Introduction to Garside Calculus

Arkadius Kalka ${ }^{1}$

${ }^{1}$ Bar-Ilan University, Ramat Gan, Israel

WORKSHOP ON KNOT THEORY

Zürich, November 21, 2013

Literature

- Patrick DEHORNOY, François DIGNE, Eddy GODELLE, Daan KRAMMER, and Jean MICHEL, Foundations of Garside Theory, book manuscript (703 pages), 2013.
- P. Dehornoy and Volker Gebhardt, Algorithms for Garside calculus, J. Symbol. Comput., to appear (40 pages), 2013.

Braid group B_{n}

- $B_{n}:\{n$-strand braids $\} /$ isotopy

Braid group B_{n}

- $B_{n}:\{n$-strand braids $\} /$ isotopy
- Multiplication:

Braid group B_{n}

- $B_{n}:\{n$-strand braids $\} /$ isotopy
- Multiplication: Concatenation of braids

Braid group B_{n}

- $B_{n}:\{n$-strand braids $\} /$ isotopy
- Multiplication: Concatenation of braids
- Generators: $\sigma_{i}(1 \leq i<n)$

Braid group B_{n}

- $B_{n}:\{n$-strand braids $\} /$ isotopy
- Multiplication: Concatenation of braids
- Generators: $\sigma_{i}(1 \leq i<n)$

Braid group B_{n}

- $B_{n}:\{n$-strand braids $\} /$ isotopy
- Multiplication: Concatenation of braids
- Generators: $\sigma_{i}(1 \leq i<n)$

- Inverse: $\sigma_{i}^{-1}(1 \leq i<n)$

Braid group B_{n}

- $B_{n}:\{n$-strand braids $\} /$ isotopy
- Multiplication: Concatenation of braids
- Generators: $\sigma_{i}(1 \leq i<n)$

- Inverse: $\sigma_{i}^{-1}(1 \leq i<n)$

Braid group B_{n}

- $B_{n}:\{n$-strand braids $\} /$ isotopy
- Multiplication: Concatenation of braids
- Generators: $\sigma_{i}(1 \leq i<n)$

- Inverse: $\sigma_{i}^{-1}(1 \leq i<n)$ $i+1$
- Artin presentation:

Braid group B_{n}

- $B_{n}:\{n$-strand braids $\} /$ isotopy
- Multiplication: Concatenation of braids
- Generators: $\sigma_{i}(1 \leq i<n)$

- Inverse: $\sigma_{i}^{-1}(1 \leq i<n)$

$$
i+1
$$

- Artin presentation:

$$
B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{ll}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \forall|i-j|>1, \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & \forall i=1, \ldots, n-2
\end{array}\right.\right\rangle
$$

Braid relations

- Artin, Braid or Triple Relation:

Braid relations

- Artin, Braid or Triple Relation: $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

Braid relations

- Artin, Braid or Triple Relation: $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

Braid relations

- Artin, Braid or Triple Relation: $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

- Far Commutativity Relation: $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for $|i-j| \geq 1$.

Braid relations

- Artin, Braid or Triple Relation: $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

- Far Commutativity Relation: $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for $|i-j| \geq 1$.

Birman-Ko-Lee generators [BKL98]: $a_{t s}(1 \leq s<t \leq n)$

Birman-Ko-Lee generators [BKL98]: $a_{t s}(1 \leq s<t \leq n)$

$$
a_{t s}=\sigma_{t-1} \cdots \sigma_{s+1} \sigma_{s} \sigma_{s+1}^{-1} \cdots \sigma_{t-1}^{-1}
$$

Braid relations: Birman-Ko-Lee presentation

- BKL-relation: $a_{t s} a_{s r}=a_{s r} a_{t r}=a_{t r} a_{t s}$.

Braid relations: Birman-Ko-Lee presentation

- BKL-relation: $a_{t s} a_{s r}=a_{s r} a_{t r}=a_{t r} a_{t s}$.

Braid relations: Birman-Ko-Lee presentation

- BKL-relation: $a_{t s} a_{s r}=a_{s r} a_{t r}=a_{t r} a_{t s}$.

Braid relations: Birman-Ko-Lee presentation

- BKL-relation: $a_{t s} a_{s r}=a_{s r} a_{t r}=a_{t r} a_{t s}$.

- Usual far commutativity: $a_{t s} a_{r q}=a_{r q} a_{t s}$ for $q<r<s<t$.

BKL Far Commutativity: $a_{s r} a_{t q}=a_{t q} a_{s r}(q<r<s<t)$.

Braid groups: basic exact sequences

- $\operatorname{ker} \nu=P_{n} \longrightarrow B_{n} \xrightarrow{\nu} S_{n}$ with $\nu: \sigma_{i} \mapsto(i, i+1)$.

Braid groups: basic exact sequences

- ker $\nu=P_{n} \longrightarrow B_{n} \xrightarrow{\nu} S_{n}$ with $\nu: \sigma_{i} \mapsto(i, i+1)$. P_{n} : Pure or colored braid group

Braid groups: basic exact sequences

- ker $\nu=P_{n} \longrightarrow B_{n} \xrightarrow{\nu} S_{n}$ with $\nu: \sigma_{i} \mapsto(i, i+1)$.
P_{n} : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces:

Braid groups: basic exact sequences

- ker $\nu=P_{n} \longrightarrow B_{n} \xrightarrow{\nu} S_{n}$ with $\nu: \sigma_{i} \mapsto(i, i+1)$.
P_{n} : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces:

Consider big diagonal
$\Delta:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i}=z_{j} \quad\right.$ for some $\left.i \neq j\right\}$.

Braid groups: basic exact sequences

- ker $\nu=P_{n} \longrightarrow B_{n} \xrightarrow{\nu} S_{n}$ with $\nu: \sigma_{i} \mapsto(i, i+1)$.
P_{n} : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces:

Consider big diagonal
$\Delta:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i}=z_{j} \quad\right.$ for some $\left.i \neq j\right\}$.
Then: $P_{n}:=\pi_{1}\left(\mathbb{C}^{n} \backslash \Delta\right)$ and $B_{n}:=\pi_{1}\left(\left(\mathbb{C}^{n} \backslash \Delta\right) / S_{n}\right)$.

Braid groups: basic exact sequences

- ker $\nu=P_{n} \longrightarrow B_{n} \xrightarrow{\nu} S_{n}$ with $\nu: \sigma_{i} \mapsto(i, i+1)$. P_{n} : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces:

Consider big diagonal
$\Delta:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right.$ for some $\left.i \neq j\right\}$.
Then: $P_{n}:=\pi_{1}\left(\mathbb{C}^{n} \backslash \Delta\right)$ and $B_{n}:=\pi_{1}\left(\left(\mathbb{C}^{n} \backslash \Delta\right) / S_{n}\right)$.

- $\operatorname{ker} \phi=F_{n-1} \longrightarrow P_{n} \xrightarrow{\phi} P_{n-1}$ with homo ϕ def. by "pulling out" the n-th strand.

Braid groups: basic exact sequences

- ker $\nu=P_{n} \longrightarrow B_{n} \xrightarrow{\nu} S_{n}$ with $\nu: \sigma_{i} \mapsto(i, i+1)$.
P_{n} : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces:

Consider big diagonal
$\Delta:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right.$ for some $\left.i \neq j\right\}$.
Then: $P_{n}:=\pi_{1}\left(\mathbb{C}^{n} \backslash \Delta\right)$ and $B_{n}:=\pi_{1}\left(\left(\mathbb{C}^{n} \backslash \Delta\right) / S_{n}\right)$.

- $\operatorname{ker} \phi=F_{n-1} \longrightarrow P_{n} \xrightarrow{\phi} P_{n-1}$ with homo ϕ def. by "pulling out" the n-th strand. This sequence is split:
$P_{n}=F_{n-1} \rtimes P_{n-1}$.

Braid groups: basic exact sequences

- ker $\nu=P_{n} \longrightarrow B_{n} \xrightarrow{\nu} S_{n}$ with $\nu: \sigma_{i} \mapsto(i, i+1)$.
P_{n} : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces:

Consider big diagonal
$\Delta:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i}=z_{j} \quad\right.$ for some $\left.i \neq j\right\}$.
Then: $P_{n}:=\pi_{1}\left(\mathbb{C}^{n} \backslash \Delta\right)$ and $B_{n}:=\pi_{1}\left(\left(\mathbb{C}^{n} \backslash \Delta\right) / S_{n}\right)$.

- $\operatorname{ker} \phi=F_{n-1} \longrightarrow P_{n} \xrightarrow{\phi} P_{n-1}$ with homo ϕ def. by "pulling out" the n-th strand. This sequence is split:
$P_{n}=F_{n-1} \rtimes P_{n-1}$.
- Artin combing $P_{n}=F_{n-1} \rtimes\left(F_{n-2} \rtimes\left(F_{n-3} \rtimes \ldots\left(F_{2} \rtimes F_{1}\right)\right)\right)$

Braid groups: basic exact sequences

- ker $\nu=P_{n} \longrightarrow B_{n} \xrightarrow{\nu} S_{n}$ with $\nu: \sigma_{i} \mapsto(i, i+1)$. P_{n} : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces:

Consider big diagonal
$\Delta:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i}=z_{j} \quad\right.$ for some $\left.i \neq j\right\}$.
Then: $P_{n}:=\pi_{1}\left(\mathbb{C}^{n} \backslash \Delta\right)$ and $B_{n}:=\pi_{1}\left(\left(\mathbb{C}^{n} \backslash \Delta\right) / S_{n}\right)$.

- $\operatorname{ker} \phi=F_{n-1} \longrightarrow P_{n} \xrightarrow{\phi} P_{n-1}$ with homo ϕ def. by "pulling out" the n-th strand. This sequence is split:
$P_{n}=F_{n-1} \rtimes P_{n-1}$.
- Artin combing $P_{n}=F_{n-1} \rtimes\left(F_{n-2} \rtimes\left(F_{n-3} \rtimes \ldots\left(F_{2} \rtimes F_{1}\right)\right)\right)$ provides solution to WP.

Braid groups: basic exact sequences

- ker $\nu=P_{n} \longrightarrow B_{n} \xrightarrow{\nu} S_{n}$ with $\nu: \sigma_{i} \mapsto(i, i+1)$. P_{n} : Pure or colored braid group
- Braid group as fundamental groups of configuration spaces:

Consider big diagonal
$\Delta:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i}=z_{j} \quad\right.$ for some $\left.i \neq j\right\}$.
Then: $P_{n}:=\pi_{1}\left(\mathbb{C}^{n} \backslash \Delta\right)$ and $B_{n}:=\pi_{1}\left(\left(\mathbb{C}^{n} \backslash \Delta\right) / S_{n}\right)$.

- $\operatorname{ker} \phi=F_{n-1} \longrightarrow P_{n} \xrightarrow{\phi} P_{n-1}$ with homo ϕ def. by "pulling out" the n-th strand. This sequence is split:
$P_{n}=F_{n-1} \rtimes P_{n-1}$.
- Artin combing $P_{n}=F_{n-1} \rtimes\left(F_{n-2} \rtimes\left(F_{n-3} \rtimes \ldots\left(F_{2} \rtimes F_{1}\right)\right)\right)$ provides solution to WP. Combing is apparently exponential (for $n \geq 4$). Garside NF provides more efficient solution.

Example: pure braid (uncombed)

Example: pure braid (uncombed)

Example: pure braid (combed)

Braid groups: Properties

- $B_{n} \sim \operatorname{MCG}\left(D_{n}\right)$

Braid groups: Properties

- $B_{n} \sim \mathcal{M C G}\left(D_{n}\right)$ with $\sigma_{k} \mapsto$

Braid groups: Properties

- $B_{n} \sim \mathcal{M C G}\left(D_{n}\right)$ with
$\sigma_{k} \mapsto($ Dehn halftwist around segment $[k, k+1])$
- $B_{n} \subset \operatorname{Aut}\left(F_{n}\right)$

Braid groups: Properties

- $B_{n} \sim \operatorname{MCG}\left(D_{n}\right)$ with
$\sigma_{k} \mapsto$ (Dehn halftwist around segment $\left.[k, k+1]\right)$
- $B_{n} \subset \operatorname{Aut}\left(F_{n}\right)$
- Braid groups are linear [Kr00, Bi00, $\mathrm{KrO2}$]

Braid groups: Properties

- $B_{n} \sim \operatorname{MCG}\left(D_{n}\right)$ with
$\sigma_{k} \mapsto$ (Dehn halftwist around segment $\left.[k, k+1]\right)$
- $B_{n} \subset \operatorname{Aut}\left(F_{n}\right)$
- Braid groups are linear [Kr00, Bi00,Kr02]
- Braid groups are residually finite.

Braid groups: Properties

- $B_{n} \sim \operatorname{MCG}\left(D_{n}\right)$ with $\sigma_{k} \mapsto$ (Dehn halftwist around segment $\left.[k, k+1]\right)$
- $B_{n} \subset \operatorname{Aut}\left(F_{n}\right)$
- Braid groups are linear [Kr00, Bi00, Kr02]
- Braid groups are residually finite.
- Coro: Braid groups are Hopfian (not isomorphic with a proper quotient).

Braid groups: Properties

- $B_{n} \sim \operatorname{MCG}\left(D_{n}\right)$ with $\sigma_{k} \mapsto$ (Dehn halftwist around segment $\left.[k, k+1]\right)$
- $B_{n} \subset \operatorname{Aut}\left(F_{n}\right)$
- Braid groups are linear [Kr00, Bi00, Kr02]
- Braid groups are residually finite.
- Coro: Braid groups are Hopfian (not isomorphic with a proper quotient).
- Braid groups are left-orderable [Deh94].

Braid groups: Properties

- $B_{n} \sim \operatorname{MCG}\left(D_{n}\right)$ with $\sigma_{k} \mapsto$ (Dehn halftwist around segment $\left.[k, k+1]\right)$
- $B_{n} \subset \operatorname{Aut}\left(F_{n}\right)$
- Braid groups are linear [Kr00, Bi00,Kr02]
- Braid groups are residually finite.
- Coro: Braid groups are Hopfian (not isomorphic with a proper quotient).
- Braid groups are left-orderable [Deh94].
- Braid groups are torsionfree.

Braid groups: Properties

- $B_{n} \sim \operatorname{MCG}\left(D_{n}\right)$ with $\sigma_{k} \mapsto$ (Dehn halftwist around segment $\left.[k, k+1]\right)$
- $B_{n} \subset \operatorname{Aut}\left(F_{n}\right)$
- Braid groups are linear [Kr00, Bi00,Kr02]
- Braid groups are residually finite.
- Coro: Braid groups are Hopfian (not isomorphic with a proper quotient).
- Braid groups are left-orderable [Deh94].
- Braid groups are torsionfree.
- Pure braid groups are bi-orderable.

Braid groups: Properties

- $B_{n} \sim \operatorname{MCG}\left(D_{n}\right)$ with $\sigma_{k} \mapsto$ (Dehn halftwist around segment $\left.[k, k+1]\right)$
- $B_{n} \subset \operatorname{Aut}\left(F_{n}\right)$
- Braid groups are linear [Kr00, Bi00,Kr02]
- Braid groups are residually finite.
- Coro: Braid groups are Hopfian (not isomorphic with a proper quotient).
- Braid groups are left-orderable [Deh94].
- Braid groups are torsionfree.
- Pure braid groups are bi-orderable.
- Coro [Malcev, Neumann]: $\mathbb{Z} B_{n}$ has no zero divisors

Braid groups: Properties

- $B_{n} \sim \operatorname{MCG}\left(D_{n}\right)$ with $\sigma_{k} \mapsto($ Dehn halftwist around segment $[k, k+1])$
- $B_{n} \subset \operatorname{Aut}\left(F_{n}\right)$
- Braid groups are linear [Kr00, Bi00, Kr02]
- Braid groups are residually finite.
- Coro: Braid groups are Hopfian (not isomorphic with a proper quotient).
- Braid groups are left-orderable [Deh94].
- Braid groups are torsionfree.
- Pure braid groups are bi-orderable.
- Coro [Malcev, Neumann]: $\mathbb{Z} B_{n}$ has no zero divisors, and $\mathbb{Z} P_{n}$ embeds in a division algebra.

Old Definition: Garside monoids and groups

- Let $a, b \in M$ monoid. Denote $a \preceq b$, if $\exists c \in M$ such that $b=a c$.

Old Definition: Garside monoids and groups

- Let $a, b \in M$ monoid. Denote $a \preceq b$, if $\exists c \in M$ such that $b=a c$.
- If M is a f.g. atomic monoid then \preceq and \succeq are partial orders.

Old Definition: Garside monoids and groups

- Let $a, b \in M$ monoid. Denote $a \preceq b$, if $\exists c \in M$ such that $b=a c$.
- If M is a f.g. atomic monoid then \preceq and \succeq are partial orders.
- An element $\Delta \in M$ is balanced if the sets of left and right divisors coincide.

Old Definition: Garside monoids and groups

- Let $a, b \in M$ monoid. Denote $a \preceq b$, if $\exists c \in M$ such that $b=a c$.
- If M is a f.g. atomic monoid then \preceq and \succeq are partial orders.
- An element $\Delta \in M$ is balanced if the sets of left and right divisors coincide.

Definition

- A monoid M is an Icm monoid if it is Noetherian, cancellative, and $\forall a, b \in M$ there exist a right and a left lcm.

Old Definition: Garside monoids and groups

- Let $a, b \in M$ monoid. Denote $a \preceq b$, if $\exists c \in M$ such that $b=a c$.
- If M is a f.g. atomic monoid then \preceq and \succeq are partial orders.
- An element $\Delta \in M$ is balanced if the sets of left and right divisors coincide.

Definition

- A monoid M is an Icm monoid if it is Noetherian, cancellative, and $\forall a, b \in M$ there exist a right and a left lcm.
- Let G be a group and $S \subseteq G$ s.t. $G=\langle S\rangle .(G, S)$ is called a Garside system if $G^{+}=\langle S\rangle^{+}$is an Icm monoid, G is its group of fractions, and \exists a balanced element $\Delta \in G^{+}$s.t. $S=\operatorname{Div}(\Delta)$.

Old Definition: Garside monoids and groups

- Let $a, b \in M$ monoid. Denote $a \preceq b$, if $\exists c \in M$ such that $b=a c$.
- If M is a f.g. atomic monoid then \preceq and \succeq are partial orders.
- An element $\Delta \in M$ is balanced if the sets of left and right divisors coincide.

Definition

- A monoid M is an Icm monoid if it is Noetherian, cancellative, and $\forall a, b \in M$ there exist a right and a left lcm.
- Let G be a group and $S \subseteq G$ s.t. $G=\langle S\rangle .(G, S)$ is called a Garside system if $G^{+}=\langle S\rangle^{+}$is an Icm monoid, G is its group of fractions, and \exists a balanced element $\Delta \in G^{+}$s.t. $S=\operatorname{Div}(\Delta)$. We call G a Garside group, G^{+}a Garside monoid, and Δ a Garside element.

Old Definition: Garside monoids and groups

- Let $a, b \in M$ monoid. Denote $a \preceq b$, if $\exists c \in M$ such that $b=a c$.
- If M is a f.g. atomic monoid then \preceq and \succeq are partial orders.
- An element $\Delta \in M$ is balanced if the sets of left and right divisors coincide.

Definition

- A monoid M is an Icm monoid if it is Noetherian, cancellative, and $\forall a, b \in M$ there exist a right and a left lcm.
- Let G be a group and $S \subseteq G$ s.t. $G=\langle S\rangle .(G, S)$ is called a Garside system if $G^{+}=\langle S\rangle^{+}$is an Icm monoid, G is its group of fractions, and \exists a balanced element $\Delta \in G^{+}$s.t. $S=\operatorname{Div}(\Delta)$. We call G a Garside group, G^{+}a Garside monoid, and Δ a Garside element. The elements of S are called simple elements.

Garside groups: Examples

- Free abelian group of rank n.

Garside groups: Examples

- Free abelian group of rank n.
- $\left(B_{n}, B_{n}^{+}, \Delta_{n}\right)$ with $\Delta_{n}=\sigma_{1}\left(\sigma_{2} \sigma_{1}\right) \ldots\left(\sigma_{n-1} \sigma_{n-2} \ldots \sigma_{1}\right)$

Garside groups: Examples

- Free abelian group of rank n.
- $\left(B_{n}, B_{n}^{+}, \Delta_{n}\right)$ with $\Delta_{n}=\sigma_{1}\left(\sigma_{2} \sigma_{1}\right) \ldots\left(\sigma_{n-1} \sigma_{n-2} \ldots \sigma_{1}\right)$
- $\left(B_{n}, B K L_{n}^{+}, \delta_{n}\right)$ with $\delta_{n}=a_{n, n-1} a_{n-1, n-2} \ldots a_{2,1}$,

$$
\left\langle\left\{a_{t s}\right\}_{s<t} \left\lvert\, \begin{array}{c}
a_{t s} a_{r q}=a_{r q} a_{t s},(t-r)(t-q)(s-r)(s-q)<0 \\
a_{t s} a_{s r}=a_{t r} a_{t s}=a_{s r} a_{t r}, t>s>r
\end{array}\right.\right\rangle
$$

This gives the Birman-Ko-Lee (BKL) or dual Garside structure on B_{n}.

Garside groups: Examples

- Free abelian group of rank n.
- $\left(B_{n}, B_{n}^{+}, \Delta_{n}\right)$ with $\Delta_{n}=\sigma_{1}\left(\sigma_{2} \sigma_{1}\right) \ldots\left(\sigma_{n-1} \sigma_{n-2} \ldots \sigma_{1}\right)$
- $\left(B_{n}, B K L_{n}^{+}, \delta_{n}\right)$ with $\delta_{n}=a_{n, n-1} a_{n-1, n-2} \ldots a_{2,1}$,

$$
\left\langle\left\{a_{t s}\right\}_{s<t} \left\lvert\, \begin{array}{c}
a_{t s} a_{r q}=a_{r q} a_{t s},(t-r)(t-q)(s-r)(s-q)<0 \\
a_{t s} a_{s r}=a_{t r} a_{t s}=a_{s r} a_{t r}, t>s>r
\end{array}\right.\right\rangle
$$

This gives the Birman-Ko-Lee (BKL) or dual Garside structure on B_{n}.

- Artin groups of finite type. Also 2 Garside structures known.

Garside groups: Examples

- Free abelian group of rank n.
- $\left(B_{n}, B_{n}^{+}, \Delta_{n}\right)$ with $\Delta_{n}=\sigma_{1}\left(\sigma_{2} \sigma_{1}\right) \ldots\left(\sigma_{n-1} \sigma_{n-2} \ldots \sigma_{1}\right)$
- $\left(B_{n}, B K L_{n}^{+}, \delta_{n}\right)$ with $\delta_{n}=a_{n, n-1} a_{n-1, n-2} \ldots a_{2,1}$,

$$
\left\langle\left\{a_{t s}\right\}_{s<t} \left\lvert\, \begin{array}{c}
a_{t s} a_{r q}=a_{r q} a_{t s},(t-r)(t-q)(s-r)(s-q)<0 \\
a_{t s} a_{s r}=a_{t r} a_{t s}=a_{s r} a_{t r}, t>s>r
\end{array}\right.\right\rangle
$$

This gives the Birman-Ko-Lee (BKL) or dual Garside structure on B_{n}.

- Artin groups of finite type. Also 2 Garside structures known.
- $B_{3}=\left\langle a, d \mid d^{2}=a d a\right\rangle=\left\langle d, D \mid d^{3}=D^{2}\right\rangle$,
- Pure braid group $P_{3}=\langle a, b, c \mid a b c=b c a=c a b\rangle$,
- Knot groups are Garside iff they are torus knot groups $T(p, q)=\left\langle x, y \mid x^{p}=y^{q}\right\rangle$,

Garside groups: Examples

- Free abelian group of rank n.
- $\left(B_{n}, B_{n}^{+}, \Delta_{n}\right)$ with $\Delta_{n}=\sigma_{1}\left(\sigma_{2} \sigma_{1}\right) \ldots\left(\sigma_{n-1} \sigma_{n-2} \ldots \sigma_{1}\right)$
- $\left(B_{n}, B K L_{n}^{+}, \delta_{n}\right)$ with $\delta_{n}=a_{n, n-1} a_{n-1, n-2} \ldots a_{2,1}$,

$$
\left\langle\left\{a_{t s}\right\}_{s<t} \left\lvert\, \begin{array}{c}
a_{t s} a_{r q}=a_{r q} a_{t s},(t-r)(t-q)(s-r)(s-q)<0 \\
a_{t s} a_{s r}=a_{t r} a_{t s}=a_{s r} a_{t r}, t>s>r
\end{array}\right.\right\rangle
$$

This gives the Birman-Ko-Lee (BKL) or dual Garside structure on B_{n}.

- Artin groups of finite type. Also 2 Garside structures known.
- $B_{3}=\left\langle a, d \mid d^{2}=a d a\right\rangle=\left\langle d, D \mid d^{3}=D^{2}\right\rangle$,
- Pure braid group $P_{3}=\langle a, b, c \mid a b c=b c a=c a b\rangle$,
- Knot groups are Garside iff they are torus knot groups $T(p, q)=\left\langle x, y \mid x^{p}=y^{q}\right\rangle$,
- $G=\left\langle a, b \mid a b a b a=b^{2}\right\rangle$ with $\Delta=(a b)^{3}=(b a)^{3}=b^{3}$ is Garside group with no weighted presentation.
- Many more: torus link groups, complex braid groups, structure

Artin Garside element Δ_{n}

Artin Garside element Δ_{n}

Artin Garside element: induced inner automorphism

Artin Garside element: induced inner automorphism

Dual Garside element δ_{n}

Dual Garside element δ_{n} : induced automorphism

Dual Garside element δ_{n} : induced automorphism

Dual Garside element δ_{n} : induced automorphism

$$
a_{n, n-1} \delta_{n}=\delta_{n} a_{n 1} \quad \Leftrightarrow \tau\left(a_{n, n-1}\right)=a_{n 1}
$$

Dual Garside element δ_{n} : induced automorphism

$$
a_{n, n-1} \delta_{n}=\delta_{n} a_{n 1} \quad \Leftrightarrow \tau\left(a_{n, n-1}\right)=a_{n 1}
$$

Lattice of simples for Artin-Garside structure $(n=3,4)$

Dual lattice of simple elements $(n=3,4)$

Artin groups of finite type

Cardinalities of sets of simple elements $S=\operatorname{Div}(\Delta)$.

Artin groups of finite type

Cardinalities of sets of simple elements $S=\operatorname{Div}(\Delta)$.
Infinite families:

Type	A_{n}	B_{n}	D_{n}	$I_{2}(m)$
classical	$(n+1)!$	$2^{n} n!$	$2^{n-1} n!$	$2 m$
dual	$\frac{1}{n+2}\binom{2 n+2}{n+1}$	$\binom{2 n}{n}$	$\binom{2 n}{n}-\binom{2 n-2}{n-2}$	$m+2$

Artin groups of finite type

Cardinalities of sets of simple elements $S=\operatorname{Div}(\Delta)$.
Infinite families:

Type	A_{n}	B_{n}	D_{n}	$I_{2}(m)$
classical	$(n+1)!$	$2^{n} n!$	$2^{n-1} n!$	$2 m$
dual	$\frac{1}{n+2}\binom{2 n+2}{n+1}$	$\binom{2 n}{n}$	$\binom{2 n}{n}-\binom{2 n-2}{n-2}$	$m+2$

Exceptional cases:

Type	H_{3}	F_{4}	H_{4}	E_{6}	E_{7}	E_{8}
classical	120	1152	14400	51840	2903040	696729600
dual	32	105	280	833	4160	25080

Yet another Garside group [Pi01]

$$
\begin{aligned}
& G=\langle x, y, z| x z x y= \\
& \left.y z x^{2}, y z x^{2} z=z x y z x\right\rangle .
\end{aligned}
$$

Properties of Garside groups

- Garside groups are torsionfree (like braid groups)

Properties of Garside groups

- Garside groups are torsionfree (like braid groups)
- The center of every Δ-pure Garside group is an infinite cyclic subgroup.
- Every Garside monoid is an iterated crossed product of some Δ-pure small Gaussian monoids.
- Garside groups are automatic. They admit normal forms computable in $O\left(I^{2}\right)$ time complexity.

Properties of Garside groups

- Garside groups are torsionfree (like braid groups)
- The center of every Δ-pure Garside group is an infinite cyclic subgroup.
- Every Garside monoid is an iterated crossed product of some Δ-pure small Gaussian monoids.
- Garside groups are automatic. They admit normal forms computable in $O\left(I^{2}\right)$ time complexity.
- Garside groups have solvable conjugacy problem (time complexity exponential in /)

Properties of Garside groups

- Garside groups are torsionfree (like braid groups)
- The center of every Δ-pure Garside group is an infinite cyclic subgroup.
- Every Garside monoid is an iterated crossed product of some Δ-pure small Gaussian monoids.
- Garside groups are automatic. They admit normal forms computable in $O\left(I^{2}\right)$ time complexity.
- Garside groups have solvable conjugacy problem (time complexity exponential in l)
- Open problems: Are Garside groups linear or residually finite?

Properties of Garside groups

- Garside groups are torsionfree (like braid groups)
- The center of every Δ-pure Garside group is an infinite cyclic subgroup.
- Every Garside monoid is an iterated crossed product of some Δ-pure small Gaussian monoids.
- Garside groups are automatic. They admit normal forms computable in $O\left(I^{2}\right)$ time complexity.
- Garside groups have solvable conjugacy problem (time complexity exponential in I)
- Open problems: Are Garside groups linear or residually finite?
- Are Garside groups left-orderable?

Properties of Garside groups

- Garside groups are torsionfree (like braid groups)
- The center of every Δ-pure Garside group is an infinite cyclic subgroup.
- Every Garside monoid is an iterated crossed product of some Δ-pure small Gaussian monoids.
- Garside groups are automatic. They admit normal forms computable in $O\left(I^{2}\right)$ time complexity.
- Garside groups have solvable conjugacy problem (time complexity exponential in I)
- Open problems: Are Garside groups linear or residually finite?
- Are Garside groups left-orderable?

Word problem in Garside groups

- Every $a \in G$ admits unique Δ-normal form $\Delta^{p} s_{1} \cdots s_{/}$with Infimum $p=\inf (a)=\max \left\{r \in \mathbb{Z} \mid \Delta^{r} \preceq a\right\}, s_{i} \in S \backslash\{1, \Delta\}$ s.t. $s_{i}=\left(s_{i} \cdots s_{l}\right) \wedge \Delta$. Supremum $\sup (a)=p+l$.
- Every $a \in G$ admits unique fractional normal form $a=b^{-1} c=t_{-p}^{-1} \cdots t_{1}^{-1} s_{1} \cdots s_{/+p}$ with $s_{i}, t_{i} \in S \backslash\{1, \Delta\}$ s.t. $s_{1} \wedge t_{1}=1$.
- The left-greedy condition $\left(s_{i} s_{i+1}\right) \wedge \Delta=s_{i}$ is equivalent to:

$$
\forall 1 \neq t \preceq s_{i+1}: \quad s_{i} t \notin S=\operatorname{Div}(\Delta) .
$$

- The word problem in Garside groups can be solved in $O\left(I^{2}\right)$.

Example

We compute the Δ-LNF and the fractional LNF of the 4-strand braid $b=\sigma_{2} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}$ for the Garside systems $\left(B_{4}, \operatorname{Div}\left(\Delta_{4}\right)\right)$ and $\left(B_{4}, \operatorname{Div}\left(\delta_{4}\right)\right)$ are

Example

We compute the Δ-LNF and the fractional LNF of the 4-strand braid $b=\sigma_{2} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}$ for the Garside systems $\left(B_{4}, \operatorname{Div}\left(\Delta_{4}\right)\right)$ and $\left(B_{4}, \operatorname{Div}\left(\delta_{4}\right)\right)$ are

$$
\begin{array}{rll}
b & \stackrel{\text { LNF }}{=} & \Delta_{4}^{-1} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1} \mid \sigma_{2} \sigma_{3} \sigma_{1} \\
& \stackrel{f L N F}{=} & \sigma_{3}^{-1} \| \sigma_{2} \sigma_{3} \sigma_{1}, \\
& \stackrel{L N F *}{=} & \delta_{4}^{-1} \delta_{(421)}\left|\delta_{321}\right| a_{43}, \\
& \stackrel{\text { LNF* }}{=} & a_{43}^{-1} \| \delta_{321} \mid a_{43},
\end{array}
$$

respectively.

Example

We compute the Δ-LNF and the fractional LNF of the 4-strand braid $b=\sigma_{2} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}$ for the Garside systems $\left(B_{4}, \operatorname{Div}\left(\Delta_{4}\right)\right)$ and $\left(B_{4}, \operatorname{Div}\left(\delta_{4}\right)\right)$ are

$$
\begin{array}{rll}
b & \stackrel{\text { LNF }}{=} & \Delta_{4}^{-1} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1} \mid \sigma_{2} \sigma_{3} \sigma_{1}, \\
& \stackrel{f L N F}{=} & \sigma_{3}^{-1}| | \sigma_{2} \sigma_{3} \sigma_{1}, \\
& \stackrel{\text { LNF* }}{=} & \delta_{4}^{-1} \delta_{(421)}\left|\delta_{321}\right| a_{43}, \\
& \stackrel{\text { LLNF* }}{=} & a_{43}^{-1} \| \delta_{321} \mid a_{43},
\end{array}
$$

respectively.
Computation: see blackboard.

Motivation: Why Conjugacy Problem in braid groups

Motivation: Why Conjugacy Problem in braid groups

- Fundamental problem in combinatorial group theory.

Motivation: Why Conjugacy Problem in braid groups

- Fundamental problem in combinatorial group theory.
- Isotopy of knots/links w.r.t an axis, i.e. consider MII-moves only in Markov problem.

Motivation: Why Conjugacy Problem in braid groups

- Fundamental problem in combinatorial group theory.
- Isotopy of knots/links w.r.t an axis, i.e. consider MII-moves only in Markov problem.
- Applications in Post-quantum public key crytography, in particular non-commutative and non-associative PKC.

Connection to Dehornoy ordering

Let $<$ be left-inv. ordering of B_{n} s.t. $1<\Delta_{n}$. If $b \sim b^{\prime}$, then $\Delta_{n}^{2 p} \leq b<\Delta_{n}^{2 p+2}$ implies $\Delta_{n}^{2 p-2} \leq b^{\prime}<\Delta_{n}^{2 p+4}$.

Open problem: Find minimal elt (w.r.t. <) inside conjugacy class.

Motivation: Why Conjugacy Problem in braid groups

- Fundamental problem in combinatorial group theory.
- Isotopy of knots/links w.r.t an axis, i.e. consider MII-moves only in Markov problem.
- Applications in Post-quantum public key crytography, in particular non-commutative and non-associative PKC.

Connection to Dehornoy ordering

Let $<$ be left-inv. ordering of B_{n} s.t. $1<\Delta_{n}$. If $b \sim b^{\prime}$, then $\Delta_{n}^{2 p} \leq b<\Delta_{n}^{2 p+2}$ implies $\Delta_{n}^{2 p-2} \leq b^{\prime}<\Delta_{n}^{2 p+4}$.

Open problem: Find minimal elt (w.r.t. <) inside conjugacy class.

Conjugacy in Garside groups

Invariant subsets with "convexity property".

$(G, \operatorname{Div}(\Delta))$ Garside system. For any $a \in G$ there exists a finite subset $I(a)$ s.t.
(a) $I(a)=I(b) \Leftrightarrow a \sim b$, and (b) the following "convexity property" holds:
Let and $a, b \in I(a)$ be conjugate. Wlog $b=x^{-1} a x=\tilde{x} a \tilde{x}^{-1}$ for some $x, \tilde{x} \in G^{+}$. Let $s_{1}=x \wedge \Delta$ and $\tilde{s}_{1}=x \tilde{\wedge} \Delta$. Then $s_{1}^{-1} a s_{1}, \tilde{s}_{1} a \tilde{s}_{1}^{-1} \in I$.

Conjugacy in Garside groups

Invariant subsets with "convexity property".

$(G, \operatorname{Div}(\Delta))$ Garside system. For any $a \in G$ there exists a finite subset $I(a)$ s.t.
(a) $I(a)=I(b) \Leftrightarrow a \sim b$, and (b) the following "convexity property" holds:
Let and $a, b \in I(a)$ be conjugate. Wlog $b=x^{-1} a x=\tilde{x} a \tilde{x}^{-1}$ for some $x, \tilde{x} \in G^{+}$. Let $s_{1}=x \wedge \Delta$ and $\tilde{s}_{1}=x \tilde{\wedge} \Delta$. Then $s_{1}^{-1} a s_{1}, \tilde{s}_{1} a \tilde{s}_{1}^{-1} \in I$.

Corollary.
$(G, \operatorname{Div}(\Delta))$ Garside system. $a, b \in G$ are conjugate iff there exist $l \in \mathbb{N}, \tilde{a}=v_{0}, v_{1}, \ldots, v_{l}=\tilde{b} \in I(a)$, and $s_{1}, \ldots, s_{l} \in S$ such that

$$
\tilde{a}=v_{0} \xrightarrow{s_{1}} v_{1} \xrightarrow{s_{2}} v_{2} \xrightarrow{s_{3}} \ldots \xrightarrow{s_{l-1}} v_{l-1} \xrightarrow{s_{l}} v_{l}=\tilde{b} .
$$

History of conjugacy in braid and Garside groups

History of conjugacy in braid and Garside groups

- Summit Sets [Ga69]: $S S(a)=\left\{b \sim a \mid \inf (b)=\inf _{s}(a)\right\}$ with summit infimum $\inf _{s}(a)=\max \{\inf (b) \mid b \sim a\}$.

History of conjugacy in braid and Garside groups

- Summit Sets [Ga69]: $S S(a)=\left\{b \sim a \mid \inf (b)=\inf _{s}(a)\right\}$ with summit infimum $\inf _{s}(a)=\max \{\inf (b) \mid b \sim a\}$.
- Repeated Cycling/Decyling operations [EM94] lead into the Super Summit Set $S S S(s)=C(a) \cap\left[\inf _{s}(a), \sup _{s}(a)\right]$.

History of conjugacy in braid and Garside groups

- Summit Sets [Ga69]: $S S(a)=\left\{b \sim a \mid \inf (b)=\inf _{s}(a)\right\}$ with summit infimum $\inf _{s}(a)=\max \{\inf (b) \mid b \sim a\}$.
- Repeated Cycling/Decyling operations [EM94] lead into the Super Summit Set $\operatorname{SSS}(s)=C(a) \cap\left[\inf _{s}(a), \sup _{s}(a)\right]$.
- Efficient algorithms for Minimal simple elements [GM-F03].

History of conjugacy in braid and Garside groups

- Summit Sets [Ga69]: $S S(a)=\left\{b \sim a \mid \inf (b)=\inf _{s}(a)\right\}$ with summit infimum $\inf _{s}(a)=\max \{\inf (b) \mid b \sim a\}$.
- Repeated Cycling/Decyling operations [EM94] lead into the Super Summit Set $\operatorname{SSS}(s)=C(a) \cap\left[\inf _{s}(a), \sup _{s}(a)\right]$.
- Efficient algorithms for Minimal simple elements [GM-F03].
- Ultra Summit sets [Geb05]: Cyclic parts of SSS under iterated cycling.

History of conjugacy in braid and Garside groups

- Summit Sets [Ga69]: $S S(a)=\left\{b \sim a \mid \inf (b)=\inf _{s}(a)\right\}$ with summit infimum $\inf _{s}(a)=\max \{\inf (b) \mid b \sim a\}$.
- Repeated Cycling/Decyling operations [EM94] lead into the Super Summit Set $\operatorname{SSS}(s)=C(a) \cap\left[\inf _{s}(a), \sup _{s}(a)\right]$.
- Efficient algorithms for Minimal simple elements [GM-F03].
- Ultra Summit sets [Geb05]: Cyclic parts of SSS under iterated cycling.
- Cyclic sliding operation and sliding circuits SL [GebGM09].

History of conjugacy in braid and Garside groups

- Summit Sets [Ga69]: $S S(a)=\left\{b \sim a \mid \inf (b)=\inf _{s}(a)\right\}$ with summit infimum $\inf _{s}(a)=\max \{\inf (b) \mid b \sim a\}$.
- Repeated Cycling/Decyling operations [EM94] lead into the Super Summit Set $\operatorname{SSS}(s)=C(a) \cap\left[\inf _{s}(a), \sup _{s}(a)\right]$.
- Efficient algorithms for Minimal simple elements [GM-F03].
- Ultra Summit sets [Geb05]: Cyclic parts of SSS under iterated cycling.
- Cyclic sliding operation and sliding circuits SL [GebGM09].
- $S L \subseteq U S S \subseteq S S S \subseteq S S$.

History of conjugacy in braid and Garside groups

- Summit Sets [Ga69]: $S S(a)=\left\{b \sim a \mid \inf (b)=\inf _{s}(a)\right\}$ with summit infimum $\inf _{s}(a)=\max \{\inf (b) \mid b \sim a\}$.
- Repeated Cycling/Decyling operations [EM94] lead into the Super Summit Set $\operatorname{SSS}(s)=C(a) \cap\left[\inf _{s}(a), \sup _{s}(a)\right]$.
- Efficient algorithms for Minimal simple elements [GM-F03].
- Ultra Summit sets [Geb05]: Cyclic parts of SSS under iterated cycling.
- Cyclic sliding operation and sliding circuits SL [GebGM09].
- $S L \subseteq U S S \subseteq S S S \subseteq S S$.
- Families of permutation braids with SL of exponential size (in n) known.

New example I: Infinite braids

Consider the braid group

$$
B_{\infty}=\left\langle\sigma_{1}, \sigma_{2}, \ldots \left\lvert\, \begin{array}{c}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \quad \forall i, j \in \mathbb{N}:|i-j| \geq 2 \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \quad \forall i \in \mathbb{N}
\end{array}\right.\right\rangle .
$$

on infinitely many strands.
Let B_{∞}^{+}the monoid generated by σ_{i} 's only.
Set $S_{\infty}=\bigcup_{i=1}^{\infty} \operatorname{Div}\left(\Delta_{n}\right)$.

Normal decomposition

Every braid in B_{∞}^{+}admits a unique decomposition of the form $s_{1} \cdots s_{p}$ with s_{1}, \ldots, s_{p} in S_{∞} satisfying $s_{p} \neq 1$, and, for every i,

$$
\forall t \neq 1:\left(t \preceq s_{i+1} \Rightarrow s_{i} t \notin S_{\infty}\right) .
$$

Note: Monoid not finitely generated. Infinitely many simple elements. No Garside element.

New example II: Klein bottle group

Consider $K=\pi_{1}($ Klein bottle $)=\left\langle a, b \mid b a=a b^{-1}\right\rangle$. Let $K^{+}=\langle a, b \mid a=b a b\rangle$ be the Klein bottle monoid.

$$
a^{2} b=a b^{-1} \cdot b a b=b a \cdot a=b a^{2} \Leftrightarrow\left[a^{2}, b\right]=1 .
$$

We conclude: Garside element $\Delta=a^{2}$ is central.

Normal decomposition

Every element of K admits a unique decomposition of the form $\Delta^{p} s_{1} \cdots s_{l}$ with $p \in \mathbb{Z}$ and s_{1}, \ldots, s_{l} in $\operatorname{Div}(\Delta)$ satisfying $s_{1} \neq \Delta$, $s_{l} \neq 1$, and, for every i,

$$
\forall g \in K^{+} \backslash\{1\}: \quad\left(g \preceq s_{i+1} \Rightarrow s_{i} g \npreceq \Delta\right) .
$$

Note: Indeed, here we have $I \in\{0,1\}$. Monoid NOT Noetherian. Infinitely many divisors of Garside element a^{2}.

Cayley graph of Klein bottle monoid inside Klein bottle group

New example III: Wreathed free abelian group I

Consider the wreathed free abelian group $G=\mathbb{Z} \imath S_{n}=\mathbb{Z} \rtimes S_{n}$ with binary operation given by

$$
(v, \pi) *\left(v^{\prime}, \pi^{\prime}\right)=\left(v+\left(v^{\prime} \pi^{-1}\right), \pi \pi^{\prime}\right)
$$

We put $a_{i}=\left((0, \ldots, 0,1,0, \ldots, 0)\right.$, id $\left._{S_{n}}\right)$ for all $1 \leq i \leq n$, and $s_{i}=((0, \ldots, 0),(i, i+1))$ for all $1 \leq i \leq n-1$.
Further denote $1=\left((0, \ldots, 0)\right.$, id $\left._{S_{n}}\right)$.

Presentation of $\mathbb{Z} \imath S_{n}$

$\mathbb{Z} \backslash S_{n}$ admits a presentation with generators $a_{1}, \ldots, a_{n}, s_{1}, \ldots, s_{n-1}$ and relations

$$
\begin{aligned}
& {\left[a_{i}, a_{j}\right]=1 \quad \forall i, j, \quad\left[s_{i}, s_{j}\right]=1 \quad \forall|i-j| \geq 2} \\
& s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} \quad \forall|i-j|=1, \quad s_{i}^{2}=1 \quad \forall i \\
& {\left[s_{i}, a_{j}\right]=1 \quad \forall j \neq i, i+1, \quad s_{i} a_{i}=a_{i+1} s_{i} \quad \forall i \leq n-1} \\
& a_{i} s_{i}=s_{i} a_{i+1} \quad i \leq n-1
\end{aligned}
$$

New example III: Wreathed free abelian group II

Consider the monoid \mathbb{N}^{n} 亿 S_{n} consisting of all pairs (v, π) satisfying $v(k) \geq 0$ for all $k \leq n$. We denote by \mathcal{S} the subset of $\mathbb{N}^{n}\left\{S_{n}\right.$ consisting of all pairs ($v, i d$) satisfying $v(k) \in\{0,1\}$ for all $k \leq n$. We put $\Delta_{n}=\left((1, \ldots, 1), \operatorname{id}_{S_{n}}\right)$.

Normal decomposition

Every element of the group $\mathbb{Z}^{n}\left\{S_{n}\right.$ admits a unique decomposition of the form $\Delta_{n}^{p} s_{1} \cdots s_{l}$ with $p \in \mathbb{Z}, s_{1}, \ldots, s_{l-1} \in \mathcal{S}$, and $s_{p} \in \mathcal{S} S_{n}$ satisfying $s_{1} \neq \Delta_{n}, s_{p} \notin S_{n}$, and, for every i,

$$
\forall g \in\left(\mathbb{N}^{n} \imath S_{n}\right) \backslash\{1\}: \quad\left(g \preceq s_{i+1} \Rightarrow s_{i} g \npreceq \Delta_{n}\right) .
$$

Note: $\mathbb{N}^{n} \imath S_{n}$ is NOT a Garside monoid since it has nontrivial invertible elements.

New example IV: Ribbon categories I

For $n>2$ and $1 \leq i, j<n$, we denote by $\operatorname{BRn}(i, j)$ the family of all braids of B_{n} that contain an (i, j)-ribbon.

Let $B R_{n}$ be the groupoid of n-strand braid ribbons, whose object set is $\{1, \ldots, n-1\}$ and whose family of morphisms with source i and target j is $B R_{n}(i, j)$.
Let $B R_{n}^{+}$be the subcategory of $B R_{n}$ in which the morphisms are required to lie in B_{n}^{+}.

New example IV: Ribbon categories II

For $1 \leq i<n$, we denote by $S_{n}(i)$ the family of all braids in B_{n}^{+} that leftdivide Δ_{n} and contain an (i, j)-ribbon for some j. We denote by \mathcal{S} the union of all families $S_{n}(i)$ for $i=1, \ldots, n-1$. Observe: Δ_{n} contains a $(i, n-i)$ ribbon for all $1 \leq i<n$.

Normal decomposition

Every n-strand braid ribbon admits an unique decomposition of the form $\Delta_{n}^{p} s_{1} \cdots s_{l}$ with $p \in \mathbb{Z}$ and $s_{1}, \ldots, s_{\text {/ }}$ morphisms of \mathcal{S} satisfying $s_{1} \neq \Delta_{n}, s_{l} \neq 1$, and, for every i,

$$
\forall g \in B R_{n}^{+} \backslash\{1\}: \quad\left(g \preceq s_{i+1} \Rightarrow s_{i} g \npreceq \Delta_{n}\right) .
$$

Note: The multiplication is not defined everywhere.

$S_{4}(1)$

Garside families

- A category \mathcal{C} is called left-cancellative (resp. right-cancellative) if $f g=f g^{\prime}\left(\right.$ resp. $\left.g f=g^{\prime} f\right)$ implies $g=g^{\prime}$ for all $f, g, g^{\prime} \in \mathcal{C}$.
- For $f, g \in \mathcal{C}$ left-cancellative category, we denote $f \preceq g$, $\exists g^{\prime} \in \mathcal{C}$ s.t. $f g^{\prime}=g$ holds.

Definition

For $\mathcal{S} \subseteq \mathcal{C}$ left-cancellative category, a \mathcal{C}-path $g_{1}|\cdots| g_{p}$ is called \mathcal{S}-greedy (resp. \mathcal{S}-normal) if, for every $i<p$, we have

$$
\forall s \in \mathcal{S} \forall f \in \mathcal{C}: \quad s \preceq f g_{i} g_{i+1} \Rightarrow s \preceq f g_{i}
$$

(resp. this and, in addition, every entry g_{i} lies in $\mathcal{S}^{\#}:=\mathcal{S C}{ }^{\times} \cup \mathcal{C}^{\times}$.
$\mathcal{S} \subseteq \mathcal{C}$ (\mathcal{C} left-cancellative category) is called a Garside family if every element of \mathcal{C} admits an \mathcal{S}-normal decomposition.

Garside germs I

Definition

A germ is a triple $\left(\mathcal{S}, 1_{\mathcal{S}}, \bullet\right)$ where \mathcal{S} is a precategory, $1_{\mathcal{S}}$ is a subfamily of \mathcal{S} consisting of an element 1_{x} with source and target x for each object x, and \bullet is a partial map of $\mathcal{S}^{[2]}$ into \mathcal{S} that satisfies

- if $s \bullet t$ is defined, its source is the source of s and its target is the target of t,
- $1_{x} \bullet s=s=s \bullet 1_{y}$ hold or each s in $\mathcal{S}(x, y)$,
- if $r \bullet s$ and $s \bullet t$ are defined, then $(r \bullet s) \bullet t$ is defined iff $r \bullet(s \bullet t)$ is, in which case they are equal.

The germ is called left-associative if, for all $r, s, t \in \mathcal{S}$, it satisfies: if $(r \bullet s) \bullet t$ is defined, then $s \bullet t$ is defined, and it is called left-cancellative if, for all $s, t, t^{\prime} \in \mathcal{S}$, it satisfies if $s \bullet t$ and $s \bullet t^{\prime}$ are defined and equal, then $t=t^{\prime}$ holds.

Garside germs II

Defintion

If $\underline{\mathcal{S}}$ is a germ, we denote by $\operatorname{Cat}(\underline{\mathcal{S}})$ the category $\left\langle\mathcal{S} \mid \mathcal{R}_{\bullet}\right\rangle$, where \mathcal{R}_{\bullet} is the family of all relations $s \mid t=s \bullet t$ with $s, t \in \mathcal{S}$ and $s \bullet t$ defined.

\bullet	1	a	b	ab	ba	Δ
1	1	a	b	ab	ba	Δ
a	a		ab		Δ	
b	b	ba		Δ		
ab	ab	Δ				
ba	ba		Δ			
Δ	Δ					

Example: Germ $\underline{\mathcal{S}}$ of B_{3}^{+}.

Definition

A germ $\underline{\mathcal{S}}$ is said to be a Garside germ if $\underline{\mathcal{S}}$ embeds in Cat($\underline{\mathcal{S}) \text {, the }}$ latter is left-cancellative, and $\underline{\mathcal{S}}$ is a Garside family in that category.

Example: Not a Garside family

Consider $M=\left\langle a, b \mid a b=b a, a^{2}=b^{2}\right\rangle$. Let $\mathcal{S}=\left\{1, a, b, a b, a^{2}\right\}$.

The germ \mathcal{S} induced by \mathcal{S}.

\bullet	1	a	b	a^{2}	$a b$
1	1	a	b	a^{2}	$a b$
a	a	a^{2}	$a b$		
b	b	$a b$	a^{2}		
a^{2}	a^{2}				
$a b$	$a b$				

The category (here the monoid) $\operatorname{Cat}(\underline{\mathcal{S}})$ is (isomorphic to) M, as the relations $a\left|a=a^{2}=b\right| b$ and $a|b=a b=b| a$ belong to the family \mathcal{R}. However \mathcal{S} is not a Garside family in M, as a^{3} admits no \mathcal{S}-normal decomposition:
$a^{2} \mid a$ is not \mathcal{S}-greedy as ab left-divides a^{3} but not a^{2}, and $a b \mid b$ is not \mathcal{S}-greedy as a^{2} left-divides a^{3} but not $a b$,

Recognizing Garside families

Definition

Assume that $\underline{\mathcal{S}}$ is a germ.
(i) We define the local left-divisibility relation $\preceq \mathcal{S}$ of \mathcal{S} by saying that $s \preceq_{\mathcal{S}} t$ holds if and only if there exists t^{\prime} in \mathcal{S} satisfying $t=s t^{\prime}$.
(ii) For $s_{1} \mid s_{2}$ in $\mathcal{S}^{[2]}$, we put

$$
\mathcal{J}\left(s_{1}, s_{2}\right)=\left\{t \in \mathcal{S} \mid s_{1} \bullet t \text { defined and } t \preceq \mathcal{S} s_{2}\right\} .
$$

Proposition [DDGKT13]

A germ $\underline{\mathcal{S}}$ is a Garside germ if and only if it is left-associative, left-cancellative, and if, for any s_{1}, s_{2} in \mathcal{S} there exists a $\preceq_{\mathcal{S}}$-greatest element in $\mathcal{J}\left(s_{1}, s_{2}\right)$ (that is, an element r in $\mathcal{J}\left(s_{1}, s_{2}\right)$ such that $t \preceq \mathcal{S} r$ holds for all $\left.t \in \mathcal{J}\left(s_{1}, s_{2}\right)\right)$.

Thank you!!

