no anchors for the problem with exact distance, the objective function with
a regularization term provides a more accurate solution. For this, we provide a function of
the regularization term [2, 18] given by

−
∑

(p,q)∈E

∥xp − xq∥2. (12)

Recall that E denotes the edge set of the chordal extension G(V, E) of the graph of

G({1, . . . ,m}, Ñ x), which was introduced for constructing the sparse SDP relaxation (10)
in Section 3. For the problem with noisy distance and no anchors, the objective function of
the sum of the 1-norm error of (11) and the regularization term described in (12), i.e., (11)
+ (12), leads to a more accurate solution.

4.3 An Exmple for Executing SFSDP

SFSDP includes four Matlab functions. Their names and functionality are briefly described
in Table 1.

SFSDP needs the dimension of the problem, the number of sensors, the number of
anchors, the locations of anchors if they are available, and distance information, for the
input, and outputs the location of sensors in the form of a matrix called xMatrix. The
detailed desciption is given in Table 2. The output matrix, xMatrix, has the same size and
structure as the corresponding matrix for input.

The simplest use of SFSDP Matlab functions is

>>load ‘d2n01s500a100.mat’
>>[xMatrix,info] =SFSDPplus(sDim,noOfSensors,noOfAnchors, xMatrix0,...

distanceMatrix0,pars);

In this example, “d2n01s500a100.mat”, which contains necessary data for input arguments,
is loaded before executing SFSDP. At the end of execution, SFSDP refines the solution with
the function refineposition.m, which is a Matlab implementation of a gradient method by
Toh [19], and displays the figures with the computed solution as shown in Figure 1. For
details, users can refer the user’s guide [14].
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Variable name Description
sDim The dimension of space where sensors and anchors are located.

noOfSensors The number of sensors
noOfAnchors The number ma of anchors; the last ma columns of xMatrix0

xMatrix0 sDim×n matrix of the location of sensors and anchors in the
sDim-dimensional space, where n is the total number of sensors
and anchors, and anchors are placed in the last ma columns,
or sDim×ma matrix of anchors in the sDim-dimensional space,
where ma denotes the number of anchors.
If noOfAnchors == 0, then xMatrix0 can be [].

distanceMatrix0 The sparse (and noisy) distance matrix between xMatrix0(:,i) and
xMatrix0(:,j). distanceMatrix0(i, j) = (noisy) distance between
xMatrix0(:,i) and xMatrix0(:,j) if i < j,
distanceMatrix0(i, j) = 0 if i >= j.

Table 2: Input for SFSDP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O : Sensor true locations   vs   * : the ones computed by SFSDP
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O : Sensor true locations   vs   * : the ones computed by SFSDP + the refinepositions funct. by K. Toh

Figure 1: A 2-dimensional problem with 500 sensors and 100 anchors and noisy distance.
Before and after the refinement using a gradient method. A circle denotes the true location
of a sensor, ⋆ the computed location of a sensor, and a line segment a deviation from the
true and computed location.
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5 Numerical Results

One of the features of SFSDP is that either SDPA or SeDuMi can be used for solving the
SDP relaxation. We first compare the performance of

• ESDP using SeDuMi.

• FSDP using SeDuMi.

• FSDP using SDPA.

• SFSDP using SeDuMi.

• SFSDP using SDPA.

applied to two-dimensional sensor network localization problems with 1000 to 6000 sensors
randomly distributed in the unit square [0, 1]2 and 4 anchors placed at the corners of [0, 1]2.
In addition, two-dimensional problems up to 18000 sensors and 2000 anchors randomly
placed are tested with varying radiorange and noisy factor. We note that the source code of
ESDP was not available, thus, it could not be tested with SDPA. This comparison exhibits
that SFSDP using SDPA is more efficient than the other methods. After the comparison, the
performance of SFSDP with SDPA is further tested on larger-scale two-dimensional prob-
lems with randomly distributed sensors and anchors in [0, 1]2, three-dimensional problems
with 1000 to 4000 sensors randomly distributed in the unit cube [0, 1]3 and 8 anchors placed
at the corners of [0, 1]3, and three-dimensional anchor-free problems with 1000 to 4000 sen-
sors randomly distributed in [0, 1]3. Numerical experiments were performed on 3.00GHz
Quad-Core Intel Xeon X5365 with 48GB memory. For efficiency comparison, elapsed time
using 4 threads is shown in Tables.

Throughout our numerical experiments, we generated sensors ap (p = 1, 2, . . . ,m) ran-
domly in the unit square [0, 1]2 for two-dimensional problems, or in the unit cube [0, 1]3 for
three-dimensional problems with a radio range ρ > 0. We placed anchors at the corners of
the unit square [0, 1]2 or the unit cube [0, 1]3 except for the numerical experiment shown in
Section 5.2, where 10% of the sensors were chosen randomly as anchors. We perturbed the
distances to create problems with noisy distances:

d̂pq = (1 + σϵpq)∥ap − aq∥ ((p, q) ∈ Ñ x),

d̂pr = (1 + σϵpr)∥ap − ar∥ ((p, r) ∈ Ñ a).
(13)

Here, σ ≥ 0 denotes a noisy factor, and ϵpq and ϵpr are chosen from the standard normal
distribution N(0, 1). As in [3, 4, 5, 26, 29], the root mean square distance (rmsd)(

1

m

m∑
p=1

∥xp − ap∥2

)1/2

is used to measure the accuracy of locations of m sensors computed by SDPA or SeDuMi,
and the accuracy of refined solutions by the gradient method. The values of rmsd after the
refinement are included in the parentheses. We note that ESDP available at [30] provides
rmsd only after refining the locations of sensors.
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SDP(λ|κ) SDP solver #Sensors Rmsd Elapsed time
ESDP(λ = 5) SeDuMi 1000 (2.71e-2) 60.7

2000 (1.60e-2) 217.0
4000 (2.30e-2) 1103.1
6000 (1.89e-2) 2774.7

FSDP(κ = 4) SeDuMi 1000 4.98e-2 (8.56e-3) 1.1 3461.0 5.7
2000 out of memory

FSDP(κ = 4) SDPA 1000 4.98e-2 (9.37e-3) 1.11 387.3 2.87
2000 4.46e-2 (7.72e-3) 5.5 2344.9 13.3
4000 out of memory

SFSDP(κ = 4) SeDuMi 1000 4.97e-2 (8.56e-3) 1.1 58.7 6.6
2000 4.46e-2 (6.23e-3) 6.2 264.0 29.6
4000 4.32e-2 (6.78e-3) 26.2 390.3 35.6
6000 4.36e-2 (5.81e-3) 63.0 648.4 143.4

SFSDP(κ = 4) SDPA 1000 4.97e-2 (8.57e-3) 1.1 21.4 5.7
2000 4.46e-2 (6.23e-3) 5.5 39.0 28.6
4000 4.31e-2 (6.76e-3) 25.9 91.7 36.9
6000 4.34e-2 (5.68e-3) 62.6 117.7 186.8

Table 3: Two-dimensional problems with the noisy factor σ = 0.1, radio range ρ =0.1,
and rand seed 100. Three numbers in column “Elapsed time” indicate the elapsed time for
generating a SDP, solving the SDP, and refining a solution by the gradient method.

5.1 Comparison of SFSDP with FSDP and ESDP for
Two-dimensional Problems

We fixed 4 anchors at the corner of the unit square [0, 1]2 with the radio range ρ = 0.1.
In Table 3, the rmsd and elapsed time for ESDP, FSDP and SFSDP are compared. We
denote λ an upper bound for the degree of any sensor node in ESDP, and κ a lower bound
for the degree of any sensor node described in Section 4.1. See also Section 4.1 of [13] for
their precise definitions and the comparison. FSDP and SFSDP were tested with either
SDPA or SeDuMi. ESDP was tested only with SeDuMi since the source code of ESDP was
not available. We notice that FSDP could not handle larger problems than 2000 sensors
because of out-of-memory error. In all tested problems, we observe that SDPA provides a
solution much faster than SeDuMi with comparable values of rmsd. We see that SFSDP
with SDPA performs better than FSDP and ESDP.

5.2 Two-dimensional Larger-scale Problems

In Table 4, we show the numerical results for problems with 9,000 sensors and 1,000 anchors,
both randomly generated in the unit square [0, 1]2 as in [22]. In addition, problems with
18,000 sensors and 2000 anchors, both randomly generated in the unit square [0, 1]2, are
tested. The noisy factor, σ, was varied from 0.01 to 0.2 when generating the problems. We
observe that SFSDP solves these problems efficiently with accurate values of rmsd. We note
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#Sensors #Anchors ρ σ Rmsd Elapsed time
9000 1000 0.02 0.01 1.85e-2 (2.36e-3) 38.9 65.4 30.7
9000 1000 0.02 0.1 1.88e-2 (3.13e-3) 61.9 111.7 16.2
9000 1000 0.02 0.2 1.93e-2 (4.31e-3) 59.5 100.6 23.5

18000 2000 0.015 0.01 1.71e-2 (1.47e-3) 346.4 168.2 51.5
18000 2000 0.015 0.1 1.73e-2 (1.73e-3) 324.1 178.1 66.1
18000 2000 0.015 0.2 1.75e-2 (2.38e-3) 332.9 117.4 63.9

Table 4: Numerical results using SFSDP(κ = 4) and SDPA for two-dimensional problems
generated with random seed 100. Three numbers in column “Elapsed time” indicate the
elapsed time for generating a SDP, solving the SDP, and refining a solution by the gradient
method.

that the test problems shown in [22] involve σ up to 0.01.

5.3 Three-dimensional Problems

Numerical results for three-dimensional problems are shown in Table 5. We varied the
number of sensors from 1000 to 4000. ESDP downloaded from [30] could not handle three-
dimensional problems.

For the problems with 1000 sensors, the value for ρ is increased from 0.25 to 0.4. We
notice that the elapsed time for solving the SDP relaxation decreases, as the value for ρ
increases. Or, it takes longer to solve the SDP relaxation from the problem with a smaller
value of ρ. As described in Section 4.1, SFSDP chooses a subgraph G(N, Ẽ) of the graph
G(N,N x ∪ N a) associated with a given sensor network problem to be solved. As we have

more edges incident to every node, we have more flexibility in choosing a subgraph G(N, Ẽ)

such that G(V,N x ∩ Ẽ) can be extended to a sparse chordal graph having maximal cliques
Ch (h = 1, 2, . . . , k) with smaller sizes. Recall that the maximal cliques Ch (h = 1, 2, . . . , k)
determine the positive semidefinite matrix inequalities in the sparse SDP relaxation problem
(10). Thus, smaller size maximal cliques Ch (h = 1, 2, . . . , k) provide more efficiency for
solving (10). By contrast, if enough edges incident to each node of the graph G(N,N x∪N a)

are not available, SFSDP may encounter a difficulty in choosing such a subgraph G(N, Ẽ).
For this reason, we see the increase of elapsed time with decreasing ρ in Table 5.

SFSDP successfully solves three-dimensional problems with 2000 and 4000 sensors effi-
ciently, resulting accurate values of rmsd, as displayed in Table 5.

5.4 Anchor-free Problems in 3 dimensions

SFSDP handles anchor-free problems in ℓ dimensions, ℓ = 2 or 3, by first fixing ℓ + 1
sensors as anchors, and then applying the sparse SDP relaxation to the resulting problem.
More precisely, if an anchor-free sensor network localization problem with n sensors in the
ℓ-dimensional space is given, SFSDP first chooses ℓ + 1 sensors, e.g., sensors n − ℓ, n −
ℓ + 1, . . . , n, which are adjacent to each other and forms a nondegenerate ℓ-simplex. Then,

12



#Sensors ρ σ Rmsd Elapsed time
1000 0.25 0.0 6.45e-3 (9.88e-4) 4.1 145.3 3.6
1000 0.25 0.01 2.53e-2 (5.79e-3) 4.3 178.7 7.5
1000 0.25 0.1 1.05e-1 (3.04e-2) 4.1 159.3 3.1
1000 0.3 0.0 3.11e-3 (3.61e-4) 1.7 52.6 1.3
1000 0.3 0.01 2.67e-2 (4.10e-3) 2.4 61.7 11.8
1000 0.3 0.1 1.00e-1 (1.75e-2) 2.4 58.7 7.0
1000 0.4 0.0 2.32e-3 (2.10e-4) 4.8 11.2 2.2
1000 0.4 0.01 2.85e-2 (3.15e-3) 5.1 15.5 18.8
1000 0.4 0.1 1.04e-1 (1.74e-2) 5.2 13.8 31.3
2000 0.3 0.0 2.81e-3 (1.94e-4) 7.1 83.5 3.5
2000 0.3 0.01 2.62e-2 (4.47e-3) 11.3 108.0 19.8
2000 0.3 0.1 9.84e-2 (1.53e-2) 11.5 115.3 20.9
4000 0.3 0.0 4.54e-3 (2.05e-4) 29.6 145.9 20.2
4000 0.3 0.01 2.65e-2 (3.76e-3) 48.8 156.6 35.4
4000 0.3 0.1 9.86e-2 (1.84e-2) 50.4 146.4 44.8

Table 5: Numerical results with SFSDP(κ = 5) on 3-dimensional problems with m sensors
randomly generated in [0, 1]3, 8 anchors fixed at the corner of [0, 1]3. Three numbers in
column “Elapsed time” indicate the elapsed time for generating a SDP, solving the SDP,
and refining a solution by the gradient method.

we temporarily fix their locations, say xr = ar (r = n − ℓ, n − ℓ + 1, . . . , n), as anchors,
and apply the sparse SDP relaxation described in Sections 3 and 4 to the resulting sensor
network problem with m = n−ℓ+1 sensors and ma = ℓ+1 anchors. SFSDP, then, computes
the location of sensors xp (p = 1, 2, . . . ,m) relative to the sensors fixed as anchors. The
gradient method is applied to refine the locations xp (p = 1, 2, . . . ,m).

We can measure the accuracy of computed solution when the true locations ap (p =
1, 2, . . . , n) of all sensors are known. In the numerical experiment whose results are shown in
Table 6, the rmsd of the computed locations of sensors xp (p = 1, 2, . . . , n) is evaluated after
applying a linear transformation (translation, reflection, orthogonal rotation, and scaling) T ,
provided by a MATLAB program procrustes.m [2, 18]. This function minimizes the total
squared errors

∑n
p=1 ∥T (xp) − ap∥2 between the true and the transformed approximate

locations of sensors. We also observe that SFSDP can find the location of the sensors with
accuracy, as shown in the values of rmsd.

As in Figures 2 and 3, SFSDP displays three figures, the locations of sensors from SDPA,
after applying the linear transformation to them, and after refining them using the gradient
method and applying the linear transformation to the refined locations of sensors.

6 Concluding Remarks

We have described the Matlab package SFSDP. It is designed to solve larger-sized sensor
network localization problems than other available softwares. SFSDP can be used for the
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Figure 2: A 3-dimensional anchor-free problem with 2000 sensors, ρ = 0.3, and σ = 0.1.
The locations of sensors from SFSDP(κ = 4) on the left and the locations of sensors after
applying the linear transformation (translation, reflection, orthogonal rotation, and scaling)
which minimizes the squared errors between the true and the transformed locations of
sensors on the right. A circle denotes the true location of a sensor, ⋆ the computed location
of a sensor, and a line segment a deviation from true and computed locations.
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Figure 3: A 3-dimensional anchor-free problem with 2000 sensors, ρ = 0.3, and σ = 0.1.
After applying the local refinement (a gradient method) followed the linear transformation
(translation, reflection, orthogonal rotation, and scaling) which minimizes the squared errors
between the true and the transformed locations. A circle denotes the true location of a
sensor, ⋆ the computed location of a sensor, and a line segment a deviation from true and
computed locations.
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#Sensors ρ σ Rmsd Elapsed time
1000 0.3 0.0 5.26e-3 (3.83e-5) 2.3 52.3 0.9
1000 0.3 0.01 9.90e-2 (1.16e-3) 3.0 52.4 2.0
1000 0.3 0.1 2.58e-1 (9.25e-2) 2.9 46.1 4.8
2000 0.3 0.0 3.76e-3 (7.73e-5) 9.1 96.1 2.3
2000 0.3 0.01 7.15e-2 (1.14e-3) 12.8 101.5 7.6
2000 0.3 0.1 1.59e-1 (2.02e-2) 13.4 92.7 6.9
4000 0.3 0.0 3.42e-3 (3.29e-5) 36.4 157.4 12.6
4000 0.3 0.01 5.89e-2 (1.18e-3) 56.1 137.8 26.2
4000 0.3 0.1 1.66e-1 (1.37e-2) 56.0 158.5 29.9

Table 6: Numerical results with SFSDP(κ = 5) on 3-dimensional anchor-free problems with
n sensors randomly generated in [0, 1]3 and radio range ρ = 0.3. Three numbers in column
“Elapsed time” indicate the elapsed time for generating a SDP, solving the SDP, and refining
a solution.

problems with various anchor locations and anchor-free problems in 2 or 3 dimensions.

The sensor network localization problem has a number of applications where compu-
tational efficiency is an important issue. SDP approach has been known to be effective
in locating sensors, however, solving large-scale problems with this approach has been a
challenge.

From numerical results in Section 5, SFSDP demonstrates the computational advantages
over other methods in solving the large-sized sensor network localization problems. These
come from utilizing the aggregated and correlative sparsity of the problem, which reduces
the size of SDP relaxation. SFSDP incorporated with SDPA provides a solution faster than
that with SeDuMi.

One of the advantages of SFSDP is that it is equipped with both SeDuMi and SDPA. It
is our experience that the accuracy of solution by SDPA is not as good as that by SeDuMi
for some problems. However, SDPA may serve better, as observed in Section 5, for problems
such as sensor network localization problems with the existence of noise frequent.

We hope to improve the performance of the sparse SDP relaxation implemented in
SFSDP, in particular, for the case when the original problem does not provide enough
distance information between sensors.
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