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Abstract
SemiDefinite Programming (SDP) problem is one of the most central problems in math-

ematical programming. SDP provides a practical computation framework for many research
fields. Some applications, however, require solving large-scale SDPs whose size exceeds the
capacity of a single processor in terms of computational time and available memory. SD-
PARA (SemiDefinite Programming Algorithm paRAllel version) developed by Yamashita
et al. was designed to solve such large-scale SDPs. Its parallel performance is remarkable
for general SDPs in most cases. However, the parallel implementation is less successful in
some sparse SDPs from the latest applications such as for Polynomial Optimization Prob-
lems (POPs) or Sensor Network Location (SNL) problems, since the previous SDPARA can
not directly handle sparse Schur complement matrices (SCMs). In this paper, we focus on
the sparsity of the SCM and propose new parallel implementations, the formula-cost-based
distribution, and the replacement of the dense Cholesky factorization. Through numerical
results, we confirm that these features are keys to solve SDPs having sparse SCMs faster
on parallel computer systems, and they are further enhanced by multi-threading. In fact,
SDPARA is implemented in order to explore parallelism in two fronts: MPI-based and
multi-threading of CPU cores. The new SDPARA attains a good scalability in general, and
found solutions of extremely large-scale SDPs arising from POPs which other solvers could
not obtain before.
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1 Introduction

SemiDefinite Programming (SDP) problem is a fundamental problem in mathematical pro-
gramming. In SDP, one needs to find an optimal solution which minimizes or maximizes
a linear objective function over the intersection of cones of positive semidefinite symmetric
matrices and an affine subspace. By its Lagrangian dual formulation, an SDP can also be
regarded as an optimization problem whose feasible region can be described by linear matrix
inequalities.

It is well-known that SDPs can be solved efficiently by polynomial-time algorithms, for
example, by the primal-dual interior-point methods (PDIPMs) [4, 18, 22, 25, 28]. Owing to
the existence of practical polynomial-time algorithms and high reliability of SDP solvers,
SDPs have been used in many different applications. For example, SDP relaxation methods
proposed in [16] provide practical numerical approximations for some NP-hard problems.
Other important applications include Polynomial Optimization Problems (POPs) [23, 29],
Sensor Network Location (SNL) problems [8, 30], and computation of electronic structures
of small atoms and molecules in quantum chemistry [15, 26, 27]. The researches in these
fields could not be so active without solid developments of computer software for SDP
problems.

Through the extensions of PDIPMs from linear programming to SDPs [4, 18, 22, 25, 28],
several SDP solvers have been developed in the last 15 years such as SDPA [36], CSDP [10],
SeDuMi [31], and SDPT3 [32]. In particular, SDPA pioneered these software. Furthermore,
they have continuously stimulated the growth of new application areas. However, while
the capability of these SDP solvers improved along the years [36], the size of general SDP
problems demanded in practical applications has become large-scale and far beyond the
capability of a single processor in terms of computational time and available memory space.
It is important to remark at this point that several applications require a reasonable accuracy
for the solution of an SDP, which can be only obtained by a second-order method such
as PDIPMs. For applications which require less accuracy, one can employ other existing
methods [12, 17].

A breakthrough in solving general and large-scale SDPs was brought by the combina-
tion of the PDIPM and parallel computation. Numerical experiments indicate that the most
time consuming parts of PDIPMs are devoted to forming and solving a linear system named
Schur Complement Equation, which appears at each iteration of these methods. In partic-
ular, the computation of its coefficient matrix called Schur Complement Matrix (SCM) and
its Cholesky factorization often occupy over 80% of the total computation time [35]. Fol-
lowing these observations, SDPARA [35] (a parallel version of SDPA [36]) and PDSDP [5]
(a parallel version of DSDP [6, 7]) replaced the computation bottlenecks relevant to the
SCM by their parallel implementation. They successfully reduced the total computation
time by accelerations of parallel computing. Due to the difference on the base algorithm
(PDIPM embedded in SDPARA is generally more stable than the dual interior-point method
in PDSDP), SDPARA usually outperformed PDSDP and attained higher scalability [35].
More recently, two parallel versions of CSDP [10], which also implement PDIPMs, were de-
veloped. One based on OpenMP, which runs only on shared-memory parallel systems [11],
and PCSDP 1.0r1 [19]. Still, SDPARA can solve large-scale SDPs [26] which other SDP
solvers are not reported to solve.

The latest SDP applications, however, have brought a novel requirement for SDP solvers.
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Frequently in SDPs arising from POPs or SNLs, the SCMs become sparse. Most elements
of the SCM generated by these SDPs are zero and this structure critically affects the total
performance of SDP solvers. Since parallel SDP solvers were primarily developed for fully
dense SCMs, they result in poor performance for SDPs from POPs or SNLs. Even for sparse
SCMs, the evaluation of the SCMs and their Cholesky factorizations still occupy significant
portions of the total computation time as we will see later.

The most important improvements of SDPA, developed also by our group, from version
6.2.1 [34] to 7.3.1 [36] are the adoption of appropriate data structures for both sparse and
dense SCMs, and the introduction of the sparse Cholesky factorization of MUMPS [1, 2, 3]
which reduced drastically the computation time. By integrating the previous version of SD-
PARA (version 1.0.1) and the latest version of SDPA (version 7.3.1), we have newly devel-
oped SDPARA version 7.3.11. To solve SDPs with sparse SCMs efficiently, SDPARA 7.3.1
employs new parallel schemes which were inherited from the parallel schemes devised in
SDPARA 1.0.1.

The main purpose of this paper is to introduce the new parallel schemes of SDPARA 7.3.1
and verify their improvements by numerical experiments. SDPARA 7.3.1 adopts a novel
compact storage scheme when the SCM of the SDP problem is sparse, which greatly reduces
the memory consumption. In addition, this storage scheme is totally compatible with the
formula-cost-based distribution proposed here, based on the three-formula technique of [13],
and achieves an ideal load balance when computing the elements of a sparse SCM. In the
numerical results, we can confirm a great scalability of the parallelism in this part. In
SDPARA 1.0.1, a simpler row-wise distribution was implemented for this part [35], which
SDPARA 7.3.1 also employs when the SCM is not sparse.

In the previous version SDPARA 1.0.1, there was a necessity of redistributing the el-
ements of the SCM at the processors in two-dimensional block-cyclic distribution, which
requires network communication, to achieve the best performance for ScaLAPACK [35].
When the SCM of the SDP problem is sparse, the novel SDPARA 7.3.1 employs the sparse
Cholesky factorization of MUMPS [1, 2, 3] which assumes an assignment of the elements
of the SCM to the processors compatible with its own computation, and therefore, do not
require any network communication among processors. Unfortunately, the parallel scala-
bility of the sparse Cholesky factorization is not equally well as the scalability of the SCM
computation, but still significant.

Furthermore, a unique feature of SDPARA 7.3.1 is its dual parallelism which few op-
timization software take full advantage of. It adopts the MPI-based parallel computation
and also the multi-threading parallel computation which is possible at the currently avail-
able multi-core CPUs. In particular, the numerical results show that this implementation
provides an astonishing speedup for SDPARA 7.3.1 on some SDPs.

The numerical results of SDPARA 7.3.1 confirm high performance for large-scale SDP
problems with both sparse and dense SCMs. Some problems, in fact, can be solved thanks
to the storage of the SCM on the memory assigned to multiple processors by SDPARA 7.3.1.
In particular, we believe that we solved the largest SDP from POP reported in literature
with more than 700,000 equality constraints. The multi-threading plays a great role in the
speedup as mentioned before.

1the SDPARA version reflects the embedded SDPA version since version 7.2.1; SDPARA 1.0.1 was based
on SDPA 6.2.1.
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Finally, we compare the performance with PCSDP 1.0r1 [19], which is the other serious
competitor for SDPARA 7.3.1. Our solver resulted in a superior performance in all cases. It
is numerically more stable and at least 2.6 faster, reaching more than 700 speedup in some
cases. SDPARA 7.3.1 remarkably extends its capability for large-scale SDPs having sparse
SCMs.

The new SDPARA 7.3.1 can be downloaded from the SDPA web site:

http://sdpa.indsys.chuo-u.ac.jp/sdpa/

SDPARA 7.3.1 is now distributed under GPL. Furthermore, the SDPA Online Solver system
described here [14] enables users to use SDPARA via the Internet with no charge. The SDPA
Online Solver system consists of PC clusters with a pre-installed SDPARAs, where users
only need to submit the SDP problem data via the Internet to receive its solution. The
SDPA Online Solver is available at:

http://sdpa.indsys.chuo-u.ac.jp/portal/

This paper is organized as follows. In Section 2, we prepare the basic concepts for
the following sections defining the SDP problem and describing a simplified scheme of the
PDIPM to solve it. In Section 3, we give a summary of the parallel schemes implemented
in SDPARA 1.0.1, and indicates its limitations when solving SDPs with sparse SCMs. Sec-
tion 4 is the core of this paper where novel parallel schemes implemented in SDPARA 7.3.1
are proposed. In Section 5, numerical results on a PC cluster are reported to verify the
performance of SDPARA 7.3.1. In addition, we compare the performance with another
parallel SDP solver PCSDP 1.0r1 [19]. We give some conclusion remarks and future works
in Section 6.

All SDP problems for the numerical experiments in this paper are summarized in the
section for numerical results, Section 5. The parallel computing environment we used is also
described there.

2 Semidefinite programming problem and primal-dual

interior-point methods

We begin this section with the definition of the standard form of SDP used in this paper.
Then, we introduce a basic framework of Primal-Dual Interior-Point Methods (PDIPMs).
PDIPMs are powerful methods for SDPs from both theoretical and practical viewpoints.

The standard form of SDP we address in this paper is defined by the following primal-
dual pair.

SDP





P : minimize
∑m

k=1 ckxk

subject to X =
∑m

k=1 F kxk − F 0, X º O.
D : maximize F 0 • Y

subject to F k • Y = ck (k = 1, 2, . . . , m), Y º O.

(1)

The symbol Sn denotes the space of n × n symmetric matrices and X º O stands for
X ∈ Sn being positive semidefinite. The inner product between U and V in Sn is defined by
U •V =

∑n
i=1

∑n
j=1 UijVij. In the primal problem P , the vector x ∈ Rm and the symmetric
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matrix X ∈ Sn are variables. Meanwhile, in the dual problem D, Y ∈ Sn is the variable
matrix. The input data are ck ∈ R (k = 1, 2, . . . ,m) and F k ∈ Sn (k = 0, 1, 2, . . . , m).

The size of an SDP can be roughly estimated by two factors, the number of equality
constraints m of the dual problem (D) and the dimension of variable matrices n. In this
paper, we mainly address the case m À n, which includes many practical applications such
as SNLs and quantum chemistry problems.

Under mild assumptions as Slater’s condition, we can obtain an optimal criterion for
the above pair of problems from the Karush-Kuhn-Tucker conditions; an optimal solution
(x∗, X∗,Y ∗) should satisfy the following system.

KKT





X∗ =
∑m

k=1 F kx
∗
k − F 0, (primal feasibility)

F k • Y ∗ = ck (k = 1, 2, . . . ,m), (dual feasibility)∑m
k=1 ckx

∗
k = F 0 • Y ∗, (primal-dual gap condition)

X∗ º O, Y ∗ º O. (positive semidefinite conditions)

(2)

Conversely, solutions of the above system are also optimal to (1).
PDIPMs search a point (x∗,X∗, Y ∗) which satisfies the Karush-Kuhn-Tucker conditions

by iterating a modified Newton method in the region where the variable matrices are positive
definite. These methods solve both primal (P) and dual (D) problems simultaneously. For
an iterate (x,X,Y ), we define the three residuals P = F 0 −

∑m
k=1 F kxk + X, dk =

ck − Fk • Y k (k = 1, 2, . . . , m) and g =
∑m

k=1 ckxk − F 0 • Y . These residuals are evaluated
by their appropriate norms. We use X Â O to denote the positive definiteness of X ∈ Sn.

The basic framework of PDIPMs is outlined below.

Framework of Primal-Dual Interior-Point Methods

Step 0. Choose an initial point x0,X0, Y 0 with X0 Â O and Y 0 Â O. Choose a threshold
ε > 0 and parameters 0 < β < 1 and 0 < γ < 1. Set the iteration number h = 0.

Step 1. Compute a search direction (dx, dX, dY ) by a modified Newton method toward a
point which would have smaller residuals P , d and g.

Step 2. To keep the positive definiteness, we evaluate the maximum length of possible step,
αp = max{α : Xh + αpdX º O} and αd = max{α : Y h + αddY º O}.

Step 3. Update the current point by (xh+1, Xh+1,Y h+1) = (xh + γαpdx, Xh + γαpdX,Y h +
γαddY ). Set h = h + 1.

Step 4. If max{||P ||, ||d||, |g|} < ε, then output (xh, Xh, Y h) as an optimal solution. Other-
wise, return to Step 1.

Step 1 includes the principal computation bottlenecks of the above framework [35]. More
specifically, when the current point is (x, X,Y ), the computation of the search direction
(dx, dX, dY ) can be reduced to

Bdx = r (3)

dX =
m∑

k=1

F kdxk − P

d̂Y = X−1(R− dXY ), dY = (d̂Y + d̂Y
T
)/2,
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where

Bij = (X−1F iY ) • F j (i = 1, 2, . . . , m, j = 1, 2, . . . , m) (4)

rk = −dk + F k • (X−1(R + PY )) (k = 1, 2, . . . , m)

R = β
X • Y

n
I −XY . (5)

Details of this formula reduction can be found in many papers, for example, [13, 22, 34, 35].
Most computation time of the framework is consumed by the first linear system (3),

which is usually known as the Schur complement equation. Its coefficient matrix whose
elements are evaluated by the formula (4) is the Schur Complement Matrix (SCM). Since
the SCM is always positive definite through all the iterations, its Cholesky factorization
is usually employed to obtain dx. As indicated in [35], when SDPA on a single processor
solved an SDP from control theory or combinatorial optimization, more than 80% of the
total computation time was spent by the computation related to the SCM. The parallel
implementation of SDPARA 1.0.1, which will be discussed next, mainly concentrated on
the two components related to the SCM, the evaluation of the SCM and its Cholesky
factorization.

3 Existing parallel schemes of SDPARA 1.0.1

We point out the two principal computation bottlenecks of PDIPMs and briefly describe how
the previous version of SDPARA 1.0.1 replaced them with their parallel implementations.
Finally, we show an SDP example having a sparse SCM and how SDPARA 1.0.1 loses its
efficiency. These matters will serve as essential pieces to understand the next section where
new parallel schemes will be proposed.

The two computational bottlenecks in PDIPMs are the evaluation of the SCM and its
Cholesky factorization. Following the nomenclature in [35], the evaluation of the SCM will
be referred ELEMENTS component, and its Cholesky factorization CHOLESKY component.

A noteworthy property of the evaluation formula (4) is that the computation of each row
of the SCM is completely independent from the other rows. For the ith row, we first multiply
U = X−1F iY , then take the inner products U • F j (j = 1, 2, . . . , m). By duplicating
the input data matrices F k (k = 1, 2, . . . , m) on all processors before the iterations and
updating the variable matrices X and Y on each processor at every iteration, any processor
can evaluate any row without network communications from other ones. This property
motivated SDPARA 1.0.1 to adopt the row-wise distribution for ELEMENTS component
[35]. Figure 1 displays an example of the row-wise distribution in which the SCM is 8×8 and
the number of available processors is 4. Note that since the matrix is always symmetric,
only the upper triangular part must be evaluated. In the row-wise distribution, all the
processors are assigned to the rows in a cyclic manner.

For CHOLESKY component, which is the subsequent computation after ELEMENTS
component, we employed the parallel Cholesky factorization supplied by ScaLAPACK li-
brary [9]. To intensify the performance of the parallel Cholesky factorization, SDPARA 1.0.1
redistributes the SCM from the row-wise distribution to the two-dimensional block-cyclic
distribution whose style was assumed by ScaLAPACK for the matrix to be factorized. This
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Figure 1: Parallel computation of the Schur
complement matrix B.
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Figure 2: Two-dimensional block-cyclic dis-
tribution of the Schur complement matrix
B.

Table 1: Computation time (in seconds) for an SDP from quantum chemistry
(Be.1S.SV.pqgt1t2p) by SDPARA 1.0.1 on different number of processors.

# processors 1 2 4 8 16
ELEMENTS 17236.91 8546.58 4333.07 2163.03 1069.04
CHOLESKY 191.72 96.47 57.96 39.17 23.49

total 17727.03 9050.55 4682.63 2492.25 1389.38

distribution is illustrated in Figure 2 in which B17 and B28 elements are stored by the 2nd
processor, while B34 and B78 elements by the 4th processor.

The row-wise distribution and the parallel Cholesky factorization are the major features
of SDPARA 1.0.1 to reduce the total computation time. Table 1 shows ELEMENTS time,
CHOLESKY time and the total computation time when we applied SDPARA 1.0.1 to an
SDP problem from quantum chemistry, ’Be.1S.SV.pqgt1t2p’ [26]. See Table 5 for the sizes
of this SDP. The row-wise distribution seems to be a simple scheme to achieve good load-
balance, however, we can verify that it produces almost a linear scalability for ELEMENTS
component. That is, the 16 times speedup on 16 processors, which produced the 12 times
speedup of the total computation time. These numbers are called scalability in parallel
computation.

SDPARA 1.0.1 is very fast on some classes of SDPs. However, it has been observed
through recent years that SDPARA 1.0.1 loses its merit for the latest applications such as
POPs or SNLs. Table 2 gives the computation time for the SDP problem ’BroydenBand30’
generated by SparsePOP [33]. SDPA 7.3.1, which only runs on a single processor, saves both
memory space and computation time compared to SDPARA 1.0.1 even using 16 processors.

The main difference between the problems in Tables 1 and 2 is the sparsity of the SCM.
Figure 3 sketches the positions of nonzeros elements of the SCM for SDPs from quantum
chemistry (Be.1S.SV.pqgt1t2p) and POP (BroydenBand40), respectively. The left figure is
an example of a fully dense SCM. On the contrary, the right figure indicates that the SCM
is sparse.

The sparsity of the SCM comes from the so-called diagonal block structure of input data
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Table 2: Computation time (in seconds) for an SDP from POP (BroydenBand30) by SD-
PARA 1.0.1 and SDPA 7.3.1 on different number of processors. ’O.M.’ stands for out of
memory.

SDPARA 1.0.1 SDPA 7.3.1
# processors 1 2 4 8 16 1
ELEMENTS O.M. 211.61 106.42 56.46 24.62 212.05
CHOLESKY O.M. 4911.94 2455.88 1419.86 643.23 326.71

total O.M. 5591.48 2937.71 1779.13 823.58 553.51

Figure 3: Nonzero elements of the Schur complement matrices (only the upper triangular
parts) in SDPs from quantum chemistry (left) and POP (right).
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matrices. Suppose that all the input data matrices F k (k = 1, 2, . . . , m) share the same
diagonal block structure with matrix sizes n1, n2, . . . , n¯̀. More precisely, suppose that each
matrix F k can be decomposed into sub-matrices [F k]

` ∈ Sn` (` = 1, 2, . . . , ¯̀) positioned at
its diagonal,

F k =




[F k]
1 O · · · O

O [F k]
2 · · · O

...
...

. . .
...

O O · · · [F k]
¯̀


 .

Then, necessarily the variable matrices X and Y also share the same structure and can be
decomposed into [X]` and [Y ]` ∈ Sn`(` = 1, 2, . . . , ¯̀). Consequently, the evaluation formula
(4) can come down to the sum over sub-matrices,

Bij = (X−1F iY ) • F j

=

¯̀∑

`=1

(
[X−1]`[F i]

`[Y ]`
) • [F j]

`. (i = 1, 2, . . . ,m, j = 1, 2, . . . , m) (6)

This breakdown demonstrates that Bij becomes zero if [F i]
` or [F j]

` is the zero matrix for
all ` = 1, 2, . . . , ¯̀. We should remark here that in POPs or SNLs, larger SDPs have stronger
tendency of this phenomenon and generate sparser SCMs. This phenomenon can be checked
in Table 5.

The critical drawback of SDPARA 1.0.1 is that the parallel schemes described above are
restricted to fully dense SCMs. The new version of SDPARA 7.3.1 overcomes this draw-
back by introducing new parallel schemes for ELEMENTS and CHOLESKY components,
enhancing the functions to handle sparse SCMs of SDPA 7.3.1.

4 New features of SDPARA 7.3.1

The new SDPARA 7.3.1 has remarkable enhancements compared to the previous version. It
speeds up the computational time for SDPs specially with sparse SCMs. We begin detailing
the storage scheme which prioritizes the load-balance between the processors for the SCM
computation. And then discuss its sparse Cholesky factorization. Finally, we explain the
MPI and multi-threading computation of these routines.

4.1 A new storage and load-balance schemes for the parallel com-
putation of sparse Schur complement matrices

To discuss the new parallel schemes, this section starts from how we store a sparse SCM.
Compared to the two-dimensional block-cyclic distribution for the fully dense matrix case,
more elaborated storage managements should be provided. From (6), the non-zero pattern
S of the SCM is determined by

S =

¯̀⋃

`=1

{
(i, j)| [F i]

` 6= O and [F j]
` 6= O, 1 ≤ i ≤ j ≤ m

}
. (7)
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The patterns S are illustrated in Figure 3. The sparsity found in the pattern S is called
correlative sparsity in [21] and it is directly related to the performance of the sparse Cholesky
factorization. Note that S is invariant through all the iterations of PDIPMs. Therefore,
by counting the number of elements in S, we can allocate a memory space for the triples
(i, j, Bij) for each (i, j) ∈ S in advance.

We use the symbol |S| to denote the number of elements in S. Then the density of the
SCM is defined by

density =
2|S| −m

m2
.

In this definition, S and |S| are defined only for the upper triangular part while the density
is considered for the whole matrix. For instance, the density of the right figure in Figure 3
is only 9.26%, and we should avoid applying the dense Cholesky factorization to it.

The number of fill-in affects the performance of the sparse Cholesky factorization. How-
ever, for simplicity, we do not consider it in detail in this paper. As we will describe in
the next subsection, we employ MUMPS [1, 2, 3] for the sparse Cholesky factorization and
MUMPS automatically minimizes the fill-in by some heuristics. Actual implementation also
involves some criteria based on the number of fill-in similarly.

In the new parallel scheme, we assign ELEMENTS computation to each processor
by dividing S into subsets S1, S2, . . . , Su where u is the number of available processors.
Hence, each element is evaluated on a fixed processor through all the diagonal blocks.
This concept is mainly due to the network communication overheads as justified next. Let
[Bij]

` (` = 1, 2, . . . , ¯̀) denote the partial value of the SCM relevant to the `th block (i.e.,

Bij =
∑¯̀

`=1[Bij]
`). If [Bij]

1 is evaluated on the 1st processor, [Bij]
2 on the 2nd processor,

and Bij is supposed to be stored on the 3rd processor, then [Bij]
1 and [Bij]

2 can not be
summed without network commutations to the 3rd processor. We can not underestimate
this network overhead, since |S| is beyond 1 billion for extremely large-scale problems which
SDPARA is designed to solve. In addition, the number of blocks considered for the com-
position of each element Bij varies for each (i, j). Therefore, the network flow over all the
processors will be too complicated. These factors prevent SDPARA from attaining better
scalability, and hence we assign the computation of each element through all the diagonal
blocks to one processor.

Now, what we have to consider is how to divide S to S1, S2, . . . , Su. To derive best per-
formance of the subsequent CHOLESKY component described below, sequential elements
of S should be assigned to the same processor. To be more precise, we first enumerate con-
secutively the elements of S in a row-wise way by N (i, j). The upper numbers in Figure 4
show an example of N (i, j) for the SCM with size 10 × 10 and |S| being 24. With this
notation, the division is determined to satisfy

N (i, j) < N (i′, j′) for (i, j) ∈ Sp, (i′, j′) ∈ Sp′ . (1 ≤ p < p′ ≤ u)

The division of S is now equivalent to finding delimiter points d0 = 0, d1, d2, . . . , du−1, du =
|S|. From the sequential element policy for CHOLESKY component, each subset Sp for the
pth processor can be expressed in another way,

Sp = {(i, j) ∈ S : dp−1 < N (i, j) ≤ dp}. (p = 1, 2, . . . , u)

9
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Figure 4: An example of sparse Schur complement matrix with row-wise indexes N (i, j)

(upper numbers) and estimated costs
∑¯̀

`=1[Fij]
` (lower numbers).

The key for ELEMENTS component to be processed faster is to have a perfect load-
balance among the processors. Let [F ij]

` denote the computation cost for the evaluation of
[Bij]

`. Then, the computation load on the pth processor Lp is calculated by

Lp =
∑

(i,j)∈Sp

¯̀∑

`=1

[F ij]
`. (p = 1, 2, . . . , u)

When [F ij]
` is given, a simple heuristic is enough to determine d0, d1, . . . , du which makes

all of Lp (p = 1, . . . , u) close to their average
∑u

p=1 Lp/u, since |S| is usually larger than u.
In large-scale SDPs, |S| can exceeds millions, while u is usually at most 1000.

Our main interest is now moved to [F ij]
`, since a reasonably accurate estimation for

[F ij]
` is essential to obtain Lp. This estimation is provided by an outstanding method

originally implemented in SDPA [13]. The remarkable feature in SDPA is that it selects the
evaluation formula for [Bij]

` from the three candidates, F1,F2 and F3,

F1 : [U ]` = [X−1]`[F i]
`[Y ]`, [Bij]

` =
∑

α,β

[U ]`α,β[F j]
`
α,β

F2 : [U ]` = [F i]
`[Y ]`, [Bij]

` =
∑

α,β

∑
γ

[X−1]`α,γ[U ]`γ,β[F j]
`
α,β

F3 : [Bij]
` =

∑

α,β

∑

γ,δ

[X−1]`α,γ[F i]
`
γ,δ[Y ]`δ,β[F j]

`
α,β,

where [F i]
`
α,β is the (α, β) element of [F i]

`. Although each formula generates the cor-

rect value of [Bij]
`, the computation time considerably differs depending on the number of

nonzero elements of [F k]
` (k = 1, 2, . . . ,m). The formula F1 is effective when both [F i]

`

10



and [F j]
` are dense, while F3 works well when both [F i]

` and [F j]
` are sparse. SDPA

automatically selects the best formula from the three; For details, refer to [13].
Note that all three formulas are composed of floating-point multiplications and additions.

Since the computation cost for floating-point multiplications is generally greater than the
computation cost for floating-point additions, each computation cost for the three formulas
is approximately proportional to the number of floating-point multiplications. The number
of nonzero elements of [F k]

` (k = 1, 2, . . . , m) is vital to estimate [F ij]
` and consequently

to determine S1, S2, . . . , Su.
We call the distribution S1, S2, . . . , Su based on [F ij]

` the formula-cost-based distribu-
tion. Figure 4 also serves as an example; the lower numbers indicate the estimated costs∑¯̀

`=1[F ij]
` of the corresponding elements. If u = 4 and the delimiter points are d0 = 0,

d1 = 3, d2 = 7, d3 = 13, and d4 = 24, then L1 = 1826, L2 = 1841, L3 = 1820, and
L4 = 1833. The computation load on each processor is close to their average 1830. Since
we compute [U ]` for F1 and F2 at the computation of the diagonal elements [Bii]

` for
i = 1, 2, . . . ,m, its computation cost is embedded to the cost of [Bii]

`.

4.2 Sparse Cholesky factorization of the Schur complement ma-
trices

After ELEMENTS component, SDPARA 7.3.1 proceeds to CHOLESKY component. In-
stead of the parallel dense Cholesky factorization of ScaLAPACK, we employ the parallel
sparse Cholesky factorization of MUMPS [1, 2, 3]. At the present, MUMPS is the sole ex-
isting software which can attain reasonable scalability for the sparse factorization. MUMPS
assumes that the matrix to be factorized is distributed under some specific style. Under
the distributed assembled matrix distribution, the matrix should be stored with the style
of triples (i, j, Bij) of consecutive elements in the row-wise direction. It means that the
memory storage of this distribution is completely consistent with the formula-cost-based
distribution considered previously. Hence, on the contrary of cases for dense SCMs (Sec-
tion 3), we do not redistribute the matrix prior to CHOLESKY component. This reduces
the total network communication.

Unfortunately, the scalability of the parallel sparse Cholesky factorization of MUMPS is
lower than the scalability of the dense factorization of ScaLAPACK due to the complicated
framework of the multiple frontal methods adopted in MUMPS. When the SCM is weakly
sparse, the dense factorization sometimes becomes faster than the sparse factorization on
more processors.

SDPARA 7.3.1 can automatically select which factorization is better with the informa-
tion supplied by MUMPS and scalability information obtained by preliminary numerical
experiments. In practice, most SDPs are almost fully dense or extremely sparse, and cases
in which sensitive automatic selection is required is rare. Hence either the dense factoriza-
tion or the sparse factorization is usually selected irrelevantly to the number of available
processors.

Table 3 shows a preliminary numerical experiment using SDPARA 7.3.1. The SDP
solved here is ’BroydenBand600’, an SDP relaxation problem of POP generated by Sparse-
POP [33]. Compared to a single processor which needs 4505 seconds, SDPARA on 16
processors solves the problem in only 345 seconds. In other words, we obtain an 11.73
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Table 3: Computation time (in seconds) of SDPARA 7.3.1 on ’BroydenBand600’ on different
number of processors.

# processors 1 2 4 8 16
ELEMENTS 4505.22 2345.16 1194.63 640.67 345.12
CHOLESKY 7495.95 4555.90 2776.02 1810.49 1356.10
Total 12367.39 7186.17 4200.83 2667.58 1933.37

times speedup. This reduction is mainly derived by the formula-cost-based distribution.
For CHOLESKY component, the resultant speedup is only 5.52. However, the unnecessity
of the redistribution before performing the CHOLESKY component is of great importance.
Consequently, SDPARA 7.3.1 on 16 processors attains the 6.39 times speedup.

We should note that the SDP ’BroydenBand600’ solved here is much larger than the
SDP ’BroydenBand30’ solved in Table 2. SDPARA 1.0.1 used in Table 2 could not handle
’BroydenBand600’ due to lack of memory. A fact that was overcome by the sparse SCM
and its sparse Cholesky factorization.

The performance of SDPARA 7.3.1 has already become better for sparse SCM than other
parallel SDP solvers. However, this performance will be further improved by multi-threading
discussed in the next section.

4.3 Multi-threading acceleration on MPI-based parallel comput-
ing

In recent years, it has become common that processors feature multi-core. This change has
brought a multi-threading speedup to SDPA 7.3.1 [36].

The new SDPARA 7.3.1 combines MPI-based parallel computing discussed so far and
multi-threading enhancement in ELEMENTS component. We first discuss the combination
of multi-threading and MPI-based computation for dense SCMs and then move to sparse
SCMs. For CHOLESKY component, preliminary numerical experiments showed that using
optimized and multi-threaded BLAS is enough to obtain some benefits from the multi-
threading.

As described in Section 3 for dense SCMs, the row-wise distribution is vital to SD-
PARA 1.0.1 to process ELEMENTS component in a short time. More precisely, the ith
row of the SCM is evaluated by the pth processor when i− p is a multiple of the number of
available processors u. Let Rp denote the set of row indexes assigned to the pth processor,

Rp = {i : 1 ≤ i ≤ m, i− p is a multiple of u}.

All cores on each processor share the memory space allocated to Rp, hence, each thread
can store its own computed elements of the SCM into the memory space attached to the
processor. Therefore, the task of each thread on the pth processor can be summarized as
follows. Let is be the smallest number in Rp. First pick up is and remove it from Rp.
Then the thread evaluates the isth row of the SCM. Continue this process until Rp becomes
empty. By controlling the access of all the threads to Rp, we can guarantee that each row
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is evaluated by only one thread. This strategy produces a better load-balance if compared
to the case of row-wise distribution on multi-threading.

It is a natural question why we do not employ this strategy not only in multi-threading
but also in the MPI-based parallel computing. The reason is the difference of memory access.
If we adopt this strategy for the MPI-based computing, we can not fix Rp. Unbalanced sizes
of Rp cause complex network communications of the redistribution prior to CHOLESKY
component. Since the load-balance of the row-wise distribution in MPI-based is already
nice as indicated in Table 1, the complex communication just becomes an overhead.

Next, we move to sparse SCMs. In the formula-cost-based distribution, the division of S
to S1, S2, . . . , Su decides the computation assigned to each processor. The strategy adopted
for multi-threading here is the sub-divisions of S1, S2, . . . , Su again. Let v be the number
of threads. We suppose that all the processors have the same number of threads. On
the pth processor, we apply the formula-cost-based distribution to Sp and obtain the sub-
divisions S1

p , S
2
p , . . . , S

v
p . Then the qth thread on the pth processor evaluates the elements of

B specified by Sq
p . An important point we should emphasize is that this strategy keeps the

independence of each thread. Without any communication to other threads, each thread
can concentrate on its own task. This attribute yields better load-balance, hence higher
scalability.

Table 4 shows the result of the combination of MPI-based parallel computing and multi-
threading. The SCM is fully dense for ’Be.1S.SV.pqgt1t2p’, while the density of ’Broyden-
Band600’ is only 0.559%. At first, we focus on the dense case (’Be.1S.SV.pqgt1t2p’) on a
single processor. The computation time for ELEMENTS is reduced from 10984 seconds to
1585 seconds; we obtain the 6.93 times speedup with 8 threads. Using 8 threads on the
whole 16 processors (128 threads in total), the time is just 109.87 seconds; the scalability on
128 threads reaches 99.9. This excellent scalability and the effect of multi-threading BLAS
for CHOLESKY component bring the remarkable efficiency to the total computation time;
by 128 threads, we finally attain the 61.2 times speedup in the total time.

The formula-cost-based distribution for the sparse case (’BroydenBand600’) has a more
elaborate distribution. The scalability for ELEMENTS component is, however, still kept
as high as 75.0 on 128 threads. Even though CHOLESKY component is not accelerated so
greatly, SDPARA 7.3.1 can achieve the 8.28 times speedup in the total time, even in sparse
case.

The remarkable scalability of ELEMENTS component is, of course, derived from the
good load-balance (Section 4.1). The load-balance over all the threads is shown in Figure 5.
These are the results of SDPs in Table 4 on 16 processors with 8 threads. The horizontal axis
is the sequential thread numbers over all the processors. The qth thread on pth processor
is mapped to the thread number (p− 1) · v + q, where v = 8 now. The vertical axis is the
computation time of ELEMENTS component for one iteration of the PDIPM.

For the dense case, the maximum/minimum ratio on 128 threads is just 2.84
2.72

= 1.04. This
exquisite load-balance generates the outstanding 99.9 times speedup. On the other hand,
for the sparse case, the shortest thread time is much shorter than the second shortest. The
formula-cost-based distribution is based on the estimation of F1,F2 and F3 (Section 4.1).
Even though this estimation is already established taking the effect of sparse data structures,
memory access for sparse data structures is sometimes too complicated to predict completely.
It might be inevitable to incur such an undesirable situation. By excluding the 1st thread,
the maximum/minimum ratio is 1.94

1.06
= 1.80. As a consequence, we obtained the reasonable
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Table 4: Performance of SDPARA 7.3.1 on multiple processors with multiple threads for a
dense SCM (Be.1S.SV.pqgt1t2p) and sparse SCM (BroydenBand600).

# processors 1 2 4 8 16
problem # threads

Be.1S.SV.pqgt1t2p 1 ELEMENTS 10984.21 5524.70 2763.75 1430.10 722.08
CHOLESKY 161.08 81.02 44.77 31.83 19.21

Total 11355.65 5812.68 3005.04 1657.17 932.64
2 ELEMENTS 5466.67 2746.67 1417.01 714.22 361.67

CHOLESKY 109.28 47.81 30.35 23.35 15.14
Total 5713.40 2931.11 1576.99 861.28 497.01

4 ELEMENTS 2736.80 1412.62 691.33 358.99 178.60
CHOLESKY 78.90 32.55 21.71 18.84 12.41

Total 2913.74 1544.25 799.46 460.61 268.09
8 ELEMENTS 1584.97 819.63 413.59 206.12 109.87

CHOLESKY 67.93 25.64 19.02 16.64 12.35
Total 1736.17 927.87 505.83 288.39 185.62

BroydenBand600 1 ELEMENTS 4505.22 2345.16 1194.63 640.67 345.12
CHOLESKY 7495.95 4555.90 2776.02 1810.49 1356.10

Total 12367.39 7186.17 4200.83 2667.58 1933.37
2 ELEMENTS 2956.41 1471.20 735.05 387.69 204.13

CHOLESKY 6006.12 3736.66 2368.92 1636.86 1272.09
Total 9333.16 5486.32 3316.80 2235.10 1702.98

4 ELEMENTS 1928.32 844.87 376.20 206.12 105.98
CHOLESKY 5121.50 3236.48 2098.46 1464.52 1201.91

Total 7397.88 4344.94 2687.83 1876.75 1530.61
8 ELEMENTS 1020.10 457.31 202.23 112.49 60.09

CHOLESKY 4560.67 2973.21 1975.04 1440.76 1210.11
Total 5929.96 3697.20 2390.19 1759.99 1493.65
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Figure 5: Load balance for ELEMENTS component of SDPARA 7.3.1 for the problems in
Table 4.

scalability 75.0 on 128 threads.

5 Numerical Results

The SDPs we used for the numerical experiments through the paper are summarized in
Table 5. They can be categorized into four classes: POP, SNL, QC and Mittelmann.
The first class ’POP’ problems are the SDP relaxation problems generated by Sparse-
POP [33]. For example, ’BroydenBand30’ was generated by the SparsePOP command
sparsePOP(’BroydenBand(30)’); with its default parameters. The ’SNL’ class consists of
Sensor Network Localization problems generated by SFSDP [20]. The problem ’sfsdp30000’
has 30,000 sensors scattered in the two dimensional square [0, 1]× [0, 1]. The noise threshold
for the sensor-sensor or sensor-anchor distance is set to 10% and the radio range is set to
0.1, respectively. Details for ’QC’ (quantum chemistry) class can be found in [26]. The
constraints of these SDPs are based on the P , Q, G, T1, T2′ conditions and the optimal so-
lutions of these SDPs give approximate electronic structures of considered atoms/molecules.
The SDPs of ’Mittelmann’ class are chosen from the benchmark problems at Mittelmann’s
website [24]. In ’Mittelmann’ class, we excluded small problems which can be solved in less
than 500 seconds on a single processor with a single thread. Meanwhile, some small-size
problems in POPs and SNLs are chosen to compare SDPARA results with another parallel
SDP solver PCSDP [19]. The 3rd column in Table 5 corresponds to the number of equality
constraints of (D) in the standard form (1), while the 4th column n is the dimension of X
and Y . The 5th column describes the number of blocks in the diagonal block structure.
Here, we do not count the blocks whose sizes are one, since they can be evaluated in ELE-
MENTS component separately by a simpler way as linear programming. The 6th column
nmax is the largest block size defined by nmax = max{n1, n2, . . . , n¯̀}. The last column shows
the density of the SCM. This column indicates that larger SDPs have sparser SCMs in POP
or SNL and fully dense ones in QC or Mittelmann.

All numerical experiments in this paper were executed on a PC cluster composed of 16
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Table 5: SDP problems for the numerical experiments.

class name m n blocks nmax density of the SCM
POP BroydenBand30 19931 2880 24 120 12.9%

BroydenBand600 471371 71280 594 120 5.59× 10−1%
BroydenBand800 629771 95280 794 120 4.18× 10−1%
BroydenBand900 708971 107280 894 120 3.72× 10−1%
ChainedSingular500 9974 4980 498 10 4.81× 10−1%
ChainedSingular20000 399974 199980 19998 10 1.20× 10−2%
ChainedSingular30000 599974 299980 29998 10 8.00× 10−3%

SNL sfsdp500 7933 12004 423 21 9.44× 10−1%
sfsdp30000 452217 808272 29887 44 7.87× 10−3%
sfsdp35000 527096 943151 34887 43 6.52× 10−3%

QC Be.1S.SV.pqgt1t2p 4743 4444 21 1062 100%
N.4P.DZ.pqgt1t2p 7230 6010 21 1460 100%

Mittelmann butcher 6434 22842 1 330 100%
neu3g 8007 462 1 462 100%
reimer5 6187 102606 1 462 100%
shmup5 1800 11041 2 3721 100%
taha1b 8007 1609 21 286 100%

nodes. Each node has 48 GB memory space and 2 Xeon X5460 (3.16GHz : 4 CPU cores)
processors. Therefore, the maximal number of CPU cores for multi-threading on each node
is 8. All the nodes are connected by Myrinet-10G network interface. The selection of an
optimized BLAS significantly affects the total performance. We adopt GotoBLAS 1.26. The
stopping tolerance is usually set to ε = 1.0× 10−7 (see Section 2). Only for SNL problems,
the stopping tolerance is relaxed to ε = 1.0× 10−5. We do not need high accuracy for SNL
problems since the relaxed tolerance is enough to generate a good starting point for the
posterior local methods.

Tables 6 and 7 show the computation time of SDPARA 7.3.1 for SDPs with sparse SCMs
and dense SCMs, respectively. We changed the number of nodes by 1, 2, 4, 8, 16, and the
number of threads by 1 and 8. In the table, ’O.M.’ stands for Out of Memory. In addition,
’thread problem due to MUMPS error’ means that SDPARA 7.3.1 fails due to MUMPS,
which is not thread-safe in some parts. Hence it can not adequately compute the Cholesky
factorization in multi-threading computation for some SDPs.

Next, we discuss the results of Table 6 in more details. First, for ’BroydenBand800’
and ’BroydenBand900’, SDPARA 7.3.1 can attain reasonable scalability. These SDPs are
in the same class of the SDP in Tables 3 and 4, but larger than it. Note that using one
or two nodes, we could not solve them due to the lack of memory. We claim that the new
SDPARA is the first SDP solver that can solve problems of this class of SDPs with this size.
In particular, ’BroydenBand900’ which has m = 708, 971 equality constraints can be solved
in about half hour. Without exploiting the sparsity of the SCM, even SDPARA 7.3.1 could
not store this extremely large-scale SDP in memory.
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Table 6: Computation time (in seconds) of SDPARA 7.3.1 for SDP problems with sparse
SCMs using 1,2,4,8,16 processors, and 1 and 8 threads. ’O.M’ means out of memory.

# processors 1 2 4 8 16
problem # threads

BroydenBand800 1 ELEMENTS O.M. O.M. 1661.73 903.53 478.25
CHOLESKY O.M. O.M. 3745.28 2295.04 1690.84

Total O.M. O.M. 5733.85 3490.69 2454.14
8 ELEMENTS O.M. O.M. O.M. 155.22 84.96

CHOLESKY O.M. O.M. O.M. 1790.92 1437.99
Total O.M. O.M. O.M. 2246.97 1795.20

BroydenBand900 1 ELEMENTS O.M. O.M. 2001.92 1016.01 546.94
CHOLESKY O.M. O.M. 4253.95 2522.83 1785.76

Total O.M. O.M. 6648.20 3874.47 2692.98
8 ELEMENTS O.M. O.M. O.M. O.M. 105.62

CHOLESKY O.M. O.M. O.M. O.M. 1500.01
Total O.M. O.M. O.M. O.M. 1932.74

ChainedSingular20000 1 ELEMENTS 26.37 18.45 9.02 5.85 3.06
CHOLESKY 65.59 40.69 24.04 14.19 9.29

Total 152.92 123.77 89.01 73.93 185.11
8 ELEMENTS 30.84 27.05 25.79 25.57 25.42

CHOLESKY 82.12 52.33 30.49 18.08 12.51
Total 242.17 216.81 174.45 150.65 288.41

ChainedSingular30000 1 ELEMENTS 40.72 25.41 14.30 9.45 5.23
CHOLESKY 99.32 62.06 36.04 21.15 11.84

Total 231.50 184.57 134.47 111.48 229.80
8 ELEMENTS 46.14 46.63 44.14 43.02 41.59

CHOLESKY 125.97 77.39 45.58 26.72 15.03
Total 379.34 327.78 259.32 231.94 381.46

sfsdp30000 1 ELEMENTS 81.30 49.39 30.00 21.14 16.27
CHOLESKY 189.86 117.78 69.13 42.97 40.50

Total 492.46 390.37 294.41 254.89 241.41
8 threads problem due to MUMPS

sfsdp35000 1 ELEMENTS 90.10 54.93 33.76 23.37 18.37
CHOLESKY 213.01 139.67 74.50 49.03 43.51

Total 564.36 458.54 338.90 296.99 281.23
8 threads problem due to MUMPS
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Table 7: Computation time (in seconds) of SDPARA 7.3.1 for SDP problems with fully
dense SCMs using 1,2,4,8,16 processors, and 1 and 8 threads.

# processors 1 2 4 8 16
problem # threads

N.4P.DZ.pqgt1t2p 1 ELEMENTS 35551.82 17844.27 8948.75 4485.27 2267.93
CHOLESKY 629.71 278.17 150.17 95.01 54.62

Total 36276.29 18655.51 9604.72 5071.99 2803.00
8 ELEMENTS 5261.17 2665.11 1360.39 691.21 305.85

CHOLESKY 254.92 71.22 50.00 41.81 28.23
Total 5716.05 2931.07 1577.61 887.01 522.37

butcher 1 ELEMENTS 512.57 255.95 128.00 68.43 35.42
CHOLESKY 514.75 224.64 124.94 85.92 49.29

Total 1080.94 523.24 278.09 170.23 96.60
8 ELEMENTS 70.67 35.87 18.63 10.01 5.31

CHOLESKY 201.54 60.20 44.92 40.39 25.22
Total 320.48 131.14 86.33 64.11 39.30

neu3g 1 ELEMENTS 1612.06 808.03 405.10 203.65 102.93
CHOLESKY 825.92 358.26 190.67 119.40 67.30

Total 2509.47 1217.32 630.59 344.19 185.18
8 ELEMENTS 227.06 114.15 57.35 29.09 15.01

CHOLESKY 332.24 87.23 59.39 49.09 32.72
Total 614.78 244.44 144.91 94.36 57.91

reimer5 1 ELEMENTS 906.37 455.74 236.18 119.05 62.59
CHOLESKY 199.94 92.71 50.09 32.77 19.19

Total 1140.65 578.64 306.24 166.36 92.09
8 ELEMENTS 136.16 69.06 35.98 18.58 10.06

CHOLESKY 81.60 25.26 17.86 15.44 10.45
Total 246.38 120.86 70.51 45.66 28.25

shmup5 1 ELEMENTS 1066.97 545.27 262.23 138.09 76.02
CHOLESKY 10.59 7.23 4.25 3.70 2.63

Total 9072.93 8283.13 7557.27 7432.77 7371.42
8 ELEMENTS 171.74 113.56 83.04 67.65 61.97

CHOLESKY 4.77 3.85 3.24 3.46 2.89
Total 1518.61 1463.46 1432.64 1421.46 1439.77

taha1b 1 ELEMENTS 308.91 161.42 78.88 39.64 20.11
CHOLESKY 785.28 338.58 180.27 112.96 63.4

Total 1158.88 545.18 288.61 169.29 94.54
8 ELEMENTS 47.21 25.95 14.14 7.97 4.65

CHOLESKY 312.41 83.67 56.93 47.57 31.36
Total 412.72 151.08 97.94 71.08 46.02
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We need a small comment about some ’O.M.’s on 8 threads, which not occur when solving
by a single thread. To make all the threads concentrate on their assigned computation, each
thread must allocate its own memory space for the temporary matrix [U ]` of F1 and F2

(see Section 4.1). When we execute by a single thread, the memory space is already over
40GB, which is close to the maximum amount of 48GB. Therefore, we exhaust the memory
space when using 8 threads.

In the ChainedSingular problems, SDPARA 7.3.1 fails to attain its parallel efficiency,
since the structure of the SCM for these problems is too simple. When we apply a SYMAMD
(symmetric approximate minimum degree permutation) to the SCM prior to the sparse
Cholesky factorization, we can detect that its factorization will be a band-diagonal ma-
trix with a very small bandwidth. Consequently, the portion of the parallel computation
is not so significant. However, the formula-cost-based distribution for ELEMENT compo-
nent is still effective in these problems on a single thread. In multiple-threading case, all
the threads encounter many conditional jumps through many small diagonal blocks, and
therefore managing the threads becomes an obstacle which lowers parallel efficiency.

The SDP ’sfsdp35000’ is the largest SDP which SFSDP can generate on 48GB memory
space. Even for this largest SDP, SDPARA 7.3.1 can solve it in only 300 seconds. SDPARA
is becoming a powerful tool for SNL researches.

Now, we move our focus to Table 7, in which the SDPs have fully dense SCMs. SD-
PARA 7.3.1 successfully attains high scalability in both ELEMENTS and CHOLESKY
components and, as a result, the total computation time is astonishingly shortened, except
one SDP, ’shmup5’. The speedup for ’N.4p.DZ.pqgt1t2p’ on 128 threads goes over 60 times.
Its scalability 69.4 is higher than 61.2 of ’Be.1S.SV.pqgt1t2p’ (Table 4). A remarkable prop-
erty of SDPARA 7.3.1 is that it can attain higher scalability when larger SDPs are solved. In
’reimer5’, the portion of ELEMENTS and CHOLESKY in the total time is decreased from
906+199

1140
= 0.97 to 10+10

28
= 0.72, by the increment of processors and threads. This is another

evidence which indicates the parallel schemes of SDPARA 7.3.1 are greatly reinforced by
multi-threading.

The problem ’shmup5’ is exceptional because m < nmax. In this case, the chief compu-
tation bottleneck to be considered is the matrix multiplications in (5). Therefore, we can
expect that even though the row-wise distribution and the parallel Cholesky factorization
still shrink their time, their contribution is relatively small. The results in the table fit
this inference. However, we should note that multi-threading considerably reduces the total
time for this SDP. This reduction is an effect of GotoBLAS.

Finally, Table 8 compares the performance of SDPARA 7.3.1 with PCSDP 1.0r1 [19].
PCSDP is another parallel SDP solver, whose base is CSDP developed by Borchers [10].
Here, we do not include PDSDP [5], since it is not updated in the last five years. In the
SDPARA 7.3.1 experiments, we use 1 and 8 threads, while we fix it to 8 for PCSDP 1.0r1;
hence the difference due to the performance of BLAS is absence when the thread number
of SDPARA 7.3.1 is 8. Since PCSDP 1.0r1 does not print out the required computation
time, we use the Linux time command instead and thus the smallest time unit is one second
when the total time exceeds one hour. We adopt the default parameters of SDPARA 7.3.1
and PCSDP 1.0r1, respectively, except for SNLs where the stopping tolerance is set to
ε = 1.0× 10−5.

SDPARA 7.3.1 on a single thread can solve all SDPs with sparse SCMs faster than
PCSDP 1.0r1 on 8 threads whenever is comparable. The latter solver cannot solve three
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problems due to memory insufficiency. Furthermore, multi-threading widens the margin be-
tween SDPARA 7.3.1 and PCSDP 1.0r1 for ’BroydenBand30’, meanwhile for problems such
as ’ChainedSingular500’ or ’sfsdp500’, their variable matrices sizes are too small to obtain
merits from multi-threading. The main advantage of SDPARA 7.3.1 over PCSDP 1.0r1 is
that the former can handle sparse SCMs. In other words, PCSDP 1.0r1 always applies the
dense parallel Cholesky factorization. Since it is easier to achieve higher parallel efficiency
for the dense factorization than for the sparse one, the scalability of PCSDP 1.0r1 seems
better than SDPARA 7.3.1. However, if we pay attention to the computation time itself,
the difference is clear. Furthermore, the behavior of PCSDP 1.0r1 is sometimes unstable.
For example, PCSDP 1.0r1 on 2 processors solves 5 times faster than a single processor
for ’sfsdp500’. Some unknown reason makes PCSDP 1.0r1 very slow on a single processor.
In addition PCSDP 1.0r1 could not store large instances of POP or SNL problems due to
memory shortage.

For dense SCM cases, the computation time of SDPARA 7.3.1 with a single thread is
also already shorter than PCSDP 1.0r1. SDPARA 7.3.1 successfully obtains great benefits
from multi-threading which widens its speed over PCSDP 1.0r1. Hence, SDPARA 7.3.1 can
solve ’N.4P.DZ.pgqt1t2p’ 8.96 times faster than PCSDP 1.0r1 on the whole 128 threads.

6 Concluding remarks and future works

In this paper, we have discussed the new parallel schemes implemented in SDPARA 7.3.1;
the formula-cost-based distribution and the sparse Cholesky factorization for SDPs with
sparse SCMs. Through numerical experiments, we have verified that the new schemes
successfully reduce the total computation time and allows to solve large-scale SDPs which
can not be stored in the memory available for a single processor. In addition, multi-threading
has substantially enhanced the parallel performance of SDPARA 7.3.1 for all cases. In
particular, SDPARA 7.3.1 has solved extremely large-scale BroydenBand-type SDPs which
other solvers could not perform. We expect this solid solubility will enrich researches on
POPs and SNLs and extend the range of SDP applications.

The results of the current paper motivate future works. We mention two of them here.
One challenge is how we solve SDPs with (number of equality constraints) m < n (size
of block-diagonal variable matrices), which includes many practical applications, such as
’shmup5’ in shorter time. As pointed out, SDPARA usually addresses SDPs with m > n
where we mainly resolve the bottlenecks related to the SCM. Even in cases where m < n,
it might be possible to accelerated SDPARA by distributing the variable matrices X and
Y among all the processors. However, this distribution would require complicated network
communication. It will be a question whether this network overhead can be justified by
the reduction of the bottlenecks related to X and Y or not. The other issue is that there
might be a space for further improvements on multi-threading. Accessing to same data
simultaneously by multiple threads sometimes interferes on better performance and higher
accuracy. The knowledge about memory hierarchy in the computer architecture will be
important clues for this case.
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Table 8: Computation time comparison (in seconds) between SDPARA 7.3.1 (1 and 8
threads) and PCSDP 1.0r1 (8 threads) on 1,2,4,8,16 processors for SDP problems with
sparse and fully dense SCMs. ’O.M’ means out of memory.

# processors 1 2 4 8 16
problem solver

BroydenBand30 SDPARA(1) 564.56 312.42 293.12 165.68 142.66
SDPARA(8) 259.54 167.74 156.79 91.45 81.60
PCSDP(8) O.M. 1098.10 677.67 431.60 284.91

BroydenBand900 SDPARA(1) O.M. O.M. 6648.20 3874.47 2692.98
SDPARA(8) O.M. O.M. O.M. O.M. 1932.74
PCSDP(8) O.M.

ChainedSingular SDPARA(1) 2.82 2.57 2.27 2.16 2.12
500 SDPARA(8) 5.39 5.13 4.65 4.54 4.48

PCSDP(8) 4133.00 1460.66 766.12 354.42 226.01
ChainedSingular SDPARA(1) 231.50 184.57 134.47 111.48 229.80

30000 SDPARA(8) 379.34 327.78 259.32 231.94 381.46
PCSDP(8) O.M.

sfsdp500 SDPARA(1) 3.83 2.76 2.22 1.75 4.55
SDPARA(8) 6.33 4.67 3.89 3.11 11.80
PCSDP(8) 1018.59 201.92 127.02 92.91 67.68

sfsdp35000 SDPARA(1) 564.36 458.54 338.90 296.99 281.23
SDPARA(8) threads problem due to MUMPS
PCSDP(8) O.M.

Be.1S.SV SDPARA(1) 11355.65 5812.68 3005.04 1657.17 932.64
pqgt1t2p SDPARA(8) 1736.17 927.87 505.83 288.39 185.62

PCSDP(8) 12704.00 6575.00 3485.84 1972.93 1165.95
N.4P.DZ.pgqt1t2 SDPARA(1) 36276.29 18655.51 9604.72 5071.99 2803.00

SDPARA(8) 5716.05 2931.07 1577.61 887.01 522.37
PCSDP(8) 53577.00 27672.00 15178.00 8174.00 4682.00

butcher SDPARA(1) 1080.94 523.24 278.09 170.23 96.60
SDPARA(8) 320.48 131.14 86.33 64.11 39.30
PCSDP(8) 1805.67 779.43 483.73 263.48 198.43

neu3g SDPARA(1) 2509.47 1217.32 630.59 344.19 185.18
SDPARA(8) 614.78 244.44 144.91 94.36 57.91
PCSDP(8) 4745.00 1809.45 969.18 581.70 327.49

reimer5 SDPARA(1) 1140.65 578.64 306.24 166.36 92.09
SDPARA(8) 246.38 120.86 70.51 45.66 28.25
PCSDP(8) 4869.00 2847.09 1984.54 1572.26 1323.23

shmup5 SDPARA(1) 9072.93 8283.13 7557.27 7432.72 7371.42
SDPARA(8) 1518.61 1463.46 1432.64 1421.46 1439.77
PCSDP(8) 11350.00 11005.00 10480.00 11122.00 8030.00

taha1b SDPARA(1) 1158.88 545.18 288.61 169.29 94.54
SDPARA(8) 412.72 151.08 97.94 71.08 46.02
PCSDP(8) 1757.47 497.56 271.70 191.22 119.60
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