Bing doubling and the colored Jones polynomial

Sakie Suzuki

RIMS

2012．12．24
結び目の数学 V＠Waseda University

Introduction

Colored Jones polynomial

Unified WRT invariant

Results

Introduction

Quantum invariants for links

$L=L_{1} \cup \cdots \cup L_{n}$: framed link

Kontsevich inv.

Universal $s l_{2}$ inv.

$$
J_{\operatorname{tr}^{V_{1}} \otimes \cdots \otimes \operatorname{tr}^{V_{n}}}
$$

Colored Jones poly. $\quad J_{L ; V_{1}, \ldots, V_{n}} \in \mathbb{Z}\left[q^{1 / 4}, q^{-1 / 4}\right]$

Quantum invariants for 3-mfds

M : Integral homology sphere (=IHS)

LMO inv.

Unified WRT inv.

WRT inv.

Z_{M}	\in	$\hat{\mathcal{A}}(\emptyset)$
$\prod_{J_{M}}$	\in	$\widehat{\mathbb{Z}[q]}$
$J_{\downarrow} \mathrm{ev}_{\zeta}$		
τ_{M}^{ζ}	\in	$\mathbb{Z}[\zeta]$

Quantum invariants

Quantum invariants

What is "Topological" ? ~ Classical

- Fundamental groups
(Alexander poly., Milnor μ inv., ...)
- Coverings
(Alexander poly., . . .)
- Seifert surfaces
(Alexander poly., boundary links, ...)
- Cobordisms
(slice, ribbon, ...)
- Local moves
(crossing change, mutant, satellite, ...)

What is "Topological" ? ~ Classical

- Fundamental groups
(Alexander poly., Milnor μ inv., ...)
- Coverings
(Alexander poly., ...)
- Seifert surfaces
(Alexander poly., boundary links, ...)
- Cobordisms
(slice, ribbon, ...)
- Local moves
(crossing change, satellite, mutation, ...)

Bing doubling

Bing doubling and Link concordance

Fact: K is slice $\Rightarrow B(K)$ is slice.

Bing doubling and Link concordance

Fact: K is slice $\Rightarrow B(K)$ is slice.
Q1: Does the converse hold?
(Harvey, Teichner, ...)

Bing doubling and Link concordance

Fact: K is slice $\Rightarrow B(K)$ is slice.
Q1: Does the converse hold?
(Harvey, Teichner, ...)
L: a link obtained from Borromean rings by a sequence of Bing doublings.

Bing doubling and Link concordance

Fact: K is slice $\Rightarrow B(K)$ is slice.
Q1: Does the converse hold?
(Harvey, Teichner, ...)
L: a link obtained from Borromean rings by a sequence of Bing doublings. Q2: Are Whitehead doubles of L slice?
(Freedman, Lin)

Bing doubling and Link concordance

Fact: K is slice $\Rightarrow B(K)$ is slice.
Q1: Does the converse hold?
(Harvey, Teichner, ...)
L: a link obtained from Borromean rings by a sequence of Bing doublings.
Q2: Are Whitehead doubles of L slice?
(Freedman, Lin)
I
"Surgery conjecture" in 4-dim. topology.

Bing doubling and Milnor $\bar{\mu}$ invariant

Roughly
Milnor $\bar{\mu}$ invariants of length $l \geq 2$
II
"linking numbers of degree l "
linking number of degree $2=$ number of i

Bing doubling and Milnor $\bar{\mu}$ invariant

Bing doubling and Milnor $\bar{\mu}$ invariant

Bing doubling and Milnor $\bar{\mu}$ invariant

Bing doubling and Milnor $\bar{\mu}$ invariant

Milnor $\bar{\mu}$ invariants count the following parts:

Bing doubling and Finite type invariants

The set of A-finite type invariant $\cup_{n \geq 0} V_{n}$ with the filtration

$$
V_{0}=V_{1} \subset V_{2} \subset \cdots
$$

induces the filtration

$$
\mathcal{K}=\mathcal{K}_{1} \supset \mathcal{K}_{2} \supset \cdots
$$

where $\mathcal{K}:=\operatorname{Span}_{A}\{$ isotopy classes of knots $\}$.

Bing doubling and Finite type invariants

Theorem (Habiro)

K_{1}, K_{2} : knots

$$
K_{1}-K_{2} \in \mathcal{K}_{i} \Longleftrightarrow K_{1} \sim_{C_{i}} K_{2} .
$$

Here $\sim_{C_{i}}$ is the equivalent relation generated by

Colored Jones polynomial

Colored Jones polynomial

$$
W_{1}, \ldots, W_{5} \in \operatorname{Mod}_{f}\left(U_{q}\left(s l_{2}\right)\right) .
$$

- As Operator invariant
- By Skein relation
- From Kontsevich invariant
- From Universal $s l_{2}$ invariant

Colored Jones polynomial (Operator invariant)

$V, W \in \operatorname{Mod}_{f}\left(U_{q}\left(s l_{2}\right)\right)$

$\mathbb{C}\left(q^{1 / 4}\right)$	1
$\downarrow{ }^{\text {coev }}{ }^{*} \otimes \mathrm{coev}$	
$V^{*} \otimes V \otimes W \otimes W^{*}$	
$1 \otimes R_{V, W} \otimes 1$	
$V^{*} \otimes W \otimes V \otimes W^{*}$	
$1 \otimes R_{W, V} \otimes 1$	
$V^{*} \otimes V \otimes W \otimes W^{*}$	
$\downarrow \mathrm{ev} \otimes \mathrm{ev}^{*}$	
$\mathbb{C}\left(q^{1 / 4}\right)$	$J_{L, V, V}$

Generalized colored Jones polynomial

Set

$$
\mathcal{R}=\operatorname{Span}_{\mathbb{Q}\left(q^{\frac{1}{2}}\right)}\left\{V_{m}: m \text {-dim. irr. rep. } \mid m \geq 1\right\} .
$$

Definition

For a link $L=L_{1} \cup \cdots \cup L_{n}$ and

$$
X_{i}=\sum_{j_{i}} x_{j_{i}}^{(i)} V_{j_{i}} \in \mathcal{R}, \quad x^{(i)} \in \mathbb{Q}\left(q^{\frac{1}{2}}\right),
$$

set

$$
J_{L ; X_{1}, \ldots, X_{n}}=\sum_{j_{1}, \ldots, j_{n}} x_{j_{1}}^{(1)} \cdots x_{j_{n}}^{(n)} J_{L ; V_{j_{1}}, \ldots, V_{j_{n}}} .
$$

For $l \geq 0$, set

$$
\begin{aligned}
P_{l}^{\prime} & =\frac{1}{\{l\}!} \prod_{i=0}^{l-1}\left(V_{2}-q^{i+\frac{1}{2}}-q^{-i-\frac{1}{2}}\right) \in \mathcal{R} \\
\tilde{P}_{l}^{\prime} & =q^{-\frac{1}{4} l(l-1)} P_{l}^{\prime} \in \mathcal{R} \\
\mathcal{P}_{k} & =\operatorname{Span}_{\mathbb{Z}\left[q, q^{-1}\right]}\left\{\tilde{P}_{l}^{\prime} \mid l \geq k\right\} \\
\hat{\mathcal{P}} & =\lim _{k \geq 0} \mathcal{P}_{0} / \mathcal{P}_{k} \\
\omega^{ \pm 1} & =\sum_{l=0}^{\infty}(\pm 1)^{l} q^{ \pm \frac{1}{4} l(l+3)} P_{l}^{\prime} \in \hat{\mathcal{P}}
\end{aligned}
$$

Theorem (Habiro)

$L=L_{1} \cup \cdots \cup L_{n}$: algebraically-split link

$$
J_{L ; \omega^{\epsilon_{1}, \ldots, \omega_{n}}}=\sum_{l_{1}, \ldots, l_{n}=0}^{\infty}\left(\prod_{i=1, \ldots . n} \epsilon_{i}^{l_{i}} q^{\epsilon_{i}^{\frac{1}{4} l_{i}\left(l_{i}+3\right)}}\right) J_{L ; P_{l_{1}}^{\prime}, \ldots, P_{l_{n}}^{\prime}} \in \widehat{\mathbb{Z}[q]}
$$

Here $\epsilon_{i}, \ldots, \epsilon_{n} \in\{ \pm 1\}$ and

$$
\widehat{\mathbb{Z}[q]}={\underset{\overparen{n}}{n \geq 0}}^{\mathbb{Z}}[q] /\left((1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)\right)
$$

Unified WRT invariant

Unified WRT invariant

$L=L_{1} \cup \cdots \cup L_{n}$: link with framings $\epsilon_{1}, \ldots, \epsilon_{n} \in\{ \pm 1\}$ $M=S_{L}^{3}$: IHS obtained by surgery along L in S^{3}

Definition (Unified WRT invariant)

Set

$$
J_{M}=J_{L^{0} ; \omega^{\epsilon}, \ldots, \omega^{\epsilon_{n}},} \in \widehat{\mathbb{Z}[q]} .
$$

($L^{0}: L$ with all framings 0 .)

Results

Notation

We use the following q-integer notations:

$$
\begin{aligned}
\{i\} & =q^{\frac{i}{2}}-q^{-\frac{i}{2}} \\
\{i\}_{n} & =\{i\}\{i-1\} \cdots\{i-n+1\} \\
\{n\}! & =\{n\}_{n} \\
{\left[\begin{array}{c}
i \\
n
\end{array}\right] } & =\{i\}_{n} /\{n\}!
\end{aligned}
$$

for $i \in \mathbb{Z}, n \geq 0$.

Results

Theorem (S)

Let K be a knot with 0 -framing. For $i, j \geq 0$, we have

$$
J_{B(K) ; P_{i}^{\prime}, P_{j}^{\prime}}=\sum_{l \geq 0} a_{i, j}^{(l)} J_{K ; P_{l}^{\prime}}
$$

where

$$
\left.\begin{array}{l}
a_{i, j}^{(l)}=\delta_{i, j}(-1)^{i} \frac{\{2 i+1\}!\{l\}!}{\{2 l+1\}!} \lambda_{l, i}, \\
\lambda_{l, i}=\sum_{k=0}^{l}(-1)^{k}[2 l+1][2 l+i-2 k+1] \\
2 i+1
\end{array}\right] .
$$

Example

$\Phi_{m} \in \mathbb{Z}[q]: m$-th cyclotomic polynomial

$$
\begin{gathered}
\left(\Phi_{1}=q-1, \quad \Phi_{2}=q+1, \quad \Phi_{3}=q^{2}+q+1\right) \\
M_{n}= \\
J_{M_{n} ; P_{1}^{\prime}, \ldots, P_{1}^{\prime}}=(-1)^{n} q^{-2 n+4} \Phi_{1}^{n-2} \Phi_{2}^{n-2} \Phi_{3} \Phi_{4}^{n-3}
\end{gathered}
$$

Theorem (S)

Let K be a knot with 0-framing and M the integral homology sphere obtained by surgery along $B(K)$ with ± 1 framing in S^{3}. We have

$$
J_{M}-1 \in \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{3} \Phi_{4} \Phi_{6} \widehat{\mathbb{Z}[q]}
$$

