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Abstract.

SFSDP is a Matlab package for solving sensor network localization problems. The pack-
age contains four functions, SFSDP.m, SFSDPplus.m, generateProblem.m, test SFSDP.m,
and some numerical examples. The function SFSDP.m is an Matlab implementation of the
semidefinite programming (SDP) relaxation proposed in the recent paper by Kim, Kojima
and Waki for sensor network localization problems, as a sparse version of the full semidefi-
nite programming relaxation (FSDP) by Biswas and Ye. To improve the efficiency of FSDP,
SFSDP.m exploits the aggregated and correlative sparsity of a sensor network localization
problem. The function SFSDPplus.m analyzes the input data of a sensor network localiza-
tion problem, solves the problem, and displays graphically computed locations of sensors.
The function generateProblem.m creates numerical examples of sensor network localization
problems with some typical anchor locations. The function test SFSDP.m is for numerical
experiments on SFSDPplus.m applied to test problems generated by generateProblem.m.
The package SFSDP and this manual are available at

http://www.is.titech.ac.jp/∼kojima/SFSDP

Key words.

Sensor network localization problems, Semidefinite programming relaxation, Sparsity ex-
ploitation, Matlab software package.

⋆ Department of Mathematics, Ewha Women’s University, 11-1 Dahyun-dong,
Sudaemoon-gu, Seoul 120-750 Korea. S. Kim’s research was supported by KRF
2007-313-C00089. skim@ewha.ac.kr

† Department of Mathematical and Computing Sciences, Tokyo Institute of Tech-
nology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. M. Kojima’s re-
search was supported by Grant-in-Aid for Scientific Research (B) 19310096. ko-
jima@is.titech.ac.jp

‡ Department of Computer Science, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo, Japan. H. Waki’s research was supported by
Grant-in-Aid for JSPS Fellows 20003236. hayato.waki@jsb.cs.uec.ac.jp



1 Introduction

A sensor network localization problem is to locate m sensors that fit the distances when a
subset of distances and some sensors of known position (called anchors) are provided in a
sensor network of n sensors, where n > m. Various approaches [1, 6, 7, 9, 10, 17] have been
proposed for the problem to approximate the solutions. Full semidefinite programming
relaxation (FSDP) was introduced by Biswas and Ye in [2], and a number of solution
methods based on SDP relaxation have followed [3, 4, 5, 14, 18].

We introduce a Matlab package SFSDP for solving sensor network localization problems
by SDP relaxation. The main function SFDPS.m of the package is an implementation of
the SDP relaxation proposed in the recent paper by Kim, Kojima and Waki [11]. SFSDP.m
is intended to improve the efficiency of Biswas and Ye’s FSDP [2] by exploiting sparsity, the
aggregated and correlative sparsity [8, 13, 12], of sensor network problems. The quality of
obtained solution by SFSDP.m remains equivalent to that by FSDP. As a result, SFSDP.m
can handle larger-sized sensor network problems, e.g., up to 4000 sensors in 2-dimensional
case, than FSDP.

SFSDP.m can solve the problem with exact and noisy distance. To describe a form of
the sensor network localization problem that can be solved by SFSDP.m, we consider a
problem with m sensors and ma anchors. Let ρ > 0 be a radio range, which determines the
set Ñ x of pairs of sensors p and q such that their unknown (Euclidean) distance dpq is not

larger than ρ, and the set Ñ a of pairs of a sensor p and an anchor r such that their distance
dpr is not longer than ρ;

Ñ x = {(p, q) : 1 ≤ p < q ≤ m, ∥x̄p − x̄q∥ ≤ ρ},
Ñ a = {(p, r) : 1 ≤ p ≤ m, m + 1 ≤ r ≤ n, ∥x̄p − ar∥ ≤ ρ},

}
(1)

where x̄p denotes unknown location of sensor p and ar known location of anchor r. Let N x

be a subset of Ñ x and and N a a subset of Ñ a. For ℓ-dimensional problem, an ℓ×m matrix
variable X = (x1, . . . , xm) ∈ Rℓ×m denotes location of the sensors. SFSDP.m can solve the
problem of ℓ = 2 or 3. By introducing zero objective function and the distance equations
as constraints, we have the following form of the sensor network localization problem with
exact distance.

minimize 0
subject to d2

pq = ∥xp − xq∥2 (p, q) ∈ N x,
d2

pr = ∥xp − ar∥2 (p, r) ∈ N a.

 (2)

When the distance involves noise, the following problem is considered.

minimize
∑

(p,q)∈N x

(
ϵ+
pq + ϵ−pq

)
+

∑
(p,r)∈N a

(
ϵ+
pr + ϵ−pr

)
subject to d̂2

pq = ∥xp − xq∥2 + ϵ+
pq − ϵ−pq (p, q) ∈ N x,

d̂2
pr = ∥xp − ar∥2 + ϵ+

pr − ϵ−pr (r, q) ∈ N a,
ϵ+
pq ≥ 0, ϵ−pq ≥ 0, (p, q) ∈ N x,

ϵ+
pr ≥ 0, ϵ−pr ≥ 0, (p, r) ∈ N a.


(3)

1



Input SNL
Problem

test SFSDP.m

SFSDPplus.m

SFSDP.m

Print Info,
Draw Figures

Solution,
Distance Matrix

SFSDP

generateProblem.m

Figure 1: The structure of SFSDP

Here ϵ+
pq + ϵ−pq (or ϵ+

pr + ϵ−pr) indicates a one-norm error in an estimated distance d̂pq between

sensors p and q (or an estimated distance d̂pq between sensor p and anchor r, respectively).

When a sensor network problem of the form (2) or (3) has many equality constraints
that may be redundant, the resulting SDP relaxation problem can be too large to solve. To
deal with such a problem, SFSDP.m replaces N x and N a by smaller subsets of them, N ′

x

and N ′
a, respectively, before applying the sparse SDP relaxation to the problem (2) or (3).

Then, the resulting SDP relaxation problem becomes smaller and sparser. This process is a
key in solving a large scale sensor network localization problem efficiently by SFSDP.m. See
Section 4.1 of [11] for more details. We assume that either (i) (noisy) distance is available
between a fairly large number of sensors and anchors in the original problem (2) or (3)
to extract a smaller-sized subproblem satisfying sparsity (the aggregated and correlative

sparsity) or (ii) the original problem itself is sparse. If we take Ñ x and Ñ a (or their subsets
large enough) for N x and N a, respectively, the assumption (i) is usually satisfied. It should
be remarked, however, that SFSDP.m may fail to solve the problem efficiently if neither (i)
nor (ii) is satisfied.

Edge-based SDP (ESDP) and node-based SDP (NSDP) relaxations were introduced in
[18] to improve the computational efficiency of the original Biswas-Ye SDP relaxation FSDP.
These SDP relaxations are further relaxations of FSDP, hence, they are theoretically weaker
than FSDP. SFSDP.m, however, is shown to be equivalent to FSDP in [11].

The structure of the package SFSDP is shown in Figure 1. Besides SFSDP.m, the
package includes three functions, SFDPplus.m, generateProblem.m, and test SFDP.m. The
function SFDPplus.m is designed for users who want to solve their own sensor network lo-
calization problems. Users can use SFSDP.m via SFSDPplus.m or SFSDP.m directly. After
analyzing input data of a given problem, SFSDPplus.m solves the problem by SFSDP.m,
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and displays graphically computed locations of sensors. Users can call either of SFSDP.m
and SFDPplus.m from their own Matlab function that can provide necessary input data.
SFSDP.m calls SeDuMi [16], which is available at [15], to solve SDP relaxation problems.

The other two functions generateProblem.m and test SFDP.m are for users interested in
numerical experiment using SFDPplus.m. The function generateProblem.m creates numer-
ical examples of sensor network localization problems with representative anchor locations.
The function test SFSDP.m is for numerical experiments on SFSDPplus.m applied to test
problems generated by generateProblem.m. We discuss input and output for the functions
SFSDP.m, SFSDPplus.m, generateProblem.m and test SFSDP.m in detail in Section 3.

2 Sample Run

The usage of SFSDPplus.m, SFSDP.m, generateProblems.m, and test SFSDP.m is described
in this section.

2.1 SFSDPplus.m

We show how SFSDPplus.m can be executed with an illustrative example. A small problem
with 3 sensors and 4 anchors is generated with the following xMatrix0 and distanceMa-
trix0. The sensors are located at (0.3, 0.4), (0.3, 0.6), and (0.7, 0.6) and the anchors are at
(0, 0), (0, 1), (1, 0), and (1, 1). Input data and parameters are prepared as follows.

>> sDim= 2; noOfSensors= 3; noOfAnchors= 4;

>> pars.free= 0; pars.eps= 1.0000e-05; pars.minDegree= 4; pars.objSW = 1;

>> pars.noisyFac= 0;

The elements of xMatrix0 are:

>> xMatrix0

xMatrix0 =

0.3000 0.3000 0.7000 0 0 1.0000 1.0000

0.4000 0.6000 0.6000 0 1.0000 0 1.0000

The first three columns of xMatrix0, which indicate the location of sensors, can be omitted
for general case with unknown location of sensors.

The corresponding distanceMatrix0 has the following values. That is, nonzero (p, q)th
component of distanceMatrix0 indicates the distance between sensors p and q, or equiva-
lently, between xMatrix0(:,p) and xMatrix0(:,q). Note that distanceMatrix0 is upper trian-
gular; distanceMatrix0(p, q) = 0 if p ≥ q.

>> distanceMatrix0

distanceMatrix0 =

0 0.2000 0.4472 0.5000 0 0.8062 0

0 0 0.4000 0 0.5000 0 0

0 0 0 0 0 0.6708 0.5000
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Figure 2: An example with three sensors and four anchors.

Then, issue a command:

>> [xMatrix,info] = SFSDPplus(sDim,noOfSensors,noOfAnchors,...

xMatrix0,distanceMatrix0,pars);

## sDim = 2, noOfSensors = 3, noOfAnchors = 4

## the number of dist. equations between two sensors = 3

## the number of dist. equations between a sensor & an anchor = 5

## the minimum, maximum and average degrees over sensor nodes = 3, 4, 3.67

## +0.0000e+00 <= x(1) <= +1.0000e+00

## +0.0000e+00 <= x(2) <= +1.0000e+00

## the max. radio range = 8.0623e-01, the estimated noisy factor = 2.0250e-05

SFSDP --- A Sparse version of FSDP (Biswas and Ye)

Sunyoung Kim, Masakazu Kojima and Hayato Waki

Version 1.01, July 28, 2008

## pars: eps = 1.00e-05, free = 0, minDegree = 4, objSW = 1, noisyFac = 0

## the number of dist. equations used in SFSDP between two sensors = 3

## the number of dist. equations used in SFSDP between a sensor & an anchor = 5

## the minimum, maximum and average degrees over sensor nodes = 3, 4, 3.67

## cpu time for generating an SDP relaxation problem = 0.03

## cpu time for retrieving an optimal solution = 0.00

## cpu time for SeDuMi = 0.18

## mean error in dist. eq. = 2.64e-06, max. error in dist. eq. = 2.11e-05

## rmsd = 1.98e-05

## see Figure 101

## cpu time for a gradient method = 0.04

## mean error in dist. eq. = 2.86e-06, max. error in dist. eq. = 1.27e-05

## rmsd = 1.82e-05

## see Figure 103

Figure 2 is displayed at the end of execution. In Figure 2 and throughout, a circle
indicates the true location of a sensor, ⋆ the computed location of a sensor, and a line segment
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a difference between the true and computed location. The input data and parameters are
stored in the file examples/example1.mat of the package, and can be loaded as

>> load ’example1.mat’

instead of specifying them from the command window.

Now consider a 2-dimensional problem with 500 sensors and 100 anchors placed randomly
in the region [0, 1] × [0, 1] and noisy distance. As in practical applications, we assume that
the location of sensors is not known. Thus, xMatrix0 includes only 100 locations of anchors.
To solve the problem, the following command can be used after loading the data stored in
the file d2n01s500a100NS.mat, which is included in the directory examples of the package.

>> load ’d2n01s500a100ns.mat’;

>> [xMatrix,info] = SFSDPplus(sDim,noOfSensors,noOfAnchors,...

xMatrix0,distanceMatrix0,pars);

## only anchor locations are given

## sDim = 2, noOfSensors = 500, noOfAnchors = 100

## the number of dist. equations between two sensors = 8171

## the number of dist. equations between a sensor & an anchor = 3000

## the minimum, maximum and average degrees over sensor nodes = 24, 167, 38.68

## no location for sensors is given

SFSDP --- A Sparse version of FSDP (Biswas and Ye)

Sunyoung Kim, Masakazu Kojima and Hayato Waki

Version 1.01, July 28, 2008

## pars: eps = 1.00e-05, free = 0, minDegree = 4, objSW = 1, noisyFac = 1.00e-01

## the number of dist. equations used in SFSDP between two sensors = 989

## the number of dist. equations used in SFSDP between a sensor & an anchor = 1500

## the minimum, maximum and average degrees over sensor nodes = 5, 138, 6.96

## cpu time for generating an SDP relaxation problem = 4.03

## cpu time for retrieving an optimal solution = 0.11

## cpu time for SeDuMi = 10.26

## mean error in dist. eq. = 1.30e-03, max. error in dist. eq. = 8.51e-02

## see Figure 101

## cpu time for a gradient method = 3.62

## mean error in dist. eq. = 1.25e-03, max. error in dist. eq. = 6.18e-02

## see Figure 103

Figure 3 is displayed at the end of execution. After obtaining a solution with SFSDP.m,
SFSDPplus.m refines the solution using the function refineposition.m, which is a Matlab
implementation of a gradient method provided by Prof. Kim-Chuan Toh. The figure on the
right-hand-side of Figure 3 is attained after applying the function.

Now we solve the same problem with information on the location of sensors to see how
accurately the computed location of sensors approximates the true location of sensors.
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Figure 3: A 2-dimensional problem with 500 sensors (no information on their location) and
100 anchors and noisy distance. Before and after the refinement using a gradient method.

>> load ’d2n01s500a100.mat’;

>> [xMatrix,info] = SFSDPplus(sDim,noOfSensors,noOfAnchors,...

xMatrix0,distanceMatrix0,pars);

## sDim = 2, noOfSensors = 500, noOfAnchors = 100

## the number of dist. equations between two sensors = 8171

## the number of dist. equations between a sensor & an anchor = 3000

## the minimum, maximum and average degrees over sensor nodes = 24, 167, 38.68

## +1.5003e-03 <= x(1) <= +9.9912e-01

## +9.7480e-04 <= x(2) <= +9.9948e-01

## the max. radio range = 3.0000e-01, the estimated noisy factor = 9.9337e-02

SFSDP --- A Sparse version of FSDP (Biswas and Ye)

Sunyoung Kim, Masakazu Kojima and Hayato Waki

Version 1.01, July 28, 2008

## pars: eps = 1.00e-05, free = 0, minDegree = 4, objSW = 1, noisyFac = 1.00e-01

## the number of dist. equations used in SFSDP between two sensors = 989

## the number of dist. equations used in SFSDP between a sensor & an anchor = 1500

## the minimum, maximum and average degrees over sensor nodes = 5, 138, 6.96

## cpu time for generating an SDP relaxation problem = 5.18

## cpu time for retrieving an optimal solution = 0.19

## cpu time for SeDuMi = 15.42

## mean error in dist. eq. = 1.30e-03, max. error in dist. eq. = 8.51e-02

## rmsd = 4.38e-02

## see Figure 101

## cpu time for a gradient method = 5.08

## mean error in dist. eq. = 1.25e-03, max. error in dist. eq. = 6.18e-02

## rmsd = 7.76e-03

## see Figure 103
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Figure 4: A 2-dimensional problem with 500 sensors (information available on their location)
and 100 anchors and noisy distance. Before and after the refinement using a gradient
method.

Figure 4 is displayed at the end of execution.

We note the difference in output and Figures 3 and 4 obtained from solving the same
problem with and without the information on the location of sensors.

2.2 SFSDP.m

SFSDP.m can be called as follows with the same data as in the previous example. Notice
that the output of SFSDP.m is different from SFSDPplus.m, in particular, no figures are
shown at the end of execution.

>> load ’d2n01s500a100.mat’;

>> [xMatrix,info,distanceMatrix] = SFSDP(sDim,noOfSensors,noOfAnchors,...

xMatrix0,distanceMatrix0,pars);

SFSDP --- A Sparse version of FSDP (Biswas and Ye)

Sunyoung Kim, Masakazu Kojima and Hayato Waki

Version 1.01, July 28, 2008

## pars: eps = 1.00e-05, free = 0, minDegree = 4, objSW = 1, noisyFac = 1.00e-01

## the number of dist. equations used in SFSDP between two sensors = 989

## the number of dist. equations used in SFSDP between a sensor & an anchor = 1500

## the minimum, maximum and average degrees over sensor nodes = 5, 138, 6.96

## cpu time for generating an SDP relaxation problem = 5.20

## cpu time for retrieving an optimal solution = 0.17
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2.3 Generating a problem

For numerical experiments, users can generate a sensor network localization problem using
the function generateProblem.m provided in the SFSDP package. After determining the
values of parameter needed for generateProblem.m, the function generateProblem.m can be
called. Then, it returns xMatrix0 and distanceMatrix0 as output. For example,

>> sDim = 2; noisyFac = 0.0; radiorange = 0.3; noOfSensors = 1000;

>> anchorType = 2; noOfAnchors = 100; randSeed = 2001;

>> [xMatrix0,distanceMatrix0] = generateProblem(sDim,noisyFac,...

radiorange,noOfSensors,anchorType,noOfAnchors,randSeed);

In addition, if users specify parameters such that

>> pars.free= 0; pars.eps= 1.0e-05; pars.minDegree= 4; pars.objSW = 0;

>> pars.noisyFac= 0.0;

they can solve the problem with the command

>> [xMatrix,info] = SFSDPplus(sDim,noOfSensors,noOfAnchors,...

xMatrix0,distanceMatrix0,pars);

Or they can save the input data and parameters in a file such that

>> save(’example2.mat’,’sDim’,’noOfSensors’,’noOfAnchors’,’xMatrix0’,...

’distanceMatrix0’,’pars’);

We will describe each of input data and parameters in detail in Section 3.

2.4 test SFSDP.m

The function test SFSDP.m is included in the package SFSDP for numerical experiments.
The following command can be used.

>> test_SFSDP(sDim,noisyFac,radiorange,noOfSensors,anchorType,...

noOfAnchors,randSeed);

For a 2-dimensional problem with noisyFac = 0.3, radiorange=0.3, 500 sensors, anchorType=2,
100 anchors, and randomSeed=2001, which is the same problem as the second example in
Section 2.1,

>> test_SFSDP(2,0.1,0.3,500,2,100,2001);

## cpu time for generating a sensor network problem = 1.10

## sDim = 2, noOfSensors = 500, anchorType = 2, noOfAnchors = 100

## radiorange = 3.00e-01, noisyFac = 1.00e-01, randSeed = 2001
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## the number of dist. equations between two sensors = 8171

## the number of dist. equations between a sensor & an anchor = 3000

## the minimum, maximum and average degrees over sensor nodes = 24, 167, 38.68

SFSDP --- A Sparse version of FSDP (Biswas and Ye)

Sunyoung Kim, Masakazu Kojima and Hayato Waki

Version 1.01, July 28, 2008

## pars: eps = 1.00e-05, free = 0, minDegree = 4, objSW = 1, noisyFac = 1.00e-01

## the number of dist. equations used in SFSDP between two sensors = 989

## the number of dist. equations used in SFSDP between a sensor & an anchor = 1500

## the minimum, maximum and average degrees over sensor nodes = 5, 138, 6.96

## cpu time for generating an SDP relaxation problem = 5.05

## cpu time for retrieving an optimal solution = 0.18

## cpu time for SeDuMi = 15.11

## mean error in dist. eq. = 1.30e-03, max. error in dist. eq. = 8.51e-02

## rmsd = 4.38e-02

## see Figure 101

## cpu time for a gradient method = 5.14

## mean error in dist. eq. = 1.25e-03, max. error in dist. eq. = 6.18e-02

## rmsd = 7.76e-03

## see Figure 103

The Figure 4 is displayed at the end.

For 3-dimensional problem, noisyFac = 0.1, radiorange=0.5, 500 sensors, anchorType=2,
noOfAnchors=50, and randomSeed=2001, we issue a command:

>> test_SFSDP(3,0.1,0.5,500,2,50,2001);

Then, on the screen the following is displayed.

>> test_SFSDP(3,0.1,0.5,500,2,50,2001);

## cpu time for generating a sensor network problem = 0.38

## sDim = 3, noOfSensors = 500, anchorType = 2, noOfAnchors = 50

## radiorange = 5.00e-01, noisyFac = 1.00e-01, randSeed = 2001

## the number of dist. eq. between two sensors = 11015

## the number of dist. eq. between a sensor & an anchor = 3831

## the min., max. and ave. degrees over sensor nodes = 24, 259, 51.72

SFSDP --- A Sparse version of FSDP (Biswas and Ye)

Sunyoung Kim, Masakazu Kojima and Hayato Waki

Version 1.01, July 28, 2008

## pars: eps = 1.00e-05, free = 0, minDegree = 5, objSW = 1, noisyFac = 1.00e-01

## the number of dist. eq. used in SFSDP between two sensors = 993

## the number of dist. eq. used in SFSDP between a sensor & an anchor = 1997
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Figure 5: Before and after the refinement using a gradient method

## the min., max. and ave. degrees over sensor nodes = 5, 176, 7.97

## cpu time for generating an SDP relaxation problem = 3.45

## cpu time for retrieving an optimal solution = 0.13

## cpu time for SeDuMi = 9.03

## mean error in dist. eq. = 5.82e-03, max. error in dist. eq. = 1.88e-01

## rmsd = 9.83e-02

## see Figure 101

## cpu time for a gradient method = 6.39

## mean error in dist. eq. = 3.33e-03, max. error in dist. eq. = 1.06e-01

## rmsd = 1.91e-02

## see Figure 103

Figure 5 is shown at the end of execution.

3 Input, Output and Parameters

3.1 Input

As we can see in the following commands,

>> [xMatrix,info]=SFSDPplus(sDim,noOfSensors,noOfAnchors,xMatrix0,...

distanceMatrix0,pars);

>> [xMatrix,info,distanceMatrix]=SFSDP(sDim,noOfSensors,...

noOfAnchors,xMatrix0,distanceMatrix0,pars);

input for SFSDPplus.m and SFSDP.m is the dimension of the space where sensors and
anchors are placed, the number of sensors, the number of anchors, the location matrix of
sensors and anchors, and the distance matrix, pars involving some of parameters, which are
described in Table 1.
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Variable name Description
sDim the dimension of the space where sensors and anchors are located

(2 or 3).
noOfSensors the number m of sensors.
noOfAnchors the number ma of anchors located in the last ma columns of

xMatrix0.
xMatrix0 sDim×n matrix of the location of sensors and anchors in the

sDim-dimensional space, where n is the total number of sensors
and anchors, and anchors are placed in the last ma columns.
Or sDim×ma matrix of anchors in the sDim-dimensional space,
where ma denotes the number of anchors.
If noOfAnchors = 0, then xMatrix0 can be [].

distanceMatrix0 the sparse (and noisy) distance matrix between sensors and
anchors; distanceMatrix0(p, q) = (noisy) distance between a pair of
sensors (p, q) ∈ N x and distanceMatrix0(p, r) = (noisy) distance
between a pair of sensor and an anchor (p, r) ∈ N a. See (2) and (3).
Note that distanceMatrix0 is upper triangular, i.e.,
distanceMatrix0(p.q) = 0 if p >= q.

pars control parameters in constructing an SDP relaxation problem
and solving it by SeDuMi. See Section 3.3 for more detail.

Table 1: Input for SFSDPplus.m and SFSDP.m

When using test SFSDP.m as

>> test_SFSDP(sDim,noisyFac,radiorange,noOfSensors,anchorType,...

noOfAnchors,randSeed);

the required input is the dimension of the space where sensors and anchors are placed,
noisy factor, radio range, the number of sensors, anchor type, and the number of anchors,
and a random seed. The dimension of the space is called sDim. If sDim= 2, sensors and
anchors will be located in [0, 1] × [0, 1]. If sDim= 3, sensors and anchors will be located in
[0, 1] × [0, 1] × [0, 1]. If the value σ of noisyFac is 0, it means that the problem does not
contain noise in distance. Otherwise, a value σ > 0 indicates that noise with the standard
normal distribution N(0, σ) exists in estimated distance. More precisely, noisy distance d̂pq

and d̂pr are given such that

d̂pq = max{(1 + ξpq), 0.1}dpq ((p, q) ∈ N x),

d̂pr = max{(1 + ξpr), 0.1}dpr ((p, r) ∈ N r).

Here ξpq and ξpr denote random numbers chosen from the standard normal distribution
N(0, σ), dpq the true distance between sensors p and q, and dpr the true distance between

sensor p and anchor r. All sensors are placed in [0, 1]sDim randomly. The 4th argument
noOfSensors in input field of test SFSDP.m is the number of sensors. A value for anchorType
decides how anchors are located as shown in Table 2. The 6th argument noOfAnchors of
input is the number of anchors, and the 7th randSeed is a random seed for a random
distribution of sensors and anchors if anchorType = 2. For instance,
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AnchorType Position

0 anchors placed at grid points on the boundary and interior of [0, 1]sDim

1 anchors placed at grid points in the interior of [0, 1]sDim

2 anchors placed randomly in [0, 1]sDim

3 sDim+1 anchors on the origin and the coordinate axis
4 sDim+1 anchors near the center
10 no anchor

Table 2: Types of anchors

>> test_SFSDP(2,0.0,0.2,500,0,4,2001);

The above command has input of the dimension of the space = 2, noisy factor 0.0 (i.e., no
noise), radio range = 0.2, the number of sensors = 500, anchor type = 0, the number of
anchors = 4, and random seed = 2001.

3.2 Output

As we can see in the following commands,

>> [xMatrix,info]=SFSDPplus(sDim,noOfSensors,noOfAnchors,xMatrix0,...

distanceMatrix0,pars);

the output of SFSDPplus.m is xMatrix and info, which are described in Table 3.

xMatrix sDim × n matrix of the location of sensors and anchors
computed in the sDim dimensional space,
where n is the total number of sensors and anchors, and
anchors are placed in the last ma columns.

info info from SeDuMi output. See SeDuMi user guide [15].

Table 3: Output of SFSDPplus.m

The output of SFSDP.m is xMatrix, info, as SFSDPplus.m, and distanceMatrix.

>> [xMatrix,info,distanceMatrix]=SFSDP(sDim,noOfSensors,noOfAnchors,...

xMatrix0,distanceMatrix0,pars);

The description of output distanceMatrix is similar to that of input distnceMatrix0 given
in Table 1. However, some values of the output distanceMatrix differs from the correspond-
ing values of the input distanceMatrix0. More precisely, the output values represent the
distances dpq ((p, q) ∈ N x) and dpr ((p, r) ∈ N a) in the problem (2) (or the noisy distances

d̂pq ((p, q) ∈ N x) and d̂pr ((p, r) ∈ N a) in the problem (3)). As we mentioned in the Intro-
duction, SFSDP.m replaces N x and N a by subsets of them, N ′

x and N ′
a, respectively, to
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reduce the size of the problem and extract sparsity from the problem. The values of output
distanceMatrix represent the distances dpq ((p, q) ∈ N ′

x) and dpr ((p, r) ∈ N ′
a) (or the noisy

distances d̂pq ((p, q) ∈ N ′
x) and d̂pr ((p, r) ∈ N ′

a) in the reduced problem. Thus,

distanceMatrix(p, q) = distanceMatrix0(p, q) > 0

if distanceMatrix(p, q) > 0 or (p, q) ∈ N ′
x,

distanceMatrix(p, q) = 0 if (p, q) ∈ N x\N ′
x,

distanceMatrix(p, r) = distanceMatrix0(p, r) > 0

if distanceMatrix(p, r) > 0 or (p, r) ∈ N ′
a,

distanceMatrix(p, r) = 0 if (p, r) ∈ N a\N ′
a.

3.3 Parameters

The parameters for SeDuMi, SFSDPplus.m, and SFSDP.m are provided in the fields of pars
as shown in Table 4.

4 Concluding Remarks

We have described the structure and usage of the Matlab package SFSDP.

The sensor network localization problem has a number of applications where compu-
tational efficiency is an important issue. SDP approach has been known to be effective
in locating sensors, however, solving large-scale problems with this approach has been a
challenge.

From numerical results in [11], SFSDP demonstrates computational advantages over
other methods. These come from utilizing the aggregated and correlative sparsity of the
problem, which reduces the size of SDP relaxation. We hope to improve the performance
of SDP relaxation, in particular, for the case when the original problem does not provide
enough distance information between sensors.
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