Introduction to Garside Calculus

Arkadius Kalka¹

¹Bar-Ilan University, Ramat Gan, Israel

WORKSHOP ON KNOT THEORY Zürich, November 21, 2013

Literature

- Patrick DEHORNOY, François DIGNE, Eddy GODELLE, Daan KRAMMER, and Jean MICHEL, Foundations of Garside Theory, book manuscript (703 pages), 2013.
- P. Dehornoy and Volker Gebhardt, Algorithms for Garside calculus, J. Symbol. Comput., to appear (40 pages), 2013.

Braid group B_n

• B_n: { n-strand braids } / isotopy

Braid group B_n

- B_n: { n-strand braids } / isotopy
- Multiplication:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Braid group B_n

- B_n: { n-strand braids } / isotopy
- Multiplication: Concatenation of braids

Braid group B_n

- B_n: { n-strand braids } / isotopy
- Multiplication: Concatenation of braids

• Generators: σ_i ($1 \le i < n$)

Braid group B_n

- B_n: { n-strand braids } / isotopy
- Multiplication: Concatenation of braids

• Generators: σ_i $(1 \le i < n)$

Braid group B_n

- B_n: { n-strand braids } / isotopy
- Multiplication: Concatenation of braids

$$(n)$$
 $(i+1)$

• Generators: σ_i $(1 \le i < n)$

• Inverse:
$$\sigma_i^{-1}$$
 $(1 \le i < n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Braid group B_n

- B_n: { n-strand braids } / isotopy
- Multiplication: Concatenation of braids

• Generators:
$$\sigma_i$$
 $(1 \le i < n)$
• Inverse: σ_i^{-1} $(1 \le i < n)$

Braid group B_n

- B_n: { n-strand braids } / isotopy
- Multiplication: Concatenation of braids

• Generators:
$$\sigma_i$$
 $(1 \le i < n)$
• Inverse: σ_i^{-1} $(1 \le i < n)$

• Artin presentation:

i + 1 **—**

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Braid group B_n

- B_n: { n-strand braids } / isotopy
- Multiplication: Concatenation of braids

• Generators:
$$\sigma_i$$
 $(1 \le i < n)$
• Inverse: σ_i^{-1} $(1 \le i < n)$

• Artin presentation:

$$B_n = \langle \sigma_1, \ldots, \sigma_{n-1} \middle| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \forall |i-j| > 1, \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & \forall i = 1, \ldots, n-2 \end{array} \rangle.$$

Braid relations

• Artin, Braid or Triple Relation:

Braid relations

• Artin, Braid or Triple Relation: $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$.

• Artin, Braid or Triple Relation: $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Far Commutativity Relation: $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \ge 1$.

• Far Commutativity Relation: $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \ge 1$.

Birman-Ko-Lee generators [BKL98]: a_{ts} $(1 \le s < t \le n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Birman-Ko-Lee generators [BKL98]: a_{ts} $(1 \le s < t \le n)$

(ロト・日本・日本・日本・日本・日本・ションの)

Braid relations: Birman-Ko-Lee presentation

• BKL-relation: $a_{ts}a_{sr} = a_{sr}a_{tr} = a_{tr}a_{ts}$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Braid relations: Birman-Ko-Lee presentation

• BKL-relation: $a_{ts}a_{sr} = a_{sr}a_{tr} = a_{tr}a_{ts}$.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Braid relations: Birman-Ko-Lee presentation

• BKL-relation: $a_{ts}a_{sr} = a_{sr}a_{tr} = a_{tr}a_{ts}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Braid relations: Birman-Ko-Lee presentation

• BKL-relation: $a_{ts}a_{sr} = a_{sr}a_{tr} = a_{tr}a_{ts}$.

• Usual far commutativity: $a_{ts}a_{rq} = a_{rq}a_{ts}$ for q < r < s < t.

BKL Far Commutativity: $a_{sr}a_{tq} = a_{tq}a_{sr} (q < r < s < t)$.

• ker
$$\nu = P_n \longrightarrow B_n \stackrel{\nu}{\longrightarrow} S_n$$
 with $\nu : \sigma_i \mapsto (i, i+1)$.

• ker
$$\nu = P_n \longrightarrow B_n \xrightarrow{\nu} S_n$$
 with $\nu : \sigma_i \mapsto (i, i+1)$.
 P_n : Pure or colored braid group

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ker $\nu = P_n \longrightarrow B_n \xrightarrow{\nu} S_n$ with $\nu : \sigma_i \mapsto (i, i+1)$. P_n : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces:

Braid groups: basic exact sequences

- ker $\nu = P_n \longrightarrow B_n \xrightarrow{\nu} S_n$ with $\nu : \sigma_i \mapsto (i, i+1)$. P_n : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces: Consider big diagonal

 $\Delta := \{ (z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i = z_j \quad \text{for some} \quad i \neq j \}.$

うして ふゆう ふほう ふほう しょうく

- ker $\nu = P_n \longrightarrow B_n \xrightarrow{\nu} S_n$ with $\nu : \sigma_i \mapsto (i, i+1)$. P_n : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces: Consider big diagonal
 - $\Delta := \{ (z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i = z_j \text{ for some } i \neq j \}.$ Then: $P_n := \pi_1(\mathbb{C}^n \setminus \Delta) \text{ and } B_n := \pi_1((\mathbb{C}^n \setminus \Delta)/S_n).$

(日) (伊) (日) (日) (日) (0) (0)

- ker $\nu = P_n \longrightarrow B_n \xrightarrow{\nu} S_n$ with $\nu : \sigma_i \mapsto (i, i+1)$. P_n : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces: Consider big diagonal
 - $\Delta := \{ (z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i = z_j \text{ for some } i \neq j \}.$ Then: $P_n := \pi_1(\mathbb{C}^n \setminus \Delta) \text{ and } B_n := \pi_1((\mathbb{C}^n \setminus \Delta)/S_n).$
- ker $\phi = F_{n-1} \longrightarrow P_n \xrightarrow{\phi} P_{n-1}$ with homo ϕ def. by "pulling out" the *n*-th strand.

- ker $\nu = P_n \longrightarrow B_n \xrightarrow{\nu} S_n$ with $\nu : \sigma_i \mapsto (i, i+1)$. P_n : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces: Consider big diagonal
 - $\Delta := \{ (z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i = z_j \text{ for some } i \neq j \}.$ Then: $P_n := \pi_1(\mathbb{C}^n \setminus \Delta) \text{ and } B_n := \pi_1((\mathbb{C}^n \setminus \Delta)/S_n).$
- ker $\phi = F_{n-1} \longrightarrow P_n \xrightarrow{\phi} P_{n-1}$ with homo ϕ def. by "pulling out" the *n*-th strand. This sequence is split: $P_n = F_{n-1} \rtimes P_{n-1}.$

(日) (伊) (日) (日) (日) (0) (0)

- ker $\nu = P_n \longrightarrow B_n \xrightarrow{\nu} S_n$ with $\nu : \sigma_i \mapsto (i, i+1)$. P_n : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces: Consider big diagonal
 - $\Delta := \{ (z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i = z_j \text{ for some } i \neq j \}.$ Then: $P_n := \pi_1(\mathbb{C}^n \setminus \Delta) \text{ and } B_n := \pi_1((\mathbb{C}^n \setminus \Delta)/S_n).$
- ker $\phi = F_{n-1} \longrightarrow P_n \xrightarrow{\phi} P_{n-1}$ with homo ϕ def. by "pulling out" the *n*-th strand. This sequence is split: $P_n = F_{n-1} \rtimes P_{n-1}.$
- Artin combing $P_n = F_{n-1} \rtimes (F_{n-2} \rtimes (F_{n-3} \rtimes \dots (F_2 \rtimes F_1)))$

Braid groups: basic exact sequences

- ker $\nu = P_n \longrightarrow B_n \xrightarrow{\nu} S_n$ with $\nu : \sigma_i \mapsto (i, i+1)$. P_n : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces: Consider big diagonal
 - $\Delta := \{ (z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i = z_j \text{ for some } i \neq j \}.$ Then: $P_n := \pi_1(\mathbb{C}^n \setminus \Delta) \text{ and } B_n := \pi_1((\mathbb{C}^n \setminus \Delta)/S_n).$
- ker $\phi = F_{n-1} \longrightarrow P_n \xrightarrow{\phi} P_{n-1}$ with homo ϕ def. by "pulling out" the *n*-th strand. This sequence is split: $P_n = F_{n-1} \rtimes P_{n-1}.$
- Artin combing $P_n = F_{n-1} \rtimes (F_{n-2} \rtimes (F_{n-3} \rtimes \dots (F_2 \rtimes F_1)))$ provides solution to WP.

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

- ker $\nu = P_n \longrightarrow B_n \xrightarrow{\nu} S_n$ with $\nu : \sigma_i \mapsto (i, i+1)$. P_n : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces: Consider big diagonal
 - $\Delta := \{ (z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i = z_j \text{ for some } i \neq j \}.$ Then: $P_n := \pi_1(\mathbb{C}^n \setminus \Delta) \text{ and } B_n := \pi_1((\mathbb{C}^n \setminus \Delta)/S_n).$
- ker $\phi = F_{n-1} \longrightarrow P_n \xrightarrow{\phi} P_{n-1}$ with homo ϕ def. by "pulling out" the *n*-th strand. This sequence is split: $P_n = F_{n-1} \rtimes P_{n-1}.$
- Artin combing P_n = F_{n-1} ⋊ (F_{n-2} ⋊ (F_{n-3} ⋊ ... (F₂ ⋊ F₁))) provides solution to WP. Combing is apparently exponential (for n ≥ 4). Garside NF provides more efficient solution.

・ロト ・聞ト ・ヨト ・ヨト

Example: pure braid (uncombed)

ж

Example: pure braid (uncombed)

 $\sigma_1 \sigma_3 \sigma_2^{-2} \sigma_3 \sigma_2 \sigma_3 \sigma_1^2 \sigma_2^{-1} \sigma_3 \sigma_1^{-1} \sigma_2 \sigma_1 \sigma_2^{-1} \sigma_3$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

・ロト ・個ト ・ヨト ・ヨト

Example: pure braid (combed)

Braid groups: Properties

• $B_n \sim \mathcal{MCG}(D_n)$

Braid groups: Properties

• $B_n \sim \mathcal{MCG}(D_n)$ with $\sigma_k \mapsto$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Braid groups: Properties

B_n ~ MCG(D_n) with σ_k → (Dehn halftwist around segment [k, k + 1])
B_n ⊂ Aut(F_n)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $B_n \sim \mathcal{MCG}(D_n)$ with $\sigma_k \mapsto (\text{Dehn halftwist around segment } [k, k+1])$
- $B_n \subset \operatorname{Aut}(F_n)$
- Braid groups are linear [Kr00, Bi00,Kr02]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $B_n \sim \mathcal{MCG}(D_n)$ with $\sigma_k \mapsto (\text{Dehn halftwist around segment } [k, k+1])$
- $B_n \subset \operatorname{Aut}(F_n)$
- Braid groups are linear [Kr00, Bi00,Kr02]
- Braid groups are residually finite.

- $B_n \sim \mathcal{MCG}(D_n)$ with $\sigma_k \mapsto (\text{Dehn halftwist around segment } [k, k + 1])$
- $B_n \subset \operatorname{Aut}(F_n)$
- Braid groups are linear [Kr00, Bi00,Kr02]
- Braid groups are residually finite.
- Coro: Braid groups are Hopfian (not isomorphic with a proper quotient).

- $B_n \sim \mathcal{MCG}(D_n)$ with
 - $\sigma_k \mapsto (\mathsf{Dehn} \; \mathsf{halftwist} \; \mathsf{around} \; \mathsf{segment} \; [k,k+1])$
- $B_n \subset \operatorname{Aut}(F_n)$
- Braid groups are linear [Kr00, Bi00,Kr02]
- Braid groups are residually finite.
- Coro: Braid groups are Hopfian (not isomorphic with a proper quotient).
- Braid groups are left-orderable [Deh94].

- $B_n \sim \mathcal{MCG}(D_n)$ with
 - $\sigma_k \mapsto (\text{Dehn halftwist around segment } [k, k+1])$
- $B_n \subset \operatorname{Aut}(F_n)$
- Braid groups are linear [Kr00, Bi00,Kr02]
- Braid groups are residually finite.
- Coro: Braid groups are Hopfian (not isomorphic with a proper quotient).
- Braid groups are left-orderable [Deh94].
- Braid groups are torsionfree.

- $B_n \sim \mathcal{MCG}(D_n)$ with
 - $\sigma_k \mapsto (\mathsf{Dehn} \mathsf{ halftwist} \mathsf{ around segment} [k, k+1])$
- $B_n \subset \operatorname{Aut}(F_n)$
- Braid groups are linear [Kr00, Bi00,Kr02]
- Braid groups are residually finite.
- Coro: Braid groups are Hopfian (not isomorphic with a proper quotient).
- Braid groups are left-orderable [Deh94].
- Braid groups are torsionfree.
- Pure braid groups are bi-orderable.

ション ふゆ く 山 マ チャット しょうくしゃ

- $B_n \sim \mathcal{MCG}(D_n)$ with
 - $\sigma_k \mapsto (\mathsf{Dehn} \mathsf{ halftwist} \mathsf{ around segment} [k, k+1])$
- $B_n \subset \operatorname{Aut}(F_n)$
- Braid groups are linear [Kr00, Bi00,Kr02]
- Braid groups are residually finite.
- Coro: Braid groups are Hopfian (not isomorphic with a proper quotient).
- Braid groups are left-orderable [Deh94].
- Braid groups are torsionfree.
- Pure braid groups are bi-orderable.
- Coro [Malcev, Neumann]: $\mathbb{Z}B_n$ has no zero divisors

- $B_n \sim \mathcal{MCG}(D_n)$ with
 - $\sigma_k \mapsto (\mathsf{Dehn} \mathsf{ halftwist} \mathsf{ around segment} [k, k+1])$
- $B_n \subset \operatorname{Aut}(F_n)$
- Braid groups are linear [Kr00, Bi00,Kr02]
- Braid groups are residually finite.
- Coro: Braid groups are Hopfian (not isomorphic with a proper quotient).
- Braid groups are left-orderable [Deh94].
- Braid groups are torsionfree.
- Pure braid groups are bi-orderable.
- Coro [Malcev, Neumann]: $\mathbb{Z}B_n$ has no zero divisors , and $\mathbb{Z}P_n$ embeds in a division algebra.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Old Definition: Garside monoids and groups

• Let $a, b \in M$ monoid. Denote $a \leq b$, if $\exists c \in M$ such that b = ac.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Old Definition: Garside monoids and groups

- Let $a, b \in M$ monoid. Denote $a \leq b$, if $\exists c \in M$ such that b = ac.
- If M is a f.g. atomic monoid then \leq and \geq are partial orders.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Old Definition: Garside monoids and groups

- Let $a, b \in M$ monoid. Denote $a \preceq b$, if $\exists c \in M$ such that b = ac.
- If M is a f.g. atomic monoid then \leq and \succeq are partial orders.
- An element Δ ∈ M is balanced if the sets of left and right divisors coincide.

- Let $a, b \in M$ monoid. Denote $a \preceq b$, if $\exists c \in M$ such that b = ac.
- If M is a f.g. atomic monoid then \leq and \succeq are partial orders.
- An element Δ ∈ M is balanced if the sets of left and right divisors coincide.

Definition

 A monoid *M* is an lcm monoid if it is Noetherian, cancellative, and ∀a, b ∈ M there exist a right and a left lcm.

- Let $a, b \in M$ monoid. Denote $a \leq b$, if $\exists c \in M$ such that b = ac.
- If M is a f.g. atomic monoid then \leq and \succeq are partial orders.
- An element Δ ∈ M is balanced if the sets of left and right divisors coincide.

Definition

- A monoid *M* is an lcm monoid if it is Noetherian, cancellative, and ∀a, b ∈ M there exist a right and a left lcm.
- Let G be a group and S ⊆ G s.t. G = ⟨S⟩. (G, S) is called a Garside system if G⁺ = ⟨S⟩⁺ is an lcm monoid, G is its group of fractions, and ∃ a balanced element Δ ∈ G⁺ s.t. S = Div(Δ).

- Let $a, b \in M$ monoid. Denote $a \leq b$, if $\exists c \in M$ such that b = ac.
- If M is a f.g. atomic monoid then \leq and \succeq are partial orders.
- An element Δ ∈ M is balanced if the sets of left and right divisors coincide.

Definition

- A monoid *M* is an lcm monoid if it is Noetherian, cancellative, and ∀a, b ∈ M there exist a right and a left lcm.
- Let G be a group and S ⊆ G s.t. G = ⟨S⟩. (G, S) is called a Garside system if G⁺ = ⟨S⟩⁺ is an lcm monoid, G is its group of fractions, and ∃ a balanced element Δ ∈ G⁺ s.t. S = Div(Δ). We call G a Garside group, G⁺ a Garside monoid, and Δ a Garside element.

- Let $a, b \in M$ monoid. Denote $a \leq b$, if $\exists c \in M$ such that b = ac.
- If M is a f.g. atomic monoid then \leq and \succeq are partial orders.
- An element Δ ∈ M is balanced if the sets of left and right divisors coincide.

Definition

- A monoid *M* is an lcm monoid if it is Noetherian, cancellative, and ∀a, b ∈ M there exist a right and a left lcm.
- Let G be a group and S ⊆ G s.t. G = ⟨S⟩. (G, S) is called a Garside system if G⁺ = ⟨S⟩⁺ is an lcm monoid, G is its group of fractions, and ∃ a balanced element Δ ∈ G⁺ s.t. S = Div(Δ). We call G a Garside group, G⁺ a Garside monoid, and Δ a Garside element. The elements of S are called simple elements.

Garside groups: Examples

• Free abelian group of rank *n*.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Garside groups: Examples

• Free abelian group of rank *n*.

•
$$(B_n, B_n^+, \Delta_n)$$
 with $\Delta_n = \sigma_1(\sigma_2 \sigma_1) \dots (\sigma_{n-1} \sigma_{n-2} \dots \sigma_1)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Garside groups: Examples

• Free abelian group of rank *n*.

•
$$(B_n, B_n^+, \Delta_n)$$
 with $\Delta_n = \sigma_1(\sigma_2\sigma_1) \dots (\sigma_{n-1}\sigma_{n-2} \dots \sigma_1)$

•
$$(B_n, BKL_n^+, \delta_n)$$
 with $\delta_n = a_{n,n-1}a_{n-1,n-2}\dots a_{2,1}$,

$$\langle \{a_{ts}\}_{s < t} \ \middle| \ \begin{array}{c} a_{ts}a_{rq} = a_{rq}a_{ts}, \ (t - r)(t - q)(s - r)(s - q) < 0 \\ a_{ts}a_{sr} = a_{tr}a_{ts} = a_{sr}a_{tr}, \ t > s > r \end{array} \right\rangle$$

This gives the Birman-Ko-Lee (BKL) or dual Garside structure on B_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Garside groups: Examples

• Free abelian group of rank *n*.

•
$$(B_n, B_n^+, \Delta_n)$$
 with $\Delta_n = \sigma_1(\sigma_2\sigma_1) \dots (\sigma_{n-1}\sigma_{n-2} \dots \sigma_1)$

•
$$(B_n, BKL_n^+, \delta_n)$$
 with $\delta_n = a_{n,n-1}a_{n-1,n-2} \dots a_{2,1}$,

$$\langle \{a_{ts}\}_{s < t} \middle| \begin{array}{c} a_{ts}a_{rq} = a_{rq}a_{ts}, \ (t - r)(t - q)(s - r)(s - q) < 0 \\ a_{ts}a_{sr} = a_{tr}a_{ts} = a_{sr}a_{tr}, \ t > s > r \end{array} \Big\rangle$$

This gives the Birman-Ko-Lee (BKL) or dual Garside structure on B_n .

• Artin groups of finite type. Also 2 Garside structures known.

ション ふゆ く 山 マ チャット しょうくしゃ

Garside groups: Examples

• Free abelian group of rank *n*.

•
$$(B_n, B_n^+, \Delta_n)$$
 with $\Delta_n = \sigma_1(\sigma_2 \sigma_1) \dots (\sigma_{n-1} \sigma_{n-2} \dots \sigma_1)$

•
$$(B_n, BKL_n^+, \delta_n)$$
 with $\delta_n = a_{n,n-1}a_{n-1,n-2} \dots a_{2,1}$,

$$\langle \{a_{ts}\}_{s < t} \left| \begin{array}{c} a_{ts}a_{rq} = a_{rq}a_{ts}, \ (t - r)(t - q)(s - r)(s - q) < 0 \\ a_{ts}a_{sr} = a_{tr}a_{ts} = a_{sr}a_{tr}, \ t > s > r \end{array} \right\rangle$$

This gives the Birman-Ko-Lee (BKL) or dual Garside structure on B_n .

- Artin groups of finite type. Also 2 Garside structures known.
- $B_3 = \langle a, d \mid d^2 = ada \rangle = \langle d, D \mid d^3 = D^2 \rangle$,
- Pure braid group $P_3 = \langle a, b, c \mid abc = bca = cab \rangle$,
- Knot groups are Garside iff they are torus knot groups $T(p,q) = \langle x, y \mid x^p = y^q \rangle$,

Garside groups: Examples

• Free abelian group of rank n.

•
$$(B_n, B_n^+, \Delta_n)$$
 with $\Delta_n = \sigma_1(\sigma_2\sigma_1) \dots (\sigma_{n-1}\sigma_{n-2} \dots \sigma_1)$

•
$$(B_n, BKL_n^+, \delta_n)$$
 with $\delta_n = a_{n,n-1}a_{n-1,n-2} \dots a_{2,1}$,

$$\langle \{a_{ts}\}_{s < t} \left| \begin{array}{c} a_{ts}a_{rq} = a_{rq}a_{ts}, \ (t - r)(t - q)(s - r)(s - q) < 0 \\ a_{ts}a_{sr} = a_{tr}a_{ts} = a_{sr}a_{tr}, \ t > s > r \end{array} \right\rangle$$

This gives the Birman-Ko-Lee (BKL) or dual Garside structure on B_n .

- Artin groups of finite type. Also 2 Garside structures known.
- $B_3 = \langle a, d \mid d^2 = a da \rangle = \langle d, D \mid d^3 = D^2 \rangle$,
- Pure braid group $P_3 = \langle a, b, c \mid abc = bca = cab \rangle$,
- Knot groups are Garside iff they are torus knot groups $T(p,q) = \langle x, y \mid x^p = y^q \rangle$,
- $G = \langle a, b \mid ababa = b^2 \rangle$ with $\Delta = (ab)^3 = (ba)^3 = b^3$ is Garside group with no weighted presentation.
- Many more: torus link groups, complex braid groups, structure

Artin Garside element Δ_n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Artin Garside element Δ_n

 $\Delta_n = \sigma_1(\sigma_2\sigma_1)\dots(\sigma_{n-1}\sigma_{n-2}\dots\sigma_1)$

Artin Garside element: induced inner automorphism

Garside families

Artin Garside element: induced inner automorphism

Dual Garside element δ_n

$$\delta_n = a_{n,n-1}a_{n-1,n-2}\cdots a_{21}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Dual Garside element δ_n : induced automorphism

 $a_{ts}\delta_n = \delta_n a_{t+1,s+1} \quad \Leftrightarrow \tau(a_{ts}) = a_{t+1,s+1}$

- ロト - 4 目 - 4 目 - 4 目 - 9 9 9

Dual Garside element δ_n : induced automorphism

$$a_{ts}\delta_n = \delta_n a_{t+1,s+1} \quad \Leftrightarrow \tau(a_{ts}) = a_{t+1,s+1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dual Garside element δ_n : induced automorphism

$$a_{n,n-1}\delta_n = \delta_n a_{n1} \quad \Leftrightarrow \tau(a_{n,n-1}) = a_{n1}$$

Dual Garside element δ_n : induced automorphism

Garside families

Lattice of simples for Artin-Garside structure (n = 3, 4)

Dual lattice of simple elements (n = 3, 4)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Artin groups of finite type

Cardinalities of sets of simple elements $S = Div(\Delta)$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Artin groups of finite type

Cardinalities of sets of simple elements $S = Div(\Delta)$.

Infinite families:

Туре	A _n	B _n	D _n	$I_2(m)$
classical	(n+1)!	2 ^{<i>n</i>} <i>n</i> !	$2^{n-1}n!$	2 <i>m</i>
dual	$\frac{1}{n+2}\binom{2n+2}{n+1}$	$\binom{2n}{n}$	$\binom{2n}{n} - \binom{2n-2}{n-2}$	m+2

Artin groups of finite type

Cardinalities of sets of simple elements $S = Div(\Delta)$.

Infinite families:

Туре	A _n	B _n	D _n	$I_2(m)$
classical	(n+1)!	2 ^{<i>n</i>} <i>n</i> !	$2^{n-1}n!$	2 <i>m</i>
dual	$\frac{1}{n+2}\binom{2n+2}{n+1}$	$\binom{2n}{n}$	$\binom{2n}{n} - \binom{2n-2}{n-2}$	m+2

Exceptional cases:

Туре	H_3	F ₄	H_4	E ₆	E ₇	E ₈
classical	120	1152	14400	51840	2903040	696729600
dual	32	105	280	833	4160	25080

Yet another Garside group [Pi01]

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Properties of Garside groups

• Garside groups are torsionfree (like braid groups)

ション ふゆ く 山 マ チャット しょうくしゃ

- Garside groups are torsionfree (like braid groups)
- The center of every Δ-pure Garside group is an infinite cyclic subgroup.
- Every Garside monoid is an iterated crossed product of some Δ-pure small Gaussian monoids.
- Garside groups are automatic. They admit normal forms computable in $O(l^2)$ time complexity.

ション ふゆ く 山 マ チャット しょうくしゃ

- Garside groups are torsionfree (like braid groups)
- The center of every Δ-pure Garside group is an infinite cyclic subgroup.
- Every Garside monoid is an iterated crossed product of some Δ-pure small Gaussian monoids.
- Garside groups are automatic. They admit normal forms computable in $O(l^2)$ time complexity.
- Garside groups have solvable conjugacy problem (time complexity exponential in *I*)

ション ふゆ く 山 マ チャット しょうくしゃ

- Garside groups are torsionfree (like braid groups)
- The center of every Δ-pure Garside group is an infinite cyclic subgroup.
- Every Garside monoid is an iterated crossed product of some Δ-pure small Gaussian monoids.
- Garside groups are automatic. They admit normal forms computable in $O(l^2)$ time complexity.
- Garside groups have solvable conjugacy problem (time complexity exponential in *I*)
- Open problems: Are Garside groups linear or residually finite?

- Garside groups are torsionfree (like braid groups)
- The center of every Δ-pure Garside group is an infinite cyclic subgroup.
- Every Garside monoid is an iterated crossed product of some Δ-pure small Gaussian monoids.
- Garside groups are automatic. They admit normal forms computable in $O(l^2)$ time complexity.
- Garside groups have solvable conjugacy problem (time complexity exponential in *I*)
- Open problems: Are Garside groups linear or residually finite?
- Are Garside groups left-orderable?

- Garside groups are torsionfree (like braid groups)
- The center of every Δ-pure Garside group is an infinite cyclic subgroup.
- Every Garside monoid is an iterated crossed product of some Δ-pure small Gaussian monoids.
- Garside groups are automatic. They admit normal forms computable in $O(l^2)$ time complexity.
- Garside groups have solvable conjugacy problem (time complexity exponential in *I*)
- Open problems: Are Garside groups linear or residually finite?
- Are Garside groups left-orderable?

Word problem in Garside groups

- Every $a \in G$ admits unique Δ -normal form $\Delta^p s_1 \cdots s_l$ with Infimum $p = \inf(a) = \max\{r \in \mathbb{Z} \mid \Delta^r \preceq a\}, s_i \in S \setminus \{1, \Delta\}$ s.t. $s_i = (s_i \cdots s_l) \land \Delta$. Supremum $\sup(a) = p + l$.
- Every $a \in G$ admits unique fractional normal form $a = b^{-1}c = t_{-\rho}^{-1} \cdots t_1^{-1}s_1 \cdots s_{l+\rho}$ with $s_i, t_i \in S \setminus \{1, \Delta\}$ s.t. $s_1 \wedge t_1 = 1$.
- The left-greedy condition $(s_i s_{i+1}) \land \Delta = s_i$ is equivalent to:

$$\forall 1 \neq t \leq s_{i+1}$$
: $s_i t \notin S = Div(\Delta)$.

• The word problem in Garside groups can be solved in $O(l^2)$.

We compute the Δ -LNF and the fractional LNF of the 4-strand braid $b = \sigma_2 \sigma_3 \sigma_2^{-1} \sigma_1$ for the Garside systems $(B_4, \text{Div}(\Delta_4))$ and $(B_4, \text{Div}(\delta_4))$ are

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

We compute the Δ -LNF and the fractional LNF of the 4-strand braid $b = \sigma_2 \sigma_3 \sigma_2^{-1} \sigma_1$ for the Garside systems $(B_4, \text{Div}(\Delta_4))$ and $(B_4, \text{Div}(\delta_4))$ are

$$b \stackrel{LNF}{=} \Delta_4^{-1} \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 \mid \sigma_2 \sigma_3 \sigma_1,$$

$$\stackrel{fLNF}{=} \sigma_3^{-1} \mid\mid \sigma_2 \sigma_3 \sigma_1,$$

$$\stackrel{LNF*}{=} \delta_4^{-1} \delta_{(421)} \mid \delta_{321} \mid a_{43},$$

$$\stackrel{fLNF*}{=} a_{43}^{-1} \mid\mid \delta_{321} \mid a_{43},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

respectively.

We compute the Δ -LNF and the fractional LNF of the 4-strand braid $b = \sigma_2 \sigma_3 \sigma_2^{-1} \sigma_1$ for the Garside systems $(B_4, \text{Div}(\Delta_4))$ and $(B_4, \text{Div}(\delta_4))$ are

$$b \stackrel{LNF}{=} \Delta_4^{-1} \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 \mid \sigma_2 \sigma_3 \sigma_1,$$

$$\stackrel{fLNF}{=} \sigma_3^{-1} \mid\mid \sigma_2 \sigma_3 \sigma_1,$$

$$\stackrel{LNF*}{=} \delta_4^{-1} \delta_{(421)} \mid \delta_{321} \mid a_{43},$$

$$\stackrel{fLNF*}{=} a_{43}^{-1} \mid\mid \delta_{321} \mid a_{43},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

respectively. Computation: see blackboard.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Motivation: Why Conjugacy Problem in braid groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation: Why Conjugacy Problem in braid groups

• Fundamental problem in combinatorial group theory.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivation: Why Conjugacy Problem in braid groups

- Fundamental problem in combinatorial group theory.
- Isotopy of knots/links w.r.t an axis, i.e. consider MII-moves only in Markov problem.

Motivation: Why Conjugacy Problem in braid groups

- Fundamental problem in combinatorial group theory.
- Isotopy of knots/links w.r.t an axis, i.e. consider MII-moves only in Markov problem.
- Applications in Post-quantum public key crytography, in particular non-commutative and non-associative PKC.

Connection to Dehornoy ordering

Let < be left-inv. ordering of B_n s.t. $1 < \Delta_n$. If $b \sim b'$, then $\Delta_n^{2p} \le b < \Delta_n^{2p+2}$ implies $\Delta_n^{2p-2} \le b' < \Delta_n^{2p+4}$.

Open problem: Find minimal elt (w.r.t. <) inside conjugacy class.

Motivation: Why Conjugacy Problem in braid groups

- Fundamental problem in combinatorial group theory.
- Isotopy of knots/links w.r.t an axis, i.e. consider MII-moves only in Markov problem.
- Applications in Post-quantum public key crytography, in particular non-commutative and non-associative PKC.

Connection to Dehornoy ordering

Let < be left-inv. ordering of B_n s.t. $1 < \Delta_n$. If $b \sim b'$, then $\Delta_n^{2p} \le b < \Delta_n^{2p+2}$ implies $\Delta_n^{2p-2} \le b' < \Delta_n^{2p+4}$.

Open problem: Find minimal elt (w.r.t. <) inside conjugacy class.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Conjugacy in Garside groups

Invariant subsets with "convexity property".

 $(G, \operatorname{Div}(\Delta))$ Garside system. For any $a \in G$ there exists a finite subset l(a) s.t. (a) $l(a) = l(b) \Leftrightarrow a \sim b$, and (b) the following "convexity property" holds: Let and $a, b \in l(a)$ be conjugate. Wlog $b = x^{-1}ax = \tilde{x} a \tilde{x}^{-1}$ for some $x, \tilde{x} \in G^+$. Let $s_1 = x \land \Delta$ and $\tilde{s}_1 = x \tilde{\land} \Delta$. Then $s_1^{-1}as_1, \tilde{s}_1a\tilde{s}_1^{-1} \in l$.

Conjugacy in Garside groups

Invariant subsets with "convexity property".

 $(G, \operatorname{Div}(\Delta))$ Garside system. For any $a \in G$ there exists a finite subset I(a) s.t. (a) $I(a) = I(b) \Leftrightarrow a \sim b$, and (b) the following "convexity property" holds: Let and $a, b \in I(a)$ be conjugate. Wlog $b = x^{-1}ax = \tilde{x} a \tilde{x}^{-1}$ for some $x, \tilde{x} \in G^+$. Let $s_1 = x \wedge \Delta$ and $\tilde{s}_1 = x \tilde{\wedge} \Delta$. Then $s_1^{-1}as_1, \tilde{s}_1a\tilde{s}_1^{-1} \in I$.

Corollary.

 $(G, \operatorname{Div}(\Delta))$ Garside system. $a, b \in G$ are conjugate iff there exist $l \in \mathbb{N}$, $\tilde{a} = v_0, v_1, \ldots, v_l = \tilde{b} \in l(a)$, and $s_1, \ldots, s_l \in S$ such that

$$\tilde{a} = v_0 \xrightarrow{s_1} v_1 \xrightarrow{s_2} v_2 \xrightarrow{s_3} \dots \xrightarrow{s_{l-1}} v_{l-1} \xrightarrow{s_l} v_l = \tilde{b}.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

History of conjugacy in braid and Garside groups

• Summit Sets [Ga69]: $SS(a) = \{b \sim a \mid \inf(b) = \inf_{s}(a)\}$ with summit infimum $\inf_{s}(a) = \max\{\inf(b) \mid b \sim a\}$.

- Summit Sets [Ga69]: $SS(a) = \{b \sim a \mid \inf(b) = \inf_{s}(a)\}$ with summit infimum $\inf_{s}(a) = \max\{\inf(b) \mid b \sim a\}$.
- Repeated Cycling/Decyling operations [EM94] lead into the Super Summit Set SSS(s) = C(a) ∩ [inf_s(a), sup_s(a)].

- Summit Sets [Ga69]: $SS(a) = \{b \sim a \mid \inf(b) = \inf_{s}(a)\}$ with summit infimum $\inf_{s}(a) = \max\{\inf(b) \mid b \sim a\}$.
- Repeated Cycling/Decyling operations [EM94] lead into the Super Summit Set SSS(s) = C(a) ∩ [inf_s(a), sup_s(a)].
- Efficient algorithms for Minimal simple elements [GM-F03].

- Summit Sets [Ga69]: $SS(a) = \{b \sim a \mid \inf(b) = \inf_{s}(a)\}$ with summit infimum $\inf_{s}(a) = \max\{\inf(b) \mid b \sim a\}$.
- Repeated Cycling/Decyling operations [EM94] lead into the Super Summit Set SSS(s) = C(a) ∩ [inf_s(a), sup_s(a)].
- Efficient algorithms for Minimal simple elements [GM-F03].
- Ultra Summit sets [Geb05]: Cyclic parts of SSS under iterated cycling.

- Summit Sets [Ga69]: $SS(a) = \{b \sim a \mid \inf(b) = \inf_{s}(a)\}$ with summit infimum $\inf_{s}(a) = \max\{\inf(b) \mid b \sim a\}$.
- Repeated Cycling/Decyling operations [EM94] lead into the Super Summit Set SSS(s) = C(a) ∩ [inf_s(a), sup_s(a)].
- Efficient algorithms for Minimal simple elements [GM-F03].
- Ultra Summit sets [Geb05]: Cyclic parts of SSS under iterated cycling.
- Cyclic sliding operation and sliding circuits SL [GebGM09].

- Summit Sets [Ga69]: $SS(a) = \{b \sim a \mid \inf(b) = \inf_{s}(a)\}$ with summit infimum $\inf_{s}(a) = \max\{\inf(b) \mid b \sim a\}$.
- Repeated Cycling/Decyling operations [EM94] lead into the Super Summit Set SSS(s) = C(a) ∩ [inf_s(a), sup_s(a)].
- Efficient algorithms for Minimal simple elements [GM-F03].
- Ultra Summit sets [Geb05]: Cyclic parts of SSS under iterated cycling.
- Cyclic sliding operation and sliding circuits SL [GebGM09].
- $SL \subseteq USS \subseteq SSS \subseteq SS$.

- Summit Sets [Ga69]: $SS(a) = \{b \sim a \mid \inf(b) = \inf_{s}(a)\}$ with summit infimum $\inf_{s}(a) = \max\{\inf(b) \mid b \sim a\}$.
- Repeated Cycling/Decyling operations [EM94] lead into the Super Summit Set SSS(s) = C(a) ∩ [inf_s(a), sup_s(a)].
- Efficient algorithms for Minimal simple elements [GM-F03].
- Ultra Summit sets [Geb05]: Cyclic parts of SSS under iterated cycling.
- Cyclic sliding operation and sliding circuits SL [GebGM09].
- $SL \subseteq USS \subseteq SSS \subseteq SS$.
- Families of permutation braids with SL of exponential size (in *n*) known.

New example I: Infinite braids

Consider the braid group

$$B_{\infty} = \langle \sigma_1, \sigma_2, \dots \left| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \forall i, j \in \mathbb{N} : |i - j| \ge 2 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & \forall i \in \mathbb{N} \end{array} \right\rangle$$

on infinitely many strands. Let B^+_{∞} the monoid generated by σ_i 's only. Set $S_{\infty} = \bigcup_{i=1}^{\infty} \text{Div}(\Delta_n)$.

Normal decomposition

Every braid in B_{∞}^+ admits a unique decomposition of the form $s_1 \cdots s_p$ with s_1, \ldots, s_p in S_{∞} satisfying $s_p \neq 1$, and, for every *i*,

$$\forall t \neq 1 : (t \leq s_{i+1} \Rightarrow s_i t \notin S_{\infty}).$$

Note: Monoid not finitely generated. Infinitely many simple elements. No Garside element.

New example II: Klein bottle group

Consider $K = \pi_1$ (Klein bottle) = $\langle a, b | ba = ab^{-1} \rangle$. Let $K^+ = \langle a, b | a = bab \rangle$ be the Klein bottle monoid.

$$a^2b = ab^{-1} \cdot bab = ba \cdot a = ba^2 \Leftrightarrow [a^2, b] = 1.$$

We conclude: Garside element $\Delta = a^2$ is central.

Normal decomposition

Every element of K admits a unique decomposition of the form $\Delta^{p} s_{1} \cdots s_{l}$ with $p \in \mathbb{Z}$ and s_{1}, \ldots, s_{l} in $\text{Div}(\Delta)$ satisfying $s_{1} \neq \Delta$, $s_{l} \neq 1$, and, for every i,

$$\forall g \in \mathcal{K}^+ \setminus \{1\}: \quad (g \preceq s_{i+1} \Rightarrow s_ig \not\preceq \Delta).$$

Note: Indeed, here we have $l \in \{0, 1\}$. Monoid NOT Noetherian. Infinitely many divisors of Garside element a^2 .

Garside families

Cayley graph of Klein bottle monoid inside Klein bottle group

・ロト ・ 日 ・ モート ・ 田 ・ うへで

New example III: Wreathed free abelian group I

Consider the wreathed free abelian group $G = \mathbb{Z} \wr S_n = \mathbb{Z} \rtimes S_n$ with binary operation given by

$$(v,\pi)*(v',\pi')=(v+(v'\pi^{-1}),\pi\pi').$$

We put $a_i = ((0, ..., 0, 1, 0, ..., 0), id_{S_n})$ for all $1 \le i \le n$, and $s_i = ((0, ..., 0), (i, i + 1))$ for all $1 \le i \le n - 1$. Further denote $1 = ((0, ..., 0), id_{S_n})$.

Presentation of $\mathbb{Z} \wr S_n$

 $\mathbb{Z} \wr S_n$ admits a presentation with generators $a_1, \ldots, a_n, s_1, \ldots, s_{n-1}$ and relations

$$\begin{aligned} & [a_i, a_j] = 1 \quad \forall i, j, \qquad [s_i, s_j] = 1 \quad \forall |i - j| \ge 2, \\ & s_i s_j s_i = s_j s_i s_j \quad \forall |i - j| = 1, \qquad s_i^2 = 1 \quad \forall i, \\ & [s_i, a_j] = 1 \quad \forall j \ne i, i + 1, \qquad s_i a_i = a_{i+1} s_i \quad \forall i \le n - 1, \\ & a_i s_i = s_i a_{i+1} \quad i \le n - 1. \end{aligned}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

New example III: Wreathed free abelian group II

Consider the monoid $\mathbb{N}^n \wr S_n$ consisting of all pairs (v, π) satisfying $v(k) \ge 0$ for all $k \le n$. We denote by S the subset of $\mathbb{N}^n \wr S_n$ consisting of all pairs (v, id) satisfying $v(k) \in \{0, 1\}$ for all $k \le n$. We put $\Delta_n = ((1, \ldots, 1), \operatorname{id}_{S_n})$.

Normal decomposition

Every element of the group $\mathbb{Z}^n \wr S_n$ admits a unique decomposition of the form $\Delta_n^p s_1 \cdots s_l$ with $p \in \mathbb{Z}$, $s_1, \ldots, s_{l-1} \in S$, and $s_p \in SS_n$ satisfying $s_1 \neq \Delta_n$, $s_p \notin S_n$, and, for every *i*,

 $\forall g \in (\mathbb{N}^n \wr S_n) \setminus \{1\} : (g \preceq s_{i+1} \Rightarrow s_ig \not\preceq \Delta_n).$

Note: $\mathbb{N}^n \wr S_n$ is NOT a Garside monoid since it has nontrivial invertible elements.

New example IV: Ribbon categories I

For n > 2 and $1 \le i, j < n$, we denote by BRn(i, j) the family of all braids of B_n that contain an (i, j)-ribbon.

Let BR_n be the groupoid of *n*-strand braid ribbons, whose object set is $\{1, \ldots, n-1\}$ and whose family of morphisms with source *i* and target *j* is $BR_n(i, j)$. Let BR_n^+ be the subcategory of BR_n in which the morphisms are required to lie in B_n^+ .

New example IV: Ribbon categories II

For $1 \le i < n$, we denote by $S_n(i)$ the family of all braids in B_n^+ that leftdivide Δ_n and contain an (i, j)-ribbon for some j. We denote by S the union of all families $S_n(i)$ for i = 1, ..., n - 1. Observe: Δ_n contains a (i, n - i) ribbon for all $1 \le i < n$.

Normal decomposition

Every *n*-strand braid ribbon admits an unique decomposition of the form $\Delta_n^p s_1 \cdots s_l$ with $p \in \mathbb{Z}$ and s_1, \ldots, s_l morphisms of S satisfying $s_1 \neq \Delta_n$, $s_l \neq 1$, and, for every *i*,

 $\forall g \in BR_n^+ \setminus \{1\}: (g \leq s_{i+1} \Rightarrow s_ig \not\leq \Delta_n).$

Note: The multiplication is not defined everywhere.

$S_4(1)$

- A category C is called left-cancellative (resp. right-cancellative) if fg = fg' (resp. gf = g'f) implies g = g' for all $f, g, g' \in C$.
- For $f, g \in C$ left-cancellative category, we denote $f \leq g$, $\exists g' \in C \text{ s.t. } fg' = g \text{ holds.}$

Definition

For $S \subseteq C$ left-cancellative category, a C-path $g_1 | \cdots | g_p$ is called S-greedy (resp. S-normal) if, for every i < p, we have

$$\forall s \in \mathcal{S} \ \forall f \in \mathcal{C} : \quad s \preceq fg_ig_{i+1} \Rightarrow s \preceq fg_i$$

(resp. this and, in addition, every entry g_i lies in $S^{\#} := SC^{\times} \cup C^{\times}$.

 $S \subseteq C$ (C left-cancellative category) is called a Garside family if every element of C admits an S-normal decomposition.

Garside germs I

Definition

A germ is a triple $(S, 1_S, \bullet)$ where S is a precategory, 1_S is a subfamily of S consisting of an element 1_x with source and target x for each object x, and \bullet is a partial map of $S^{[2]}$ into S that satisfies

- if $s \bullet t$ is defined, its source is the source of s and its target is the target of t,
- $1_x \bullet s = s = s \bullet 1_y$ hold or each s in $\mathcal{S}(x, y)$,
- if $r \bullet s$ and $s \bullet t$ are defined, then $(r \bullet s) \bullet t$ is defined iff $r \bullet (s \bullet t)$ is, in which case they are equal.

The germ is called left-associative if, for all $r, s, t \in S$, it satisfies: if $(r \bullet s) \bullet t$ is defined, then $s \bullet t$ is defined, and it is called left-cancellative if, for all $s, t, t' \in S$, it satisfies if $s \bullet t$ and $s \bullet t'$ are defined and equal, then t = t' holds.

Garside germs II

Defintion

If \underline{S} is a germ, we denote by $Cat(\underline{S})$ the category $\langle S | \mathcal{R}_{\bullet} \rangle$, where \mathcal{R}_{\bullet} is the family of all relations $s | t = s \bullet t$ with $s, t \in S$ and $s \bullet t$ defined.

•	1	а	b	ab	ba	Δ	
1	1	а	b	ab	ba Δ	Δ	-
а	а		ab		Δ		
b	a b	ba		Δ			Example: Germ \underline{S} of B_3^+ .
ab	ab	Δ					
ba	ba		Δ				
Δ	Δ						

Definition

A germ \underline{S} is said to be a Garside germ if \underline{S} embeds in $Cat(\underline{S})$, the latter is left-cancellative, and \underline{S} is a Garside family in that category.

Example: Not a Garside family

Consider $M = \langle a, b \mid ab = ba, a^2 = b^2 \rangle$. Let $S = \{1, a, b, ab, a^2\}$.

The	germ	$\underline{\mathcal{S}}$ inc	luced	by S	<i>S</i> .
•	1	а	Ь	a ²	ab
1	1	а	Ь	a ²	ab
а	а	a^2	ab		
Ь	Ь	ab	a ²		
a ²	a ²				
ab	ab				

The category (here the monoid) $Cat(\underline{S})$ is (isomorphic to) M, as the relations $a|a = a^2 = b|b$ and a|b = ab = b|a belong to the family \mathcal{R}_{\bullet} . However S is not a Garside family in M, as a^3 admits no S-normal decomposition: $a^2|a$ is not S-greedy as ab left-divides a^3 but not a^2 , and ab|b is

not S-greedy as a^2 left-divides a^3 but not ab, $a \to a^2$, $a \to a^2$, $a \to a^2$

Recognizing Garside families

Definition

Assume that \underline{S} is a germ. (i) We define the local left-divisibility relation \preceq_S of S by saying that $s \preceq_S t$ holds if and only if there exists t' in S satisfying t = st'. (ii) For $s_1 | s_2$ in $S^{[2]}$, we put $\mathcal{J}(s_1, s_2) = \{t \in S \mid s_1 \bullet t \text{ defined and } t \preceq_S s_2\}.$

Proposition [DDGKT13]

A germ \underline{S} is a Garside germ if and only if it is left-associative, left-cancellative, and if, for any s_1 , s_2 in S there exists a \leq_{S} -greatest element in $\mathcal{J}(s_1, s_2)$ (that is, an element r in $\mathcal{J}(s_1, s_2)$ such that $t \leq_{S} r$ holds for all $t \in \mathcal{J}(s_1, s_2)$).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Thank you!!