
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

Odds theorem with multiple selection chances

Katsunori Ano, Hideo Kakinuma and Naoto Miyoshi

March 2010, B–461



Odds theorem with multiple selection chances

Katsunori Ano1, Hideo Kakinuma2 and Naoto Miyoshi2

1Department of Applied Probability

Institute of Applied Mathematics

Taito-ku, Asakusabashi, Tokyo 111-0053, Japan

E-mail: kano@iapm.jp

2Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

2-12-1-W8-52 Ookayama, Tokyo 152-8552, Japan
E-mail: miyoshi@is.titech.ac.jp

Abstract

We study the multi-selection version of so-called odds theorem by Bruss (2000). We observe a

finite number of independent 0/1 (failure/success) random variables sequentially and want to select

the last success. We derive the optimal selection rule when we are given m (≥ 1) selection chances

and find that the optimal rule has the form of combination of multiple odds-sums. We provide

a formula for computing the maximum probability of selecting the last success when we have m

selection chances and also give closed-form formulas for m = 2 and 3. For m = 2, we further give

the bounds for the maximum probability of selecting the last success and derive its limit as the

number of observations goes to infinity. An interesting implication of our result is that the limit of

the maximum probability of selecting the last success for m = 2 is consistent to the corresponding

limit for the classical secretary problem with two selection chances.
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1 Introduction

For a positive integer N , let X1, X2, . . . , XN denote independent 0/1 random variables defined on a
probability space (Ω,F , P). We observe these Xi’s sequentially and say that the ith trial is a success if
Xi = 1. The problem is to find a rule τ ∈ T to maximize the probability of selecting the last success,
where T is the class of all selection rules such that {τ = j} ∈ σ(X1, X2, · · · , Xj); that is, the decision
to select the jth success or not depends on the information up to j. Let N = {1, 2, . . . , N} and let
pi = P(Xi = 1) and qi = 1 − pi = P(Xi = 0) for i ∈ N . In addition, let ri, i ∈ N , denote the odds of
the ith trial; that is, ri = pi/qi, where we set ri = +∞ if pi = 1. When exactly one selection chance is
allowed, Bruss (2000) solved the problem with elegant simpleness as follows.

Proposition 1.1 (Theorem 1 in Bruss (2000)) Suppose that exactly one selection chance is given
in the problem above. Then, the optimal selection rule τ

(1)
∗ selects the first success after the sum of the

future odds becomes less than one; that is,

τ
(1)
∗ = min

{
i ≥ i

(1)
∗ : Xi = 1

}
, (1.1)

i
(1)
∗ = min

{
i ∈ N :

N∑
j=i+1

rj < 1
}

, (1.2)

where min(∅) = +∞ and
∑b

j=a · = 0 when b < a conventionally. Furthermore, the maximum probability
of “win” (selecting the last success) is given by

P (1)(win) = P
(1)
N (p1, . . . , pN ) =

N∏
k=i

(1)
∗

qk

N∑
k=i

(1)
∗

rk. (1.3)

This result, referred to as the sum-the-odds theorem or shortly odds theorem, is attractive since it can be
applied to many basic optimal stopping problems such as betting, the classical secretary problem (CSP)
and the group-interview secretary problem proposed by Hsiau and Yang (2000). Bruss (2000) also showed
that P (1)(win) in (1.3) is bounded below by R(1) e−R(1)

with R(1) =
∑N

j=i
(1)
∗

rj , and remarkably, he found

in (2003) that it is bounded below by e−1 when
∑N

j=1 rj ≥ 1. These results generalize the known lower
bounds for the CSP, where each pi has the specific value of pi = 1/i for i ∈ N (see, e.g., Hill and Krengel
(1992)).

After Bruss (2000), where the case with the random number of observations was also considered,
the odds theorem has been extended in several directions. Bruss and Paindaveine (2000) extended it to
the problem of selecting the last ` (> 1) successes. Hsiau and Yang (2002) considered the problem with
Markov-dependent trials. Recently, Ferguson (2008) extended the odds theorem in some ways, where the
infinite number of trials is allowed, the payoff for not selecting to the end is different from the payoff for
selecting a success that is not the last, and the trials are generally dependent. Furthermore, he applied
his extension to the stopping game of Sakaguchi (1984).

In this paper, we consider yet another extension of the result by Bruss (2000); that is, we are interested
in the problem with multiple selection chances. In our first main result, we derive the optimal rule for
the problem of selecting the last success with m (∈ N ) selection chances and find that the optimal rule
is expressed as a combination of multiple odds-sums. Our extension is, of course, applied to the multi-
selection versions of the problems to which the odds theorem can be applied (e.g., the CSP with multiple
selection chances in Gilbert and Mosteller (1966) and Sakaguchi (1978)). In our second main result, we
provide a formula that can be used for computing the probability of win for the problem with m (∈ N )
selection chances and give the closed-form formulas for m = 2 and 3. Furthermore, we show the lower
and upper bounds for the maximum probability of win for m = 2 and derive its limit as N → ∞ under
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some condition of pi, i ∈ N . This limit of the maximum probability of win is consistent to the known
limit e−1 + e−3/2 for the CSP with two selection chances (see, e.g., Gilbert and Mosteller (1966), Ano
and Ando (2000) or Bruss (1988)).

The paper is organized as follows. In Section 2, we consider the optimal rule for the problem of
selecting the last success with m (∈ N ) selection chances. Our approach is essentially based on the
technique of Ano and Ando (2000), in which they studied the condition for the monotone (equivalently,
one-step look-ahead) selection rule to be optimal in multiple selection problems. For greater details of
the monotone selection problem, see Chow et al. (1971) or Ferguson (2006). In Section 3, we derive some
formulas for the maximum probability of win. We give the bounds for the maximum probability of win
for m = 2 and derive its limit as N → ∞ under some condition of pi, i ∈ N . At the last, we conclude
the paper making conjectures on the limits of the maximum probability of win for m ≥ 3 and on the
lower bound for m ≥ 2.

2 Multiple sums-the-odds theorem

Suppose that we are given m (∈ N ) selection chances in the problem described in the preceding section.
Let V

(m)
i , i ∈ N , denote the conditional maximum probability of win provided that we observe Xi = 1

and select this success when we have at most m selection chances left. Let W
(m)
i , i ∈ N , denote the

conditional maximum probability of win provided that we observe Xi = 1 and ignore this success when we
have at most m selection chances left. Let, furthermore, M

(m)
i , i ∈ N , denote the conditional maximum

probability of win provided that we observe Xi = 1 and are faced with a decision to select or not when
we have at most m selection chances left. The optimality equation is then given by

M
(m)
i = max{V (m)

i ,W
(m)
i }, i ∈ N . (2.1)

Clearly, if m > N − i (the remaining selection chances are more than the remaining observations) and we
observe Xi = 1, then the decision to select brings us win with probability 1, so that M

(m)
i = V

(m)
i = 1

for i > N − m. In particular, we have M
(m)
N = V

(m)
N = 1 and W

(m)
N = 0 for any m ∈ N .

We can see that V
(m)
i is represented as the sum of two conditional probabilities; one is that no success

appears in i + 1, . . . , N provided that Xi = 1 and the other is that we win finally in starting at i + 1
with m− 1 selection chances provided that Xi = 1. Since the latter conditional probability is just equal
to W

(m−1)
i , we have

V
(m)
i = P(Xi+1 = Xi+2 = · · · = XN = 0 | Xi = 1) + W

(m−1)
i (2.2)

=
N∏

j=i+1

qj + W
(m−1)
i , i ∈ N ,

where we set W
(0)
i := 0 for i ∈ N and

∏b
j=a · = 1 when b < a conventionally. The second equality above

follows from the independence of Xi’s. On the other hand, W
(m)
i is given as the conditional probability

that we make the optimal decision at the first success after i and win finally provided that Xi = 1, so
that,

W
(m)
i =

N∑
j=i+1

P(Xi+1 = · · · = Xj−1 = 0, Xj = 1 | Xi = 1) M
(m)
j

=
N∑

j=i+1

( j−1∏
k=i+1

qk

)
pj M

(m)
j , i ∈ N . (2.3)
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As a preparation to studying the problem with multiple selection chances, we here give another proof
of the odds theorem (Proposition 1.1) by using the notion of monotone stopping rule in Chow et al.
(1971).

Another Proof of Proposition 1.1: We prove the first part of Proposition 1.1 only. The monotone selec-
tion region for the single selection problem is given by B(1) := {i ∈ N : G

(1)
i > 0}, where

G
(1)
i := V

(1)
i −

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj V

(1)
j , i ∈ N . (2.4)

Note that B(1) is the region of i ∈ N such that the probability of win by selecting Xi = 1 is greater
than that by ignoring Xi = 1 and then selecting the first success after Xi. From (2.2), we have V

(1)
i =∏N

j=i+1 qj and, if there exists a j ∈ {i + 1, . . . , N} such that qj = 0, then (2.4) leads to G
(1)
i ≤ 0. If

qj > 0 for all j = i + 1, . . . , N , on the other hand, (2.4) is written as

G
(1)
i =

N∏
j=i+1

qj −
N∑

j=i+1

( j−1∏
k=i+1

qk

)
pj

( N∏
k=j+1

qk

)

=
N∏

j=i+1

qj

(
1 −

N∑
j=i+1

rj

)
. (2.5)

Therefore, if G
(1)
i > 0 for some i ∈ N , then qj > 0 for all j = i+1, . . . , N and (2.5) gives

∑N
j=i+1 rj < 1.

Conversely, if
∑N

j=i+1 rj < 1 for some i ∈ N , then qj > 0 for all j = i+1, . . . , N and (2.5) gives G
(1)
i > 0.

Namely, G
(1)
i > 0 is equivalent to

∑N
j=i+1 rj < 1 and B(1) is given by

B(1) =
{

i ∈ N :
N∑

j=i+1

rj < 1
}

.

Since
∑N

j=i+1 rj is clearly nonincreasing in i, B(1) is “closed” in the sense of the monotone problem in
Chow et al (1971); that is, i ∈ B(1) implies that j ∈ B(1) for all j = i, i + 1, . . . , N . Hence, the optimal
rule for the single selection problem is given by (1.1) and (1.2).

We are now at the position to give the optimal rules for the multiple selection problem. For each
i ∈ N , we define H

(m)
i , m ∈ N , recursively by

H
(1)
i := 1 −

N∑
j=i+1

rj , (2.6)

H
(m)
i := H

(1)
i +

N∑
j=(i+1)∨i

(m−1)
∗

rj H
(m−1)
j , (2.7)

where a∨ b = max{a, b} for a, b ∈ R. In (2.7), if there exists a j ∈ {i + 1, . . . , N} such that pj = 1 (that
is, rj = +∞), then we set H

(m)
i := −∞.

Theorem 2.1 Suppose that we have at most m (∈ N ) selection chances. Then, the optimal selection
rule τ

(m)
∗ is given by

τ
(m)
∗ = min{i ≥ i

(m)
∗ : Xi = 1}, (2.8)

i
(m)
∗ = min{i ∈ N : H

(m)
i > 0}, (2.9)

where min(∅) = +∞. Furthermore, we have

1 ≤ i
(m)
∗ ≤ i

(m−1)
∗ ≤ · · · ≤ i

(1)
∗ ≤ N. (2.10)
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Proof: The monotone selection region for the problem with m (∈ N ) selection chances is defined by
B(m) := {i ∈ N : G

(m)
i > 0}, where

G
(m)
i := V

(m)
i −

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj V

(m)
j , i ∈ N . (2.11)

To derive (2.8) and (2.9), it suffices to show that B(m) is closed and satisfies B(m) = {i ∈ N : H
(m)
i > 0},

which is also deduced by checking that G
(m)
i > 0 is equivalent to H

(m)
i > 0 for each i ∈ N and that

i 7→ H
(m)
i changes the sign at most once from nonpositive to positive. To have (2.10), on the other hand,

it suffices to show that H
(m)
i ≥ H

(m−1)
i for i ∈ N such that H

(m−1)
i > −∞. We verify them by the

induction on m.
We have already seen in the proof of Proposition 1.1 that G

(1)
i > 0 is equivalent to H

(1)
i > 0 for

i ∈ N . In particular, if qj = 0 for some j ∈ {i + 1, . . . , N}, then G
(1)
i ≤ 0, while if qj > 0 for all

j = i + 1, . . . , N , then it holds that G
(1)
i = (

∏N
j=i+1 qj)H

(1)
i (see (2.5) and (2.6)). We have also seen

that i 7→ H
(1)
i changes the sign at most once from nonpositive to positive. The inequality H

(2)
i ≥ H

(1)
i

for i ∈ N such that H
(1)
i > −∞ is immediate from (2.7); that is,

H
(2)
i − H

(1)
i =

N∑
j=(i+1)∨i

(1)
∗

rj H
(1)
j ≥ 0,

where the last inequality follows from H
(1)
j > 0 for j ≥ i

(1)
∗ .

As the induction hypotheses, we now assume the following for m′ = 1, 2, . . . ,m with some fixed
m ∈ {1, 2, . . . , N − 1}.

(i) G
(m′)
i > 0 is equivalent to H

(m′)
i > 0 for each i ∈ N . In particular, if qj = 0 for some j ∈

{i + 1, . . . , N}, then G
(m′)
i ≤ 0, and if qj > 0 for all j = i + 1, . . . , N , then it holds that G

(m′)
i =

(
∏N

j=i+1 qj) H
(m′)
i .

(ii) i 7→ H
(m′)
i changes the sign at most once from nonpositive to positive.

(iii) H
(m′+1)
i − H

(m′)
i ≥ 0 for i ∈ N such that H

(m′)
i > −∞.

Note that H
(m)
i > 0 and equivalently G

(m)
i > 0 for i ≥ i

(m)
∗ by the induction hypothesis. Thus, by (i)

above, qj > 0 for all j = i
(m)
∗ + 1, . . . , N . Let us show (i)–(iii) above for m′ = m + 1. We first examine

(i). From (2.11), the monotone selection region in the case with m + 1 selection chances is given by
B(m+1) = {i ∈ N : G

(m+1)
i > 0}, where

G
(m+1)
i = V

(m+1)
i −

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj V

(m+1)
j , i ∈ N . (2.12)

Since V
(m+1)
j = V

(1)
j + W

(m)
j from (2.2), substituting this into (2.12), we have

G
(m+1)
i = V

(1)
i + W

(m)
i −

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj (V (1)

j + W
(m)
j )

= G
(1)
i +

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj (M (m)

j − W
(m)
j ), (2.13)

where the first term on the right-hand side comes from (2.4) and the second term does from (2.3). By
the induction hypothesis, we have M

(m)
j = V

(m)
j for j ≥ i

(m)
∗ and M

(m)
j = W

(m)
j for j < i

(m)
∗ in (2.1);
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that is,

M
(m)
j − W

(m)
j =

V
(m)
j − W

(m)
j for j ≥ i

(m)
∗ ,

0 for j < i
(m)
∗ .

Furthermore, the induction hypothesis reads (2.3) as

W
(m)
j =

N∑
`=j+1

( `−1∏
k=j+1

qk

)
p` V

(m)
` for j ≥ i

(m)
∗ .

Therefore, we have from (2.11) that

M
(m)
j − W

(m)
j = G

(m)
j for j ≥ i

(m)
∗ ,

and substituting this into (2.13), we obtain

G
(m+1)
i = G

(1)
i +

N∑
j=(i+1)∨i

(m)
∗

( j−1∏
k=i+1

qk

)
pj G

(m)
j , i ∈ N . (2.14)

Here, if there exists a j ∈ {i + 1, . . . , N} such that qj = 0, this j is less than or equal to i
(m)
∗ since qj > 0

for all j = i
(m)
∗ + 1, . . . , N . Namely, this occurs only in the case of i < i

(m)
∗ . In this case, the first term

on the right-hand side of (2.14) is not greater than zero and the second term is equal to zero; that is,
G

(m+1)
i ≤ 0. Conversely, suppose that qj > 0 for all j = i + 1, . . . , N with some i ∈ N . Then, by the

induction hypothesis, applying G
(m′)
i = (

∏N
j=i+1 qj)H

(m′)
i for m′ = 1 and m′ = m into (2.14), we have

G
(m+1)
i =

( N∏
j=i+1

qj

)
H

(1)
i +

N∑
j=(i+1)∨i

(m)
∗

( j−1∏
k=i+1

qk

)
pj

( N∏
`=j+1

q`

)
H

(m)
j

=
N∏

j=i+1

qj

(
H

(1)
i +

N∑
j=(i+1)∨i

(m)
∗

rj H
(m)
j

)
,

so that (2.7) leads to

G
(m+1)
i =

( N∏
j=i+1

qj

)
H

(m+1)
i . (2.15)

From the observation above, if G
(m+1)
i > 0, then qj > 0 for all j = i + 1, . . . , N and (2.15) leads to

H
(m+1)
i > 0. Conversely, if H

(m+1)
i > 0, then (2.7) states that H

(1)
i > −∞; that is, qj > 0 for all

j = i + 1, . . . , N . Thus, (2.15) also leads to G
(m+1)
i > 0. Hence, we have (i) for m′ = m + 1.

We next show (ii). By the induction hypothesis, H
(m+1)
i ≥ H

(m)
i for i ∈ N such that H

(m)
i > −∞ and

H
(m)
i > 0 for i ≥ i

(m)
∗ ; that is, H

(m+1)
i > 0 for i ≥ i

(m)
∗ . For i < i

(m)
∗ , we have

∑N

j=(i+1)∨i
(m)
∗

rj H
(m)
j =∑N

j=i
(m)
∗

rj H
(m)
j , which is invariant to i. Thus, (2.7) states that H

(m+1)
i (= H

(1)
i + Constant) is nonde-

creasing in i (< i
(m)
∗ ). Hence, i 7→ H

(m+1)
i changes the sign at most once from nonpositive to positive

and (ii) holds for m′ = m + 1.
Finally, to show (iii) for m′ = m + 1, we use (2.7) and take the difference between H

(m+2)
i and

H
(m+1)
i ; that is,

H
(m+2)
i − H

(m+1)
i =

N∑
j=(i+1)∨i

(m+1)
∗

rj H
(m+1)
j −

N∑
j=(i+1)∨i

(m)
∗

rj H
(m)
j

≥
N∑

j=(i+1)∨i
(m)
∗

rj (H(m+1)
j − H

(m)
j ) ≥ 0,
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where the first inequality follows from H
(m+1)
j > 0 for j ≥ i

(m+1)
∗ and i

(m+1)
∗ ≤ i

(m)
∗ by the induction

hypothesis. The second inequality also follows from the induction hypothesis. Hence, the induction is
completed and so is the proof.

Let h
(m)
i := 1 − H

(m)
i for i and m ∈ N . From (2.7), h

(m)
i for m ∈ N are then given by

h
(1)
i =

N∑
j=i+1

rj ,

h
(m)
i =

i(m−1)
∗ −1∑
j=i+1

rj +
N∑

j=(i+1)∨i
(m−1)
∗

rj h
(m−1)
j , m = 2, 3, . . . .

We can see from the above that each h
(m)
i is expressed as a combination of multiple odds-sums. For

instance, h
(2)
i and h

(3)
i are calculated as

h
(2)
i =

i(1)∗ −1∑
j=i+1

rj +
N∑

j=(i+1)∨i
(1)
∗

rj

N∑
k=j+1

rk, (2.16)

h
(3)
i =

i(2)∗ −1∑
j=i+1

rj +
N∑

j=(i+1)∨i
(2)
∗

rj

{ i(1)∗ −1∑
k=j+1

rk +
N∑

k=(j+1)∨i
(1)
∗

rk

N∑
`=k+1

r`

}
.

The optimal rule for the problem with m (∈ N ) selection chances then reduces to τ
(m)
∗ = min{i ∈

N : hi < 1 & Xi = 1}. That is why we call Theorem 2.1 “multiple sums-the-odds theorem” or shortly
“multiple odds theorem.”

3 Maximum probability of win

In this section, we first derive a formula for computing the maximum probability of win under the optimal
rule with m (∈ N ) selection chances and then provide closed-form formulas for m = 2 and 3. Second,
we give its lower and upper bounds and the limit as N → ∞ for m = 2.

Theorem 3.1 For the problem with at most m (∈ N ) selection chances, the maximum probability of
win under the optimal rule, P (m)(win) = P

(m)
N (p1, . . . , pN ), is given by

P (m)(win) =
N∏

j=i
(m)
∗

qj

N∑
j=i

(m)
∗

rj +
N∑

j=i
(m)
∗

( j∏
k=i

(m)
∗

qk

)
rj W

(m−1)
j , (3.1)

where if p
i
(m)
∗

= 1, then P (m)(win) =
∏N

k=i
(m)
∗ +1

qk+W
(m−1)

i
(m)
∗

(note that pj < 1 for all j = i
(m)
∗ +1, . . . , N).

Especially, for m = 2 and 3,

P (2)(win) =
N∏

j=i
(2)
∗

qj

N∑
j=i

(2)
∗

rj

(
1 +

i(1)∗ −1∏
k=j+1

(1 + rk)
N∑

k=(j+1)∨i
(1)
∗

rk

)
, (3.2)

P (3)(win) =
N∏

j=i
(3)
∗

qj

N∑
j=i

(3)
∗

rj

[
1 +

i(2)∗ −1∏
k=j+1

(1 + rk)

×
N∑

k=(j+1)∨i
(2)
∗

rk

(
1 +

i(1)∗ −1∏
`=k+1

(1 + r`)
N∑

`=(k+1)∨i
(1)
∗

r`

)]
. (3.3)
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Proof: Note that the independence of Xi’s leads to P (m)(win) = W
(m)

i
(m)
∗ −1

under the optimal selection
rule. Thus, we have from (2.2) and (2.3) that

P (m)(win) =
N∑

j=i
(m)
∗

( j−1∏
k=i

(m)
∗

qk

)
pj M

(m)
j

=
N∑

j=i
(m)
∗

( j−1∏
k=i

(m)
∗

qk

)
pj

( N∏
`=j+1

q` + W
(m−1)
j

)
,

where the second equality follows from M
(m)
j = V

(m)
j for j ≥ i

(m)
∗ . Hence, (3.1) is readily obtained.

P (2)(win) and P (3)(win) are derived from straightforward calculation. Since the optimal rule requires
to select the first success after i

(1)
∗ , we have M

(1)
k = V

(1)
k =

∏N
`=k+1 qk for k ≥ i

(1)
∗ . It then follows from

(2.3) that

W
(1)
j =

N∑
k=j+1

( k−1∏
`=j+1

q`

)
pk M

(1)
k =

N∏
`=j+1

q`

N∑
k=j+1

rk for j ≥ i
(1)
∗ − 1.

For j < i
(1)
∗ − 1, on the other hand, we have W

(1)
j = W

(1)

i
(1)
∗ −1

=
∏N

`=i
(1)
∗

q`

∑N

j=i
(1)
∗

rj . Therefore, for each
j ∈ N ,

W
(1)
j =

N∏
`=(j+1)∨i

(1)
∗

q`

N∑
k=(j+1)∨i

(1)
∗

rk.

Substituting this into (3.1) with m = 2 and using 1/qk = 1 + rk, we obtain (3.2).
By the similar approach to the above, we have

W
(2)
j =

N∏
`=(j+1)∨i

(2)
∗

q`

N∑
k=(j+1)∨i

(2)
∗

rk

(
1 +

i(1)∗ −1∏
`=k+1

(1 + r`)
N∑

`=(k+1)∨i
(1)
∗

r`

)
.

Substituting this into (3.1) with m = 3, we obtain (3.3).

Next, we consider the lower and upper bounds for the maximum probability of win for m = 2 and its
limit as N → ∞. In the following, we put subscript “N” and write P

(m)
N (win) and i

(m)
∗,N , on occasions, to

emphasize the dependence on N . Let R
(m)
N =

∑N

j=i
(m)
∗,N

rj and R
(m,2)
N =

∑N

j=i
(m)
∗,N

r2
j for m ∈ N . For the

single selection problem, Bruss (2000) finds that

R
(1)
N e−R

(1)
N < P

(1)
N (win) ≤ R

(1)
N e−R

(1)
N +R

(1,2)
N ,

and further shows that, if R
(1)
N → 1 and R

(1,2)
N → 0 as N → ∞, then

P
(1)
N (win) → 1/e as N → ∞.

For the double selection problem, we give below the bounds and the limit as N → ∞ for the maximum
probability of win. We find that the same limit e−1 + e−3/2 as that for the CSP with two selection
chances is obtained under a reasonable condition for R

(m)
N and R

(m,2)
N as N → ∞ (see, e.g., Gilbert and

Mosteller (1966), Ano and Ando (2000) or Bruss (1988)).

Theorem 3.2 For the maximum probability of win with m = 2, we have

P
(2)
N (win) > R

(1)
N e−R

(1)
N + e−R

(2)
N , (3.4)

P (2)(win) < R(1) e−R(1)+R(1,2)
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+ (1 + r
i
(1)
∗

R(1) + r
i
(2)
∗

) e−R(2)+R(2,2)
. (3.5)

Furthermore, if R
(1)
N → 1, R

(2)
N → 3/2, R

(1,2)
N → 0 and R

(2,2)
N → 0 as N → ∞, then

P
(2)
N (win) → e−1 + e−3/2 as N → ∞. (3.6)

Proof: We first derive the lower bound (3.4). A simple expansion of (3.2) in Theorem 3.1 yields

P (2)(win) = R(2)
N∏

j=i
(2)
∗

qj + R(1)

i(1)∗ −1∑
j=i

(2)
∗

( j−1∏
k=i

(2)
∗

qk

)
pj

( N∏
k=i

(1)
∗

qk

)

+
N∏

j=i
(2)
∗

qj

N∑
j=i

(1)
∗

rj

N∑
k=j+1

rk, (3.7)

where the subscript “N” is omitted for simplicity of the notation. In the second term on the right-hand
side above, we note that

∑i(1)∗ −1

j=i
(2)
∗

(∏j−1

k=i
(2)
∗

qk

)
pj = 1 −

∏i(1)∗ −1

j=i
(2)
∗

qj since it represents the probability that

at least one success appears from i
(2)
∗ to i

(1)
∗ − 1. Thus, we have

(2nd term on RHS of (3.7)) = R(1)

(
1 −

i(1)∗ −1∏
j=i

(2)
∗

qj

) N∏
k=i

(1)
∗

qk

= R(1)

( N∏
j=i

(1)
∗

qj −
N∏

j=i
(2)
∗

qj

)
. (3.8)

Consider the third term on the right-hand side in (3.7). Since h
(2)
i = 1 − H

(2)
i ≥ 1 for i < i

(2)
∗ , putting

i = i
(2)
∗ − 1 in (2.16), we have

∑i(1)∗ −1

j=i
(2)
∗

rj +
∑N

j=i
(1)
∗

rj

∑N
k=j+1 rk ≥ 1, which is equivalent to

N∑
j=i

(1)
∗

rj

N∑
k=j+1

rk ≥ 1 + R(1) − R(2).

Therefore, we have

(3rd term on RHS of (3.7)) ≥ (1 + R(1) − R(2))
N∏

j=i
(2)
∗

qj . (3.9)

Substituting (3.8) and (3.9) into (3.7) yields

P (2)(win) ≥ R(1)
N∏

j=i
(1)
∗

qj +
N∏

j=i
(2)
∗

qj . (3.10)

Here, noting 1/qj = 1 + rj and taking logarithm, we have for any s ∈ N ,

log
N∏

j=s

qj = −
N∑

j=s

log(1 + rj) > −
N∑

j=s

rj ,

where the inequality follows since log(1+x) ≤ x for x ∈ R with the equality only when x = 0. Hence, we
have

∏N
j=s qj > e−R with R =

∑N
j=s rj . Applying this into (3.10) with s = i

(1)
∗ and s = i

(2)
∗ , we obtain

(3.4).
We next derive the upper bound (3.5). To this end, we examine the third term on the right-

hand side in (3.7). Since h
(2)
i < 1 for i ≥ i

(2)
∗ , putting i = i

(2)
∗ in (2.16), we have

∑i(1)∗ −1

j=i
(2)
∗ +1

rj +
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∑N

j=(i
(2)
∗ +1)∨i

(1)
∗

rj

∑N
k=j+1 rk < 1, so that,

N∑
j=i

(1)
∗

rj

N∑
k=j+1

rk < 1 + (1 + r
i
(1)
∗

) R(1) − (R(2) − r
i
(2)
∗

).

Therefore, we have

(3rd term on RHS of (3.7)) <
(
1 + (1 + r

i
(1)
∗

)R(1) − R(2) + r
i
(2)
∗

) N∏
j=i

(2)
∗

qj . (3.11)

Applying (3.8) and (3.11) into (3.7), we have

P (2)(win) < R(1)
N∏

j=i
(1)
∗

qj + (1 + r
i
(1)
∗

R(1) + r
i
(2)
∗

)
N∏

j=i
(1)
∗

qj . (3.12)

Here, since 1/qj = 1 + rj , using log(1 + x) ≥ x − x2 for x ∈ R, we obtain for any s ∈ N ,

log
N∏

j=s

qj ≤ −
N∑

j=s

rj +
N∑

j=s

r2
j .

Hence, letting
∑N

j=s rj = R and
∑N

j=s r2
j = R′, we have

∏N
j=s qj ≤ e−R+R′

. Applying this into (3.12)

with s = i
(1)
∗ and s = i

(2)
∗ , we have (3.5).

Finally, we have r
i
(1)
∗,N

→ 0 and r
i
(2)
∗,N

→ 0 as N → ∞ since R
(1,2)
N → 0 and R

(2,2)
N → 0 as N → ∞,

respectively. Therefore, (3.4) and (3.5) yield (3.6) as N → ∞.

As a final remark, we make two conjectures on the limits and lower bounds for the maximum prob-
ability of win in the multiple selection problem. First, we guess that, if R

(m)
N and R

(m,2)
N , m = 1, 2, . . .,

have the same limits as those for the CSP with multiple selection chances, then the limit of the maximum
probability of win is also consistent to that for the CSP; that is,

lim
N→∞

P
(m)
N (win) = lim

N→∞

m∑
j=1

i
(j)
∗

N
for m = 1, 2, . . ..

The case of m = 1 was solved by Bruss (2000) and the case of m = 2 is done above. For the triple
selection problem, for instance, our conjecture says that, if R

(1)
N → 1, R

(2)
N → 3/2 and R

(3)
N → 47/24 with

R
(m,2)
N → 0, m = 1, 2, 3 as N → ∞, then

lim
N→∞

P
(3)
N (win) = e−1 + e−3/2 + e−47/24.

This triple selection case will be able to be confirmed by the similar approach to the one for P
(2)
N (win),

with some more delicate and complicated calculations. The case of general m is more challenging.
Second, for the lower bounds for the maximum probability of win, our conjecture is stated as that,

for some reasonable condition of pi, i ∈ N ,

P (m)(win) > lim
N→∞

m∑
j=1

i
(j)
∗

N
for m = 1, 2, . . ..

For this problem, the case of m = 1 was shown by Bruss (2003). However, even the case of m = 2 is
open.
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