< ロ > < 同 > < 回 > < 回 >

1/32

Bing doubling and the colored Jones polynomial

Sakie Suzuki

RIMS

2012.12.24 結び目の数学V@Waseda University

Introduction

Colored Jones polynomial

Unified WRT invariant

Results

Introduction

・ロ ・ ・ 一部 ・ く 注 ト く 注 ト 注 の へ C
3 / 32

Quantum invariants for links

 $L = L_1 \cup \cdots \cup L_n$: framed link

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>

< ロ > < 同 > < 回 > < 回 >

Quantum invariants for 3-mfds

M: Integral homology sphere (=IHS)

< ロ > < 同 > < 回 > < 回 >

6/32

Quantum invariants

Quantum invariants

Fundamental groups

(Alexander poly., Milnor μ inv., ...)

- Coverings

 (Alexander poly., ...)
- Seifert surfaces

(Alexander poly., boundary links, ...)

Cobordisms

(slice, ribbon, \ldots)

Local moves

(crossing change, mutant, satellite, ...)

What is "Topological" $? \sim$ Classical

Fundamental groups

(Alexander poly., Milnor μ inv., ...)

- Coverings

 (Alexander poly., ...)
- Seifert surfaces

(Alexander poly., boundary links, ...)

Cobordisms

(slice, ribbon, ...)

Local moves

(crossing change, satellite, mutation, ...)

Bing doubling

Fact: K is slice $\Rightarrow B(K)$ is slice.

<ロ><回><日><日><日><日><日><日><日><日><日><日><日><日</td>11/32

Fact: K is slice $\Rightarrow B(K)$ is slice. Q1: Does the converse hold? (Harvey, Teichner, ...)

Fact: K is slice $\Rightarrow B(K)$ is slice. Q1: Does the converse hold? (Harvey, Teichner, ...)

L: a link obtained from Borromean rings by a sequence of Bing doublings.

Fact: K is slice $\Rightarrow B(K)$ is slice. Q1: Does the converse hold? (Harvey, Teichner, ...)

L: a link obtained from Borromean rings by a sequence of Bing doublings. Q2: Are Whitehead doubles of *L* slice? (Freedman, Lin)

Fact: K is slice $\Rightarrow B(K)$ is slice. Q1: Does the converse hold? (Harvey, Teichner, ...)

L: a link obtained from Borromean rings by a sequence of Bing doublings. Q2: Are Whitehead doubles of *L* slice? (Freedman, Lin) ↓ "Surgery conjecture" in 4-dim. topology.

Results

Bing doubling and Milnor $\bar{\mu}$ invariant

linking number of degree
$$2 =$$
 number of i

Unified WRT invariant

Results

Bing doubling and Milnor $\bar{\mu}$ invariant

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < 13/32

Bing doubling and Milnor $\bar{\mu}$ invariant

< □ > < □ > < □ > < 三 > < 三 > < 三 > 三 の Q (C 14/32

Bing doubling and Milnor $\bar{\mu}$ invariant

Bing doubling and Milnor $\bar{\mu}$ invariant

Milnor $\bar{\mu}$ invariants count the following parts:

length 2

length 3

length 4

・ロ ・ ・ (日)・ く き ・ く き ・ き の Q (*)
16 / 32

Bing doubling and Finite type invariants

The set of A-finite type invariant $\cup_{n\geq 0}V_n$ with the filtration

$$V_0 = V_1 \subset V_2 \subset \cdots$$

induces the filtration

$$\mathcal{K} = \mathcal{K}_1 \supset \mathcal{K}_2 \supset \cdots$$

where $\mathcal{K} := \operatorname{Span}_A \{ \text{isotopy classes of knots} \}.$

Results

Bing doubling and Finite type invariants Theorem (Habiro)

 K_1, K_2 : knots

$$K_1 - K_2 \in \mathcal{K}_i \iff K_1 \sim_{C_i} K_2.$$

Here \sim_{C_i} is the equivalent relation generated by

Colored Jones polynomial

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆 > このので 19/32

Colored Jones polynomial

 $W_1,\ldots,W_5\in \mathrm{Mod}_f(U_q(sl_2)).$

- As Operator invariant
- ► By Skein relation
- From Kontsevich invariant
- From Universal sl_2 invariant

Colored Jones polynomial (Operator invariant) $V, W \in Mod_f(U_q(sl_2))$

Generalized colored Jones polynomial Set

$$\mathcal{R} = \operatorname{Span}_{\mathbb{Q}(q^{\frac{1}{2}})} \{ V_m : m \text{-dim. irr. rep.} \mid m \ge 1 \}.$$

Definition

For a link $L = L_1 \cup \cdots \cup L_n$ and

$$X_i = \sum_{j_i} x_{j_i}^{(i)} V_{j_i} \in \mathcal{R}, \quad x^{(i)} \in \mathbb{Q}(q^{\frac{1}{2}}),$$

set

$$J_{L;X_1,\dots,X_n} = \sum_{j_1,\dots,j_n} x_{j_1}^{(1)} \cdots x_{j_n}^{(n)} J_{L;V_{j_1},\dots,V_{j_n}}$$

22 / 32

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2

23 / 32

For $l \ge 0$, set

$$P_{l}' = \frac{1}{\{l\}!} \prod_{i=0}^{l-1} (V_{2} - q^{i+\frac{1}{2}} - q^{-i-\frac{1}{2}}) \in \mathcal{R},$$

$$\tilde{P}_{l}' = q^{-\frac{1}{4}l(l-1)} P_{l}' \in \mathcal{R},$$

$$\mathcal{P}_{k} = \operatorname{Span}_{\mathbb{Z}[q,q^{-1}]} \{ \tilde{P}_{l}' \mid l \ge k \},$$

$$\hat{\mathcal{P}} = \varprojlim_{k \ge 0} \mathcal{P}_{0} / \mathcal{P}_{k},$$

$$\omega^{\pm 1} = \sum_{l=0}^{\infty} (\pm 1)^{l} q^{\pm \frac{1}{4}l(l+3)} P_{l}' \in \hat{\mathcal{P}}.$$

Theorem (Habiro)

 $L = L_1 \cup \cdots \cup L_n$: algebraically-split link

$$J_{L;\omega^{\epsilon_1},\dots,\omega^{\epsilon_n}} = \sum_{l_1,\dots,l_n=0}^{\infty} \left(\prod_{i=1,\dots,n} \epsilon_i^{l_i} q^{\epsilon_i \frac{1}{4} l_i(l_i+3)}\right) J_{L;P'_{l_1},\dots,P'_{l_n}} \in \widehat{\mathbb{Z}[q]}$$

Here $\epsilon_i, \ldots, \epsilon_n \in \{\pm 1\}$ and

$$\widehat{\mathbb{Z}[q]} = \lim_{n \ge 0} \mathbb{Z}[q] / ((1-q)(1-q^2)\cdots(1-q^n)).$$

Unified WRT invariant

(日) (同) (日) (日) (日) (日) (0)

26 / 32

Unified WRT invariant

 $L = L_1 \cup \cdots \cup L_n$: link with framings $\epsilon_1, \ldots, \epsilon_n \in \{\pm 1\}$ $M = S_L^3$: IHS obtained by surgery along L in S^3

Definition (Unified WRT invariant)

Set

$$J_M = J_{L^0;\omega^{\epsilon_1},\dots,\omega^{\epsilon_n}} \in \widehat{\mathbb{Z}[q]}.$$

(L^0 : L with all framings 0.)

Results

(ロ)、(部)、(意)、(意)、意)の(C 27/32

Notation

We use the following *q*-integer notations:

$$\{i\} = q^{\frac{i}{2}} - q^{-\frac{i}{2}},$$

$$\{i\}_n = \{i\}\{i-1\}\cdots\{i-n+1\},$$

$$\{n\}! = \{n\}_n,$$

$$\begin{bmatrix} i\\n \end{bmatrix} = \{i\}_n/\{n\}!,$$

for $i \in \mathbb{Z}, n \geq 0$.

Results

Theorem (S)

Let K be a knot with 0-framing. For $i, j \ge 0$, we have

$$J_{B(K);P'_i,P'_j} = \sum_{l \ge 0} a_{i,j}^{(l)} J_{K;P'_l},$$

where

$$a_{i,j}^{(l)} = \delta_{i,j}(-1)^{i} \frac{\{2i+1\}!\{l\}!}{\{2l+1\}!} \lambda_{l,i},$$
$$\lambda_{l,i} = \sum_{k=0}^{l} (-1)^{k} \begin{bmatrix} 2l+1 \\ k \end{bmatrix} \begin{bmatrix} 2l+i-2k+1 \\ 2i+1 \end{bmatrix}$$

୬ ୯ ୯ 29 / 32

Example

$\Phi_m \in \mathbb{Z}[q]$: *m*-th cyclotomic polynomial

$$(\Phi_1 = q - 1, \quad \Phi_2 = q + 1, \quad \Phi_3 = q^2 + q + 1)$$

$$J_{M_n;P'_1,\dots,P'_1} = (-1)^n q^{-2n+4} \Phi_1^{n-2} \Phi_2^{n-2} \Phi_3 \Phi_4^{n-3}$$

< ロ > < 同 > < 回 > < 回 >

31/32

Theorem (S)

Let K be a knot with 0-framing and M the integral homology sphere obtained by surgery along B(K) with ± 1 framing in S^3 . We have

$$J_M - 1 \in \Phi_1^2 \Phi_2^2 \Phi_3 \Phi_4 \Phi_6 \widehat{\mathbb{Z}[q]}.$$