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Braid group Bn

Bn: { n-strand braids } / isotopy

Multiplication: Concatenation of braids

Generators: σi (1 ≤ i < n) i

i + 1

Inverse: σ−1
i (1 ≤ i < n) i

i + 1

Artin presentation:

Bn = 〈σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi ∀|i − j | > 1,
σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n − 2

〉
.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid group Bn

Bn: { n-strand braids } / isotopy
Multiplication:

Concatenation of braids

Generators: σi (1 ≤ i < n) i

i + 1

Inverse: σ−1
i (1 ≤ i < n) i

i + 1

Artin presentation:

Bn = 〈σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi ∀|i − j | > 1,
σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n − 2

〉
.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid group Bn

Bn: { n-strand braids } / isotopy
Multiplication: Concatenation of braids

Generators: σi (1 ≤ i < n) i

i + 1

Inverse: σ−1
i (1 ≤ i < n) i

i + 1

Artin presentation:

Bn = 〈σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi ∀|i − j | > 1,
σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n − 2

〉
.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid group Bn

Bn: { n-strand braids } / isotopy
Multiplication: Concatenation of braids

Generators: σi (1 ≤ i < n)

i

i + 1

Inverse: σ−1
i (1 ≤ i < n) i

i + 1

Artin presentation:

Bn = 〈σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi ∀|i − j | > 1,
σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n − 2

〉
.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid group Bn

Bn: { n-strand braids } / isotopy
Multiplication: Concatenation of braids

Generators: σi (1 ≤ i < n) i

i + 1

Inverse: σ−1
i (1 ≤ i < n) i

i + 1

Artin presentation:

Bn = 〈σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi ∀|i − j | > 1,
σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n − 2

〉
.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid group Bn

Bn: { n-strand braids } / isotopy
Multiplication: Concatenation of braids

Generators: σi (1 ≤ i < n) i

i + 1

Inverse: σ−1
i (1 ≤ i < n)

i

i + 1

Artin presentation:

Bn = 〈σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi ∀|i − j | > 1,
σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n − 2

〉
.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid group Bn

Bn: { n-strand braids } / isotopy
Multiplication: Concatenation of braids

Generators: σi (1 ≤ i < n) i

i + 1

Inverse: σ−1
i (1 ≤ i < n) i

i + 1

Artin presentation:

Bn = 〈σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi ∀|i − j | > 1,
σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n − 2

〉
.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid group Bn

Bn: { n-strand braids } / isotopy
Multiplication: Concatenation of braids

Generators: σi (1 ≤ i < n) i

i + 1

Inverse: σ−1
i (1 ≤ i < n) i

i + 1

Artin presentation:

Bn = 〈σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi ∀|i − j | > 1,
σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n − 2

〉
.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid group Bn

Bn: { n-strand braids } / isotopy
Multiplication: Concatenation of braids

Generators: σi (1 ≤ i < n) i

i + 1

Inverse: σ−1
i (1 ≤ i < n) i

i + 1

Artin presentation:

Bn = 〈σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi ∀|i − j | > 1,
σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n − 2

〉
.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid relations

Artin, Braid or Triple Relation:

σiσi+1σi = σi+1σiσi+1.

i

i + 1

i + 2

=

Far Commutativity Relation: σiσj = σjσi for |i − j | ≥ 1.

i

i + 1

j

j + 1

=
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Birman-Ko-Lee generators [BKL98]: ats (1 ≤ s < t ≤ n)

s

s + 1

s + 2

t − 1

t

ats = σt−1 · · ·σs+1σsσ
−1
s+1 · · ·σ

−1
t−1
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Braid relations: Birman-Ko-Lee presentation

BKL-relation: atsasr = asratr = atrats .

r

s

t

= =

r

s

t

Usual far commutativity: atsarq = arqats for q < r < s < t.
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BKL Far Commutativity: asratq = atqasr (q < r < s < t).

q

r

s

t

=

q

r

s

t
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Braid groups: basic exact sequences

ker ν = Pn −→ Bn
ν−→ Sn with ν : σi 7→ (i , i + 1).

Pn: Pure or colored braid group
Braid group as fundamental groups of configuration spaces:
Consider big diagonal
∆ := {(z1, . . . , zn) ∈ Cn | zi = zj for some i 6= j}.
Then: Pn := π1(Cn\∆) and Bn := π1((Cn\∆)/Sn).

ker φ = Fn−1 −→ Pn
φ−→ Pn−1 with homo φ def. by "pulling

out" the n-th strand. This sequence is split:
Pn = Fn−1 o Pn−1.
Artin combing Pn = Fn−1 o (Fn−2 o (Fn−3 o . . . (F2 o F1)))
provides solution to WP. Combing is apparently exponential
(for n ≥ 4). Garside NF provides more efficient solution.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid groups: basic exact sequences

ker ν = Pn −→ Bn
ν−→ Sn with ν : σi 7→ (i , i + 1).

Pn: Pure or colored braid group

Braid group as fundamental groups of configuration spaces:
Consider big diagonal
∆ := {(z1, . . . , zn) ∈ Cn | zi = zj for some i 6= j}.
Then: Pn := π1(Cn\∆) and Bn := π1((Cn\∆)/Sn).

ker φ = Fn−1 −→ Pn
φ−→ Pn−1 with homo φ def. by "pulling

out" the n-th strand. This sequence is split:
Pn = Fn−1 o Pn−1.
Artin combing Pn = Fn−1 o (Fn−2 o (Fn−3 o . . . (F2 o F1)))
provides solution to WP. Combing is apparently exponential
(for n ≥ 4). Garside NF provides more efficient solution.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid groups: basic exact sequences

ker ν = Pn −→ Bn
ν−→ Sn with ν : σi 7→ (i , i + 1).

Pn: Pure or colored braid group
Braid group as fundamental groups of configuration spaces:

Consider big diagonal
∆ := {(z1, . . . , zn) ∈ Cn | zi = zj for some i 6= j}.
Then: Pn := π1(Cn\∆) and Bn := π1((Cn\∆)/Sn).

ker φ = Fn−1 −→ Pn
φ−→ Pn−1 with homo φ def. by "pulling

out" the n-th strand. This sequence is split:
Pn = Fn−1 o Pn−1.
Artin combing Pn = Fn−1 o (Fn−2 o (Fn−3 o . . . (F2 o F1)))
provides solution to WP. Combing is apparently exponential
(for n ≥ 4). Garside NF provides more efficient solution.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid groups: basic exact sequences

ker ν = Pn −→ Bn
ν−→ Sn with ν : σi 7→ (i , i + 1).

Pn: Pure or colored braid group
Braid group as fundamental groups of configuration spaces:
Consider big diagonal
∆ := {(z1, . . . , zn) ∈ Cn | zi = zj for some i 6= j}.

Then: Pn := π1(Cn\∆) and Bn := π1((Cn\∆)/Sn).

ker φ = Fn−1 −→ Pn
φ−→ Pn−1 with homo φ def. by "pulling

out" the n-th strand. This sequence is split:
Pn = Fn−1 o Pn−1.
Artin combing Pn = Fn−1 o (Fn−2 o (Fn−3 o . . . (F2 o F1)))
provides solution to WP. Combing is apparently exponential
(for n ≥ 4). Garside NF provides more efficient solution.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid groups: basic exact sequences

ker ν = Pn −→ Bn
ν−→ Sn with ν : σi 7→ (i , i + 1).

Pn: Pure or colored braid group
Braid group as fundamental groups of configuration spaces:
Consider big diagonal
∆ := {(z1, . . . , zn) ∈ Cn | zi = zj for some i 6= j}.
Then: Pn := π1(Cn\∆) and Bn := π1((Cn\∆)/Sn).

ker φ = Fn−1 −→ Pn
φ−→ Pn−1 with homo φ def. by "pulling

out" the n-th strand. This sequence is split:
Pn = Fn−1 o Pn−1.
Artin combing Pn = Fn−1 o (Fn−2 o (Fn−3 o . . . (F2 o F1)))
provides solution to WP. Combing is apparently exponential
(for n ≥ 4). Garside NF provides more efficient solution.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid groups: basic exact sequences

ker ν = Pn −→ Bn
ν−→ Sn with ν : σi 7→ (i , i + 1).

Pn: Pure or colored braid group
Braid group as fundamental groups of configuration spaces:
Consider big diagonal
∆ := {(z1, . . . , zn) ∈ Cn | zi = zj for some i 6= j}.
Then: Pn := π1(Cn\∆) and Bn := π1((Cn\∆)/Sn).

ker φ = Fn−1 −→ Pn
φ−→ Pn−1 with homo φ def. by "pulling

out" the n-th strand.

This sequence is split:
Pn = Fn−1 o Pn−1.
Artin combing Pn = Fn−1 o (Fn−2 o (Fn−3 o . . . (F2 o F1)))
provides solution to WP. Combing is apparently exponential
(for n ≥ 4). Garside NF provides more efficient solution.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid groups: basic exact sequences

ker ν = Pn −→ Bn
ν−→ Sn with ν : σi 7→ (i , i + 1).

Pn: Pure or colored braid group
Braid group as fundamental groups of configuration spaces:
Consider big diagonal
∆ := {(z1, . . . , zn) ∈ Cn | zi = zj for some i 6= j}.
Then: Pn := π1(Cn\∆) and Bn := π1((Cn\∆)/Sn).

ker φ = Fn−1 −→ Pn
φ−→ Pn−1 with homo φ def. by "pulling

out" the n-th strand. This sequence is split:
Pn = Fn−1 o Pn−1.

Artin combing Pn = Fn−1 o (Fn−2 o (Fn−3 o . . . (F2 o F1)))
provides solution to WP. Combing is apparently exponential
(for n ≥ 4). Garside NF provides more efficient solution.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid groups: basic exact sequences

ker ν = Pn −→ Bn
ν−→ Sn with ν : σi 7→ (i , i + 1).

Pn: Pure or colored braid group
Braid group as fundamental groups of configuration spaces:
Consider big diagonal
∆ := {(z1, . . . , zn) ∈ Cn | zi = zj for some i 6= j}.
Then: Pn := π1(Cn\∆) and Bn := π1((Cn\∆)/Sn).

ker φ = Fn−1 −→ Pn
φ−→ Pn−1 with homo φ def. by "pulling

out" the n-th strand. This sequence is split:
Pn = Fn−1 o Pn−1.
Artin combing Pn = Fn−1 o (Fn−2 o (Fn−3 o . . . (F2 o F1)))

provides solution to WP. Combing is apparently exponential
(for n ≥ 4). Garside NF provides more efficient solution.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid groups: basic exact sequences

ker ν = Pn −→ Bn
ν−→ Sn with ν : σi 7→ (i , i + 1).

Pn: Pure or colored braid group
Braid group as fundamental groups of configuration spaces:
Consider big diagonal
∆ := {(z1, . . . , zn) ∈ Cn | zi = zj for some i 6= j}.
Then: Pn := π1(Cn\∆) and Bn := π1((Cn\∆)/Sn).

ker φ = Fn−1 −→ Pn
φ−→ Pn−1 with homo φ def. by "pulling

out" the n-th strand. This sequence is split:
Pn = Fn−1 o Pn−1.
Artin combing Pn = Fn−1 o (Fn−2 o (Fn−3 o . . . (F2 o F1)))
provides solution to WP.

Combing is apparently exponential
(for n ≥ 4). Garside NF provides more efficient solution.



Braid groups Garside groups Word and conjugacy problem Garside families

Braid groups: basic exact sequences

ker ν = Pn −→ Bn
ν−→ Sn with ν : σi 7→ (i , i + 1).

Pn: Pure or colored braid group
Braid group as fundamental groups of configuration spaces:
Consider big diagonal
∆ := {(z1, . . . , zn) ∈ Cn | zi = zj for some i 6= j}.
Then: Pn := π1(Cn\∆) and Bn := π1((Cn\∆)/Sn).

ker φ = Fn−1 −→ Pn
φ−→ Pn−1 with homo φ def. by "pulling

out" the n-th strand. This sequence is split:
Pn = Fn−1 o Pn−1.
Artin combing Pn = Fn−1 o (Fn−2 o (Fn−3 o . . . (F2 o F1)))
provides solution to WP. Combing is apparently exponential
(for n ≥ 4). Garside NF provides more efficient solution.



Braid groups Garside groups Word and conjugacy problem Garside families

Example: pure braid (uncombed)

1

2

3

4

σ1σ3σ
−2
2 σ3σ2σ3σ

2
1σ
−1
2 σ3σ

−1
1 σ2σ1σ

−1
2 σ3
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Example: pure braid (combed)

1

2

3

4



Braid groups Garside groups Word and conjugacy problem Garside families

Braid groups: Properties

Bn ∼MCG(Dn)

with
σk 7→ (Dehn halftwist around segment [k , k + 1])
Bn ⊂ Aut(Fn)

Braid groups are linear [Kr00, Bi00,Kr02]
Braid groups are residually finite.
Coro: Braid groups are Hopfian (not isomorphic with a proper
quotient).
Braid groups are left-orderable [Deh94].
Braid groups are torsionfree.
Pure braid groups are bi-orderable.
Coro [Malcev, Neumann]: ZBn has no zero divisors , and ZPn
embeds in a division algebra.
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Old Definition: Garside monoids and groups

Let a, b ∈ M monoid. Denote a � b, if ∃c ∈ M such that
b = ac .

If M is a f.g. atomic monoid then � and � are partial orders.
An element ∆ ∈ M is balanced if the sets of left and right
divisors coincide.

Definition
A monoid M is an lcm monoid if it is Noetherian, cancellative,
and ∀a, b ∈ M there exist a right and a left lcm.
Let G be a group and S ⊆ G s.t. G = 〈S〉. (G , S) is called a
Garside system if G+ = 〈S〉+ is an lcm monoid, G is its group
of fractions, and ∃ a balanced element ∆ ∈ G+ s.t.
S = Div(∆). We call G a Garside group, G+ a Garside
monoid, and ∆ a Garside element. The elements of S are
called simple elements.
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Garside groups: Examples

Free abelian group of rank n.

(Bn,B+
n ,∆n) with ∆n = σ1(σ2σ1) . . . (σn−1σn−2 . . . σ1)

(Bn,BKL+n , δn) with δn = an,n−1an−1,n−2 . . . a2,1,

〈{ats}s<t

∣∣∣∣ atsarq = arqats , (t − r)(t − q)(s − r)(s − q) < 0
atsasr = atrats = asratr , t > s > r

〉
This gives the Birman-Ko-Lee (BKL) or dual Garside structure
on Bn.
Artin groups of finite type. Also 2 Garside structures known.
B3 = 〈a, d | d2 = ada〉 = 〈d ,D | d3 = D2〉,
Pure braid group P3 = 〈a, b, c | abc = bca = cab〉,
Knot groups are Garside iff they are torus knot groups
T (p, q) = 〈x , y | xp = yq〉,
G = 〈a, b | ababa = b2〉 with ∆ = (ab)3 = (ba)3 = b3 is
Garside group with no weighted presentation.
Many more: torus link groups, complex braid groups, structure
groups of solutions to set-theoretic YBE.
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Artin Garside element ∆n
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Artin Garside element: induced inner automorphism
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σi∆n = ∆nσn−i ⇔ τ(σi ) = σn−i
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Dual Garside element δn
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δn = an,n−1an−1,n−2 · · · a21
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Dual Garside element δn: induced automorphism
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Lattice of simples for Artin-Garside structure (n = 3, 4)

1

σ1 σ2

σ1σ2 σ2σ1

∆3

1

∆4
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Dual lattice of simple elements (n = 3, 4)

a21 a31 a32

1

δ3

1

δ4
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Artin groups of finite type

Cardinalities of sets of simple elements S = Div(∆).

Infinite families:
Type An Bn Dn I2(m)

classical (n + 1)! 2nn! 2n−1n! 2m
dual 1

n+2

(2n+2
n+1

) (2n
n

) (2n
n

)
−
(2n−2

n−2

)
m + 2

Exceptional cases:
Type H3 F4 H4 E6 E7 E8

classical 120 1152 14400 51840 2903040 696729600
dual 32 105 280 833 4160 25080
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Yet another Garside group [Pi01]

G = 〈x , y , z | xzxy =
yzx2, yzx2z = zxyzx〉.
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Properties of Garside groups

Garside groups are torsionfree (like braid groups)

The center of every ∆-pure Garside group is an infinite cyclic
subgroup.
Every Garside monoid is an iterated crossed product of some
∆-pure small Gaussian monoids.
Garside groups are automatic. They admit normal forms
computable in O(l2) time complexity.
Garside groups have solvable conjugacy problem (time
complexity exponential in l)
Open problems: Are Garside groups linear or residually finite?
Are Garside groups left-orderable?
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Word problem in Garside groups

Every a ∈ G admits unique ∆-normal form ∆ps1 · · · sl with
Infimum p = inf(a) = max{r ∈ Z | ∆r � a}, si ∈ S \ {1,∆}
s.t. si = (si · · · sl ) ∧∆. Supremum sup(a) = p + l .
Every a ∈ G admits unique fractional normal form
a = b−1c = t−1

−p · · · t−1
1 s1 · · · sl+p with si , ti ∈ S \ {1,∆} s.t.

s1 ∧ t1 = 1.
The left-greedy condition (si si+1) ∧∆ = si is equivalent to:

∀1 6= t � si+1 : si t /∈ S = Div(∆).

The word problem in Garside groups can be solved in O(l2).
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Example

We compute the ∆-LNF and the fractional LNF of the 4-strand
braid b = σ2σ3σ

−1
2 σ1 for the Garside systems (B4,Div(∆4)) and

(B4,Div(δ4)) are

b LNF
= ∆−1

4 σ2σ1σ3σ2σ1 | σ2σ3σ1,

fLNF
= σ−1

3 || σ2σ3σ1,

LNF∗
= δ−1

4 δ(421) | δ321 | a43,

fLNF∗
= a−1

43 || δ321 | a43,

respectively.
Computation: see blackboard.
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Motivation: Why Conjugacy Problem in braid groups

Fundamental problem in combinatorial group theory.
Isotopy of knots/links w.r.t an axis, i.e. consider MII-moves
only in Markov problem.
Applications in Post-quantum public key crytography, in
particular non-commutative and non-associative PKC.

Connection to Dehornoy ordering

Let < be left-inv. ordering of Bn s.t. 1 < ∆n. If b ∼ b′, then
∆2p

n ≤ b < ∆2p+2
n implies ∆2p−2

n ≤ b′ < ∆2p+4
n .

Open problem: Find minimal elt (w.r.t. <) inside conjugacy class.
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Conjugacy in Garside groups

Invariant subsets with "convexity property".

(G ,Div(∆)) Garside system. For any a ∈ G there exists a finite
subset I (a) s.t.
(a) I (a) = I (b)⇔ a ∼ b, and (b) the following "convexity
property" holds:
Let and a, b ∈ I (a) be conjugate. Wlog b = x−1ax = x̃ a x̃−1 for
some x , x̃ ∈ G+. Let s1 = x ∧∆ and s̃1 = x ∧̃∆. Then
s−1
1 as1, s̃1as̃−1

1 ∈ I .

Corollary.

(G ,Div(∆)) Garside system. a, b ∈ G are conjugate iff there exist
l ∈ N, ã = v0, v1, . . . , vl = b̃ ∈ I (a), and s1, . . . , sl ∈ S such that

ã = v0
s1−→ v1

s2−→ v2
s3−→ . . .

sl−1−→ vl−1
sl−→ vl = b̃.
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History of conjugacy in braid and Garside groups

Summit Sets [Ga69]: SS(a) = {b ∼ a | inf(b) = infs(a)} with
summit infimum infs(a) = max{inf(b) | b ∼ a}.
Repeated Cycling/Decyling operations [EM94] lead into the
Super Summit Set SSS(s) = C (a) ∩ [infs(a), sups(a)].
Efficient algorithms for Minimal simple elements [GM-F03].
Ultra Summit sets [Geb05]: Cyclic parts of SSS under iterated
cycling.
Cyclic sliding operation and sliding circuits SL [GebGM09].
SL ⊆ USS ⊆ SSS ⊆ SS .
Families of permutation braids with SL of exponential size (in
n) known.
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New example I: Infinite braids

Consider the braid group

B∞ = 〈σ1, σ2, . . .

∣∣∣∣ σiσj = σjσi ∀i , j ∈ N : |i − j | ≥ 2
σiσi+1σi = σi+1σiσi+1 ∀i ∈ N

〉
.

on infinitely many strands.
Let B+

∞ the monoid generated by σi ’s only.
Set S∞ =

⋃∞
i=1 Div(∆n).

Normal decomposition

Every braid in B+
∞ admits a unique decomposition of the form

s1 · · · sp with s1, . . . , sp in S∞ satisfying sp 6= 1, and, for every i ,

∀ t 6= 1 : (t � si+1 ⇒ si t /∈ S∞).

Note: Monoid not finitely generated. Infinitely many simple
elements. No Garside element.
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New example II: Klein bottle group

Consider K = π1(Klein bottle) = 〈a, b | ba = ab−1〉.
Let K+ = 〈a, b | a = bab〉 be the Klein bottle monoid.

a2b = ab−1 · bab = ba · a = ba2 ⇔ [a2, b] = 1.

We conclude: Garside element ∆ = a2 is central.

Normal decomposition
Every element of K admits a unique decomposition of the form
∆ps1 · · · sl with p ∈ Z and s1, . . . , sl in Div(∆) satisfying s1 6= ∆,
sl 6= 1, and, for every i ,

∀g ∈ K+ \ {1} : (g � si+1 ⇒ sig 6� ∆).

Note: Indeed, here we have l ∈ {0, 1}.
Monoid NOT Noetherian. Infinitely many divisors of Garside
element a2.
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Cayley graph of Klein bottle monoid inside Klein bottle
group

a−1b2 a−1b a−1 ba−1 b2a−1 b3a−1

b−2 b−1 1 b b2 b3

ab2 ab a ba b2a b3a

ab2a aba a2 a2b a2b2 a2b3
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New example III: Wreathed free abelian group I

Consider the wreathed free abelian group G = Z o Sn = Zo Sn with
binary operation given by

(v , π) ∗ (v ′, π′) = (v + (v ′π−1), ππ′).

We put ai = ((0, . . . , 0, 1, 0, . . . , 0), idSn) for all 1 ≤ i ≤ n, and
si = ((0, . . . , 0), (i , i + 1)) for all 1 ≤ i ≤ n − 1.
Further denote 1 = ((0, . . . , 0), idSn).

Presentation of Z o Sn

Z o Sn admits a presentation with generators a1, . . . , an, s1, . . . , sn−1
and relations

[ai , aj ] = 1 ∀i , j , [si , sj ] = 1 ∀|i − j | ≥ 2,
si sjsi = sjsi sj ∀|i − j | = 1, s2

i = 1 ∀i ,
[si , aj ] = 1 ∀j 6= i , i + 1, siai = ai+1si ∀i ≤ n − 1,
ai si = siai+1 i ≤ n − 1.
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New example III: Wreathed free abelian group II

Consider the monoid Nn o Sn consisting of all pairs (v , π) satisfying
v(k) ≥ 0 for all k ≤ n. We denote by S the subset of Nn o Sn
consisting of all pairs (v , id) satisfying v(k) ∈ {0, 1} for all k ≤ n.
We put ∆n = ((1, . . . , 1), idSn).

Normal decomposition
Every element of the group Zn o Sn admits a unique decomposition
of the form ∆p

ns1 · · · sl with p ∈ Z, s1, . . . , sl−1 ∈ S, and sp ∈ SSn
satisfying s1 6= ∆n, sp /∈ Sn, and, for every i ,

∀g ∈ (Nn o Sn) \ {1} : (g � si+1 ⇒ sig 6� ∆n).

Note: Nn o Sn is NOT a Garside monoid since it has nontrivial
invertible elements.
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New example IV: Ribbon categories I

For n > 2 and 1 ≤ i , j < n, we denote by BRn(i , j) the family of all
braids of Bn that contain an (i , j)-ribbon.

Let BRn be the groupoid of n-strand braid ribbons, whose object
set is {1, . . . , n − 1} and whose family of morphisms with source i
and target j is BRn(i , j).
Let BR+

n be the subcategory of BRn in which the morphisms are
required to lie in B+

n .
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New example IV: Ribbon categories II

For 1 ≤ i < n, we denote by Sn(i) the family of all braids in B+
n

that leftdivide ∆n and contain an (i , j)-ribbon for some j . We
denote by S the union of all families Sn(i) for i = 1, . . . , n − 1.
Observe: ∆n contains a (i , n − i) ribbon for all 1 ≤ i < n.

Normal decomposition
Every n-strand braid ribbon admits an unique decomposition of the
form ∆p

ns1 · · · sl with p ∈ Z and s1, . . . , sl morphisms of S
satisfying s1 6= ∆n, sl 6= 1, and, for every i ,

∀g ∈ BR+
n \ {1} : (g � si+1 ⇒ sig 6� ∆n).

Note: The multiplication is not defined everywhere.
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S4(1)

∼=
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Garside families

A category C is called left-cancellative (resp. right-cancellative)
if fg = fg ′ (resp. gf = g ′f ) implies g = g ′ for all f , g , g ′ ∈ C.
For f , g ∈ C left-cancellative category, we denote f � g ,
∃g ′ ∈ C s.t. fg ′ = g holds.

Definition
For S ⊆ C left-cancellative category, a C-path g1 | · · · | gp is called
S-greedy (resp. S-normal ) if, for every i < p, we have

∀s ∈ S ∀f ∈ C : s � fgigi+1 ⇒ s � fgi

(resp. this and, in addition, every entry gi lies in S# := SC× ∪ C×.

S ⊆ C (C left-cancellative category) is called a Garside family if
every element of C admits an S-normal decomposition.
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Garside germs I

Definition
A germ is a triple (S, 1S , •) where S is a precategory, 1S is a
subfamily of S consisting of an element 1x with source and target x
for each object x , and • is a partial map of S [2] into S that satisfies

if s • t is defined, its source is the source of s and its target is
the target of t,
1x • s = s = s • 1y hold or each s in S(x , y),
if r • s and s • t are defined, then (r • s) • t is defined iff
r • (s • t) is, in which case they are equal.

The germ is called left-associative if, for all r , s, t ∈ S, it satisfies:
if (r • s) • t is defined, then s • t is defined,
and it is called left-cancellative if, for all s, t, t ′ ∈ S, it satisfies if
s • t and s • t ′ are defined and equal, then t = t ′ holds.
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Garside germs II

Defintion
If S is a germ, we denote by Cat(S) the category 〈S | R•〉, where
R• is the family of all relations s | t = s • t with s, t ∈ S and s • t
defined.

• 1 a b ab ba ∆

1 1 a b ab ba ∆
a a ab ∆
b b ba ∆
ab ab ∆
ba ba ∆
∆ ∆

Example: Germ S of B+
3 .

Definition
A germ S is said to be a Garside germ if S embeds in Cat(S), the
latter is left-cancellative, and S is a Garside family in that category.
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Example: Not a Garside family

Consider M = 〈a, b | ab = ba, a2 = b2〉. Let S = {1, a, b, ab, a2}.

The germ S induced by S.
• 1 a b a2 ab
1 1 a b a2 ab
a a a2 ab
b b ab a2

a2 a2

ab ab

The category (here the monoid) Cat(S) is (isomorphic to) M, as
the relations a|a = a2 = b|b and a|b = ab = b|a belong to the
family R•. However S is not a Garside family in M, as a3 admits
no S-normal decomposition:
a2|a is not S-greedy as ab left-divides a3 but not a2, and ab|b is
not S-greedy as a2 left-divides a3 but not ab.
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Recognizing Garside families

Definition
Assume that S is a germ.
(i) We define the local left-divisibility relation �S of S by saying
that s �S t holds if and only if there exists t ′ in S satisfying
t = st ′.
(ii) For s1|s2 in S [2], we put

J (s1, s2) = {t ∈ S | s1 • t defined and t �S s2}.

Proposition [DDGKT13]

A germ S is a Garside germ if and only if it is left-associative,
left-cancellative, and if, for any s1, s2 in S there exists a
�S-greatest element in J (s1, s2) (that is, an element r in J (s1, s2)
such that t �S r holds for all t ∈ J (s1, s2)).
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Thank you!!
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