A cut-free sequent calculus with ε -symbols

Ryo Kashima kashima@is.titech.ac.jp

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology

Let \mathcal{L}^0 be a language of first-order predicate logic. The intermediate predicate logic **CD** (language \mathcal{L}^0) is obtained by adding the axiom $\forall x (A(x) \lor B) \to (\forall x A(x) \lor B)$ to the intuitionistic logic. **CD** is known to be complete with respect to Kripke-models with constant domains.

Problem 1 Find a good (i.e., cut-free and simple) sequent calculus for CD.

In [1], there are some solutions to this problem. Recently I try to give another solution which is a sequent calculus with single succedent ("LJ-style"), but this plan does not succeed yet.

 $\mathcal{L}^{\varepsilon}$ is the extension of \mathcal{L}^{0} with " ε -terms": $\varepsilon x A(x)$ and $\bar{\varepsilon} x A(x)$. The formulas $\exists x A(x) \rightarrow A(\varepsilon x A(x))$ and $A(\bar{\varepsilon} x A(x)) \rightarrow \forall x A(x)$ are called " ε -axioms".

Cut-free sequent calculus LJ+ ε (language $\mathcal{L}^{\varepsilon}$):

- Initial sequents. $A^0 \Rightarrow A^0$ where A^0 is in \mathcal{L}^0 .
- Inference rules.

The fines.
$$\frac{\Gamma, A, B, \Delta \Rightarrow \Pi}{\Gamma, B, A, \Delta \Rightarrow \Pi} \text{ (exchange)} \qquad \frac{A, A, \Gamma \Rightarrow \Pi}{A, \Gamma \Rightarrow \Pi} \text{ (contraction)}$$

$$\frac{\Gamma \Rightarrow \Pi}{A, \Gamma \Rightarrow \Pi} \text{ (weakening)} \qquad \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow A^0} \text{ (weakening)} \quad \text{where } A^0 \text{ is in } \mathcal{L}^0.$$

$$\frac{\Gamma \Rightarrow A}{A \to B, \Gamma, \Delta \Rightarrow \Pi} \text{ (\rightarrow left)} \qquad \frac{\Gamma, A^0 \Rightarrow B}{\Gamma \Rightarrow A^0 \to B} \text{ (\rightarrow right)} \quad \text{where } A^0 \text{ is in } \mathcal{L}^0.$$

$$\frac{\Gamma \Rightarrow A}{\neg A, \Gamma \Rightarrow} \text{ (\neg left)} \qquad \frac{\Gamma, A^0 \Rightarrow}{\Gamma \Rightarrow \neg A^0} \text{ (\neg right)} \quad \text{where } A^0 \text{ is in } \mathcal{L}^0.$$

$$\frac{A, \Gamma \Rightarrow \Pi}{A \land B, \Gamma \Rightarrow \Pi} \text{ (\land left)} \qquad \frac{B, \Gamma \Rightarrow \Pi}{A \land B, \Gamma \Rightarrow \Pi} \text{ (\land left)} \qquad \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \land B} \text{ (\land right)}$$

$$\frac{A, \Gamma \Rightarrow \Pi}{A \lor B, \Gamma \Rightarrow \Pi} \text{ (\lor left)} \qquad \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \lor B} \text{ (\lor right)} \qquad \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \lor B} \text{ (\lor right)}$$

$$\frac{A(t), \Gamma \Rightarrow \Pi}{\forall x A(x), \Gamma \Rightarrow \Pi} \text{ (\lor left)} \qquad \frac{\Gamma(a) \Rightarrow A(a)}{\Gamma(\bar{\varepsilon}x A(x)) \Rightarrow \forall x A(x)} \text{ (\lor right)}$$

$$\frac{A(\varepsilon x A(x)), \Gamma \Rightarrow \Pi}{\exists x A(x), \Gamma \Rightarrow \Pi} \text{ (\exists left)} \qquad \frac{\Gamma \Rightarrow A(t)}{\Gamma \Rightarrow \exists x A(x)} \text{ (\exists right)}$$

$$\frac{\Gamma(a) \Rightarrow \Pi}{\Gamma(t) \Rightarrow \Pi} \text{ (substitution)} \quad \text{where } a \text{ is not in } \Pi.$$

(a: free-variable. t: term. Π : empty or single formula.)

The characteristic formulas of ${f CD}$ are provable:

$$\frac{P(a)\Rightarrow P(a)}{\frac{P(\bar{\varepsilon}xP(x))\Rightarrow \forall xP(x)}{P(\bar{\varepsilon}xP(x))\vee Q\Rightarrow \forall xP(x)\vee Q}}\frac{Q\Rightarrow Q}{\frac{P(\bar{\varepsilon}xP(x))\vee Q\Rightarrow \forall xP(x)\vee Q}{\forall x(P(x)\vee Q)\Rightarrow \forall xP(x)\vee Q}}$$
 (\$\forall\$ left)
$$\frac{\Rightarrow \forall x(P(x)\vee Q)\Rightarrow \forall xP(x)\vee Q}{\Rightarrow \forall x(P(x)\vee Q)\Rightarrow (\forall xP(x)\vee Q)}$$

$$\frac{P(a)\Rightarrow P(a)}{\neg P(a),\ P(a)\Rightarrow} \\ \frac{P(\varepsilon x P(x)),\ P(\varepsilon x P(x))\Rightarrow}{\neg P(\varepsilon x P(x)),\ \exists x P(x)\Rightarrow} \\ \frac{\neg P(\varepsilon x P(x)),\ \exists x P(x)\Rightarrow}{\neg P(\varepsilon x P(x))\Rightarrow \neg \exists x P(x)} \\ \frac{P(\varepsilon x P(x))\Rightarrow \neg \exists x P(x)}{\neg P(\varepsilon x P(x))\lor Q\Rightarrow \neg \exists x P(x)\lor Q} \\ \frac{\neg P(\varepsilon x P(x))\lor Q\Rightarrow \neg \exists x P(x)\lor Q}{\forall x (\neg P(x)\lor Q)\Rightarrow \neg \exists x P(x)\lor Q} \\ \Rightarrow \forall x (\neg P(x)\lor Q)\rightarrow (\neg \exists x P(x)\lor Q)$$

Theorem 1 CD $\vdash A \implies \text{cut-free LJ} + \varepsilon \vdash \Rightarrow A$, where A is in \mathcal{L}^0 .

Proof (sketch)

$$\mathbf{CD} \vdash A \implies \text{cut-free sequent calculus with "connection"} \vdash \Rightarrow A$$
 ([1])
 $\implies \text{cut-free } \mathbf{LJ} + \varepsilon \vdash \Rightarrow A$ (similarly to [2]: " $\mathbf{LK}^{\cup}\mathbf{R} \Longrightarrow \mathbf{LJ}^{\cup}\mathbf{R}$ ").

Theorem 2 (by Izumi Takeuti) The converse of Theorem 1 does not hold.

Proof Counterexample:

$$\frac{P(x)\Rightarrow P(x)}{P(\bar{\varepsilon}xP(x))\Rightarrow \forall xP(x)} \stackrel{}{(\forall \text{ right})} \frac{P(x)\Rightarrow P(x)}{P(\bar{\varepsilon}xP(x))\Rightarrow \forall xP(x)} \stackrel{}{(\forall \text{ right})} \frac{Q}{P(\bar{\varepsilon}xP(x))\Rightarrow \forall xP(x)} \stackrel{}{(\forall \text{ right})} \frac{P(x)\Rightarrow P(x)}{P(\bar{\varepsilon}xP(x))\Rightarrow \forall xP(x)} \stackrel{}{(\forall \text{ right})} \frac{P(x)\Rightarrow P(x)}{P(\bar{\varepsilon}xP(x))\Rightarrow \forall xP(x)} \frac{P(x)\Rightarrow P(x)}{P(\bar{\varepsilon}xP(x))\Rightarrow \forall xP(x)} \frac{P(x)\Rightarrow P(x)}{P(\bar{\varepsilon}xP(x))\Rightarrow \forall xP(x)} \stackrel{}{(\forall \text{ right})} \stackrel{}{(\forall \text{ right})}$$

References

- R. Kashima and T. Shimura: Cut-elimination theorem for the logic of constant domains, MLQ 40, 153-172 (1994).
- [2] R. Kashima: On semilattice relevant logics, MLQ (to appear).