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Abstract

In many cases, each network imposes a maximum permitted packet size called payload
size. Hence, some protocols such as TCP specify a message segmentation function allows
a sender to divide a single message greater than the payload size into multiple packets. In
this report, we derive an analytical form of a covariance of a packet size sequence for an
environment where message segmentations happen. We show that when message sizes are
exponentially distributed, the packet sizes are uncorrelated, that is, the covariance is always
zero because of the memoryless property of an exponential distribution, even though the
message segmentations happen. However, from numerical results where HTTP messages are
lognormally distributed according to an actual traffic measurement, we demonstrate that TCP-
packet sizes exhibit heavily-correlated property in cases of payload sizes used commonly for
TCP.
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I. INTRODUCTION

For queueing systems, correlated statistical property of interarrival times and/or service times
is well-known to affect performance of queueing systems significantly. For example, paper [1]
demonstrates that interarrival times with significant correlations across large time scale yield
very large mean queueing delays compared with those obtained from a Markovian model. Hence,
careful statistical analysis to investigate the correlated property is required.

Round-trip time (or one-way delay) and packet loss rate are fundamental QoS (quality of
service) parameters for users of packet-based transfer networks such as the Internet [2, pp. 4–6].
They are dependent on packet sizes. In communication networks with low bit-rate links and/or
high bit-error prone links such as wireless access links, the characteristics of packet sizes
affect such QoS parameters significantly. To assess the QoS parameters in such communication
network environments with high accuracy, therefore, we need to investigate correlation of packet
size sequences, of which typical measure is well-known to be a covariance.

In many cases, each network imposes a maximum permitted packet size called payload size
due to link structure (e.g., the width of a transmission slot) compliance with standard protocol
specifications [3, p. 406]. Messages, that is, data units generated by applications, are frequently
greater than the payload size. To convey such messages over the network, some communication
protocols (such as TCP/IP [4] and RLC [5]) specify a message segmentation/reassembly func-
tion. The message segmentation function allows a sender to divide a single message greater than
the payload size into multiple packets. This function sometimes yields the correlation among
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created packets in size. In this report, we attempt to derive an analytical form of covariance for
packet size sequences with message segmentations, and investigate the effect of payload size
on the covariance.

Paper [6] investigated the correlation of IP-level packet sizes for wide area networks (WANs)
based on actual traffic measurements. The paper showed that the size-correlation of packets
of which sessions are statistically multiplexed into the WAN diminishes, although packet sizes
are often highly correlated for each session when packets are generated by applications. Major
difference between previous work and our work is that our approach is theoretical, which
allows us to investigate effect of any payload size on the correlation of packets sizes with a
given message size distribution.

The rest of the report is organized as follows. In Section II, a model of size sequence of
packets is provided, given a message size distribution and a payload size. To analyze the packet
size sequence through a framework of Markov chains (MCs), we introduce an associated MC
representing the packet types of two kinds (called a body packet and an edge packet), referred
to as a packet-type MC. Furthermore, we develop the aggregated MC based on the packet-type
MC, which allows us to calculate the packet size covariance efficiently. Section III explains
their MCs. The packet size covariance can be expressed in terms of elements of an n-step
transition probability matrix of the packet-type MC (or that of the aggregated packet-type MC).
Section IV calculates the n-step transition-probability matrix for the aggregated packet-type MC.
Then, Section V calculates the n-step transition-probability matrix for the aggregated packet-
type MC based on the results obtained in Section IV. In Section VI, we derive the covariance
of packet sizes using the results obtained in Sections III to V. Section VII investigates the effect
of the payload size on the correlation of the TCP-packet sizes when HTTP-messages sizes are
subject to the measured distribution reported in [7]. Finally, Section VIII summarizes the report.

II. PACKET SIZE SEQUENCE MODEL[8]

Letting X
(m)
i > 0 denote the ith message size, we assume {X(m)

i ; i ∈ N0} where N0
�
=

{0, 1, 2, . . .} is a sequence of mutually independent and identically distributed (i.i.d.) random
variables with a common distribution function F (m)(·) of mean message-size �(m). If X

(m)
i is

greater than a payload size �d, then the ith message is divided into multiple packets with a
size-sequence {X(p)

ij : j = 1, · · · , ki}, where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ki =

⌈
X

(m)
i

�d

⌉
, for i ∈ N0,

X
(p)
ij =

{
�d, for j = 1, 2, . . . , ki − 1
X

(m)
i − (ki − 1)�d, for j = ki.

(1)

Here operator �a� represents the smallest integer that is greater than or equal to a. For the ith
message, we refer to the j (≤ ki−1) th packet as a “body” packet and the last (i.e., ki th) packet
as an “edge” packet. If X

(m)
i ≤ �d, the ith message is not segmented, and a single packet, which

is identical to the original message, is generated. We also refer to this as an “edge” packet,
because it satisfies definition (1).

III. PACKET-TYPE MARKOV CHAIN

We constitute a stochastic process {X(p)
κ ;κ ∈ N0}, replacing the pair of epoch labels ij by

an in-sequence number κ ∈ N0 for {X(p)
ij }. To analyze the behavior of {X(p)

κ } through the
framework of Markov chains, we introduce an auxiliary random variable Zκ associated with
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X
(p)
κ . The random variable Zκ is defined on the state space S(Z)= {D1,D2, · · · ; E1,E2, · · · },

where, for a message under consideration,
state Dr indicates that a packet is the rth body packet, and
state Es indicates that a packet is an edge packet following (s − 1) body-packets.

The stochastic process {Zκ} can be represented as an MC (referred to as “packet-type Markov
chain”), described in the following proposition:

Proposition 1: The stochastic process {Zκ} can be represented as a Markov chain having
the following one-step transition-probability matrix P (Z) = [p(Z)

α, β, α ∈ S(Z), β ∈ S(Z)] with
elements

p
(Z)
α, β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ur+1

ur
, for (α, β) = (Dr,Er+1), r ∈ N

ur+1

ur
, for (α, β) = (Dr,Dr+1), r ∈ N

1 − u1, for (α, β) = (Es,E1), s ∈ N
u1, for (α, β) = (Es,D1), s ∈ N
0, otherwise,

(2)

where N �
= {1, 2, · · · } and

ur
�
=
∫ ∞

r�d

dF (m)(x) = 1 − F (m)(r�d), for r ∈ N . (3)

Proof: See [8, APPENDIX I].

Note that

u0 =
∫ ∞

0
dF (m)(x) = 1. (4)

From the matrix structure shown in (2), it is easy to see that the transition-probability matrix
P (Z) is “lumpable” with respect to a partition {E , D1, D2, · · · , } where E �

= {E1, E2, · · · },
because real-valued constants rE β exist such that the following condition holds for β ∈ D �

=
{D1, D2, · · · },

p
(Z)
α, β = rE β

�
=

{
u1, for β = D1,
0, for β ∈ D − {D1},

for α ∈ E .

(5)

For the definition of “lumpability”, see [9]. Hence, the stochastic process {Ẑκ} with the state
space S(Ẑ) �

= {Ê, D1, D2, · · · }, which is formed from {Zκ} by aggregating the subset E into
a macro state Ê, can also be expressed as an MC (called an aggregated packet-type Markov
chain). As will be described in Section V, the behavior of {Zκ} can easily be derived from
{Ẑκ} with a one-step transition-probability matrix P (Ẑ) = [p(Ẑ)

α, β, α ∈ S(Ẑ), β ∈ S(Ẑ)] given by

p
(Ẑ)
α, β =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − u1, for (α, β) = (Ê, Ê),

1 − uk+1

uk
, for (α, β) = (Dk, Ê), k ∈ N ,

uk+1

uk
, for (α, β) = (Dk, Dk+1), k ∈ N ,

0, otherwise.

(6)
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IV. CALCULATION OF n-STEP TRANSITION PROBABILITY MATRIX

FOR AGGREGATED MARKOV CHAINS {Ẑκ}[10]

We denote an n-step transition-probability matrix for the aggregated packet-type MC {Ẑκ} by
{P (Ẑ)}n. To calculate of the elements of the matrix {P (Ẑ)}n effectively, firstly we introduce
hitting probabilities (or first-entrance probabilities) and taboo probabilities of the aggregated
packet-type MC {Ẑκ}.1 Secondly, we calculate the elements of the matrix {P (Ẑ)}n, using the
hitting and taboo probabilities.

A. Preliminary

a) Calculation of hitting probabilities: Let the hitting probability ĥα, β be a probability
that the first visit to state β occurs at epoch n, given Ẑ0 = α. Thus,

ĥα, β(n)
�
= Pr

(
Ẑ1 �= β, Ẑ2 �= β, · · · , Ẑn−1 �= β, Ẑn = β | Ẑ0 = α

)
,

for α ∈ S(Ẑ), β ∈ S(Ẑ), and n ∈ N . (7)

We focus on the hitting probabilities ĥDr ,Ê(n) and ĥÊ,Ê(n), which are available for the
calculation of a covariance. From the structure of the matrix P (Z) given in (2), they are simply
expressed as:

ĥDr ,Ê(n)
�
= Pr

(
Ẑ1 �= Ê, Ẑ2 �= Ê, · · · , Ẑn−1 �= Ê, Ẑn = Ê | Ẑ0 = Dr

)
= Pr

(
Ẑ1 = Dr+1, Ẑ2 = Dr+2, · · · , Ẑn−1 = Dr+n−1, Ẑn = Ê | Ẑ0 = Dr

)

=
ur+1

ur

ur+2

ur+1

ur+3

ur+2
· · · ur+n−1

ur+n−2

(
1 − ur+n

ur+n−1

)
(from (2))

=
ur+n−1 − ur+n

ur
, for r ∈ N and n ∈ N , (8)

ĥÊ,Ê(n)
�
= Pr

(
Ẑ1 �= Ê, Ẑ2 �= Ê, · · · , Ẑn−1 �= E, Ẑn = Ê | Ẑ0 = Ê

)
= Pr

(
Ẑ1 = Dr+1, Ẑ2 = Dr+2, · · · , Ẑn−1 = Dr+n−1, Ẑn = Ê | Ẑ0 = Dr

)
= u1

u2

u1

u3

u2
· · · un−1

un−2

(
1 − un

un−1

)
(from (2))

= un−1 − un, for n ∈ N . (9)

b) Calculation of taboo probabilities: Given that the initial state is α, i.e., Ẑ0 = α, let
the taboo probability t̂α, β be a probability that the visit to state β occurs at epoch n without
returning to the initial state α. That is

t̂α, β(n)
�
= Pr

(
Ẑ1 �= β, Ẑ2 �= β, · · · , Ẑn−1 �= β, Ẑn = β | Ẑ0 = α

)
,

for α ∈ S(Ẑ), β ∈ S(Ẑ), and n ∈ N . (10)

1See [11, Chapter 3] for definitions and applications of the hitting and taboo probabilities for general Markov
chains.
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We focus on the taboo probabilities t̂Ê,Ds
(n) and t̂Dr,Ds

(n), which are given by

t̂Ê,Ds
(n)

�
= Pr

(
Ẑ1 �= Ê, Ẑ2 �= Ê, · · · , Ẑn−1 �= Ê, Ẑn = Ds | Ẑ0 = Ê

)
= Pr

(
Ẑ1 = D1, Ẑ2 = D2, · · · , Ẑn−1 = Dn−1, Ẑn = Ds | Ẑ0 = Ê

)

=

⎧⎨
⎩u1

u2

u1

u3

u2

u4

u3
· · · us−1

us−2

us

us−1
, for s = n ∈ N ,

0, otherwise,
(from (2))

=

{
us, for s = n ∈ N ,
0, otherwise,

(11)

t̂Dr,Ds
(n)

�
= Pr

(
Ẑ1 �= Ê, Ẑ2 �= Ê, · · · , Ẑn−1 �= Ê, Ẑn = Ds | Ẑ0 = Dr

)
= Pr

(
Ẑ1 = Dr+1, Ẑ2 = Dr+2, · · · , Ẑn−1 = Ds−1, Ẑn = Ds | Ẑ0 = Dr

)

=

⎧⎨
⎩

ur+1

ur

ur+2

ur+1

ur+3

ur+2
· · · us−1

us−2

us

us−1
, for s = n ∈ N

0, otherwise,
(from (2))

=

⎧⎨
⎩

us

ur
, for s = n ∈ N ,

0, otherwise.
(12)

B. Calculation of element of n-step transition probability matrix {P (Ẑ)}n[10]

We denote the (α, β)th element of an n-step transition-probability matrix {P (Ẑ)}n as p
(Ẑ)
α, β(n).

We define p
(Ẑ)
α, β(0) = 1 for α ∈ S(Ẑ) and β ∈ S(Ẑ).

In the following, we derive the forms of p
(Ẑ)

Ê,Ê
(n), p

(Ẑ)

Dr,Ê
(n), p

(Ẑ)

Ê,Ds

(n), and p
(Ẑ)
Dr,Ds

(n). Especially,

we show that the form of p
(Ẑ)

Ê,Ê
(n) can be written as a recurrence formula and those of p

(Ẑ)

Dr ,Ê
(n),

p
(Ẑ)

Ê,Ds
(n), and p

(Ẑ)
Dr,Ds

(n) can be expressed in the term of p
(Ẑ)

Ê,Ê
(·).

• Form of p
(Ẑ)

Ê,Ê
(n)

We classify all events that start in Ê at the initial epoch and end in state Ê at epoch n(≥ 2)
into a set of mutually exclusive events, of which each event that the first return to state Ê
occurs at epoch i. From the Law of Total Probability and (9), p

(Ẑ)

Ê,Ê
(n) is given by

p
(Ẑ)

Ê,Ê
(n) =

n∑
i=1

ĥÊ,Ê(i) p
(Ẑ)

Ê,Ê
(n − i)

=
n∑

i=1

(
ui−1 − ui

)
p
(Ẑ)

Ê,Ê
(n − i), (from (9)) for n ≥ 2. (13)

Note that (13) is valid for n = 1.

Remark 1: From the definition, p
(Ẑ)

Ê,Ê
(0) = 1, whereas (6) leads to p

(Ẑ)

Ê,Ê
(1) = 1 − u1.

Hence, the values of p
(Ẑ)

Ê,Ê
(n) for n = 2, 3, · · · are available by solving (13) recursively

with p
(Ẑ)

Ê,Ê
(0) = 1 and p

(Ẑ)

Ê,Ê
(1) = 1 − u1.

• Form of p
(Ẑ)

Dr ,Ê
(n)
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From the argument similar to the derivation of the form of p
(Ẑ)

Ê,Ê
(n) and (8), p

(Ẑ)

Dr ,Ê
can be

written as:

p
(Ẑ)

Dr ,Ê
=

n∑
i=1

ĥDr,E(i) p
(Ẑ)

Ê,Ê
(n − i)

=
1
ur

n∑
i=1

(
ur+i−1 − ur+n

)
p
(Ẑ)

Ê,Ê
(n − i), (from (8)) for r ∈ N . (14)

• Form of p
(Ẑ)

Ê,Ds

(n)

For the derivation of form of p
(Ẑ)

Ê,Ds
(n), we classify all events that start in Ê at the initial

epoch and end in state Ds at epoch n by each event that the last return to state Ê prior to
epoch n occurs at epoch n − s. If s ≤ n, we have

p
(Ẑ)

Ê,Ds
(n) = p

(Ẑ)

Ê,Ê
(n − s) t̂E,Ds

(s). (15)

Substitution of (11) into (15) yields p
(Ẑ)

Ê,Ds

(n) given by

p
(Ẑ)

Ê,Ds

(n) =

{
us p

(Z)

Ê,Ê
(n − s), for s ≤ n

0, otherwise.
(16)

• Form of p
(Ẑ)
Dr ,Ds

(n)

To derive the form of p
(Ẑ)
Dr ,Ds

(n), we consider two cases for paths from state Dr at the
initial epoch to state Ds at epoch n: when more than one return to state Ê happens and
when no return to state Ê happens.

– When more than one return to state Ê happens
In this case, we classify all events that start in Dr at the initial epoch and end in state
Ds at epoch n by each event that the first return to state Ê occurs at epoch i and the
last return to state Ê prior to epoch n occurs at epoch n− i−s. Then, using the hitting
probability ĥDr,Ê(i) and the taboo probability t̂Ê,Ds

(s), from (9) and (11), we have

p
(Ẑ)
Dr,Ds

(n) =
n−s∑
i=1

ĥDr,Ê(i) p
(Ẑ)

Ê,Ê
(n − i − s) t̂Ê,Ds

(s),

=
1
ur

n−s∑
i=1

(
ur+i−1 − ur+i

)
p
(Ẑ)

Ê,Ê
(n − i − s)us. (17)

Note that if s ≤ n − 1 then the value of the transition probability p
(Ẑ)
Dr ,Ds

(n) in this
case is positive.

– When no return to state Ê happens
In this case, the path from state Dr to state Ds is only Dr → Dr+1 → Dr+2 →
· · ·Ds−1 → Ds. Then, using the taboo probability, from (12), we have

p
(Ẑ)
Dr,Ds

(s) = t̂Dr ,Ds
(s)

=
us

ur
, for s = r + n. (18)
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Note that the value of the transition probability p
(Ẑ)
Dr ,Ds

(n) in this case is positive if r,
s, and n satisfy the following relation:⎧⎪⎨

⎪⎩
s = r + n,

s ≥ n + 1,
r ≥ 1.

Hence, p
(Ẑ)
Dr,Ds

(n) is given by

p
(Ẑ)
Dr,Ds

(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ur

n−s∑
i=1

(
ur+i−1 − ur+i

)
p
(Ẑ)

Ê,Ê
(n − i − s)us, for s ≤ n − 1,

us

ur
, for r ∈ N

and s ≥ n + 1, s = r + n,
0, otherwise.

(19)

V. CALCULATION OF n-STEP TRANSITION PROBABILITIES FOR

MARKOV CHAIN {Zκ}
Let {P (Z)}n be an n-step transition-probability matrix for the packet-type MC {Zκ}. We

denote the (α, β)th element of the matrix {P (Z)}n as p
(Z)
α, β(n). Subsequently, we derive the

forms of p
(Z)
Dr,Ds

(n), p
(Z)
Er ,Ds

(n), p
(Z)
Dr,Es

(n), and p
(Z)
Er ,Es

(n), using the elements of {P (Ẑ)}n derived
above.

• Form of p
(Z)
Dr ,Ds

(n)
From the lumpability of P (Z), p

(Z)
Dr,Ds

(n) is given by

p
(Z)
Dr ,Ds

(n) = p
(Ẑ)
Dr,Ds

(n), for r ∈ N and s ∈ N . (20)

• Form of p
(Z)
Er,Ds

(n)
From the lumpability of P (Z), p

(Z)
Er,Ds

(n) is given by

p
(Z)
Er,Ds

(n) = p
(Ẑ)

Ê,Ds

(n), for r ∈ N and s ∈ N . (21)

• Form of p
(Z)
Dr ,Es

(n)
– When Zn = Es(s ≥ 2)

When s ≥ 2, from the structure of the state-transition matrix P (Z) shown in (2), the
packet-type MC {Zκ} always visits state Ds−1 at epoch n − 1 if it visits state Es at
epoch n. Hence, p

(Z)
Dr,Es

(n) is given by

p
(Z)
Dr,Es

(n) = p
(Z)
Dr ,Ds−1

(n − 1) p
(Z)
Ds−1,Es

(1)

= p
(Ẑ)
Dr ,Ds−1

(n − 1) p
(Z)
Ds−1,Es

(1) (from (20))

= p
(Ẑ)
Dr ,Ds−1

(n − 1)

(
1 − us

us−1

)
, for s ≥ 2 (from (2)). (22)

– When Zn = E1
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If the packet-type MC {Zκ} visits state E1 at epoch n, a visit to any state Em, m ∈ N ,
always occurs at epoch n − 1. Hence, we have

p
(Z)
Dr,Es

(n) =
∞∑

m=1

p
(Ẑ)
Dr ,Em

(n − 1) p
(Z)
Em,E1

(1)

= p
(Ẑ)

Dr,Ê
(n − 1)

(
1 − u1

)
, for r ∈ N and s = 1 (from (2)).

(23)

Therefore, p
(Z)
Dr ,Es

(n) is given by

p
(Z)
Dr ,Es

(n) =

⎧⎪⎪⎨
⎪⎪⎩

p
(Ẑ)
Dr,Ds−1

(n − 1)

(
1 − us

us−1

)
, for r ∈ N and s ≥ 2,

p
(Ẑ)

Dr,Ê
(n − 1)

(
1 − u1

)
, for r ∈ N and s = 1.

(24)

• Form of p
(Z)
Er,Es

(n)
From the argument similar to the derivation of form of p

(Z)
Dr,Es

(n), this n-step transition
probability is given by

p
(Z)
Er ,Es

(n) =

⎧⎪⎪⎨
⎪⎪⎩

p
(Ẑ)

Ê,Ds−1
(n − 1)

(
1 − us

us−1

)
, for r ∈ N and s ≥ 2,

p
(Ẑ)

Ê,Ê
(n − 1)

(
1 − u1

)
, for r ∈ N and s = 1.

(25)

VI. DERIVATION OF FORM OF COVARIANCE OF X
(p)
0 AND X

(p)
n

In the following, we assume that the stochastic process {X(p)
κ } is stationary. In this case,

the covariance of random variables of X
(p)
0 and X

(p)
n , denoted as Cov[X(p)

0 ,X
(p)
n ], is given by

Cov
[
X

(p)
0 ,X(p)

n

] �
= E

[(
X

(p)
0 − E

[
X

(p)
0

])(
X(p)

n − E
[
X(p)

n

])]
= E

[
X

(p)
0 · X(p)

n

]
−
{

�(p)
}2

, (26)

where �(p) is the mean packet size i.e., �(p) = E[X(p)
κ ] for any κ ∈ N0. Subsequently, we derive

analytical forms of �(p) and E[X(p)
0 · X(p)

n ] in (26).

A. Derivation of form of mean packet size �(p)

1) Stationary-state probabilities for packet-type Markov chain {Zκ}
We denote the stationary-state probabilities for the MC {Zκ} by π(Dr) and π(Es), respectively.

They are given by

π(Dr) �
= Pr (Zκ = Dr) = Δ−1 ur, for r ∈ N , (27)

π(Es) �
= Pr (Zκ = Es) = Δ−1(us−1 − us), for s ∈ N , (28)

where

Δ
�
=

∞∑
s=0

us. (29)
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2) Conditional expectation for stochastic process {X(p)
κ }

Let F (α)(·) be the conditional distribution function of X
(p)
κ given a state of Zκ is α ∈ S(Z).

Then, we have

F (Dr)(x)
�
= Pr

(
X(p)

κ ≤ x |Zκ = Dr

)
= 1(x − �d), for r ∈ N , (30)

F (Es)(x)
�
= Pr

(
X(p)

κ ≤ x |Zκ = Es

)

=
Pr
(
(s − 1) �d < X

(m)
i ≤ x + (s − 1) �d

)
Pr
(
(s − 1)�d < X

(m)
i ≤ s �d

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x ≤ 0,

F (m)(x + (s − 1) �d) − F (m)((s − 1) �d)
us−1 − us

, if 0 < x ≤ �d,

1, if x > �d,

for s ∈ N . (31)

where an indicator function 1(x) is defined as

1(x)
�
=

{
1, if x ≥ 0,

0, if x < 0.

We denote conditional expectation for {X(p)
κ } given that Zκ = α ∈ S(Z), i.e., E[X(p)

κ |Zκ =
α] by m(α). Then, we have

m(Dr) �
= E

[
X(p)

κ |Zκ = Dr

]
=
∫ ∞

0
x dF (Dr)(x)

= �d, (from (30)) for r ∈ N , (32)

m(Es) �
= E

[
X(p)

κ |Zκ = Es

]
=
∫ ∞

0
x dF (Es)(x)

=
∫ �d

0

x dF (m)(x + (s − 1) �d)
us−1 − us

(from (31))

=
1

us−1 − us

∫ s �d

(s−1) �d

(x − (s − 1) �d) dF (m)(x)

=
1

us−1 − us

{∫ s �d

(s−1) �d

x dF (m)(x) −
∫ s �d

(s−1) �d

(s − 1) �d dF (m)(x)

}

=
vs−1 − vs

us−1 − us
− (s − 1) �d, for s ∈ N , (33)

where

vr
�
=
∫ ∞

r�d

x dF (m)(x), for r ∈ N , (34)

with

v0 =
∫ ∞

0
x dF (m)(x) = �(m). (35)
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3) Mean packet size �(p)

The mean packet size �(p) is given by

�(p) �
= E

[
X(p)

κ

]
=

∞∑
r=1

π(Dr)�d +
∞∑

s=1

π(Es)m(Es)

= Δ−1 �d

∞∑
r=1

ur + Δ−1
∞∑

s=1

(us−1 − us)m(Es) (from (27) and (28))

= Δ−1 �d (Δ − 1) (from (29))

+ Δ−1
(
�(m) + �d − Δ �d

)
= Δ−1 �(m), (36)

using

∞∑
s=1

(us−1 − us) m(Es) =
∞∑

s=1

(us−1 − us)
vs−1 − vs − (s − 1) �d (us−1 − us)

us−1 − us

= v0 − �d

∞∑
s=1

(s − 1) (us−1 − us)

= �(m) − �d

( ∞∑
s=0

us − u0

)
(from (35))

= �(m) + �d − Δ �d (from (4) and (29)). (37)

Note that another derivation of (36) can be found in [8].

B. Derivation of form of E[X
(p)
0 · X(p)

n ]

The first term in (26), E[X(p)
0 · X(p)

n ], can be expressed as:

E
[
X

(p)
0 · X(p)

n

]
=

∞∑
r=1

∞∑
s=1

E
[(

X
(p)
0 · X(p)

n

)
|Z0 = Dr, Zn = Ds

]
Pr (Z0 = Dr, Zn = Ds)

+
∞∑

r=1

∞∑
s=1

E
[(

X
(p)
0 · X(p)

n

)
|Z0 = Dr, Zn = Es

]
Pr (Z0 = Dr, Zn = Es)

+
∞∑

r=1

∞∑
s=1

E
[(

X
(p)
0 · X(p)

n

)
|Z0 = Er, Zn = Ds

]
Pr (Z0 = Er, Zn = Ds)

+
∞∑

r=1

∞∑
s=1

E
[(

X
(p)
0 · X(p)

n

)
|Z0 = Er, Zn = Es

]
Pr (Z0 = Er, Zn = Es)

�
= A1 + A2 + A3 + A4. (38)

1) Preliminary

Before derivation of each term in (38), we calculate terms
∑∞

r=1(ur+i−1−ur+i),
∑∞

r=1 ur p
(Ẑ)
Dr ,E(n),

and
∑∞

r=1 ur p
(Ẑ)
Dr ,Ds

(n).

• Form of
∑∞

r=1(ur+i−1 − ur+i)

10



∞∑
r=1

(ur+i−1 − ur+i) = ui − ui+1 + ui+1 − ui+2 + · · ·

= ui. (39)

• Form of
∑∞

r=1 ur p
(Ẑ)
Dr ,E(n)

∞∑
r=1

ur p
(Ẑ)

Dr,Ê
(n) =

∞∑
r=1

ur
1
ur

n∑
i=1

(
ur+i−1 − ur+i

)
p
(Ẑ)

Ê,Ê
(n − i) (from (14))

=
n∑

i=1

{ ∞∑
r=1

(
ur+i−1 − ur+i

)}
p
(Ẑ)

Ê,Ê
(n − i)

=
n∑

i=1

ui p
(Ẑ)

Ê,Ê
(n − i) (from (39))

= 1 − p
(Ẑ)

Ê,Ê
(n). (40)

For the derivation of (40), we used

1 − p
(Ẑ)

Ê,Ê
(n) =

∞∑
s=1

p
(Ẑ)

Ê,Ds

(n) (41a)

=
n−s∑
s=1

us p
(Ẑ)

Ê,Ê
(n − i)

(because p
(Ẑ)

Ê,Ds

(n) = us p
(Z)

Ê,Ê
(n − s) for n ≥ s from (16)), (41b)

=
n∑

s=1

us p
(Ẑ)

Ê,Ê
(n − s)

(because p
(Ẑ)

Ê,Ds
(n) = 0 for n < s from (16) additionally), (41c)

because of the transition-probability-matrix property, that is p
(Ẑ)

Ê,Ê
(n)+

∑∞
s=1 p

(Ẑ)

Ê,Ds
(n) = 1.

• Form of
∑∞

r=1 ur p
(Ẑ)
Dr ,Ds

(n)
From (19), we consider the following three cases: s ≤ n − 1, s = n, and s ≥ n

– When s ≤ n − 1

∞∑
r=1

ur p
(Ẑ)
Dr,Ds

(n) =
∞∑

r=1

ur
1
ur

n−s∑
i=1

(
ur+i−1 − ur+i

)
p
(Ẑ)

Ê,Ê
(n − i − s)us (from (19))

=
n−s∑
i=1

{ ∞∑
r=1

(
ur+i−1 − ur+i

)}
p
(Ẑ)

Ê,Ê
(n − i − s)us

=
n−s∑
i=1

ui p
(Ẑ)

Ê,Ê
(n − i − s)us (from (39))

= us

(
1 − p

(Ẑ)

Ê,Ê
(n − s)

)
, for s ≤ n − 1. (42)

– When s = n

11



∞∑
r=1

ur p
(Ẑ)
Dr,Ds

(n) = 0, for s = n. (43)

– When s ≥ n + 1

∞∑
r=1

ur p
(Ẑ)
Dr,Ds

(n) = us−n p
(Ẑ)
Dr ,Ds

(n) (because s = r + n from (19))

= us−n
us

us−n
(because p

(Ẑ)
Dr ,Ds

(n) = us/us−n from (19))

= us, for s ≥ n + 1. (44)

Therefore, we have

∞∑
r=1

ur p
(Ẑ)
Dr,Ds

(n) =

⎧⎪⎪⎨
⎪⎪⎩

us

(
1 − p

(Ẑ)

Ê,Ê
(n − s)

)
, for s ≤ n − 1,

0, for s = n,
us, for s ≥ n + 1.

(45)

2) Calculation of terms in (38)

We calculate of each term in (38) as follows.

• Form of term A1

A1
�
=

∞∑
r=1

∞∑
s=1

E
[(

X
(p)
0 · X(p)

n

)
|Z0 = Dr, Zn = Ds

]
Pr (Z0 = Dr, Zn = Ds)

=
∞∑

r=1

∞∑
s=1

�d
2 π(Dr) p

(Z)
Dr,Ds

(n)

= Δ−1 �d
2

∞∑
s=1

∞∑
r=1

ur p
(Z)
Dr ,Ds

(n) (from (27))

= Δ−1 �d
2

{
n−1∑
s=1

us

(
1 − p

(Ẑ)

Ê,Ê
(n − s)

)
+

∞∑
s=n+1

us

}
(from (45))

= Δ−1 �d
2

{
n∑

s=1

us

(
1 − p

(Ẑ)

Ê,Ê
(n − s)

)
+

∞∑
s=n+1

us

}
(from p

(Ẑ)

Ê,Ê
(0) = 1)

= Δ−1 �d
2

{ ∞∑
s=1

us −
n∑

s=1

us p
(Ẑ)

Ê,Ê
(n − s)

}

= Δ−1 �d
2

{ ∞∑
s=0

us − u0 − 1 + p
(Ẑ)

Ê,Ê
(n)

}
(from (41c))

= Δ−1 �d
2
(
Δ − 2 + p

(Ẑ)

Ê,Ê
(n)
)

(from (4) and (29)). (46)

• Form of term A2
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A2
�
=

∞∑
r=1

∞∑
s=1

E
[(

X
(p)
0 · X(p)

n

)
|Z1 = Dr, Zs = Es

]
Pr (Z1 = Dr, Zs = Es)

=
∞∑

r=1

∞∑
s=1

�d m(Es) π(Dr) p
(Z)
Dr,Es

(n)

= Δ−1 �d

∞∑
r=1

∞∑
s=1

ur p
(Z)
Dr ,Es

(n)m(Es) (from (27))

= Δ−1 �d

{ ∞∑
r=1

ur p
(Z)
Dr,E1

(n)m(Es) +
∞∑

r=1

∞∑
s=2

p
(Z)
Dr,Es

(n)m(Es)

}

= Δ−1 �d

{ ∞∑
r=1

ur p
(Ẑ)

Dr,Ê
(n − 1)

(
1 − u1

)
m(E1)

+
∞∑

s=2

∞∑
r=1

ur p
(Ẑ)
Dr,Ds−1

(n − 1)

(
us−1 − us

us−1

)
m(Es)

}
(from (14))

= Δ−1 �d

{(
1 − p

(Z)

Ê,Ê
(n − 1)

) (
1 − u1

)
m(E1) (from (40))

+
n−1∑
s=2

us−1

(
1 − p

(Z)

Ê,Ê
(n − s)

) (us−1 − us

us−1

)
m(Es) (from case for s ≤ n − 1 in (45))

+
∞∑

s=n+1

us−1

(
us−1 − us

us−1

)
m(Es)

}
(from case for s ≥ n + 1 in (45))

= Δ−1 �d

{ ∞∑
s=1

(
us−1 − us

)
m(Es) −

n∑
s=1

p
(Z)

Ê,Ê
(n − s)

(
us−1 − us

)
m(Es)

}

= Δ−1 �d

(
�(m) + �d − Δ �d

)
− Δ−1 �d

n∑
s=1

p
(Z)

Ê,Ê
(n − s)

(
us−1 − us

)
m(Es) (from (37)). (47)

• Form of term A3

A3
�
=

∞∑
r=1

∞∑
s=1

E
[(

X
(p)
0 · X(p)

n

)
|Z1 = Er, Zs = Ds

]
Pr (Z1 = Er, Zs = Ds)

=
∞∑

r=1

∞∑
s=1

m(Er) �d π(Er) p
(Z)
Er,Ds

(n)

= Δ−1 �d

∞∑
r=1

∞∑
s=1

(
ur−1 − ur

)
m(Er) p

(Z)
Er ,Ds

(n) (from (28))

= Δ−1 �d

∞∑
r=1

∞∑
s=1

(
ur−1 − ur

)
m(Er) p

(Ẑ)

Ê,Ds

(n) (from (16))

= Δ−1 �d

{ ∞∑
r=1

(
ur−1 − ur

)
m(Er)

}{ ∞∑
s=1

p
(Ẑ)

Ê,Ds

(n)

}

= Δ−1 �d

(
�(m) + �d − Δ �d

)(
1 − p

(Z)

Ê,Ê
(n)
)

(from (37)). (48)
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• Form of term A4

A4
�
=

∞∑
r=1

∞∑
s=1

E
[(

X
(p)
0 · X(p)

n

)
|Z1 = Er, Zs = Es

]
Pr (Z1 = Er, Zs = Es)

=
∞∑

r=1

∞∑
s=1

m(Er) m(Es) π(Er) p
(Z)
Er,Es

(n)

=
∞∑

r=1

π(Er) m(Er) p
(Ẑ)

Ê,Ê
(n − 1)

(
1 − u1

)
m(E1)

+
∞∑

r=1

∞∑
s=2

π(Er) m(Er) p
(Ẑ)

Ê,Ds−1
(n − 1)

(
us−1 − us

us−1

)
m(Es) (from (25))

=

{ ∞∑
r=1

π(Er) m(Er)

}

×
{

p
(Z)

Ê,Ê
(n − 1)

(
1 − u1

)
m(E1) +

∞∑
s=2

p
(Ẑ)

Ê,Ds−1
(n − 1)

(
us−1 − us

us−1

)
m(Es)

}

=

{
Δ−1

∞∑
r=1

(
ur−1 − ur

)
m(Er)

}
(from (28))

×
{

p
(Z)

Ê,Ê
(n − 1)

(
1 − u1

)
m(E1) +

∞∑
s=2

p
(Ẑ)

Ê,Ds−1
(n − 1)

(
us−1 − us

us−1

)
m(Es)

}

=

{
Δ−1

∞∑
r=1

(
ur−1 − ur

)
m(Er)

}

×
{

p
(Ẑ)

Ê,Ê
(n − 1)

(
1 − u1

)
m(E1) +

n∑
s=2

us−1 p
(Ẑ)

Ê,Ê
(n − s)

(
us−1 − us

us−1

)
m(Es)

}
(from (16))

= Δ−1
(
�(m) + �d − Δ �d

){ n∑
s=1

p
(Z)

Ê,Ê
(n − s)

(
us−1 − us

)
m(Es)

}
(from (37)).

(49)

3) Final form of E[X(p)
0 · X(p)

n ]

Substitution of (46) to (49) into (38) yields the final form of E[X(p)
0 · X(p)

n ], which is given
by

E
[
X

(p)
0 · X(p)

n

]
= A1 + A2 + A3 + A4

= Δ−1 �d �(m)

−
(
�d − Δ−1 �(m)

)

×
{

�d

(
1 − p

(Ẑ)

Ê,Ê
(n)
)

+
n∑

s=1

p
(Ẑ)

Ê,Ê
(n − s) (us−1 − us) m(Es)

}
.

(50)
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From (36), (50) can be written as:

E
[
X

(p)
0 · X(p)

n

]
=

�d �(p) −
(
�d − �(p)

){
�d

(
1 − p

(Ẑ)

Ê,Ê
(n)
)

+
n∑

s=1

p
(Ẑ)

Ê,Ê
(n − s) (us−1 − us) m(Es)

}
. (51)

Example 1: Case of exponential message size distribution. Assuming that message sizes are
exponentially distributed with mean �(m):

F (m)(x) =

{
1 − e−

x
�(m) , if x > 0,

0, if x ≤ 0.
(52)

In this case, the terms in (51) us, p
(Ẑ)

Ê,Ê
(n), and m(Es) are given by

us = us, for s ∈ N , (53)

p
(Ẑ)

Ê,Ê
(n) =

{
1 − u, for n ∈ N ,
1, for n = 1,

(54)

m(Es) =
(1 − u) �(m) − u �d

1 − u
, for s ∈ N , (55)

with u
�
= e−

�d

�(m) . Hence, from (53) to (55), the last term in (51) is given by

n∑
s=1

p
(Ẑ)

Ê,Ê
(n − s) (us−1 − us) m(Es) =

n−1∑
s=1

p
(Ẑ)

Ê,Ê
(n − s) (us−1 − us) m(Es)

+ p
(Ẑ)

Ê,Ê
(0) (un−1 − un) m(En)

= (1 − u)�(m) − u �d. (56)

Substitution of (54) and (56) into (51) yields

E
[
X

(p)
0 · X(p)

n

]
=
{

�(p)
}2

, (57)

resulting in Cov[X(p)
0 ,X

(p)
n ] being zero for any n ∈ N . Thus, random variables of X

(p)
0 and

X
(p)
n for any n ∈ N are uncorrelated, even though message segmentations happen. The reason

for this is due to memoryless property of an exponential distribution. Note that the random
variables of X

(p)
0 and X

(p)
n are not independent.2

Example 2: When payload size is very large. In this case, we have

ur ≈
{

0, for r ≥ 1,
1, for r = 0,

(58)

p
(Ẑ)

Ê,Ê
(n) ≈

{
0, for n ≥ 1,
1, for n = 0,

(59)

m(Es) ≈ �(m), (60)

�(p) ≈ �(m). (61)

Therefore, E[X(p)
0 ·X(p)

n ] is approximately given by {�(m)}2, resulting in Cov[X(p)
0 ,X

(p)
n ] being

zero for any n ∈ N . The reason for this is because the message sizes are assumed to be i.i.d.

2Not all uncorrelated random variables are independent [12, p. 51].
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random variables and almost no message segmentation happen, resulting in almost all packets
corresponding to the respective messages.

Example 3: When payload size is very small. In this case, �(p) can be approximated by �d.
Hence, E[X(p)

0 ·X(p)
n ] is approximately equal to zero because E[X(p)

0 ·X(p)
n ] ≈ �d

2. As a result,
Cov[X(p)

0 ,X
(p)
n ] is almost zero for any n ∈ N .

VII. NUMERICAL RESULTS AND DISCUSSIONS

To investigate the effect of the payload size �d on the correlation of packet sizes, we introduce
a correlation coefficient of X

(p)
0 and X

(p)
n , denoted by Corr(n), which is defined as:

Corr(n)
�
=

Cov
[
X

(p)
0 ,X

(p)
n

]
{
σ(p)

}2 , (62)

where {σ(p)}2 is a variance of the packet sizes (see APPENDIX for the derivation of {σ(p)}2).
Suppose that message sizes are lognormally distributed (such as HTTP messages, see [7]):

F (m)(x) =

⎧⎪⎨
⎪⎩
∫ y=x

y=0

1√
2πσy

e
−(log y−μ)2

2σ2 dy, if x > 0,

0, if x ≤ 0,

(63)

In this case, we cannot obtain the explicit analytical forms of ui and m(Es). Hence, we need to
calculate their values numerically. For the calculation of m(Es), we may use dF (Es)(x) given
by

dF (Es)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x ≤ 0,
dF (m)((s − 1) �d + x)

us−1 − us
, if 0 < x ≤ �d,

0, if x > �d,

(from (31))

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if x ≤ 0,

e−
n

log
(
(s−1) �d+x

)
−μ

o2

2 σ2

√
2πσ {(s − 1) �d + x} (us−1 − us)

, if 0 < x ≤ �d,

0, if x > �d.

(from (63)) (64)

As shown in the three-dimensional plot in Fig. 1, the correlation coefficient (or auto-correlation
function) Corr(n) are plotted versus payload sizes �d and lags n. The distribution parameters
μ and σ in (63) are assumed to be 6.34 and 2.07, respectively, based on the measured mean
message size �(m) = 4, 827 bytes and the measured standard deviation σ(m) = 41, 008 bytes
[7]. From this figure, we observe that

• the packet sizes are little correlated when the payload sizes �d is enough large because
few message-segmentations happen, or �d is enough small because almost messages are
segmented, resulting in packet sizes being almost �d.

• they are highly correlated when �d are around 10, 000 bytes and lags n are small.
Figure 2 shows the correlation coefficient Corr(n) versus lags n for different payload sizes

�d. In this figure, the payload sizes �d of 536, 1460, 2272 bytes are used. Note that 1460 bytes
is a payload size used commonly for TCP[13]. From this figure plotting log10 Corr(n) against
log10 n, we find that the packet sizes exhibit heavily correlations across large n with payload
sizes used commonly.
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VIII. CONCLUSION

In this report, we derived an analytical form of covariance of a packet size sequence for
an environment where message segmentations happen. To derive the form of the covariance
efficiently, we introduced the Markov chain representing a sequence of packet types (implying
body and edge packets), and the aggregated Markov chain using the lumpability. Using the
analytical form, we showed that packet sizes are uncorrelated, i.e., the covariance is always
zero, when message sizes are exponentially distributed because of the memoryless property of
an exponential distribution, even though the message segmentations happen. However, numer-
ical results where HTTP messages are lognormally distributed according to an actual traffic
measurement, we demonstrated that TCP-packet sizes exhibit the heavily-correlated property in
cases of payload sizes used commonly such as 1460 bytes.
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APPENDIX

DERIVATION OF PACKET SIZE VARIANCE {σ(p)}2[10]

A. Preliminaries

To calculate the packet size variance {σ(p)}2 efficiently, we first calculate several terms∑∞
s=1

∫ s�d

(s−1) �d
x2 dF (m)(x),

∑∞
s=1

∫ s�d

(s−1) �d
x2 dF (m)(x), and

∑∞
s=1(s−1)2

∫ s �d

(s−1) �d
dF (m)(x)

as follows.
• Form of

∑∞
s=1

∫ s�d

(s−1) �d
x2 dF (m)(x)

∞∑
s=1

∫ s�d

(s−1) �d

x2 dF (m)(x) =
∫ ∞

0
x2 dF (m)(x)

=
{
σ(m)

}2
+
{

�(m)
}2

. (65)

• Form of
∑∞

s=1(s − 1)
∫ s �d

(s−1) �d
x dF (m)(x)

∞∑
s=1

(s − 1)
∫ s �d

(s−1) �d

x dF (m)(x) =
∞∑

s=1

(s − 1) (vs − vs−1)

= v1 − v2 + 2 (v2 − v3) + 3 (v3 − v4) + · · ·
= v1 + v2 + v3 + v4 + · · ·

=
∞∑

s=0

vs − v0

=
∞∑

s=0

vs − �(m) (from (35)). (66)

• Form of
∑∞

s=1(s − 1)2
∫ s �d

(s−1) �d
dF (m)(x)

∞∑
s=1

(s − 1)2
∫ s �d

(s−1) �d

dF (m)(x) =
∞∑

s=1

(s − 1)2 (us−1 − us)

=
∞∑

s=1

s2 (us−1 − us) − 2
∞∑

s=1

s (us−1 − us) + 1

= u0 − u1 + 22 (u1 − u2) + 32 (u2 − u3) · · ·
− 2 {u0 − u1 + 2 (u1 − u2) + 3 (u2 − u3) + · · ·+} + 1

=
(
12 − 02

)
u0 +

(
22 − 12

)
u1 +

(
32 − 22

)
u2 +

(
42 − 32

)
u3+

− 2 {u0 + u1 + u2 + · · ·+} + 1

=
∞∑

s=0

{
(s + 1)2 − s2

}
us − 2

∞∑
s=0

us + 1

=
∞∑

s=0

(2 s + 1) us − 2
∞∑

s=0

us + 1

= 2
∞∑

s=0

s us −
∞∑

s=0

us + 1. (67)
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B. Form of {σ(p)}2

From (65) - (67), we have

{
σ(p)

}2 �
= E

[{
X(p)

κ

}2
]
−
{
E
[
X(p)

κ

]}2

=
∞∑

r=1

π(Dr) �d
2 +

∞∑
s=1

π(Er) 1
us−1 − us

∫ s �d

(s−1) �d

(x − (s − 1) �d)
2 dF (m)(x)

−
{
�(p)
}2

= Δ−1 �d
2 (Δ − 1) (from (27) and (29))

+ Δ−1
∞∑

s=1

∫ s �d

(s−1)�d

x2 dF (m)(x)

− 2Δ−1 �d

∞∑
s=1

(s − 1)
∫ s �d

(s−1) �d

x dF (m)(x)

+ Δ−1 �d
2

∞∑
s=1

∫ s �d

(s−1) �d

(s − 1)2 dF (m)(x) −
{

�(p)
}2

= �d
2
(
1 − Δ−1

)
+ Δ−1

∫ ∞

0
x2 dF (m)(x) − 2Δ−1 �d

∞∑
s=1

(s − 1) (vs−1 − vs)

+ Δ−1 �d
2

∞∑
s=1

(s − 1)2 (us−1 − us) −
{
�(p)
}2

= �d
2
(
1 − Δ−1

)
+ Δ−1

({
σ(m)

}2
+
{

�(m)
}2
)

(from (65))

− 2Δ−1 �d

∞∑
s=0

vs + 2Δ−1 �d �(m) (from (66))

+ 2Δ−1 �d
2

∞∑
s=1

s us − Δ−1 �d
2

∞∑
s=0

us + Δ−1 �d
2 (from (67))

−
{
�(p)
}2

= Δ−1

({
σ(m)

}2
+
{

�(m)
}2
)
− 2Δ−1 �d

∞∑
s=0

vs + 2Δ−1 �d �(m)

+ 2Δ−1 �d
2

∞∑
s=1

s us −
{

�(p)
}2

. (68)

Note that (68) agrees with the result reported in [8].
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