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Abstract

We study the fluid limit analysis of the random replacement (RR) caching for the independent
reference model. Applying the limit theorem for the mean field interaction model, we derive the fluid
limit of fault probability in the transient state as well as in the steady state. Since it is known that
the stationary fault probability for the RR cache is identical to that for the first-in first-out (FIFO)
cache, our result on the stationary fault probability is valid for the FIFO caching. We see that the
fluid limit of stationary fault probability, which we obtain, is coincident with the known result by
an intuitive approximation; that is, our fluid limit analysis gives a rigorous theoretical foundation to
the intuitive approximation.
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1 Introduction

In computer systems and communication networks, caching technique is used for high-speed access to a
finite subset out of a large number of items by storing the subset in a quickly accessible memory, called a
cache. In order for this technique to work well, a replacement rule called a caching algorithm is crucial,;
that is, which items should be stored in the cache and how they should be updated. The performance
of a caching algorithm is often evaluated in terms of the fault probability, that is the probability with
which the requested item is not found in the cache.

The least-recently-used (LRU) and first-in first-out (FIFO) caching algorithms are well-known simple
algorithms and have been studied in the literature. To keep frequently requested items in the cache, the
LRU algorithm works as follows; that is, when the requested item is not in the cache, the least recently
requested item in the cache is replaced with the requested one. In the FIFO algorithm, on the other
hand, when the requested item is not in the cache, the oldest item in the cache is replaced with the
requested one. While the LRU algorithm shows relatively good performance and has been applied in
many systems, the FIFO is shown to have higher fault probability than the LRU for the independent
reference model, where requests of items are independent and identically distributed (i.i.d.) (see, e.g.,
Berg & Gandolfi [11]). Nevertheless, since some complex caching algorithms combining the LRU and
FIFO, such as the Full2Q by Johnson & Shasha [8] and the Multi-Queue by Zhou et al. [12], have been
proposed recently, it is still meaningful to study the FIFO algorithm to evaluate the performance of such
complex algorithms.

The existing works concerning the analysis of FIFO algorithm are almost done for the independent
reference model. King [9] considered a homogeneous Markov chain representing the evolution of cache
contents and derived the stationary fault probability for the FIFO cache, as well as for the LRU. The
evaluation of fault probability based on King’s analysis, however, suffers from the computational com-
plexity when the number of items and/or the capacity of cache are large. Dan & Towsley [3] then
presented a computationally efficient approximation evaluating the stationary fault probability for both
the FIFO and LRU caches. While it is reported that their approximation has good agreement with
simulation results, the argument for derivation is rather intuitive. Also, Gelenbe [4] showed the identity
of stationary fault probability for the FIFO cache with that for the random replacement (RR) cache,
where an item is chosen uniformly at random in the cache and is replaced with the requested one in case
it is not in the cache.

Since the stationary fault probabilities for the FIFO and RR are identical ([4]), we, in this paper,
investigate the RR caching algorithm for the independent reference model, instead of the FIFO. We
here study the fluid limit analysis of the RR caching. As for the LRU caching, several works consider
the fluid limit analysis and present some simple expressions evaluating the fault probability (see, e.g.,
Jelenkovi¢ [7], Hirade & Osogami [6] for some complex caching algorithms, and Hattori & Hattori [5]
for the related move-to-front list). It is, however, difficult to apply the techniques therein to the RR
caching as well as to the FIFO. We thus associate the stochastic model of RR caching with a mean field
interaction model studied by Benaim & Le Boudec [1] (see also Bordenave et al. [2]) and apply the limit
theorem for it. While the limit theorem for the mean field interaction model in [1] captures the transient
behavior of the model in average, it does not yield a satisfiable result on the stationary behavior. For
the stationary analysis, we apply the recent result by Le Boudec [10] exploiting the reversibility of the
stochastic model under consideration. We can see that the fluid limit of stationary fault probability,
which we obtain, is coincident with the approximated fault probability provided in [3], so that, we can
say that our fluid limit analysis gives a rigorous theoretical foundation to Dan-Towsley’s approximation.

The rest of this paper is organized as follows. In the next section, we describe our stochastic model

of caching system and make a brief review on some related existing results in [9], [4] and [3]. The main



results are given in Section 3, where we first derive the fluid limit of empirical measure for the cache
contents in the transient state and we then obtain the corresponding fluid limit in the steady state.
The fluid limits of fault probabilities are derived from those of the empirical measure. The proofs are
provided in Section 4, where we apply the limit theorem for the mean field interaction model in [1] for
the proof of transient result and then apply the result of [10] for the steady state. We finally make some
concluding remarks in Section 5.

2 Model and related existing results

The model consists of the set of items and a buffer with finite capacity, called a cache. The number of
items is N (€ N = {1,2,...}) and the set of items is denoted by N' = {1,2,..., N}. We assume that
all items are of the same size and the cache has the capacity of K (< N) items. An item is requested
randomly among A at each time slot. If the requested item is in the cache, then no change occurs.
When the requested item is not in the cache, we call it a cache fault. What happens when a cache fault

occurs depends on the caching algorithm. In this paper, we consider the following two algorithms.

First-in first-out (FIFO): When the requested item is not in the cache, the item which stays in the
cache for the longest time is replaced with the requested one.

Random replacement (RR): When the requested item is not in the cache, an item is chosen uniformly

at random among ones in the cache and it is replaced with the requested one.

Throughout the paper, we consider the independent reference model; that is, requested items are
independent and identically distributed for all time slots. The probability with which item ¢ (€ N) is
requested is denoted by p;, satisfying p; > 0 for all i € N and Zf\il p; = 1.

In the remainder of this section, we make a brief review on related existing results for the independent
reference models of the FIFO and RR caches; that is, i) King’s exact stationary analysis of the FIFO
caching in [9], ii) Gelenbe’s identity of the stationary fault probabilities for the FIFO and RR caches
in [4] and iii) Dan-Towsley’s approximation of the stationary fault probability for the FIFO cache in [3].
Though they also analyzed the LRU caching, we here omit the results on it. For the moment, we assume

that p; > 0 for all i € A/ (while we relax this assumption in the next section).

King’s exact stationary analysis of the FIFO caching ([9]): For the FIFO caching algorithm,
King [9] considered the evolution of cache contents as a homogeneous Markov chain and derived the fault
probability in the steady state. Consider the list of K items corresponding to the contents of FIFO cache
as follows. When the requested item is found in the list, the list remains unchanged. On the other hand,
if the requested item is not in the list, then it is placed at the first position of the list, other items are
shifted one position down and the item at the last (Kth) position is pushed out. The item at the first
position is then the newest one in the cache and the item at the last position is the oldest. This list forms
a homogeneous Markov chain within the state space Ay g, which denotes the set of K-permutations
(arrangements of K elements) taken from N = {1,2,..., N}; that is, Ay x = {(i1,d2,...,ix) € NE :
i # i¢ for k # £}. Since this Markov chain is irreducible in the finite state space, the unique stationary
distribution exists and is given by
_ PiyPiy - Pig
Z(jl,.,.,jK)eAN,K PjPjs " Pjx

Tr1ro (41,92, - -+, 1K) ;o (i1,92,. .., iK) € AN k. (1)



The stationary fault probability ppiro is the probability with which the requested item is not found in
the list, so that (see [9] for detail),

PFIFO = Z mrIro (A) Z Dj-

A€AN, K JEN\A

Unfortunately, evaluating the fault probability by using this formula suffers from the computational

complexity when the number of items and/or the capacity of cache become large.

Gelenbe’s identity of the stationary fault probabilities for the FIFO and RR caches ([4]):
For the RR caching algorithm, we can consider a Markov chain whose state represents the set of items in
the cache. Let ©n i denote the state space of this Markov chain; that is, Oy x = {A C N : |4] = K},
the set of subsets of N with size K, where |A| denotes the size of set A. If the requested item is found
in the set A representing the current state, then the state remains unchanged. However, if the requested
item is not in the current set A, then an item in A is chosen uniformly at random and it is replaced with
the requested one. This Markov chain is also homogeneous and irreducible in the finite state space, so

that, the unique stationary distribution exists and is given by

mrr({in, iz, .. ix}) = PiaDiy ' * Pix . {i,is, ... ig} €Onk. (2)
2 rirc ) €O g PinPiz " Pk

The stationary fault probability prgr is then given by

pre= Y wrr(4) Y. p;

A€ON Kk JEN\A
Here, noting in (1) and (2) that
> PisPiy - Pie = KX > DiyPiz " Pikc»
(il ..... iK)GAN,K {il ..... iK}ee)N,K

we can find that ppiro = prr; that is, the fault probabilities for the RR and FIFO caches are identical
in the steady state (see [4] for detail).

Dan-Towsley’s approximation of the stationary fault probability for the FIFO cache ([3]):
Since the evaluation of fault probability based on the exact analysis suffers from the computational com-
plexity, Dan & Towsley [3] presented a computationally efficient approximation evaluating the stationary
fault probability for the FIFO cache. Consider, as in King’s analysis, the list of K items representing
the contents of FIFO cache. Let Y; € {0,1,...,K}, i € N, denote a random variable representing the
position of item 7 in the list in the steady state, where Y; = 0 means that item 7 is not in the cache. The
probability with which item ¢ is not in the cache and is brought in is given by p; P(Y; = 0). On the other
hand, the probability with which item 7 is in the cache and is pushed out by a newly requested one is

Zje/\f\{i} p; P(Y; = K,Y; =0). According to the flow conservation in the steady state, we then have

piPYi=0)= Y pPYVi=KY;=0), icN. (3)
JEN\{3}

By the stationary distribution (1), we have P(Y; = ¢) = P(Y; # 0)/K for £ =1,2,..., K. Thus, taking
P(Y; =K, Y; =0)~ K 'P(Y; #0)P(Y; = 0) and N\ {i} ~ N in (3) approximately,

P(Y; #0 .
piP(ri=0)~ PEEY ey,



where p = Z;Vd pj P(Y; = 0) denotes the stationary fault probability. Some algebraic manipulation
yields P(Y; # 0) =~ K p;/(p + K p;), so that, since Ef\il P(Y; #0) = E(Zévzl 1{v,z01) = K, we obtain
the approximation of stationary fault probability as the unique solution p on [0,1) to

N

Kpi
— =K. 4

i=1
It is reported in [3] that equation (4) is well solved numerically and the approximation is valid in many

cases.

3 Fluid limit analysis of random replacement caching

In this section, we consider the fluid limit of RR caching. Since the stationary fault probability for the
RR cache is identical to that for the FIFO ([4]), our result on the stationary fault probability is still valid
for the FIFO caching and it is shown that the same result as Dan-Towsley’s approximation is derived
exactly in the fluid limit. We here relax the assumption that p; > 0 for all i € A/, which is imposed in
the preceding section, and we write Ny = {i € N : p; =0} and N = {i e N : p; > 0}

To derive the fluid limit, we consider scaling the original RR caching model as follows. Let n (€ N)
denote a scaling parameter and consider the nth scaled model such that the number of items is n N and
the capacity of cache is of n K items. The set of items are denoted by N = A x {1,2,...,n} and
the probability with which item (i,£) (€ N ™) is requested is p;/n for all £ = 1,2,...,n. For i € N, we
refer to an item (4,¢), £ =1,2,...,n, as an item of class 7. Note here that n = 1 represents the original
(non-scaled) model and the ratio of the number of items and the capacity of cache remains the same
as N/K for all n € N. We define 0-1-random variables Xi(;')(k) for (i,0) € N, k € Z,, such that
Xi(z)(k) = 1 when item (4, /) is in the cache at time k and Xi(z)(k‘) = 0 otherwise. For each i € N, we
also define .

MOE) = DS X W), ke 5)
=1
that is, n Mi(n)(k) represents the number of class ¢ items in the cache at time k and it always holds that
PR M™ (k) = K. Then, M™ (k) = (M™ (k), M{™ (k), ..., MY (k)), k € Z, forms a homogeneous
Markov chain within a finite state space AM™ = {(m,ma,...,my) € {0,1/n,2/n,..., 1}V : vazl m; =
K } and, when [Ny| > K, the unique stationary distribution is directly obtained from (2) as

N .
™ (m) = (O™~ H(n?n> (%) L om=(mima,... my) € AM, (6)
i=1 v

where C0 = 37 xoo TILy (i, ) (0i/n)™™"

We further scale the time and define a continuous-time process M (™ (t) = M™(|nt]), t > 0,
where |z] = max{i € Z : i < z} for x € R. We then have the following theorems, where
A= {(ml,mg, coo,my) €10,V Zf;l m; = K} and || - || denotes the Lo-norm in RY.

Theorem 1 Suppose that the initial state M(”)(O) converges in probability to a constant m € A as
n — 00. Then, for any T >0 and any € > 0,

lim P( sup. 1M () — p(t)|| > e) =0, (7)

n—oo Mglo,T
where p(t) = (u1(t), pa(t), ..., un(t)), t >0, is the solution to the system of differential equations;

dpi(t)
dt

=1t = B8 (1= (0). ienezo ©



u(0) = m. (9)

The proof of theorem relies on the result for mean field interaction models considered in [1] and is
given in the next section. Theorem 1 says that, provided that the initial state A/(™)(0) converges in
probability to a constant m € A as n — oo, then, for each finite ¢t > 0, M (™ (t) converges in probability
to the solution to the differential equation (8) with (9). We refer to this solution (u(t))¢>0 as the fluid
limit of (M (k)),cy

distribution (6) of M (k), k € Z,, as n — oo unless, for all initial points m € A, the trajectories of

n € N. The theorem, however, does not say the convergence of stationary

fluid limit converge to a unique stationary point as ¢ — co. This is in general hard to verify and we here

apply another recent result in [10], which leads to the following.

Theorem 2 Suppose |Ny| > K and that M ™ (0) follows the stationary distribution (6) for each n € N.
Then, for any e > 0,

lim P(|M™(0) —m*| > ¢€) =0, (10)
where m* = (m},m5,...,my) € A is given by
Kp; .
—,  ie Ny,
mi={ p*+ Kpi " (11)
0, iENo,

and p* is the unique solution in [0,1) to

S EP g (12)

ien, P + Kp;

and satisfies p* =1 — Zjv:l pjm

This theorem is also proved in the next section. Theorem 2 says that, when [N | > K, M) (0) in
the steady state converges in probability to the constant m* € A given by (11) and (12) as n — oo; that
is, the fluid limit of M (™ (0) in the steady state is m*. In other words, the stationary distribution (6)
converges weakly to the Dirac measure with mass at m*.

Once Theorems 1 and 2 are provided, the fluid limits of fault probabilities are derived as corollaries
of them. We first consider the transient case. Let p(")(k), k € Z4, n € N, denote the fault probability
for the nth scaled model at time k + 1; that is, the probability with which an item, that is not in the
cache at time k, is requested at time k + 1. Since the requested item at time k + 1 is independent of the

cache contents at time k, we have
n N n
o™ (k) ZZ POX[Y (k) =0) =" > (1 E(X (1))

=
=1-> pE(M"(K)), (13)

=

where the last equality follows from (5). Let also p\™(t) = p(™(|nt]) for t > 0. We then have the

following.

Corollary 1 Suppose that the initial state M) (0) converges in probability to a constant m € A as
n — oo. Then, for any t >0,

lim A(n =1- sz /sz (14)

n—)oo

where p(t) = (u1(t), pa(t), ..., un(t)), t >0, is the solution to (8) and (9) in Theorem 1.



Proof: Under the assumption that M (™) (0) converges in probability to m € A as n — oo, Theorem 1
ensures that M ™ (t) = M (|nt]) converges in probability to u(t) which is the solution to (8) and (9).
Hence, (14) follows from (13) since J\/l\i(n) (t) is bounded for i € A/ and ¢ > 0. O

In the case of steady state, we have the following.

Corollary 2 Suppose |Ny| > K and that M (™ (0) follows the stationary distribution (6) for eachn € N.
Then, we have lim,, o, p™(0) = p*, which is the unique solution in [0,1) to (12) in Theorem 2.

Proof: Since M (™) (0) converges in probability to m* in (11) as n — oo by Theorem 2 and M (0) is
bounded, we have from (13) that

N
lim p™(0) =1-> pim; = p,
=1

n—oo

where the last equality also follows from Theorem 2. O

Comparing (4) and (12), we find that the fluid limit p* of stationary fault probability is coincident
with the approximation of stationary fault probability for the FIFO cache provided in [3]. Since the
stationary fault probabilities for the FIFO and RR caches are identical, we can say that our fluid limit

analysis gives an exact theoretical foundation to Dan-Towsley’s approximation.

4 Proofs of theorems

4.1 Proof of Theorem 1

To prove Theorem 1, we associate our model of RR caching with a mean field interaction model considered
in [1]. Consider the nth scaled model; that is, the set of items is N ™ = A" x {1,2,...,n} and the cache
buffer consists of n K cells, each of which holds an item. At each time, an item, say (i,£) € N, is
requested with probability p;/n independently of requests at other times. We here regard the cells of
cache as the objects in [1]. Namely, there are n K objects and the state of an object is ¢ € AV when the
corresponding cell has an item of class ¢. This system of objects evolves stochastically as follows. If an
item of class i’ is requested at time k + 1 and it is not in the cache at time k, then one of n K cells
is chosen uniformly at random and the item in the chosen cell is replaced with the requested one. In
this case, if the randomly chosen cell has the item of class ¢ at time k, then the corresponding object
changes its state from ¢ to i’ (including the case of ¢ = ', in which case, the object does note change
its state while a cache fault occurs). Let Yj(")(k) denote the state of object j (€ {1,2,...,n K}) at
time k. Then, Y(") (k) = (Yl(n)(k)7Y2 ")(k), ce Yn(?() (k)), k € Z., forms a homogeneous Markov chain
satisfying 2;51 1{33“”(1«):1‘} € {0,1,...,n} for each i € N and k € Z,. Furthermore, due to the RR
algorithm, the state transition of (Y(")(k;))
process (Y (™ (k))
detail).

For the process (Y™ (k))

Kez, is invariant from the labeling of objects, so that, the

kez, is thought as a mean field interaction model without a resource (see [1] for more

wez, o We have from (5),

nkK n

1 1 .

- S :1{%@)(@:” =- SOXP (k) =M™ (k) ieN, ke Ly
j=1 /=1

that is, we can see M (™ (k) = (Ml(")(k), Mzn)(k), cee M](\;l)(k)) as the empirical measure of Y™ (k) on
A = {(m1,ma,...,myn) € {0,1/n,2/n,..., 1}V : Zil m; = K} for each k € Z,. To the mean field



interaction model above, we apply the result in [1], which is given as follows with translation into our

notations.

Proposition 1 (Theorem 1 of [1]) We suppose the following.

(i) There exist a sequence (ep)nen and a function f: A — RN such that lim,, .o €, = 0 and, for any
m™ € A neN, and m € A satisfying lim,, oo m(™ = m,
E(M®™ (k+1)| M™ (k) =m™) —m
o B4 1) | MO =) =

n— o0 €n

(ii) For eachn € N, there exist a random sequence (W™ (k))xen and a constant ¢ > 0 such that
nk

Z 1{Yj(”>(k+1)7éY7~("')(k)} < W(”)(k +1) and E(W(”)(kj)z) <en?e,’.
=1 '

(iii) There exist a constant 3 > 0 and a continuously differentiable function p: A x [0, 3] — RN such
that, for any n € N and any m(™ e A,

E(M™(k+1) | M™ (k) =m(™) —m™ 1
(MM (k+1) | (k) ) :@(m(n)’i).
€n n

Also, let VAR (t), t >0, denote the linear interpolation of M™ (|t/e,]); that is,

M7 () = [M™([tfen] +1) = MO ([t/en])] (tfen — [t/en]) + M ([t/en]), t>0.
Then, for all T > 0, there exist constants C1 7, Co 1 and a random variable B(Tn) such that

sup [T (1) — (1) < Cr e (BY + M) (0) — wlO))  with probability 1,
te[0,T)

2
E(Béﬂn) ) < CZ,T €n;

where p(t) is the solution to

B0 _ Fuo), (15)
p(0) = m. (16)

Remark 1 Conditions (i), (ii) and (iii) in Proposition 1 respectively correspond to H2, H3 and H5
in [1]. Since our model has no resource, which is supposed in [1], conditions H1 and H4 are irrelevant
(that is, automatically satisfied here). Furthermore, the state space in [1] is A = {(m1,ma,...,my) €
[0, 00)N : Zfil m; = 1}; that is, the sum of elements is always unity. However, dividing our M (k) by
K and considering n’ = n K as the scaling parameter, we can easily reduce our model to that in [1].

Proof of Theorem 1: Before we verify that our model satisfies conditions (i)—(iii) in Proposition 1, we
now suppose that with ¢, =1/n, n € N, and f = (f1, f2,..., fn) such as

N
fi<m):pi(1_mi)_%(1—ijmj), ieN, meA. (17)
j=1

Then, applying the proposition under the assumption that M () (0) converges in probability to m € A
as n — 0o, we have for any 7' > 0 and any € > 0,

lim P( sup M1 (t) — p(d)|| > e) —0, (18)

n—oo Mglo,T)



where p(t), t > 0, is the solution to (15) and (16) with f = (f1, fo,..., fnv) given by (17); that is, the
differential equation (15) with the initial condition (16) is coincident with (8) with (9). Furthermore,
since we take €, = 1/n, n € N, we have

—(n — 2

T2 (0) - O] < MOt +1) = MO (ne))] < L,
so that, with probability 1

lim sup |31 (£) — M ()] =0,

N0 ¢e[0,T]
which, together with (18), leads to (7).
From the discussion above, it remains to show that our model satisfies conditions (i)—(iii) in Propo-
sition 1 with €, = 1/n, n € N, and f = (f1, fo,..., fn) given by (17). First, condition (ii) follows
immediately since our model satisfies

nkK
2 Ly ey muy S5 k€L
j=1

that is, at most one object (cell of the cache) changes its state at each time slot.

We next consider condition (iii). For m™ = (m{™, m{™ ... . m{’) € A™ the next states from m™
are expressed by m(™ + (e; — e;)/n, i,i’ € N such as mgn) # 0 and ml(.,") # 1, where ¢;, i € N, denotes
the N-dimensional unit vector such as the ith element is equal to one and others are zero. Since an item
of class ¢’ is requested with probability p;/n independently from the current state m(™) | the probability
with which one of class i’ items outside the cache is requested is p;/ /n x (n—n m(, )) pir (1— mg,rb)). On
the other hand, since the item which is pushed out by the newly requested one is chosen with probability
1/(n K) among ones in the cache, the probability with which one of class i items in the cache is pushed

out is (n m(n))/(n K)= mgn)/K. Namely, for m™ € A and k € Z,
(n)

mK pir (1—m{), i
P(MO) (k1) = m( 4 22 —5 | M) = m") = L
™) (1 ™) ) g
- 7 T + Zpl =1
D pim : :
=1
(19)

where, in the case of ¢ = 4, the first term denotes the probability with which a cache fault occurs but
the requested and pushed-out items are of the same class while the second term denotes the probability

() (n)

with which a cache fault does not occur, noting that p; m; ' = p;/n x nm,; "’ represents the probability

with which one of class i items stored in the cache is requested. Thus, we have

()
(M (k+1) | MU (k) = m™) W—ZZ‘* “ T (1= m{)

i=14'=1
:7261 pz’ 1* (n) Zel (n)( ipz’mg/n))a
/=1

(") — K in the second equality. The ith element of the above is given by

where we use Zz 1 m;
(n) (m _ 1 (myy " )
E(M™ (k1) | MO k) =m™) —m" = = pi (1= m™) = T (1= 3 pym™).
=1

Therefore, applying €, = 1/n, we have

E(M™ (k+ 1) | M () = m™) — my™ mi™ a " )

n =p; (1— mgn)) (1 — ;pj m{™ (20)



so that, condition (iii) holds with ¢ = (¢1, @2, ..., @N) such as p;(m,a) = f;(m) in (17) for any « € [0, 5]
with an arbitrary 8 > 0. Finally, when m(™ — m € A as n — oo, condition (i) follows from (20) with
f="(f1,f2,-.., fn) given in (17). Hence, the proof is completed. O

Remark 2 By the discussion deriving (19), we have p; m!™ as the conditional probability with which

J
one of class j items stored in the cache is requested given the current state m(™ = (mgn), mén), e ,mg\?));
that is, the conditional fault probability for the nth scaled model given the current state m(™ is 1 —
Z;V:l P; myb). Since the fluid limit of M) (k), k € Z, is deterministic function u(t), t > 0, we see that

(14) is also derived from this observation.

4.2 Proof of Theorem 2

To prove Theorem 2, we apply the recent result in [10], exploiting the reversibility of stochastic process
to show the convergence of its stationary version to the stationary point of fluid limit, which is given as

follows also with translation into our notations.

Proposition 2 (Corollary 1 of [10]) We suppose the following.

(i) (Z/\l\(") (t))t>0 is reversible under a probability measure II™ on A such that 1M (AM™) = 1 in the

sense that, for every t > 0 and any bounded and continuous function h: A? — R,

/ E (h(m, 310(8)) | F10(0) = m) T (dm) = / E(h(3T™ (), m) | 10 (0) = m) T (dm).
A A
(21)

(ii) The sequence (IL™), ey is tight.

(iii) For any m™ € AU n € N, and m € A satisfying lim, .o m™ = m, there exists a semi-flow
de: A — A, t >0, such that g1y = ¢ps 0 ¢y for s, t > 0, ¢o(m) = m and, for every t > 0,
the conditional law of M™ (t) given M\(")(O) = m™ converges weakly to the constant ¢;(m) as
n — o0o; that is, for all bounded and continuous function h: A — R,

lim E(A(M™(£)) | M™(0) = m™) = h(¢y(m)).

n—oo
(iv) The semi-flow ¢¢, t > 0, has a unique stationary point m* such that m* = ¢¢(m™*) for all t > 0.

Then, the sequence (ﬁ(”))neN converges weakly to the Dirac measure with mass at m* as n — oo.

Remark 3 It should be noted, and is also noted in [10], that our state space A is a subset of RV, so
that the semi-flow ¢, t > 0, can be a differential equation of the form of (15). In this case, the stationary

points of ¢; are the solutions to f(m) = 0.

Proof of Theorem 2: Since the state space A in our model is compact, condition (ii) in Proposition 2
necessarily holds. Also, given that Z/W\(”)(O) =M™ (0) =m™ ¢ A and m™ — m € A as n — oo,
Theorem 1 implies that M (™) (t) converges in probability to u(t) given by (8) and (9) for any ¢ > 0, so
that, condition (iii) in Proposition 2 holds for ¢¢(m) = u(t) with 1(0) = m. Therefore, if we can verify
that our model further satisfies conditions (i) and (iv) in Proposition 2 with 1) ({m}) =11 (m) in (6)
for m € A™ and with m* € A given by (11) and (12), then we can apply the proposition and obtain
(10).

We first show that, when |N;| > K, condition (iv) holds in our model with m* € A given by
(11) and (12). Since the semi-flow ¢¢, ¢ > 0, is given as the solution pu(t) to the differential equation



du(t)/dt = f(u(t)), t > 0, its stationary points are the solutions to f(m) = 0; that is, it suffices to show
that, when |A}| > K, the system of equations

N
m; .
pi(l—mi)—K(l—;pjmj):O, ZG./\/'7 (22)
has a unique solution m* = (mj, m3,...,m%) € A, which is given by (11) and (12). In order for (22) to

hold for i € Ny = {i € N : p; = 0}, either of the following must be true for m = (my,ma,...,my) € A;
(a) Zie/\/o m; =0,
(b) Zie/\fo m; > 0 and Z;.V:lpj mj = 1.

If we assume (b) above, (22) leads to m; =1 for i € Ny = {i € N : p; > 0}. Then, since [Ny| > K and
SN m; = K for m € A, we have Dien, Mi = K =37, mi = K — N4 | <0, which contradicts the
assumption of (b). Therefore, (a) is true and (11) is valid for i € Ny. For i € Ny, arranging (22) with
taking p=1— Z;V=1 pj m;, we have

Kpi

=21 ) 23
my; p—l—sz’ ZGNJ,_ ( )

Since Zf\il m; = K and ) ;. m; = 0 from (a), (23) yields

K p;
> A
iEN+p+ pl

Let us see the left-hand side above as a function g(p) of p. Then, g(p) is decreasing in p > 0 with g(0) =
Vil = K and g(1) = 3=, v, [K pi (1+Kp)—K?p?|/1+Kp;) = K =3 ien, K?p?/(1+ Kp;) < K,
so that, g(p) = K has a unique solution on [0, 00) and this solution p* lies in [0,1). Applying this p*, we
have m} in (11) for ¢ € N, which is uniquely determined by (23).

We next show that our model satisfies condition (i) in Proposition 2 with I ({m}) = II(™ (m) for
m € A . To this end, we first show the reversibility of Markov chain (M(”)(k)) . For i #4', by
the stationary distribution (6) and the transition probability (19), we have

keZ

€, — €5

™) (1m) P (M(") (1) =m+

n

0) =m) =€) T, ) (%)™ Rt
j=1

nmj

On the other hand, we have from (6),

N
) e 1) ()™ i i () )
n . nm; n n—nmnm;+1nmy—+1\n n

Jj=1

and from (19),

. —e . 1 1
P(M(")(l) —m ‘ M) =m+ & el) = b (1 — i+ —) (m + —).
n n n

Therefore, it holds that

€1 — €4

1™ (m) P(M(")(l) —m+

M™(0) = m)

(1

LY P(MO) = m | MO(0) = m 4+ ), (24)

=1 (m +

10



This is, of course, the case of i = i’ and the Markov chain (M ™ (k))
from (24), we have for any k € Z, and any m, m’ € A,

kez, is reversible. By the induction

1™ (m) P(M™ (k) = m’ | M™(0) = m) = I (m/) P(M™ (k) = m | M™(0) =m).

Hence, taking I1(™) ({m}) = 1™ (m) for m € A™) we have for any ¢ > 0 and any bounded and continuous
function h: A% — R,

[ Enm ST 0) | T (0) = m) F )
A

= Z h(m,m’) P(M(”)(Lntj) =m’ | M(”)(O) — m) H(n)(m)
m,m’/€An)
= Y hmm) P(M([nt]) = m | MOD(0) = ') T ()

m,m’€A)

- / E(R(M™ (), m) | M™(0) = m/) I (dm);
A
that is, (21) holds and the proof is completed. O

Remark 4 In order for (22) to have a unique solution in A, the condition |JNy| > K is necessary.
Suppose [N | < K and consider case (a) in the proof of Theorem 2. Then, since m; € [0,1], we have
Zfil m; =3 en, Mi < [Ny| < K, which contradicts vazl m; = K for m € A. Therefore, (b) is true
in this case. From (22), it must be m; = 1 for ¢ € N and there are uncountably many solutions m; for
i € No satisfying -, p, mi = K — 3 cp, mi = K — [NL[ > 0.

5 Concluding remarks

In this paper, to evaluate the performance of FIFO caching, we have instead studied the RR caching and
have derived the fluid limit of transient behavior by applying the limit theorem for mean field interaction
models in [1]. The fluid limit in the steady state has also been obtained by applying the result in
[10]. As a result, we have seen that the fluid limit of stationary fault probability is coincident with the
approximation of that for the FIFO caching provided in [3]. Though we have considered the independent
reference model, we may extend some results to a dependent reference model by associating it with the
mean field interaction model with a resource (see [1] and [2] for detail). To investigate more complex
caching algorithms by the fluid limit approach, we may have to further develop the limit theory of mean
field models with interactions.
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