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Abstract

We consider a random geometric graph constructed by the homogeneous Boolean model with

spherical grains in Rd, d ≥ 2; that is, a node of the graph corresponds to a germ of the Boolean

model and there is an edge between two nodes when their grains intersect with each other. We

show that, when the radius distribution of grains is long-tailed, so is the degree distribution of the

graph. Our result includes as special cases that, if the radius distribution is regularly varying with

index −α with α > d, then the degree distribution is regularly varying with index −α/d and, in

the case of d = 2, if the radius distribution is long-tailed with the second moment, then the degree

distribution is square-root insensitive. In the proof, a subclass of long-tailed distributions — called

x1−p-insensitive distributions with p ∈ (0, 1) — plays a key role.
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1 Introduction and the result

We consider a homogeneous Boolean model with spherical grains in Rd, d ∈ {2, 3, . . .}. Let Ψ = {Xi}i∈N

denote a stationary Poisson point process on Rd with intensity λ ∈ (0,∞) and let {Ri}i∈N denote a
sequence of i.i.d. random variables on R+, which is also independent of the Poisson process Ψ. We can
see that ΨF = {(Xi, Ri)}i∈N forms a marked point process on Rd with mark space (R+,B(R+)), where
F denotes the distribution of Ri, i ∈ N. The homogeneous Boolean model with random spherical grains
are then given by

Ξ =
⋃
i∈N

(Xi + B0(Ri)),

where B0(r) denotes a closed ball on Rd centered at 0 ∈ Rd with radius r > 0, and x+C = {x+y : y ∈ C}
for x ∈ Rd and C ∈ B(Rd). The points of Ψ are also called germs and the balls B0(Ri), i ∈ N, are called
grains. The Boolean model is known as one of the most important and simplest examples of stochastic
geometry and has been studied thoroughly in the literature (see, e.g., Stoyan, Kendall & Mecke [11,
Chapter 3] or Baccelli & BÃlaszczyszyn [3, Chapter 3] for more general Boolean models). We assume
E(R1

d) < ∞, so that the number of grains Xi + B0(Ri), i ∈ N, intersecting with a given compact set in
Rd is almost surely finite (see [3, Example 3.1.3] or Heinrich [8]).

In this short note, we are interested in the connectivity of grains and consider a random geometric
graph GΞ constructed by the Boolean model Ξ, where node i ∈ N of GΞ corresponds to the point Xi of
Ψ and there is an edge between two nodes i and j (i 6= j) if (Xi + B0(Ri)) ∩ (Xj + B0(Rj)) 6= ∅; that
is, two grains intersect with each other. We consider the distribution of degrees (the numbers of edges
incident to respective nodes) of graph GΞ when the radius distribution F of grains is heavy-tailed and
we show that, when F is long-tailed, then so is the degree distribution. Our result gives an example of
models generating so-called scale-free networks. The class of long-tailed distributions forms the largest
operational class of heavy-tailed distributions and is defined as follows (see, e.g., Foss et al. [7, Chapter 2]
for more details).

Definition 1 A nonnegative random variable X and its distribution are said to be long-tailed if, for any
fixed a ∈ R,

P(X > x + a) ∼ P(X > x) as x → ∞. (1)

Here and throughout this note, we use the standard notation f(x) ∼ g(x) as x → ∞ for any two real
functions f and g on R satisfying limx→∞ f(x)/g(x) = 1. Clearly, if (1) holds for a > 0, then so does for
a < 0, and vice versa.

Due to the stationarity, we can focus on the degree distribution of one node and we consider the
Palm version of marked point process ΨF ; that is, we add a point at the origin with mark R0 which
follows the distribution F independently from ΨF (see, e.g., [3, Remark 2.1.7] or Daley & Vere-Jones [4,
Example 13.4(a)]). We refer to the node corresponding to the marked point (0, R0) as node 0 and let
D0 denote the degree of the node 0. Our result in this note is then as follows.

Theorem 1 If R0 is long-tailed with E(R0
d) < ∞, then

P(D0 > k) ∼ P(λπd R0
d > k) = F

(( k

λ πd

)1/d)
as k → ∞,

where F (x) = 1−F (x) for x ∈ R+ and πd = πd/2/Γ(d/2 + 1) with the Gamma function Γ; that is, πd rd

represents the volume of a d-dimensional ball with radius r.

We note that Theorem 1 includes as special cases that, if the radius distribution F is regularly varying
with index −α for α > d, then the degree distribution is regularly varying with index −α/d; that is, the
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graph GΞ is scale-free in the sense that the degree distribution follows the power-law. Furthermore, in
the case of d = 2, if F is long-tailed with the second moment, then the degree distribution is square-root
insensitive (see, e.g., Jelenković et al. [9] for the definition) since R0

2 is square-root insensitive if and
only if R0 is long-tailed. This result can also be thought as an extension of Theorem 1 in Miyoshi et
al. [10] for one-dimensional interval graphs to high dimensional spaces.

We prove Theorem 1 in Section 3, where a subclass of long-tailed distributions — called x1−p-
insensitive distributions with p ∈ (0, 1) — plays a key role. This class is a generalization of the square-
root insensitive distributions studied in [9] (see also Asmussen et al. [2] and Foss & Korshunov [5]) and
also a subclass of h-insensitive distributions in Foss et al. [6, 7]. Thus, before providing the proof of
Theorem 1, we study this class of distributions in the next section.

2 x1−p-insensitive distributions

Definition 2 For p ∈ (0, 1), a nonnegative random variable X and its distribution are said to be x1−p-
insensitive if

P(X > x + x1−p) ∼ P(X > x) as x → ∞.

This is a subclass of h-insensitive distributions in [6, 7] with h(x) = x1−p, p ∈ (0, 1), and a generaliza-
tion of square-root insensitive distributions, where p = 1/2. We can see that, this class of distributions
is close to the slowly varying distributions (see, e.g., [7] for the definition) when p is close to 0 , while
it is close to long-tailed distributions when p is close to 1. The following lemma characterizes the x1−p-
insensitive distributions.

Lemma 1 For any p ∈ (0, 1) and a nonnegative random variable X, the following are equivalent.

(i) X is x1−p-insensitive.

(ii) For any fixed a ∈ R, P(X > x + a x1−p) ∼ P(X > x) as x → ∞.

(iii) Xp is long-tailed.

Proof of (i) ⇔ (ii): Since (ii) ⇒ (i) is obvious from the definition, we verify (i) ⇒ (ii) below. We first
show the case of a > 0. Since there exists a nonnegative integer k such that k ≤ a < k +1 for any a > 0,
it suffices to show that, for any positive integer k,

P(X > x + k x1−p) ∼ P(X > x) as x → ∞. (2)

The case of k = 1 is just the definition of x1−p-insensitivity and we assume (2) for some k > 0. Then,

1 ≥ P(X > x + (k + 1) x1−p)
P(X > x)

≥ P(X > x + x1−p + k (x + x1−p)1−p)
P(X > x + x1−p)

P(X > x + x1−p)
P(X > x)

→ 1 as x → ∞,

so that, the induction leads to (2) for any positive integer k. We next show (ii) for a < 0. Let
y = x + a x1−p. Then, since y/x → 1 as x → ∞, for any b > −a > 0, there exists an x0 > 0 such that
−a x1−p ≤ b y1−p for x ≥ x0. Hence, for x ≥ x0,

1 ≤ P(X > x + a x1−p)
P(X > x)

≤ P(X > y)
P(X > y + b y1−p)

→ 1 as x → ∞.
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Proof of (ii) ⇔ (iii): We first assume (ii). Then, for any a > 0 and a sufficiently large x, we have

1 ≤ P(Xp > x − a)
P(Xp > x)

=
P(X > (x − a)1/p)

P(X > x1/p)
≤ P(X > x1/p − (a/p)x1/p−1)

P(X > x1/p)
→ 1 as x → ∞.

We next assume (iii). Then, for any a > 0,

1 ≥ P(X > x + a x1−p)
P(X > x)

≥
P

(
X > (xp + p a)1/p

)
P(X > x)

=
P(Xp > xp + p a)

P(Xp > xp)
→ 1 as x → ∞,

which completes the proof.

We can see from Lemma 1(i)⇔(iii) that Theorem 1 states that the degree distribution of graph GΞ

is x1−1/d-insensitive when the radius distribution F of grains is long-tailed with dth moment. The next
lemma gives an implication property of x1−p-insensitive distributions in p ∈ (0, 1) and also it says that,
for p ∈ (0, 1), an x1−p-insensitive distribution has a heavier tail than the Weibull tail e−axp

, a > 0.

Lemma 2 If a nonnegative random variable X is x1−p-insensitive for p ∈ (0, 1), then the following hold.

(i) X is x1−q-insensitive for p < q < 1.

(ii) eaxp

P(X > x) → ∞ as x → ∞ for any a > 0.

Proof: (i) It is obvious from

1 ≥ P(X > x + x1−q)
P(X > x)

≥ P(X > x + x1−p)
P(X > x)

→ 1 as x → ∞.

(ii) Since Lemma 1 says that Xp is long-tailed, we have eay P(Xp > y) → ∞ as y → ∞ for any a > 0
(see, e.g., [7, Lemma 2.17]).

We conclude this section with the lemma which provides a tool for verifying Theorem 1.

Lemma 3 If a nonnegative random variable X is x1−p-insensitive for p ∈ (0, 1), then for any a > 0,

P(X + aX1−p > x) ∼ P(X > x) as x → ∞.

Proof: Since P(X + aX1−p > x) = P(X > x) + P(X + aX1−p > x ≥ X), we have

1 ≤ P(X + aX1−p > x)
P(X > x)

≤ 1 +
P(x ≥ X > x − a x1−p)

P(X > x)
.

Here, since P(x ≥ X > x − a x1−p) = P(X > x − a x1−p) − P(X > x), we obtain the result from
Lemma 1.

3 Proof of Theorem 1

In this section, we provide the proof of Theorem 1. To do so, we first give the following lemma.

Lemma 4 Let Nµ denote a Poisson random variable with mean µ > 0 and let Λ denote a nonnegative
random variable independent of Nµ. If Λ is square-root insensitive, then the mixed-Poisson random
variable NΛ satisfies

P(NΛ > k) ∼ P(Λ > k) as k → ∞.
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Although Lemma 4 is a special case of Theorem 3 in [9], for completeness of the note, we give its
proof in Appendix. Using this Lemma, we can give the proof of Theorem 1.

Proof of Theorem 1: Since

P(D0 > k) =
∫ ∞

0

P(D0 > k | R0 = y) dF (y), k ∈ Z+,

we first consider the conditional degree distribution given R0 = y. Since D0

∣∣
R0=y

is equal to the number
of grains Xi + B0(Ri), i ∈ N, intersecting with the ball B0(y), Lemma 3.1.5 of [3] implies that it is a
Poisson random variable with mean λ E

(
|B0(y + R1)|

)
= λπd E

(
(y + R1)d

)
, where |C| stands for the

volume (Lebesgue measure) of C ∈ B(Rd). Therefore, we have

P(D0 > k) = P
(
NλπdE((R0+R1)d|R0) > k

)
, k ∈ Z+,

where Nµ denotes a Poisson distributed random variable with mean µ > 0. We now check that E
(
(R0 +

R1)d | R0

)
meets the condition of Lemma 4; that is, it is square-root insensitive. Note from Lemma 1

that R0
d is x1−1/d-insensitive since R0 is long-tailed. Letting r(m) = E(R0

m), we have E
(
(y + R1)d

)
=∑d

i=0

(
d
i

)
r(d−i) yi = yd + d r(1) yd−1 + o(yd−1) as y → ∞, so that, Lemma 3 ensures that E

(
(R0 + R1)d |

R0

)
is also x1−1/d-insensitive, and thus, it is square-root insensitive by Lemma 2(i). Hence, Lemmas 3

and 4 yield that

P(D0 > k) ∼ P
(
λπd E

(
(R0 + R1)d | R0

)
> k

)
∼ P

(
λπd R0

d > k
)

as k → ∞.
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A Proof of Lemma 4

To prove Lemma 4, we use the following (see also [9, Lemma 6]).

Lemma 5 Let N denote a non-delayed renewal process with inter-renewal sequence {τi}i∈N satisfying
E(τ1

2) < ∞. Then, for any δ > 0, there exists a constant cδ > 0 such that

P
(
N((0, t]) − t

Eτ1
> u

)
≤ e−cδu2/t, t > 0, 0 ≤ u ≤ δ t.

Proof: Markov’s inequality yields that, for s > 0,

P
(
N((0, t]) − t

Eτ1
> u

)
= P

(
N((0, t]) ≥

⌊
u +

t

Eτ1

⌋
+ 1

)
= P

(bu+t/Eτ1c+1∑
i=1

τi ≤ t
)
≤ est (Ee−sτ1)u+t/Eτ1 ,

where bxc = max{n ∈ Z : n ≤ x}; the maximal integer not greater than x ∈ R. Applying e−x ≤ 1−x+x2,
x ∈ R, and then 1 + y ≤ ey, y ∈ R, into the last expression above, we have

P
(
N((0, t]) − t

Eτ1
> u

)
≤ exp

{
−s u Eτ1 + s2 E(τ1

2)
(
u +

t

Eτ1

)}
.

Now, we choose s = u (Eτ1)2/[2 t (1 + δ Eτ1) E(τ1
2)]. Then, the inside of the braces on the right-hand

side above leads to

− (Eτ1)3

4 (1 + δ Eτ1) E(τ1
2)

(
2 − 1 + (u/t) Eτ1

1 + δ Eτ1

) u2

t
≤ − (Eτ1)3

4 (1 + δ Eτ1) E(τ1
2)

u2

t
,

where the inequality follows from u/t ≤ δ.

In the proof below, we use the standard notations f(x) . g(x) and f(x) & g(x) as x → ∞ which
stand for lim supx→∞ f(x)/g(x) ≤ 1 and lim infx→∞ f(x)/g(x) ≥ 1 respectively.

Proof of Lemma 4: We first show the asymptotic upper bound,

P(NΛ > k) . P(Λ > k) as k → ∞. (3)

Let a and b denote constants such that a > 0 and 0 < b < 1. Then, for k > a2/(1 − b)2,

P(NΛ > k) ≤ P(Λ > k − a
√

k) + P(NΛ > k, b k < Λ ≤ k − a
√

k) + P(Nbk > k), (4)

where the third term on the right-hand side follows since Poisson random variables are stochastically
monotone in their means. Since Λ is square-root insensitive, the first term on the right-hand side above
leads to P(Λ > k − a

√
k) ∼ P(Λ > k) as k → ∞. Thus, one needs to show that the last two terms on

the right-hand side of (4) are o
(
P(Λ > k)

)
as k → ∞. We first consider the third term on the right-hand

side of (4). We can consider Nbk the number of points in (0, b k] of a homogeneous Poisson process with
unit intensity. Since b ∈ (0, 1), there exists a δ ≥ (1 − b)/b > 0, so that Lemma 5 implies that

P
(
Nbk − b k > (1 − b) k

)
≤ e−cδ(1−b)2k/b = o

(
P(Λ > k)

)
as k → ∞.

Next, we consider the second term on the right-hand side (RHS) of (4). Since k − λ < (1/b − 1) λ for
λ > b k, Lemma 5 with δ = (1/b − 1) implies that

(2nd term on RHS of (4)) =
∫ k−a

√
k

b k

P(Nλ > k) P(Λ ∈ dλ)
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≤
∫ k−a

√
k

0

e−cδ (k−λ)2/λ P(Λ ∈ dλ).

Note here that, for any λ ∈ (0, k − a
√

k], we have e−cδ (k−λ)2/λ ≤ e−cδ (k−λ)2/k, so that integration by
parts and change of variables to y = (k − λ)/

√
k result in

(2nd term on RHS of (4)) ≤ e−cδ k +
2 cδ

k

∫ k−a
√

k

0

(k − λ) e−cδ (k−λ)2/k P(Λ > λ) dλ

= e−cδ k + 2 cδ

∫ √
k

a

y e−cδ y2
P(Λ > k − y

√
k) dy. (5)

The first term on the right-hand side above is clearly o
(
P(Λ > k)

)
as k → ∞. For the integrand above,

since
√

Λ is long-tailed when Λ is square-root insensitive, for any ε > 0, there exists a cε > 0 such that,
for y ≤

√
k and sufficiently large k,

P(Λ > k − y
√

k) ≤ P(
√

Λ >
√

k − y) ≤ cε eε y P(Λ > k),

where the first inequality follows from
√

k − y
√

k ≥
√

k−y for y ≤
√

k and the last inequality immediately
follows from the definition of long-tailed distributions; that is, for any long-tailed random variable X and
any ε > 0, there exists a cε > 0 and xε > 0 such that P(X > x−u) ≤ cε eε u P(X > x) for all x−u > xε.
Thus, we obtain

(2nd term on RHS of (5)) ≤ cε P(Λ > k)
∫ ∞

a

eε y (2 cδ y) e−cδ y2
dy = cε P(Λ > k) E(eεY 1{Y >a}),

where Y denotes a random variable according to Weibull distribution P(Y > y) = e−cδ y2
, y ≥ 0.

Since there exists an ε0 > 0 such that EeεY < ∞ for ε < ε0, there also exists an aε > 0 such that
E(eεY 1{Y >a}) < ε for a ≥ aε; that is, the second term on the right-hand side of (5) is o

(
P(Λ > k)

)
as

k → ∞, which leads to (3).
We next show the asymptotic lower bound,

P(NΛ > k) & P(Λ > k) as k → ∞. (6)

We have for a > 0,

P(NΛ > k) ≥ P
(
NΛ > k, Λ > k + a

√
k
)
≥ P(Nk+a

√
k > k) P(Λ > k + a

√
k).

Here, we obtain that, for k > a2,

P(Nk+a
√

k > k) ≥ P
(Nk+a

√
k − (k + a

√
k)√

k + a
√

k
> − a√

2

)
.

Hence, the square-root insensitivity of Λ and the central limit theorem for renewal process (see, e.g.,
Asmussen [1, Chap. V, Theorem 6.3]) result in, for an appropriate σ > 0,

P(NΛ > k) & Φ
( a

σ
√

2

)
P(Λ > k) as k → ∞,

where Φ denotes the standard normal distribution. Finally, letting a → ∞ leads to (6).
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