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Braid group B,

B,: { n-strand braids } / isotopy

Multiplication: Concatenation of braids

i+tx
2

0j0j = 0j0; V’i—j‘>1,
0i0i410; = 0i410i0i41 Vi=1,...,.n—=2 /~

e Generators: o; (1 < i< n)

Inverse: o; ! (1< i< n)

Artin presentation:

Bo = (011 0n1
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Braid relations

@ Artin, Braid or Triple Relation: ojoj110; = 0iy10i0/41.

i+ 2 ﬁ r
. “K f
i J ;
e Far Commutativity Relation: ojo; = ojo; for |i — j| > 1.
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Birman-Ko-Lee generators [BKLI8]: at (1 < s <t < n)

s+2

s+1

-1 -1
atS =0¢_1""" US+10505+1 “e O’t*l
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Braid relations: Birman-Ko-Lee presentation

o BKL-relation: aisasr = asray = awrats.

AV e N
sl P )
r;

NN
sl
r;

@ Usual far commutativity: aisarg = argass for g <r <s <t.
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BKL Far Commutativity: asrarq = argasr (¢ < r < s < t).
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Braid groups: basic exact sequences

kerv = P, — B, — S, with v : o; — (i,i+1).

P,: Pure or colored braid group

Braid group as fundamental groups of configuration spaces:
Consider big diagonal

A:={(z1,...,20) € C" | zi = z; for some i# j}.
Then: P, :=m1(C"\A) and B, := m1((C"\A)/S,).

kergp = Fp_1 — P, N P,_1 with homo ¢ def. by "pulling
out" the n-th strand. This sequence is split:

'Dn: n—1>4'Dn—1-

Artin combing P, = Fp—1 % (Fp—2 X (Fp—3 ¥ ... (F2 x F1)))
provides solution to WP. Combing is apparently exponential
(for n > 4). Garside NF provides more efficient solution.
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Braid groups: Properties

e B, ~ MCG(D,) with
ok +— (Dehn halftwist around segment [k, k + 1])

B, C Aut(Fp)
Braid groups are linear [Kr00, Bi00,Kr02]

Braid groups are residually finite.

Coro: Braid groups are Hopfian (not isomorphic with a proper
quotient).

Braid groups are left-orderable [Deh94].
Braid groups are torsionfree.

Pure braid groups are bi-orderable.

Coro [Malcev, Neumann]: ZB, has no zero divisors , and ZP,
embeds in a division algebra.
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Old Definition: Garside monoids and groups

@ Let a,b € M monoid. Denote a =< b, if 3¢ € M such that
b= ac.

o If M is a f.g. atomic monoid then < and > are partial orders.

@ An element A € M is balanced if the sets of left and right
divisors coincide.

@ A monoid M is an lcm monoid if it is Noetherian, cancellative,
and Va, b € M there exist a right and a left lcm.

@ Let G beagroupand SC Gst. G=(S). (G,S)is called a
Garside system if G = (S)™ is an lecm monoid, G is its group
of fractions, and 3 a balanced element A € GT s.t.

S = Div(A). We call G a Garside group, G* a Garside
monoid, and A a Garside element. The elements of S are
called simple elements.




Garside groups

Garside groups: Examples

@ Free abelian group of rank n.



Garside groups

Garside groups: Examples

@ Free abelian group of rank n.
e (By, BF,Ap) with A, = 01(0201) ... (0n-10n—2...01)



Garside groups

Garside groups: Examples

@ Free abelian group of rank n.
e (By, BF,Ap) with A, = 01(0201) ... (0n-10n—2...01)
) (Bn, BKL;F, (5,,) with 6, = an,n—13n—1,n—2--- 421,
Atsarg = arqass, (t—r)(t—q)(s—r)(s—q) <0
<{3ts}s<t . n
Atsdsr = Atrdts = Agrdtr, L >S5 > 1
This gives the Birman-Ko-Lee (BKL) or dual Garside structure
on B,.



Garside groups

Garside groups: Examples

@ Free abelian group of rank n.
e (By, BF,Ap) with A, = 01(0201) ... (0n-10n—2...01)
) (Bn, BKL;F, (5,,) with §, = an,n—13n—1,n—2--- 421,

Atsarg = arqass, (t—r)(t—q)(s—r)(s—q) <0
<{3ts}s<t . n
Atsdsr = Atrdts = Agrdtr, L >S5 > 1
This gives the Birman-Ko-Lee (BKL) or dual Garside structure
on B,.

@ Artin groups of finite type. Also 2 Garside structures known.



Garside groups

Garside groups: Examples

Free abelian group of rank n.
(Bn, B, Ap) with A, = 01(0201) ... (0n-10n-2...01)
(Bn, BKL;F, (5,,) with (5,, = an,n—-19n—1,n—2 - -- 321,

Lot} ot Atsarg = arqass, (t—r)(t—q)(s—r)(s—q) <0 >
Atsdsr = Atrdts = Agrdtr, L >S5 > 1

This gives the Birman-Ko-Lee (BKL) or dual Garside structure

on B,.

Artin groups of finite type. Also 2 Garside structures known.

B3 = (a,d | d> = ada) = (d, D | d®* = D?),

Pure braid group P3 = (a, b, ¢ | abc = bca = cab),

Knot groups are Garside iff they are torus knot groups

T(p,q) = (x,y [ xP = y9),



Garside groups

Garside groups: Examples

Free abelian group of rank n.
(Bn, B, Ap) with A, = 01(0201) ... (0n-10n-2...01)
(Bn, BKL;F, (5,,) with (5,, = an,n—-19n—1,n—2 - -- 321,

dtsdrq = drqdts, (t - I’)(t - q)(S - I’)(S - q) <0 >

<{3ts}s<t . n
Atsdsr = Atrdts = Agrdtr, L >S5 > 1

This gives the Birman-Ko-Lee (BKL) or dual Garside structure
on B,.
Artin groups of finite type. Also 2 Garside structures known.
B3 = (a,d | d> = ada) = (d, D | d®* = D?),
Pure braid group P3 = (a, b, ¢ | abc = bca = cab),
Knot groups are Garside iff they are torus knot groups
T(p,q) = (x.y [ xP = y9),
G = (a, b | ababa = b?) with A = (ab)3 = (ba)® = b3 is
Garside group with no weighted presentation.
Many more: torus link groups, complex braid groups, structure
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Dual Garside element 9,

op = dn,n—14n—1,n—2 "+ a21
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Dual Garside element d,: induced automorphism

an,nflén = 5nan1 = 7_(an,nfl) = anl



Garside groups

Dual Garside element d,: induced automorphism

n n
n—1
1 1

an,n—l(sn =dpam & 7_(an,n—l) = dan1



Garside groups

Lattice of simples for Artin-Garside structure (n = 3,4)

Aj

0102 0201
o1 1P
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Artin groups of finite type

Cardinalities of sets of simple elements S = Div(A).

Infinite families:

Type A, B, D, h(m)
classical | (n+1)! | 2"n! 2n=1p 2m
dual ni2 (2,1”:'12) (Znn) (2nn) — (2::22) m+ 2

Exceptional cases:
Type H3 F4 H4 E6 E7 Eg
classical | 120 | 1152 | 14400 | 51840 | 2903040 | 696729600
dual 32 | 105 280 833 4160 25080




Garside groups

Yet another Garside group [Pi01]

G = (xy,z | xzxy =
yzx?, yzx?z = zxyzx).
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Word and conjugacy problem

Word problem in Garside groups

@ Every a € G admits unique A-normal form APs; ---s; with
Infimum p = inf(a) = max{r € Z | A" < a}, s; € S\ {1,A}
st. si=(si---s)ANA. Supremum sup(a) = p+ /.

e Every a € G admits unique fractional normal form
a=blc= t:; oty ls s, with s, € S\ {1, A} st
siANtp = 1.

@ The left-greedy condition (s;si+1) A A = s; is equivalent to:

Vi£t<siy1: sit¢S= DiV(A).

@ The word problem in Garside groups can be solved in O(/?).
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LNF 1
b = A, 0201030201 | 020307,
ANF 1
= o3 || 020301,
LNFx ~1
= 04 O421) | 0321 | aa3,
fLNF

=" a || 0321 | aas,

respectively.



Word and conjugacy problem

Example

We compute the A-LNF and the fractional LNF of the 4-strand
braid b = 020305101 for the Garside systems (Bs, Div(A4)) and
(Ba, Div(ds)) are

LNF 1
b = A, 0201030201 | 020307,
ANF 1
= o3 || 020301,
LNFx ~1
= 04 O421) | 0321 | aa3,
fLNF

= 3131 || 0321 | aa3,

respectively.
Computation: see blackboard.
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Word and conjugacy problem

Motivation: Why Conjugacy Problem in braid groups

@ Fundamental problem in combinatorial group theory.
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Conjugacy in Garside groups

Invariant subsets with "convexity property".

(G,Div(A)) Garside system. For any a € G there exists a finite
subset /(a) s.t.

(a) I(a) = I(b) & a ~ b, and (b) the following "convexity
property" holds:

Let and a, b € /(a) be conjugate. Wlog b= x"tax = xax ! for
some x,X € GT. Let s = x A A and 5, = x AA. Then
sflasl,glaEfl el

| A\

Corollary.
(G,Div(A)) Garside system. a, b € G are conjugate iff there exist
leN, a=w,wv,...,vy=bel(a), and s1,...,s € S such that

~ s1 S2 s3 S|—1 S| 7
a:v0—>v1—>v2—>...—>v/,1—>v/:b.
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History of conjugacy in braid and Garside groups

e Summit Sets [Ga69]: SS(a) = {b ~ a|inf(b) = infs(a)} with
summit infimum infs(a) = max{inf(b) | b ~ a}.

@ Repeated Cycling/Decyling operations [EM94] lead into the
Super Summit Set SSS5(s) = C(a) N [infs(a),sup,(a)].

o Efficient algorithms for Minimal simple elements [GM-F03].

o Ultra Summit sets [Geb05]: Cyclic parts of SSS under iterated
cycling.

e Cyclic sliding operation and sliding circuits SL [GebGM09].

@ SL C USS C 555 C SS.

o Families of permutation braids with SL of exponential size (in
n) known.



Garside families

New example |: Infinite braids

Consider the braid group

oiogj=ocjo; Vi, jeN:|i—j]>2
Bs = {01,02,...| '’ S J i —Jl >

0i0i+10; = 0110041 VieN

on infinitely many strands.

Let B, the monoid generated by o;'s only.
Set Soo = U2, Div(A,).

Normal decomposition

Every braid in BY, admits a unique decomposition of the form
s1---Sp With s1,...,s, in S satisfying s, # 1, and, for every i,

Vt;élz(tjsi+1:>5,-t§é500).

Note: Monoid not finitely generated. Infinitely many simple
elements. No Garside element.



Garside families

New example Il: Klein bottle group

Consider K = m1(Klein bottle) = (a, b | ba = ab™1).
Let Kt = (a, b | a = bab) be the Klein bottle monoid.

a’b=ab ' bab=ba-a= ba* < [a* b] = 1.

We conclude: Garside element A = a2 is central.

Normal decomposition

Every element of K admits a unique decomposition of the form
APsy - .- sy with p € Z and s1, ..., s/ in Div(A) satisfying s; # A,
s; # 1, and, for every i,

VgEKJr\{].}Z (gjs,-H :>5,-gﬁA).

Note: Indeed, here we have | € {0,1}.
Monoid NOT Noetherian. Infinitely many divisors of Garside
element a2




Garside families

Cayley graph of Klein bottle monoid inside Klein bottle
group

abc2 a aba a° a’b a’b? a’b’
aL aL a ba bta b?a
b:2 b:l 1 b h? B?

a'h®> alb a’t oF I CF e S
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New example IlI: Wreathed free abelian group |

Consider the wreathed free abelian group G =7Z1S, = Z x S, with
binary operation given by

(v,m)x (V,7") = (v + (Vo= 1), zn).
We put a; = ((0,...,0,1,0,...,0),ids,) for all 1 </ < n, and
si=((0,...,0),(i,i+ 1)) forall 1 <i<n-—1.
Further denote 1 = ((0,...,0),ids,).
Presentation of Z S,

7. S,, admits a presentation with generators a1,...,a,, S1,...,Sh_1
and relations

l[ai,aj] =1 Vi,j, [si,si]l=1 V]i—j|>2,

sisjsi = sjsis;  V|i —j| =1, s,-2 =1 Vi,

[si,a] =1 Vj#ii+1, siai = ajy1s; Vi<n-—1,
ajsi = sjaj+1 I <n—1.
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New example IlI: Wreathed free abelian group Il

Consider the monoid N S, consisting of all pairs (v, 7) satisfying
v(k) > 0 for all k < n. We denote by S the subset of N S,
consisting of all pairs (v, id) satisfying v(k) € {0,1} for all k < n.
We put A, = ((1,...,1),ids,).

Normal decomposition

Every element of the group Z" S,, admits a unique decomposition
of the form Afls; -+ s with p€ Z, s1,...,5-1 €S, and s, € SS,
satisfying s; # A,, sp ¢ Sp, and, for every i,

Vg e (NM1S)\{1}: (g = sit1 = sig £ An).

Note: N7 S, is NOT a Garside monoid since it has nontrivial
invertible elements.



Garside families

New example IV: Ribbon categories |

For n>2and 1 <i,j < n, we denote by BRn(i, j) the family of all
braids of B, that contain an (i, j)-ribbon.

X

Let BR, be the groupoid of n-strand braid ribbons, whose object
setis {1,...,n— 1} and whose family of morphisms with source i
and target j is BR,(/,J).

Let BR be the subcategory of BR,, in which the morphisms are
required to lie in B;F.
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New example IV: Ribbon categories |l

For 1 </ < n, we denote by S,(/) the family of all braids in B;f
that leftdivide A, and contain an (i, j)-ribbon for some j. We
denote by S the union of all families S,(i) for i=1,...,n— 1.
Observe: A, contains a (i,n — i) ribbon for all 1 < < n.

Normal decomposition

Every n-strand braid ribbon admits an unique decomposition of the
form Abs; ---s; with p € Z and s1, ..., s, morphisms of S
satisfying s; # A, s; # 1, and, for every i,

Vg e BRI\ {1} : (g = siy1 = sig 2 Ay).

Note: The multiplication is not defined everywhere.
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Garside families

@ A category C is called left-cancellative (resp. right-cancellative)
if fg = fg’ (resp. gf = g'f) implies g = g’ forall f, g, g’ € C.
e For f, g € C left-cancellative category, we denote f < g,
dg’ € C s.t. fg’ = g holds.

Definition

For S C C left-cancellative category, a C-path gy | - - - | gp is called
S-greedy (resp. S-normal ) if, for every i < p, we have

VseSVfelC: s=<fggi1=s=1fg

(resp. this and, in addition, every entry g; lies in S# := SC* U C*.

v

S C C (C left-cancellative category) is called a Garside family if
every element of C admits an S-normal decomposition.
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Garside germs |

Definition

A germ is a triple (S, 1s,®) where S is a precategory, 1s is a
subfamily of S consisting of an element 1, with source and target x
for each object x, and e is a partial map of S?! into S that satisfies
o if s et is defined, its source is the source of s and its target is
the target of t,
@ l,es=s=se1, hold or each s in S(x, y),

o if res and s et are defined, then (r e s) et is defined iff
re(set)is, in which case they are equal.

The germ is called left-associative if, for all r,s,t € S, it satisfies:
if (r e s) et is defined, then s e t is defined,

and it is called left-cancellative if, for all s, t,t' € S, it satisfies if
set and s et are defined and equal, then t = t’ holds.



Garside germs |

Garside families

If S is a germ, we denote by Cat(S) the category (S | R.), where
R is the family of all relations s |t =set withs,t € Sand set

defined.

e |1 a b ab ba A

111 a b ab ba A

a | a ab A

b | b ba A Example: Germ S of B;.
ab|lab A

ba | ba A

A A

Definition

A germ S is said to be a Garside germ if S embeds in Cat(S), the
latter is left-cancellative, and S is a Garside family in that category.
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Example: Not a Garside family
Consider M = (a, b | ab = ba, a*> = b?). Let S = {1, a, b, ab, a°}.

The germ S induced by S.

e | 1 a b 22 ab
1 1 a b a° ab
a|a a ab

b | b ab a°

g2 | ef

ab | ab

The category (here the monoid) Cat(S) is (isomorphic to) M, as
the relations a|a = a®> = b|b and a|b = ab = b|a belong to the
family Ro. However S is not a Garside family in M, as a® admits
no S-normal decomposition:

a°|a is not S-greedy as ab left-divides a® but not a2, and ab|b is
not S-greedy as a° left-divides a® but not ab.
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Recognizing Garside families

Definition

Assume that S is a germ.

(i) We define the local left-divisibility relation <s of S by saying
that s <s t holds if and only if there exists t' in S satisfying

t = st

(ii) For s1|sy in S, we put

J(s1,8) ={t € S| s et defined and t <s s5}.
A germ S is a Garside germ if and only if it is left-associative,
left-cancellative, and if, for any s1, s> in S there exists a

<s-greatest element in J(s1,s2) (that is, an element r in (s, )
such that t <s r holds for all t € J(s1, s2))-

A\
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Thank you!!
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