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Abstract
The SDPA (SemiDefinite Programming Algorithm) Project launched in 1995 has been known to provide

high-performance packages for solving large-scale Semidefinite Programs (SDPs). SDPA Ver. 6 solves effi-
ciently large-scale dense SDPs, however, it required much computation time compared with other software
packages, especially when the Schur complement matrix is sparse. SDPA Ver. 7 is now completely revised
from SDPA Ver. 6 specially in the following three implementation; (i) modification of the storage of variables
and memory access to handle variable matrices composed of a large number of sub-matrices, (ii) fast sparse
Cholesky factorization for SDPs having a sparse Schur complement matrix, and (iii) parallel implementa-
tion on a multi-core processor with sophisticated techniques to reduce thread conflicts. As a consequence,
SDPA Ver. 7 can efficiently solve SDPs arising from various fields with shorter time and less memory than
Ver. 6 and other software packages. In addition, with the help of multiple precision libraries, SDPA-GMP,
-QD and -DD are implemented based on SDPA to execute the primal-dual interior-point method with very
accurate and stable computations.

The objective of this paper is to present brief explanations of SDPA Ver. 7 and to report its high
performance for large-scale dense and sparse SDPs through numerical experiments compared with some
other major software packages for general SDPs. Numerical experiments also show the astonishing numerical
accuracy of SDPA-GMP, -QD and -DD.

Keywords: semidefinite program, primal-dual interior-point method, high-accuracy cal-
culation
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1. Introduction

All started from a small Mathematica R©program called pinpal. It was “translated” into
a C++ programming code and named SDPA (SemiDefinite Programming Algorithm), a
high-performance oriented software package to solve SemiDefinite Programming (SDP).

Table 1 demonstrates the significant progress of SDPA by showing how fast SDPA has
become along the version upgrades. We applied each version of SDPA to SDPs chosen
from the SDPLIB (the standard SDP benchmark problems) [6] and the SDP collections
downloadable from Mittelmann’s web page [25] (through this article we call this collection
the Mittelmann’s problem) on the same computer (Xeon 5550 (2.66GHz) x 2, 72GB Memory
space). We excluded the Ver 1.0 from the result due to serious numerical instability from its
primitive implementation. In particular, for mater-4, SDPA 7.3.1 attains more than 6,000
times of speed-up from SDPA 2.01.

Table 1: Computation time (in seconds) attained by each version of SDPA.

versions mcp500-1 theta6 mater-4
2.01 569.2 2643.5 62501.7
3.20 126.8 216.3 7605.9
4.50 53.6 217.6 29601.9
5.01 23.8 212.0 31258.1
6.2.1 1.6 20.7 746.7
7.3.1 1.5 14.2 10.4

SDPA solves simultaneously the following standard form semidefinite program P and its
dual D: 




P : minimize
m∑

k=1

ckxk

subject to X =
m∑

k=1

F kxk − F 0, X º O,

X ∈ Sn,
D: maximize F 0 • Y

subject to F k • Y = ck (k = 1, 2, . . . ,m), Y º O,
Y ∈ Sn.

(1.1)

Here, Sn is the space of n×n real symmetric matrices (possibly with multiple diagonal blocks
as detailed in Section 2). For U and V in Sn, the Hilbert-Schmidt inner product U • V
is defined as

∑n
i=1

∑n
j=1 UijVij. The symbol X º O indicates that X ∈ Sn is symmetric

positive semidefinite. An instance of SDP is determined by c ∈ Rm and F k ∈ Sn (k =
0, 1, . . . ,m). When (x,X) is a feasible solution (or a minimum solution, respectively) of the
primal problem P , and Y is a feasible solution (or a maximum solution, respectively) of the
dual problem D, we call (x,X,Y ) a feasible solution (or an optimal solution, respectively)
of the SDP.

There is an extensive list of publications related to the theory, algorithms, and applica-
tions of SDPs. A succinct description can be found for instance in [33, 38]. In particular,
their applications in system and control theory [7], combinatorial optimization [13], quan-
tum chemistry [31], polynomial optimization problems [20], sensor network problems [4, 17]
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have been of extreme importance in posing challenging problems for the SDP codes.
Many algorithms have been proposed and many SDP codes have been implemented

to solve SDPs. Among them, the current version 7.3.1 of SDPA implements the Mehro-
tra type predictor-corrector primal-dual interior-point method using the HKM (short for
HRVW/KSH/M) search direction [14, 19, 26]. For the subsequent discussions, we place a
simplified version of the path-following interior-point method implemented in SDPA [11].
In particular, the Schur Complement Matrix (SCM) of Step 2 will be often mentioned.

Framework 1.1 (Primal-Dual Interior-Point Method (PDIPM))

1. Choose an initial point (x,X, Y ) with X Â O and Y Â O. Set the parameter
γ ∈ (0, 1).

2. Compute the Schur Complement Matrix (SCM) B and the right hand side vector
r of the Schur complement equation. The elements of B are of the form Bij =
(Y F iX

−1) • F j.

3. Solve the Schur complement equation Bdx = r to obtain dx. Then compute dX and
dY for this dx.

4. Compute the maximum step lengths αp = max{α ∈ (0, 1] : X + αdX º O} and
αd = max{α ∈ (0, 1] : Y + αdY º O}.

5. Update the current point keeping the positive definiteness of X and Y . Update
(x, X,Y ) = (x + γαpdx, X + γαpdX,Y + γαddY ).

6. If the stopping criteria are satisfied, output (x,X,Y ) as an approximate optimal
solution. Otherwise, return to Step 2.

SDPA has the highest version number 7.3.1 among all generic SDP codes, due to its
longest history which goes back to December of 1995. Table 2 summarizes the main char-
acteristics of historical versions of SDPA.

Table 2: Details on main features of historical versions of SDPA.
versions released years main changes from the previous version references

1.0 1995 C++ implementation of the primal-dual interior-point
method using the HKM search direction

2.0 1996 Implementation of the Mehrotra type predictor-
corrector method

3.0 1997 Novel formula to compute the SCM according to the [12]
sparsity of the data

4.0 1998 Full implementation of the above formula for all
block matrices, callable library

5.0 1999 Fast step-size computation using the bisection method [11]
to approximate minimum eigenvalues

6.0 2002 Replacing meschach with BLAS/ATLAS and LAPACK [40]
7.0 2009 Major improvements are discussed in this article

The main drive force for the development of new codes has been an existence of a
demand for solving larger SDPs in a shorter time. Meanwhile, there is also a timid demand
to solve ill-posed SDPs which require high precision floating-point arithmetic [24, 31]. The
new features of the current version 7.3.1 and SDPA-GMP were provided to supply practical
solutions to these demands.
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The primary purpose of this article is to describe in details the new features of SDPA 7.3.1
accompanied by comparative numerical experiments. We summarize below the major con-
tributions described in the following pages of this article.

1. New data structure (Section 2.1):

SDPA 7.3.1 has a new data structure for sparse block diagonal matrices which allows
more efficient arithmetic operations. The computational time was drastically reduced
specially for problems which have a large number of diagonal submatrices. Many
redundant dense variable matrices were eliminated. Hence, the overall memory usage
can be less than half if compared to the previous version.

2. Sparse Cholesky factorization (Section 2.2):

The SCM is fully dense in general even if data matrices are sparse. However, there
are cases where SDPs have a large number of zero diagonal submatrices such as for
SDP relaxation of polynomial optimization problems [18, 20]. Thus the SCM become
sparse. SDPA 7.3.1 has now a sparse Cholesky factorization and it can automatically
select either dense or sparse Cholesky factorizations accordingly with the sparsity of
the SCM.

3. Multi-thread computation (Section 2.3):

The acceleration using multi-thread computation is employed in two fronts. Firstly,
we distribute the computation of each row of the SCM to each thread of multi-core
processors. Secondly, we use the numerical linear algebra libraries which support
multi-thread computation of matrix-matrix and matrix-vector multiplications. The
speed-up obtained by these multi-thread computation is beyond one’s expectation.

4. Very highly accurate calculation and/or good numerical stability (Section 4):

The PDIPM sometimes encounters numerical instability near an optimal solution,
mainly due to the factorization of an ill-conditioned SCM. SDPA-GMP, SDPA-QD and
SDPA-DD incorporates MPACK (generic multiple-precision library for linear algebra)
instead of usual double floating-point libraries: LAPACK and BLAS. The difference
between SDPA-GMP, SDPA-QD and SDPA-DD is in the numerical precision supplied
by the GMP (The GNU Multiple Precision Arithmetic Library), QD and DD [15],
respectively. It is noteworthy to SDP researchers that solutions of sensitive SDP
problems which other SDP codes fail are now obtainable by SDPA-GMP/-QD/-DD.

Section 3 is dedicated to the numerical experiments. When we compared with the major
existing SDP codes on SDPs not having a particular structure or property, we confirmed
SDPA 7.3.1 obtained a superior performance in terms of computational time, memory con-
sumption, and numerical stability. In this section, we also analyze the effects of new features
listed above.

The numerical results on high accurate solutions will be separately showed in Section 4,
since the only public available software packages having more precisions than double preci-
sion are only from the SDPA Family. Section 5 will discuss some extensions of the SDPA
Family. Finally, we will present the concluding remarks in Section 6.

The software packages SDPA, SDPA-GMP (-QD, -DD), SDPA-C (SDPA with the com-
pletion method) [28], SDPARA (a parallel version of SDPA) [39], and SDPARA-C [29] (the
integration of SDPARA and SDPA-C), are called SDPA Family. All software packages can
be downloaded from the SDPA web site:

http://sdpa.indsys.chuo-u.ac.jp/sdpa/
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In addition, some of them are registered on the SDPA Online Solver and hence, users can
use them via the Internet. Details on the Internet access will be described in Section 5. The
Matlab interface, SDPA-M, is now incorporated into SDPA 7.3.1. This means that after
compilation of the regular SDPA, one can also compile the mex files and call SDPA from
the MATLAB.

2. New features of SDPA 7.3.1

In this section, we describe the new improvements introduced in the current version of
SDPA 7.3.1.

2.1. Newly implemented data structures

We start with the introduction of block diagonal matrices. SDPA was the first SDP software
package which could manage block diagonal matrices. This has been reflected in the fact
that the SDPA format [10] is widely used as a representative SDP input form.

Now, let us suppose the input matrices F 0, F 1, . . . , F m share the same diagonal struc-
ture,

F =




F 1 O · · · O
O F 2 · · · O
...

...
. . .

...
O O · · · F `


 .

Here F b ∈ Snb (b = 1, 2, . . . , `), and n =
∑`

b=1 nb. From (1.1), it is clear that the matrix
variables X and Y of size n stored internally in SDPA have exactly the same structure.
Hereafter, we call each submatrix F b (b = 1, 2, . . . , `) placed at the diagonal position a
diagonal submatrix.

The techniques presented in this section are extremely effective when an SDP problem
has a very large number ` of blocks. For example, Polynomial Optimization Problems
(POP) [17, 20] often produce this type of SDPs for their relaxation problems. Another
example is when an SDP has many non-negative linear constraints. These constraints are
represented by a diagonal data matrix in SDPA format [10], and its diagonal elements can
be interpreted as a collection of symmetric matrices of size one.

SDPA 7.3.1 adopts a new storage scheme for the diagonal block matrix structure which
allows one to reduce both the memory usage and the computational time. The nonzero
elements of a sparse diagonal submatrix are stored as triple vectors consisted by their
row/column indices and values. SDPA 6.x always stores all ` diagonal submatrices F b

k ∈
Snb (b = 1, 2, . . . , `) without regarding if some of them might be the zero matrix. In
contrast, SDPA 7.3.1 implements a more compact storage scheme which stores only the
nonzero diagonal submatrices, and a list to the corresponding nonzero diagonal submatrix
indices.

The influence of skipping zero diagonal submatrices might appear to have a scant effect.
However, this new block diagonal matrix storage benefits the following three computational
routines; evaluation of primal constraints, evaluation of dual constraints, and computation
of the SCM. The total computational cost of these three routines often exceeds 80% of the
whole computation cost, and can not be ignored.

Now, let us focus on the last routine of the three, since it is related to Section 2.2 and 2.3.
SDPA employs the HKM search direction [14, 19, 26] in the PDIPM. At each iteration of
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the PDIPM, we evaluate the SCM B whose elements are defined as Bij = (Y F iX
−1) •F j.

Algorithms 2.1 and 2.2 are pseudo-codes for SDPA 6.x and 7.3.1, respectively, for this
routine which takes into account the block diagonal matrix structure.

Algorithm 2.1
SCM computation in SDPA 6.x
B = O
for b = 1, 2, . . . , `

for i = 1, 2, . . . , m
for j = 1, 2, . . . , m

Bij = Bij + Y bF b
i(X

b)−1 • F b
j

end
end

end

Algorithm 2.2
SCM computation in SDPA 7.3.1
B = O
for b = 1, 2, . . . , `

for i ∈ {i | F b
i 6= O}

for j ∈ {j | F b
j 6= O}

Bij = Bij + Y bF b
i(X

b)−1 • F b
j

end
end

end

In SDPA 7.3.1 (Algorithm 2.2), the 3rd and 4th lines’ “for” are executed only for nonzero
diagonal submatrices, exploiting the sparsity of block structures. If we use c̄ to denote the
computational cost to compute the 5th line Bij = Bij + Y bF b

i(X
b)−1 •F b

j and m̄ to denote

maxb=1,2,··· ,` #{i | F b
i 6= O}, then the cost to compute the SCM is O(`m2 + c̄) for SDPA 6.x

and O(`m̄2 + c̄) for SDPA 7.3.1, respectively. Since m̄ is constant or significantly smaller
than m in many SDP applications and c̄ is not so large for SDPs having sparse SCM, this
change has brought us a remarkable computation time reduction.

We now move to the discussion about dense matrices. In general, the variable matrices
X−1,Y ∈ Sn are dense even when the input data matrices F k ∈ Sn (k = 1, 2, . . . , m) are
sparse. SDPA 7.3.1 uses less than half of memory storage of SDPA 6.x for dense matrices.
The number of stored dense matrices is reduced from 31 to only 15. The 11 auxiliary matrices
in SDPA 6.x have been successfully combined into two auxiliary matrices in SDPA 7.3.1 by
using a concept similar to object pool pattern developed in design pattern study. The rest
of the reduction was made by eliminating redundant matrices related to the initial point
input. If n = 5, 000 and the input matrices are composed of one block, this effect leads to
approximately 3GB of memory space reduction.

Furthermore, by optimizing the order of linear algebra operations used in the PDIPM,
the number of multiplications between dense matrices of size n in one iteration is reduced
from 10 (SDPA 6.x) to 8 (SDPA 7.3.1).

2.2. Sparse Cholesky factorization

As it is clear from the formula to compute the SCM B

Bij = (Y F iX
−1) • F j =

∑̀

b=1

(Y bF b
i(X

−1)b) • F b
j,

only the elements corresponding to the following indices of B becomes nonzero

⋃̀

b=1

{
(i, j) ∈ {1, 2, . . . , m}2| F b

i 6= O and F b
j 6= O

}
. (2.1)

Therefore, if the input data matrices F k (k = 1, 2, . . . , m) consist of many zero diagonal
submatrices, which is frequently the case for polynomial optimization problems [20], we
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can expect that the SCM B becomes sparse. Even in these cases, SDPA 6.x performs the
ordinary dense Cholesky factorization. To exploit the sparsity of the SCM B, we newly
implemented the sparse Cholesky factorization in SDPA 7.3.1.

We employ the sparse Cholesky factorization implemented in MUMPS [1, 2, 3]. However,
just calling its routines is not so sophisticated. Since the performance of the sparse Cholesky
factorization strongly depends on the sparsity of B, we should apply the dense Cholesky
factorization in the case most elements of B are non-zero. In SDPA 7.3.1, we adopt some cri-
teria to perform either the dense Cholesky factorization or the sparse Cholesky factorization
to the matrix B.

We take a look at the criteria from the simplest ones. Since the sparsity of B is defined
by (2.1), in the case an input matrix F k has all non-zero blocks, i.e., F b

k 6= O, ∀b = 1, . . . , `,
we should select the dense Cholesky factorization. The situation in which the ratio between
the number of non-zero elements of (2.1) and m2 (fully dense) exceeds some threshold, for
example 0.7, is also another case to consider the dense Cholesky factorization.

It is known that the sparse Cholesky factorizations usually produce additional non-zeros
elements called fill-in’s other than (2.1). To perform the sparse Cholesky factorization more
effectively, we should apply a re-ordering of rows/columns to B to reduce its fill-in’s which
by itself is an NP-hard problem. Thus, we usually employ one of several heuristic methods
for re-orderings, such as AMD (Approximate Minimum Degree) or AMF (Approximate
Minimum Fill). These methods are the standard heuristics called in the analysis phase of
MUMPS, and their computational costs are reasonably cheap in the framework of PDIPM.
The obtained ordering determines the number of additional fill-in’s. When the ratio between
the number of additional fill-in’s plus the original non-zeros in (2.1), and m2 exceeds another
threshold, for example 0.8, we switch to the dense Cholesky factorization. Even though the
threshold 0.8 seems too dense, we verified from preliminary experiments that the multiple
frontal method implemented in MUMPS gives better performance than the normal dense
Cholesky factorization; the multi frontal method automatically applies the dense Cholesky
factorization to some dense parts of B even when the whole matrix is sufficiently sparse.

Another reason why we adopt MUMPS is because it can estimate the number of floating-
point operations required for the elimination process, which occupies most of the compu-
tation time of the multiple frontal method. This estimation enables us to compare the
computational cost of the sparse Cholesky factorization and the dense Cholesky factoriza-
tion. Since the cost of the dense Cholesky factorization to B is approximately proportional
to 1

3
m3, we finally adopt the sparse Cholesky factorization when the following inequality

holds:

sparse cost <
1

3
m3 × sd ratio,

where sparse cost is the cost estimated by MUMPS and sd ratio is some sparse/dense ratio.
Based on numerical experiments, we set sd ratio = 0.85.

We decide if we should adopt the sparse or the dense Cholesky factorization only once
before the main iterations of the PDIPM, because the sparse structure of B is invariant
during all the iterations. The introduction of the sparse Cholesky factorization provides
a significant improvement on the performance of SDPA 7.3.1 for SDPs with sparse SCMs,
while it still maintains the existing fine performance for dense SCMs.
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2.3. Mutil-thread computation

Multi-core processors is one of major evolutions in computing technology and delivers out-
standing performance in high-performance computing. Modern multi-core processors are
usually composed of two or more independent and general-purpose cores. The performance
gained by multi-core processors is heavily dependent on implementation such as multi-
threading. Multi-threading paradigm is becoming very popular thanks to some application
programming interfaces such as OpenMP and pthread. They provide simple frameworks
to obtain parallel advantage for optimization software packages. We can execute multiple
threads in parallel and expect to solve SDPs in a shorter time.

Here, we discuss in details how SDPA 7.3.1 exploits the multi-threading when deter-
mining all elements of the SCM. Fujisawa et al. [12] proposed an efficient method for the
computation of all elements of B when a problem is large scale and sparse. They have intro-
duced three kinds of formula, F -1, F -2 and F -3, for the computation of Bij in accordance
to the sparsity of F b

k’s (b = 1, 2, . . . , `).

F -1: If F b
i and F b

j are dense, compute Bij = Bij + Y bF b
i(X

b)−1 • F b
j.

F -2: If F b
i is dense and F b

j is sparse, compute

Bij = Bij +

nb∑
α=1

nb∑

β=1

[F b
j]αβ

(
nb∑

γ=1

Y b
αγ[F

b
i(X

b)−1]γβ

)
.

F -3: If F b
i and F b

j are sparse, compute

Bij = Bij +

nb∑
γ=1

nb∑
ε=1

(
nb∑

α=1

nb∑

β=1

[F b
i ]αβY b

αγ(X
b)−1

βε

)
[F b

j]γε.

In order to employ the above formula, we need to perform the following preprocessing
only once after loading the problem into the memory space.
Preprocessing for the computation of the SCM
Step 1: Count the number f b

k of nonzero elements in F b
k (k = 1, 2, . . . , m, b = 1, 2, . . . , `).

Step 2: Assume that we use only one formula when computing each row of B. Estimate
the computational costs of formula F -1, F -2 and F -3 according to f b

k ’s and determine
which formula we use for each row of B.

Successful numerical results have been reported on these implementations for SDPA
[11, 12, 40]. These formula have been also adopted in CSDP [5] and SDPT3 [34].

Note that B is a symmetric matrix and we compute only the upper (lower) triangular
part of it. In SDPA 7.3.1, each row of B is assigned to a single thread, in other words, each
row is neither divided into several parts nor assigned to multiple threads. Algorithm 2.3
shows a pseudo-code for the multi-thread computation of the SCM B employed in SDPA
7.3.1.

Algorithm 2.3 (Multi-threading of the SCM in SDPA 7.3.1)
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B = O,
generate p threads
for b = 1, 2, . . . , `

for i = 1, 2, . . . , m
wait until finding an idle thread
for j ∈ {k | F b

k 6= O}
compute Bij by using the formula F-1, F-2 or F -3 on the idle thread

end
end

end
terminate all threads

Note that p is the maximum number of available threads, and m is the number of constraints.
If a thread is idle, which means that no row of B is assigned to the thread yet or the
computation of the last assigned row has already finished, we assign a new row to the idle
thread. Therefore this algorithm also has the function of automatic load balancing between
multiple CPU cores. When we use a quad-core CPU and generate four threads, we can
expect that the maximum speed-up of four is attained.

A different multi-thread computation can be obtained almost immediately if we use cor-
rectly the recent numerical linear algebra libraries. SDPA 7.3.1 usually utilizes optimized
BLAS. BLAS (Basic Linear Algebra Subprograms) library provides standard interface for
performing basic vector and matrix operations. We highly recommend to use optimized
BLAS libraries: Automatically Tuned Linear Algebra Software (ATLAS), GotoBLAS and
Intel Math Kernel Library (MKL). For example, the problem maxG32 in Table 5 in Sec-
tion 3.1 takes 1053.2 seconds using BLAS/LAPACK 3.2.1, but only 85.7 seconds using
GotoBLAS 1.34.

The formula F -1 contains two matrix-matrix multiplications, one is the multiplication
of the dense matrix Y and the sparse matrix F i, the other is the multiplication of two dense
matrices (Y F i) and X−1. The latter can be accelerated by utilizing an optimized BLAS
library. GotoBLAS is a highly optimized BLAS library and it assumes that it can occupy all
CPU cores and cashes especially when computing the multiplication of two dense matrices.
On the other hand, F -3 formula frequently accesses CPU cashes. Therefore, a simultaneous
computation of F -1 and F -3 may cause serious resource conflicts, which dramatically lowers
the performance of the multi-threading for the SCM. However, we can avoid these kinds of
serious resource conflicts. If one thread starts the computation of F -1, we suspend all other
threads until the thread finishes F -1. SDPA 7.3.1 is carefully implemented so that it can
derive better performance from multi-threading.

3. Numerical experiments of SDPA 7.3.1

In this section, we evaluate the performance of SDPA 7.3.1 with three existing software
packages: CSDP 6.0.1 [5], SDPT3 4.0β [34], and SeDuMi 1.21 [32]. Through these numer-
ical experiments, we can conclude that SDPA 7.3.1 is the fastest general-purpose software
package for SDPs. Then, in Section 3.2, we discuss how the new features described in Sec-
tion 2 affect these results and why SDPA 7.3.1 is so efficient compared to other software
packages.

The SDPs we used for the performance evaluation were selected from the SDPLIB [6],
the 7th DIMACS Implementation Challenge [23], Mittelmann’s benchmark problems [25],
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SDP relaxation problems of polynomial optimization problems generated by SparsePOP
[36], SDPs arising from quantum chemistry [31] and sensor network problems generated by
SFSDP [17]. Table 3 shows some definitions and terms used to explain the performance of
the SDPA 7.3.1.

Table 3: Definitions on numerical experiments.

m number of constraints
nBLOCK number of blocks [10]
bLOCKsTRUCT block structure vector [10]
n total matrix size
ELEMENTS computation of all elements of the SCM: O(mn3 + m2n2)
CHOLESKY Cholesky factorization of the SCM: O(m3)
OTHERS other matrix-matrix multiplications: O(n3)

Table 4 shows the sizes of mostly large problems among the SDPs we solved. In the
“bLOCKsTRUCT” column, a positive number means the size of an SDP block, while a
negative number indicates the size of a diagonal (LP) block. For example, “11 ×4966”
means there are 4966 matrices of size 11 × 11 and “−6606” means we have 6606 matrices
of size 1× 1 as one diagonal block.

All numerical experiments of this section were performed on the following environment:
CPU : Intel Xeon X5550 2.67GHz (2 CPUs, 8 total cores)
Memory : 72GB
OS : Fedora 11 64bit Linux
Compiler : gcc/g++/gfortran 4.4.1
MATLAB version : 7.8.0.347 (R2009a)
Numerical Libraries : GotoBLAS 1.34, MUMPS 4.9 [1, 2, 3] (for SDPA).

3.1. Comparison with other software packages on benchmark problems

Table 5 shows the CPU time in seconds and the number of iterations required for each
software package on SDPLIB and DIMACS problems. We set a running time limit of one
hour.

For all software packages, we use their own default parameters. For instance, SDPA 7.3.1
decides that the optimal solution is obtained when the relative gap and feasibility errors
become smaller than 1.0 × 10−7. See [10] for details. In addition, we set the number of
available threads as 8. The number of threads affects only optimized BLAS for software
packages, except SDPA 7.3.1. In SDPA 7.3.1, the multiple-threads are used not only by
optimized BLAS but also for parallel evaluation of the SCM.

In the 26 solved problems in Table 5 , SDPA 7.3.1 was slower only on 7 problems than
CSDP 6.0.1, and on 4 problems than SDPT3 4.0β. Compared with SeDuMi 1.21, in most
cases, it was at least 2.4 times faster.

Table 6 shows the results on Mittelmann’s problems and polynomial optimization prob-
lems. We set the running time limit to one hour or two hours in this case. Again, among the
33 solved problems, SDPA 7.3.1 was slower only on 4 problems than SDPT3 4.0β, and on 2
problems than SeDuMi 1.21. CSDP 6.0.1 was extremely slow specially for the BroydenTri
problems.
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Table 4: Sizes of some large SDPs in Table 5,6, and 8.

name m nBLOCK bLOCKsTRUCT
SDPLIB [6]

control11 1596 2 (110, 55)
maxG60 7000 1 (7000)
qpG51 1000 1 (2000)
thetaG51 6910 1 (1001)

DIMACS Challenge [23]
hamming 10 2 23041 1 (1024)

Mittelmann’s Problem [25]
mater-6 20463 4968 (11 ×4966, 1 ×2)
vibra5 3280 3 (1760, 1761, -3280)
ice 2.0 8113 1 (8113)
p auss2 3.0 9115 1 (9115)
rabmo 5004 2 (220 -6606)

Polynomial Optimization Problem [36]
BroydenTri800 15974 800 (10 ×798, 4 ×1, -3)
BroydenTri900 17974 900 (10 ×898, 4 ×1, -3)

Quantum Chemistry [31]
NH3+.2A2”.STO6G.pqgt1t2p 2964 22 (744 ×2, 224 ×4, . . ., -154)
Be.1S.SV.pqgt1t2p 4743 22 (1062 ×2, 324 ×4, . . ., -190)

Sensor Network Location Problem [17]
d2s4Kn0r01a4 31630 3885 (43 ×2, 36 ×1, . . ., -31392)
s5000n0r05g2FD R 33061 4631 (73 ×1, 65 ×1, 64 ×2, . . .)

Now, we move our concerns to numerical stability and memory consumption. As Ta-
ble 8 indicates, SDPA 7.3.1 is the fastest code which also has numerical stability and low
consumption of memory. This table gives comparative numerical results for the quantum
chemistry (first two problems) [31] and sensor network problems (last two problems) [17]. It
lists the computational time, number of iterations, memory usage and the DIMACS errors,
standardized at the 7th DIMACS Implementation Challenge [23] as specified in Table 7.

SDPA 7.3.1 is at least 2 times faster than SeDuMi 1.21, 7 times faster than CSDP 6.0.1
or SDPT3 4.0β. In the particular case of “d2s4Kn0r01a4”, SDPA 7.3.1 is 100 times faster
than SDPT3 4.0β, and 110 times faster than CSDP 6.0.1. SDPA 7.3.1 uses more memory
than CSDP 6.0.1 for the quantum chemistry problems, because it momentarily allocates
memory space for the intermediate matrices Y F iX

−1 in F -1 and F -2 formula by multi-
thread computation (Section 2.3). Both SDPT3 4.0β and SeDuMi 1.21 use at least 3
times more memory than SDPA 7.3.1 due to the overhead of MATLAB. SDPT3 4.0β has
a prohibitive memory usage for the sensor network problems. Finally, in terms of accuracy,
SDPA 7.3.1 and SeDuMi 1.21 produce competing accuracy in (primal-dual) feasibility and
duality gaps. SDPT3 4.0β comes next and CSDP 6.0.1 possibly has an internal bug for the
very last iteration before reporting the DIMACS errors for the last two problems.

The above tables lead us to conclude that SDPA 7.3.1 attains the highest performance
among the four representative software packages for most SDPs.
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Table 5: Computational results for large instances from SDPLIB and DIMACS problems.
CPU time in seconds and number of iterations. Time limit of one hour.

problem SDPA 7.3.1 CSDP 6.0.1 SDPT3 4.0β SeDuMi 1.21
SDPLIB

arch8 0.8(25) 0.9(25) 2.6(25) 3.4(28)
control11 35.9(47) 49.4(26) 52.8(26) 86.9(45)
equalG11 6.8(17) 16.6(22) 16.9(17) 150.3(16)
equalG51 16.0(23) 39.0(29) 30.5(18) 676.0(30)
gpp500-1 2.3(19) 8.2(36) 6.6(21) 115.2(40)
gpp500-4 3.0(19) 4.0(21) 5.8(17) 81.5(25)
maxG11 6.6(16) 7.1(16) 7.6(15) 92.9(13)
maxG32 85.7(17) 63.2(17) 62.0(15) 3094.6(14)
maxG51 8.6(16) 12.7(17) 19.0(17) 227.7(16)
maxG55 578.1(17) 643.5(18) 1120.7(17) ≥ 3600
maxG60 1483.8(17) 1445.5(18) 2411.23(16) ≥ 3600
mcp500-1 1.5(16) 1.7(16) 2.6(15) 30.2(16)
mcp500-4 1.8(15) 1.6(15) 3.4(13) 27.9(14)
qpG11 28.5(16) 33.5(17) 8.4(15) 1275.5(14)
qpG51 52.2(19) 75.9(20) 19.6(17) 3894.4(22)
ss30 4.3(22) 3.8(22) 8.8(21) 20.6(23)
theta5 7.3(18) 8.3(17) 10.4(14) 112.3(16)
theta6 14.2(18) 19.4(17) 23.8(14) 326.7(16)
thetaG11 12.3(22) 23.6(23) 26.7(18) 156.9(15)
thetaG51 86.8(28) 256.3(35) 517.5(37) 2579.1(19)
truss8 1.4(20) 1.0(20) 2.1(16) 2.2(23)

DIMACS
torusg3-15 464.3(24) 249.7(18) 325.2(16) ≥ 3600
filter48 socp 29.0(35) 18.6(48) 68.2(40) 77.0(31)
copo23 17.7(24) 48.6(23) 47.9(20) 92.2(16)
hamming 10 2 1105.2(18) 1511.4(18) 1183.2(10) ≥ 3600
hamming 8 3 4 334.7(15) 423.9(14) 387.3(9) ≥ 3600

In the next subsection, we investigate how SDPA 7.3.1 can produce such performance
based on the new features discussed in Section 2.

3.2. The effect of the new features

To assess the effects of the new features, we first remark that the computation of each
iteration of SDPA 7.3.1 can be divided into three major parts (ELEMENTS, CHOLESKY,
and OTHERS) as listed in Table 3.

In Table 9, we compare the computational results for some problems in Tables 5 and 6
using SDPA 6.2.1 and SDPA 7.3.1.

The computation time spent by ELEMENTS in the problem mater-5 is shortened from
838.5s to 13.0s. An important property of mater-5 is that it has many small blocks, 2438
matrices of size 11 × 11. The numbers mi = #{b|F b

i 6= O} of non-zero submatrices in
F 1, . . . , F m are 2438 (full) in only 3 matrices F 1,F 2,F 3 among all m = 10143 matrices,
while at most 6 in other 10140 matrices. In particular, for 8452 matrices, the number is only
4. Therefore, the impact of new data structure introduced at the first half of Section 2.1
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Table 6: Computational results for large instances from Mittelmann’s problems and poly-
nomial optimization problems. CPU time in seconds and number of iterations. Time limit
of one or two hours.

problem SDPA 7.3.1 CSDP 6.0.1 SDPT3 4.0β SeDuMi 1.21
Mittelmann’s Problems

mater-4 6.1(28) 36.9(27) 29.9(28) 32.2(26)
mater-5 14.7(30) 237.9(29) 72.0(29) 84.3(28)
mater-6 34.8(36) 1673.2(33) 160.0(28) 187.9(31)
trto3 1.7(21) 5.0(37) 4.1(25) 44.2(59)
trto4 7.1(23) 29.3(39) 25.1(33) 501.1(73)
trto5 59.8(22) 737.3(57) 188.1(29) ≥ 3600
vibra3 4.7(32) 10.1(42) 10.0(32) 100.8(69)
vibra4 19.5(35) 74.5(50) 68.9(46) 1043.5(95)
vibra5 194.0(40) 1452.2(61) 788.5(63) ≥ 3600
neosfbr20 143.6(25) 239.5(25) 530.2(23) ≥ 3600
cnhil8 4.3(20) 5.6(19) 3.6(24) 28.2(18)
cnhil10 29.6(22) 73.3(21) 26.9(23) 627.2(18)
G59mc 600.7(18) 860.4(20) 1284.5(19) ≥ 3600
neu3 297.9(39) 2357.5(68) 346.3(76) 2567.4(24)
neu3g 341.3(37) 3182.2(65) 358.9(50) 3365.8(25)
rendl1 600 0 5.3(30) 7.5(20) 9.7(25) 105.3(28)
sensor 1000 61.4(33) 236.1(61) 783.8(33) ≥ 3600
taha1b 164.6(33) 589.7(47) 704.5(34) ≥ 3600
yalsdp 103.9(18) 318.3(16) 237.5(13) 678.6(16)
checker 1.5 414.6(23) 773.0(29) 476.9(23) ≥ 3600
foot 169.6(37) 373.2(35) 262.6(24) ≥ 3600
hand 27.2(21) 97.1(20) 53.8(17) 767.9(18)
ice 2.0 4852.7(26) ≥ 3600 3784.8(27) ≥ 3600
p auss2 3.0 6065.1(24) ≥ 3600 5218.7(27) ≥ 3600
rabmo 26.8(21) 121.0(28) 316.3(53) 681.2(21)
reimer5 179.2(20) 4360.7(68) 2382.9(31) 1403.1(16)
chs 500 5.3(28) ≥ 3600 12.1(23) 8.3(22)
nonc 500 3.0(28) 846.6(31) 5.9(27) 2.1(22)
ros 500 2.8(22) 806.3(23) 4.3(17) 1.6(17)

Polynomial Optimization Problems
BroydenTri600 2.5(20) ≥ 3600 12.2(18) 8.7(14)
BroydenTri700 3.1(21) ≥ 3600 14.6(18) 10.8(15)
BroydenTri800 3.4(20) ≥ 3600 16.8(18) 12.7(14)
BroydenTri900 3.8(20) ≥ 3600 19.6(18) 15.3(14)

can be observed prominently for mater-5.
The memory management for dense variable matrices discussed in the latter half of

Section 2.1 can be monitored in maxG60. The size of the variable matrices is 7000× 7000.
Since the memory space of the dense matrices is reduced from 31 to 15, this should save
approximately 5.8 GB of memory space. The result for maxG60 in Table 9 is consistent
with this estimation.
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Table 7: Standardized DIMACS errors for the SDP software outputs [23] .

Error 1

√∑m
k=1(F k • Y − ck)2

1 + max{|ck| : k = 1, 2, . . . , m}
Error 2 max

{
0,

λmin(Y )

1 + max{|ck| : k = 1, 2, . . . , m}
}

Error 3
‖X −∑m

k=1 F kxk + F 0‖f

1 + max{|[F 0]ij| : i, j = 1, 2, . . . , n}
Error 4 max

{
0,

λmin(X)

1 + max{|ck| : k = 1, 2, . . . , m}
}

Error 5
Pm

k=1 ckxk−F 0•Y
1+|Pm

k=1 ckxk|+|F 0•Y |

Error 6
X • Y

1 + |∑m
k=1 ckxk|+ |F 0 • Y |

‖ · ‖f is the norm defined as the sum of Frobenius norms of each block diagonal matrix.
λmin(·) is the smallest eigenvalue of the matrix.

In BroydenTri600, the computation time on CHOLESKY is greatly shortened. This is
brought by the sparse Cholesky factorization of Section 2.2. Figure 3.2 displays the non-
zero patterns of the upper triangular part of the SCM; its density is only 0.40%. From
the figure, it is apparent that we should apply the sparse Cholesky factorization instead
the dense factorization. We note that the reason why CSDP is very slow for polynomial
optimization problems and sensor network problems in Tables 6 and 8 comes from the dense
factorizations. CSDP always applies the dense factorization without regarding the sparsity
of the SCM. SDPT3 first stores the SCM in the fully-dense structure and then apply the
sparse Cholesky factorization. Hence, SDPT3 requires a dreadfully large memory space for
sensor network problems.

Figure 1: Non-zero patterns of the SCM generated from BroydenTri600.

Finally, Table 10 shows the efficiency of the multi-thread computation (Section 2.3). In
particular, in the 3rd line of each instance of the SDP, we generated 8 threads for the compu-
tation of the SCM B, and 8 threads for the optimized BLAS, GotoBLAS. As it is clear from
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Table 8: Comparative results of time, memory usage, and DIMACS errors for the quantum
chemistry and sensor network problems when solving by four SDP packages.

problem SDPA 7.3.1 CSDP 6.0.1 SDPT3 4.0β SeDuMi 1.21
NH3+.2A2”.STO6G time(#iter.) 495.3(31) 5675.6(51) 4882.9(40) 1357.1(30)

.pqgt1t2p memory (bytes) 1004M 568M 3676M 4065M
Error 1 2.87e−10 1.35e−09 9.27e−07 6.98e−10
Error 2 0.00e+00 0.00e+00 0.00e+00 0.00E+00
Error 3 2.90e−08 9.78e−10 1.26e−11 0.00E+00
Error 4 0.00e+00 0.00e+00 0.00e+00 2.43e−13
Error 5 4.39e−09 7.33e−09 6.64e−08 8.45e−09
Error 6 2.60e−08 8.19e−09 9.27e−10 1.16e−08

Be.1S.SV.pqgt1t2p time(#iter.) 2238.3(38) 15592.3(40) 15513.8(37) 5550.4(38)
memory (bytes) 1253M 744M 3723M 4723M

Error 1 1.95e−09 8.41e−11 5.49e−05 9.74e−10
Error 2 0.00e+00 0.00e+00 0.00e+00 0.00E+00
Error 3 6.31e−08 8.44e−10 3.95e−07 0.00E+00
Error 4 0.00e+00 0.00e+00 0.00e+00 3.37e−14
Error 5 7.09e−09 4.60e−09 6.21e−05 2.02e−08
Error 6 2.87e−08 4.84e−09 6.92e−05 2.39e−08

d2s4Kn0r01a4 time(#iter.) 45.7(35) 5162.4(27) 4900.3(53) 92.6(42)
memory (bytes) 1093M 8006M 63181M 3254M

Error 1 5.07e−14 5.64e−37 3.13e−05 9.12e−11
Error 2 0.00e+00 0.00e+00 0.00e+00 0.00E+00
Error 3 5.67e−06 6.13e+03 9.55e−09 0.00E+00
Error 4 0.00e+00 0.00e+00 0.00e+00 1.76e−12
Error 5 1.67e−08 7.42e−54 2.11e−05 4.36e−10
Error 6 1.29e−07 2.17e−36 1.96e−05 1.36e−09

s5000n0r05g2FD R time(#iter.) 284.7(37) 6510.9(31) 4601.6(37) 1005.0(62)
memory (bytes) 2127M 8730M 100762M 4914M

Error 1 1.03e−14 2.23e−37 1.91e−05 1.65e−10
Error 2 0.00e+00 0.00e+00 0.00e+00 0.00E+00
Error 3 3.95e−06 1.14e+04 1.33e−11 0.00E+00
Error 4 0.00e+00 0.00e+00 0.00e+00 1.52e−13
Error 5 2.97e−08 9.30e−37 3.50e−04 7.06e−10
Error 6 1.21e−07 2.82e−36 6.32e−04 2.12e−09

Table 9: Comparison between SDPA 6.2.1 and SDPA 7.3.1. CPU time in seconds and
memory space in bytes.

problem version ELEMENTS CHOLESKY OTHERS Total memory
mater-5 SDPA 6.2.1 838.5 1101.6 6056.9 7997.0 2786M

SDPA 7.3.1 13.0 2.6 6.0 21.6 885M
maxG60 SDPA 6.2.1 27.4 193.4 11607.0 11827.9 12285M

SDPA 7.3.1 46.8 27.5 1358.7 1433.1 6124M
BroydenTri600 SDPA 6.2.1 200.3 31147.8 1208.9 32557.0 1694M

SDPA 7.3.1 3.3 0.8 1.3 5.4 794M

the table, increasing the threads from 1 to 8 for the optimized BLAS, reduces the computa-
tion time of CHOLESKY and OTHERS. The computation of ELEMENTS needs an extra
comment. For example, in control11, we need to employ the F -1 formula for some constraint
matrices F k. Without the thread management discussed in Section 2.3, a conflict of mem-
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ory access between threads would lower the parallel efficiency in ELEMENTS. When the
number of constraints m is large, this multi-threaded parallel computation for ELEMENTS
works well. Since most computation time is devoted to ELEMENTS in most problems of
SDPLIB and Mittelmann’s problems, we can expect that SDPA 7.3.1 with multi-threading
solves them in the shortest time. As pointed in Section 3.1, however, SDPA 7.3.1 with
multi-threading consumes slightly more memory space.

Table 10: Computational time (in seconds) of each major part of SDPA 7.3.1 when changing
the number of threads when computing the SCM (ELEMENTS) and using the GotoBLAS.

threads
problem SCM B GotoBLAS ELEMENTS CHOLESKY OTHERS Total
control11 1 1 77.3 6.8 0.3 86.1

1 8 64.6 1.3 0.3 68.0
8 8 29.6 4.1 0.2 35.9

thetaG51 1 1 134.7 308.6 46.0 494.9
1 8 136.2 43.6 7.7 193.9
8 8 26.2 45.8 7.6 86.8

rabmo 1 1 56.3 88.1 0.4 146.6
1 8 59.9 13.4 0.1 75.2
8 8 11.2 13.5 0.1 26.8

In the SDPs of this subsection, we could describe the effects of new features. For general
SDPs, however, it is difficult to measure the effects separately, since the total computation
time is usually a combination of them. For example, if an SDP has many small blocks and
m̄ (the maximum number of nonzero blocks in each input matrices) is relatively small, then
both the new data structure and the sparse Cholesky factorization will be beneficial. Con-
sequently, the high performance of SDPA 7.3.1 in Section 3.1 is attained by these combined
effects.

4. Ultra high accurate versions of SDPA: SDPA-GMP, SDPA-QD, and SDPA-
DD

One necessity for obtaining high accurate solutions of SDPs arises from quantum physi-
cal/chemical systems [31]. The PDIPM, which is regarded as a high precision method for
solving SDPs, can typically provide only seven to eight significant digits of certainty for the
optimal values. This is only sufficient for very small systems, and not sufficient for highly
correlated, degenerated and/or larger systems in general. For an ill-behaved SDP instance,
the accuracy which an PDIPM can attain is restricted to only three or less digits. [9] lists
some other SDP instances which require accurate calculations.

There are mainly two reasons we face numerical difficulties when solving numerically an
SDP. First, to implement a PDIPM as a computer software, the real number arithmetic is
usually replaced by the IEEE 754 double precision having a limited precision; approximately
16 significant digits. Therefore, errors accumulated over the iterations often generate inac-
curate search directions, producing points which do not satisfy the constraints accurately.
The accumulated errors also cause a premature breakdown of the PDIPM bringing a disas-
ter to the Cholesky factorization, since the SCM becomes ill-conditioned near an optimal
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solution and hence very sensitive to even a subtle numerical error. Second, we may be
solving a problem which is not guaranteed to be theoretically solvable by PDIPM because
it may not converge correctly. That is the case when a problem does not satisfy the Slater
condition or the linear independence of matrix constraints.

To resolve mainly the first difficulty in a practical way, we have developed new multiple-
precision arithmetic versions of SDPA: SDPA-GMP, SDPA-QD and SDPA-DD by imple-
menting a multiple-precision linear algebra library named MPACK [30]. The difference
between these three software packages will be discussed later. The three software packages
carry PDIPM out with higher accuracy provided via MPACK, and can solve some difficult
problems with an amazing accuracy as shown in numerical results of Section 4.3.

4.1. Multi-precision BLAS and LAPACK libraries: MPACK

We have implemented MPACK for a general purpose use on linear algebra. It is composed of
MBLAS and MLAPACK (multiple-precision versions of BLAS and LAPACK, respectively).
Their interface looks similar to BLAS and LAPACK. The naming rule has been changed for
individual routines: prefixes s,d or c,z in BLAS and LAPACK have been replaced with R

and C, e.g, the matrix-matrix multiplication routine dgemm → Rgemm.
The numerical accuracy of MPACK is determined by the base arithmetic library. MPACK

currently supports three arithmetic libraries, the GNU Multi-Precision Arithmetic (GMP)
Library, Double-Double (DD) and Quad-Double (QD) Arithmetic Library [15]. GMP is a
package which can handle numbers with arbitrary significant bits and DD and QD libraries
support approximately 32 and 64 significant digits, respectively.

MPACK is now freely available under LGPL and a subset version of MPACK is included
in SDPA-GMP/-QD/-DD for convenience. Although the first motivation of MPACK was
SDPA-GMP, MPACK has a considerable potential of becoming a powerful tool in scientific
areas which demand high accuracy in basic linear algebras.

4.2. SDPA-GMP/-QD/-DD

As the names indicate, SDPA-GMP/-QD/-DD utilize MPACK with GMP, QD and DD,
respectively, instead of BLAS/LAPACK. Owing to the development of MPACK, we can
keep minimal the difference between the source codes of SDPA and SDPA-GMP/-QD/-DD.

Using different arithmetic libraries affects not only the numerical accuracy but also
their computation time. From our experience, SDPA-GMP is the slowest, and SDPA-
QD is from 1.2 to 2 times faster than SDPA-GMP. Finally SDPA-DD is approximately
10 times faster than SDPA-GMP. Roughly speaking, the SDPA-GMP calculations take
approximately 100 times to 1000 times longer than SDPA’s ones. Exemplifying, the problem
Truss1002 no blocks took the longest time to solve in Section 4.3; about 15.5 days.

Even though SDPA-GMP is very slow (a study for reducing its calculation time is ongo-
ing), its accuracy has resulted in interesting researches. SDPA-GMP was first used in the
quantum physical/chemical systems by Nakata et al. [31]. In Waki et al.’s study [37], they
used approximately 900 significant digits to apply the PDIPM to SDPs which do not satisfy
the Slater condition. SDPA-GMP occasionally can solve such problems, too.

4.3. Numerical Results

There are two sets of problems we solved. Both sets can not be solved by other existing
SDP codes such as SDPA and SeDuMi.

The first set of SDPs is from quantum physics/chemistry: the Hubbard model at
the strong correlation limit [31]. In our example, we calculated the one-dimensional and
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nearest neighbor hopping with periodic boundary condition, half-filled case, S2=0 and
U/t = ∞, 100000, 10000, 1000 by the RDM method. The number of the electrons is varied
from 6 to 10. We used the P , Q, G conditions or P , Q, G, and T2′ conditions as the
N -representability conditions. The inclusion of the G condition produces an exact result
for the infinite U/t, since the G condition includes the electron-electron repulsion part of
the Hubbard Hamiltonian. In this case, the optimal value (the ground state energy) should
be zero. When U/t is large, the corresponding SDP becomes extremely difficult to solve.
Note that these problems are nearly quantum physically degenerated. There are 5, 14 and
42 degeneracies for the 6, 8 and 10 sites/electrons systems, respectively. This degeneracy
is considered to be one reason of numerical difficulties for SDP codes. As a reference, the
exact ground state energy for 6 and 8 electrons for U/t = 10, 000 by solving the Schrödinger
equation are −1.721110× 10−3 and −2.260436× 10−3, respectively.

The second set consists of some numerically difficult instances from [9]. We used several
software packages and computers to solve these problems. Since Mittelmann et al. [24] and
de Klerk et al. [9] had already employed SDPA-GMP to solve 17 problems of [9], we solved
only the larger problems here.

Table 11 shows the sizes of problems solved by SDPA-GMP or SDPA-QD. Table 12 shows
the optimal values and elapsing times. Finally, Table 13 gives the relative duality gaps, and
the primal and dual feasibility errors [10]. The significant digits of SDPA-GMP and for
SDPA-QD are approximately 77 and 63, and their machine epsilons are 8.6e-78 and 1.2e-63,
respectively. As described above, the optimal values of Hubbard models are 0 for the case
U/t = ∞ due to the chemical property of the G condition. Therefore, the optimal values
obtained by SDPA-GMP in Table 12 attain the accuracy of the order 1.0×10−30. In addition,
it is predicted that the optimal values of the Hubbard models would be magnified almost
proportional to U/t. More precisely, if the optimal value is −1.72×10−4 for U/t = 100, 000,
then we should approximately obtain −1.72× 10−3 for U/t = 10, 000, and −1.72× 10−2 for
U/t = 1, 000. The results by SDPA-GMP reproduced this asymptotic behavior very well.

Table 14 shows the comparison between the objective values reported in [9] and SDPA-
GMP/-QD1. For all problems in this table, SDPA-GMP/-QD successfully updated the accu-
racy. Even though the computation time of Truss1002 no blocks was very long as 15 days,
SDPA-GMP with some appropriate parameters could update the significant digits from 3
to 14.

From Table 13, we conclude that the relative duality gaps are very small, and almost
half of them are smaller than 1e-75. Even for the largest ones such as Truss502 no blocks
(7.6e-16) and Truss1002 no blocks (5.0e-16), their feasibility errors are both very small, very
close to the machine epsilon: 1e-78 in this case.

At the end of this section, we should point out that a simple comparison of these results
might be difficult. This is because other software packages (including CSDP, SDPT3 and
SeDuMi) can not solve these problems, and we can not compare directly these values with
them. In addition, the stopping criteria of SDPA-GMP/-QD/-DD are based on the KKT
condition. For example, the dual feasibility is checked by maxk=1,2,...,m{|F k • Y − ck|} < ε
with a given parameter ε. Even if the current point satisfies the dual and primal feasilibility
and duality gap with ε = 10−30, it might not be an optimal solution. This is the case of

1The results shown at the web site http://lyrawww.uvt.nl/˜sotirovr/library/ of [9] have already
been updated according to our results.

19



Table 11: The sizes of SDP instances. “*” should be replaced by Inf, 100000, 10000, or
1000.

problems m nBLOCK bLOCKsTRUCT
hubbard X6N6p.*.pqg 948 13 (72, 36 ×4, 15 ×4, 6 ×4, -94)
hubbard X6N6p.*.pqgt1t2p 948 21 (312 ×2, 90 ×4, 72, 36 ×4, 20 ×2, 15 ×4, 6 ×4, -94)
hubbard X8N8p.*.pqg 2964 13 (128, 64 ×4, 28 ×4, 8 ×4, -154)
hubbard X8N8p.*.pqgt1t2p 2964 21 (744 ×2, 224 ×4, 128, 64 ×4, 56 ×2, 28 ×4, 8 ×4, -154)
hubbard X10N10p.*.pqg 7230 14 (200, 100 ×4, 45 ×4, 10 ×4, -230)
QAP Esc64a red 517 7 (65 ×7, -5128)
Schrijver A(37,15) 468 1327 many small blocks of size 1 to 38
Laurent A(50,15) 2057 6016 many small blocks of size 1 to 52
Laurent A(50,23) 607 1754 many small blocks of size 1 to 52
TSPbays29 6090 14 (29 ×14, -13456)
Truss502 no blocks 3 1 (1509, -3)
Truss1002 no blocks 3 1 (3009, -3)

Table 12: Optimal values and elapsed times of difficult SDPs solved by SDPA-GMP or
SDPA-QD. The computers used were (a) AMD Opteron 250, and (b) Intel Xeon X5365.

problems software optimal value time (s) computer
hubbard X6N6p.Inf.pqg SDPA-GMP -8.4022210139931402e-31 225 a
hubbard X6N6p.100000.pqg SDPA-GMP -2.1353988200647472e-04 2349 a
hubbard X6N6p.10000.pqg SDPA-GMP -2.1353985768649223e-03 2193 a
hubbard X6N6p.1000.pqg SDPA-GMP -2.1353742577700272e-02 2138 a
hubbard X6N6p.Inf.pqgt1t2p SDPA-GMP -2.9537164216756805e-30 23223 a
hubbard X6N6p.100000.pqgt1t2p SDPA-GMP -1.7249397045806836e-04 80211 a
hubbard X6N6p.10000.pqgt1t2p SDPA-GMP -1.7249951195749524e-03 80195 a
hubbard X6N6p.1000.pqgt1t2p SDPA-GMP -1.7255360310431303e-02 81396 a
hubbard X8N8p.Inf.pqgt1t2p SDPA-QD -4.2783999570339451e-30 594446 b
hubbard X8N8p.100000.pqgt1t2p SDPA-QD -2.2675986731298406e-04 754492 b
hubbard X8N8p.10000.pqgt1t2p SDPA-QD -2.2676738944543175e-03 772093 b
hubbard X8N8p.1000.pqgt1t2p SDPA-QD -2.2684122478330654e-02 781767 b
hubbard X10N10p.Inf.pqg SDPA-GMP -5.6274162400011421e-30 18452 a
QAP Esc64a red SDPA-QD 9.7750000000000000e+01 1581 b
Schrijver A(37,15) SDPA-QD -1.4069999999999891e+03 2099 b
Laurent A(50,15) SDPA-QD -1.9712600652510334e-09 63090 b
Laurent A(50,23) SDPA-QD -2.5985639398573229e-13 6729 b
TSPbays29 SDPA-GMP 1.9997655161769048e+03 525689 b
Truss502 no blocks SDPA-GMP 1.61523565346747e+06 155040 b
Truss1002 no blocks SDPA-GMP 9.8233067733903e+06 1339663 b

SDPs which do not satisfy the Slater condition. Although we can conclude the correctness
of SDPA-GMP for the Hubbard model from chemical insights, more investigations on the
numerical correctness for such exceptional SDPs are the subject of our future investigations.

5. Complementary extensions of SDPA

5.1. The SDPA online solver

As shown in the numerical results of Sections 3 and 4, the solvability of SDPA and SDPA-
GMP is outstanding. Upgrading the software packages, however, sometimes may cause
difficulties when users want to install them. For example, the performance of SDPA is
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Table 13: The relative duality gap, primal and dual feasibility errors [10] by SDPA-GMP
or SDPA-QD.

problems software relative gap p.feas error d.feas error
hubbard X6N6p.Inf.pqg SDPA-GMP 4.636e-29 9.060e-31 2.240e-75
hubbard X6N6p.100000.pqg SDPA-GMP 7.232e-77 3.707e-31 5.401e-48
hubbard X6N6p.10000.pqg SDPA-GMP 2.757e-77 1.315e-31 2.509e-49
hubbard X6N6p.1000.pqg SDPA-GMP 1.120e-76 1.893e-31 1.066e-50
hubbard X6N6p.Inf.pqgt1t2p SDPA-GMP 1.979e-32 5.896e-31 5.130e-73
hubbard X6N6p.100000.pqgt1t2p SDPA-GMP 1.834e-76 7.052e-31 9.596e-58
hubbard X6N6p.10000.pqgt1t2p SDPA-GMP 5.644e-78 3.406e-31 3.557e-62
hubbard X6N6p.1000.pqgt1t2p SDPA-GMP 2.866e-76 3.396e-31 1.969e-65
hubbard X8N8p.Inf.pqgt1t2p SDPA-QD 7.241e-66 5.987e-31 6.937e-54
hubbard X8N8p.100000.pqgt1t2p SDPA-QD 1.687e-60 4.633e-31 2.377e-46
hubbard X8N8p.10000.pqgt1t2p SDPA-QD 5.723e-61 2.5277-31 3.232e-48
hubbard X8N8p.1000.pqgt1t2p SDPA-QD 2.707e-62 1.704e-31 1.279e-51
hubbard X10N10p.Inf.pqg SDPA-GMP 1.182e-77 8.862e-31 1.821e-67
QAP Esc64a red SDPA-QD 6.925e-63 3.857e-31 4.143e-42
Schrijver A(37,15) SDPA-QD 1.382e-65 4.826e-31 1.018e-45
Laurent A(50,15) SDPA-QD 1.769e-74 4.552e-31 8.151e-43
Laurent A(50,23) SDPA-QD 1.080e-78 6.284e-31 9.926e-39
TSPbays29 SDPA-GMP 3.455e-80 2.909e-31 4.928e-55
Truss502 no blocks SDPA-GMP 7.597e-16 7.122e-74 2.974e-63
Truss1002 no blocks SDPA-GMP 5.000e-16 2.067e-74 1.202e-60

Table 14: The optimal values reported in [9] and obtained by SDPA-GMP/-QD.

problem optimal values [9] optimal values [SDPA-GMP/-QD]
QAP Esc64a red 9.774e+01 9.7750000000000000e+01
Schrijver A(37,15) -14070e+03 -1.4069999999999891e+03
Laurent A(50,15) -6.4e-09 -1.9712600652510334e-09
Laurent A(50,23) -1e-11 -2.5985639398573229e-13
TSPbays29 1.9997e+03 1.9997655161769048e+03
Truss502 no blocks 1.6152356e+06 1.61523565346747e+06
Truss1002 no blocks 9.82e+06 9.8233067733903e+06

affected by how users compile the optimized BLAS. In addition, solving large-scale opti-
mization problems requires a huge amount of computational power.

For these reasons, we have developed a grid portal system and provide online software
services for some software packages of the SDPA Family. We call this system the SDPA
Online Solver. In short, users first send their own SDP problems to the SDPA Online Solver
from their PC via the Internet. Then the SDPA Online Solver assigns the task of solving
the SDP by SDPA to the computers of the Online Solver system. Finally, the result of the
SDPA execution can be browsed by the users’ PC and/or can be downloaded.

Figure 2 displays the web interface of the SDPA Online Solver. It is very easy to use
the SDPA Online Solver. Users who do not have time to compile SDPA or huge computer
power can also gain the advantage of SDPA. One can access it from the following Web site:
http://sdpa.indsys.chuo-u.ac.jp/portal/.
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Currently, over 70 users are registered, and several thousand SDPs have been solved in
the SDPA Online Solver. Among the SDPA Family, SDPA, SDPA-GMP, SDPARA and
SDPARA-C are available now. SDPARA (SemiDefinite Programming Algorithm paRAllel
version) [39] is a parallel version of SDPA and solves SDPs with the help of the MPI
(Message Passing Interface) and ScaLAPACK (Scalable LAPACK). SDPARA-C [29] is a
parallel version of the SDPA-C [28]; a variant of SDPARA which incorporates the positive
definite matrix completion technique.

These two parallel software packages are designed to solve extremely large-scale SDPs
and usually require huge computer power. Therefore, users who want to use especially these
two software packages but not have a parallel computing environment will find the SDPA
Online Solver very useful.

Figure 2: The SDPA Online Solver

5.2. SDPA second-order cone programs solver

Second-Order Cone Program (SOCP) is the problem of minimizing a linear function over the
intersection of a direct product of several second-order cones and an affine space. Recently,
SOCP is in a focus of attention because many applications can be represented as SOCPs
and it has a nice structure which enables us to design the interior-point algorithm for it [21].

The second-order cones can be embedded in the cones of positive semidefinite matrices.
Thus, an SOCP can be expressed as an SDP. However, it is better to use the algorithm that
solves the SOCP directly because it has a better worst-case complexity than the algorithm
to solve the SDP [35].

Let Kb (b = 1, 2, . . . , `) be the second-order cones defined as follows:

Kb =
{

xb =
(
xb

0, x
b
1

) ∈ R× Rkb−1 | (
xb

0

)2 − xb
1 · xb

1 ≥ 0, xb
0 ≥ 0

}
.
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Let x ºKb
0 denote that x ∈ Kb. The standard form second-order cone program and its

dual are given as follows:

SOCP





P : minimize
m∑

k=1

ckzk

subject to xb =
m∑

k=1

f b
kzk − f b

0,

xb ºKb
0, xb ∈ Rkb (b = 1, 2, . . . , `),

D : maximize
∑̀

b=1

f b
0 · yb

subject to
∑̀

b=1

f b
k · yb = ck,

yb ºKb
0, yb ∈ Rkb (k = 1, 2, . . . , m; b = 1, 2, . . . , `).

Here, the inner product u·v for u and v in Rn is defined as u·v =
∑n

i=1 uivi. The constraint
subvectors f b

k (b = 1, 2, . . . , `) are specified as the diagonal submatrices F b
k (b = 1, 2, . . . , `)

in the SDPA format. More specifically, the ith component of f b
k is specified by the (i, i)th

component of F b
k: [f b

k]i = [F b
k]ii.

To solve SOCPs, we are developing another version of SDPA: SDPA-SOCP. SDPA-
SOCP solves the P-D pair of SOCP by the Mehrotra type predictor-corrector primal-dual
interior-point method using the HKM search direction [35]. SDPA-SOCP will be embedded
in SDPA and SDPA will be able to solve the linear optimization problem over a mixture of
semidefinite cones, second-order cones and nonnegative orthant.

SDPA-SOCP is expected to be distributed in a near future at the SDPA project web
site.

6. Concluding remarks

We described the new features implemented in SDPA 7.3.1 in detail with extensive numer-
ical experiments. The new data structure for sparse block diagonal matrices is introduced,
which leads to a significant reduction of the computation cost, and memory usage. Another
important feature is the implementation of the sparse Cholesky factorization for SDPs with
sparse SCM. The acceleration using multi-thread computation is employed in the compu-
tation of each row of the SCM and the matrix-matrix and matrix-vector multiplications.
From the computational results, we conclude that SDPA 7.3.1 is the fastest general-purpose
software for SDPs.

Ultra high accurate versions of SDPA: SDPA-GMP, SDPA-QD and SDPA-DD have been
developed employing multiple-precision arithmetics. They provide highly accurate solutions
for SDPs arising from quantum chemistry which require accurate solutions.

We are going to implement the next version of SDPA-C and SDPARA based on these
improvements. In particular, since MUMPS can work with MPI on multiple processors, we
expect SDPARA will be an extremely fast software package for SDPs with sparse SCM. Its
performance can be further improved by multi-threading.

SDPA and the other codes to solve general SDPs have been refined through many years.
However, we recognize that there is still ample room for future improvements. For example,
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they do not have a proper preprocessing for sparse problems to accelerate the computation
such as its is common for LPs. However, there exist many successful results which can
be combined with these codes. More specifically, the sparsity of an SDP problem can
be explored in diverse ways: matrix completion using chordal structures [17, 28], matrix
representation in different spaces [16, 22], or reduction by group symmetry [8, 27]. An
existing difficult is, of course, to elaborate a procedure to choose the best preprocessing for
each incoming sparse problem. These studies are stimulating our motivation for the next
version of SDPA, SDPA 8.
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[22] Löfberg, J.: Dualize it: Software for automatic primal and dual conversions of conic
programs. Optim. Methods Softw. 24, 313–325 (2009)

[23] Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math.
Program. 95, 407–430 (2003)

[24] Mittelmann, H.D., Vallentin, F.: High accuracy semidefinite programming bounds for
kissing numbers. arXiv:0902.1105v2 (2009)

[25] Mittelmann, H.D.: Sparse SDP Problems,
http://plato.asu.edu/ftp/sparse sdp.html

[26] Monteiro, R.D.C.: Primal-dual path following algorithms for semidefinite program-
ming. SIAM J. Optim. 7, 663–678 (1997)

[27] Murota, K., Kanno, Y., Kojima, M., Kojima, S.: A numerical algorithm for block-
diagonal decomposition of matrix ∗-algebras, part I: Proposed approach and application
to semidefinite programming. Japan J. Industrial Appl. Math., to appear

[28] Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity
in semidefinite programming via matrix completion II: Implementation and numerical

25



results. Math. Program. 95, 303–327 (2003)

[29] Nakata, K., Yamashita, M., Fujisawa, F., Kojima, M.: A parallel primal-dual interior-
point method for semidefinite programs using positive definite matrix completion. Par-
allel Comput. 32, 24–43 (2006)

[30] Nakata, M.: The MPACK: Multiple precision arithmetic BLAS (MBLAS) and LA-
PACK (MLAPACK). http://mplapack.sourceforge.net/

[31] Nakata, M., Braams, B.J., Fujisawa, K., Fukuda, M., Percus, J.K., Yamashita, M.,
Zhao, Z.: Variational calculation of second-order reduced density matrices by strong N -
representability conditions and an accurate semidefinite programming solver. J. Chem.
Phys. 128, 164113 (2008)

[32] Strum, J.F.: SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optim. Methods Softw. 11/12, 625–653 (1999)

[33] Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)
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