
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Applied Mathematical Science

ISSN 1342-2804

Fluid limit analysis of the FIFO and RR caching
for the independent reference model

Naoki Tsukada, Ryo Hirade
and Naoto Miyoshi

July 2011, B–465



Fluid limit analysis of the FIFO and RR caching

for the independent reference model

Naoki Tsukadaa Ryo Hiradea,b Naoto Miyoshia∗

aTokyo Institute of Technlogy

bIBM Research–Tokyo

Abstract

We study the fluid limit analysis of the random replacement (RR) caching for the independent

reference model. Applying the limit theorem for the mean field interaction model, we derive the fluid

limit of fault probability in the transient state as well as in the steady state. Since it is known that

the stationary fault probability for the RR cache is identical to that for the first-in first-out (FIFO)

cache, our result on the stationary fault probability is valid for the FIFO caching. We see that the

fluid limit of stationary fault probability, which we obtain, is coincident with the known result by

an intuitive approximation; that is, our fluid limit analysis gives a rigorous theoretical foundation to

the intuitive approximation.
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1 Introduction

In computer systems and communication networks, caching technique is used for high-speed access to a
finite subset out of a large number of items by storing the subset in a quickly accessible memory, called a
cache. In order for this technique to work well, a replacement rule called a caching algorithm is crucial;
that is, which items should be stored in the cache and how they should be updated. The performance
of a caching algorithm is often evaluated in terms of the fault probability, that is the probability with
which the requested item is not found in the cache.

The least-recently-used (LRU) and first-in first-out (FIFO) caching algorithms are well-known simple
algorithms and have been studied in the literature. To keep frequently requested items in the cache, the
LRU algorithm works as follows; that is, when the requested item is not in the cache, the least recently
requested item in the cache is replaced with the requested one. In the FIFO algorithm, on the other
hand, when the requested item is not in the cache, the oldest item in the cache is replaced with the
requested one. While the LRU algorithm shows relatively good performance and has been applied in
many systems, the FIFO is shown to have higher fault probability than the LRU for the independent
reference model, where requests of items are independent and identically distributed (i.i.d.) (see, e.g.,
Berg & Gandolfi [11]). Nevertheless, since some complex caching algorithms combining the LRU and
FIFO, such as the Full2Q by Johnson & Shasha [8] and the Multi-Queue by Zhou et al. [12], have been
proposed recently, it is still meaningful to study the FIFO algorithm to evaluate the performance of such
complex algorithms.

The existing works concerning the analysis of FIFO algorithm are almost done for the independent
reference model. King [9] considered a homogeneous Markov chain representing the evolution of cache
contents and derived the stationary fault probability for the FIFO cache, as well as for the LRU. The
evaluation of fault probability based on King’s analysis, however, suffers from the computational com-
plexity when the number of items and/or the capacity of cache are large. Dan & Towsley [3] then
presented a computationally efficient approximation evaluating the stationary fault probability for both
the FIFO and LRU caches. While it is reported that their approximation has good agreement with
simulation results, the argument for derivation is rather intuitive. Also, Gelenbe [4] showed the identity
of stationary fault probability for the FIFO cache with that for the random replacement (RR) cache,
where an item is chosen uniformly at random in the cache and is replaced with the requested one in case
it is not in the cache.

Since the stationary fault probabilities for the FIFO and RR are identical ([4]), we, in this paper,
investigate the RR caching algorithm for the independent reference model, instead of the FIFO. We
here study the fluid limit analysis of the RR caching. As for the LRU caching, several works consider
the fluid limit analysis and present some simple expressions evaluating the fault probability (see, e.g.,
Jelenković [7], Hirade & Osogami [6] for some complex caching algorithms, and Hattori & Hattori [5]
for the related move-to-front list). It is, however, difficult to apply the techniques therein to the RR
caching as well as to the FIFO. We thus associate the stochastic model of RR caching with a mean field
interaction model studied by Benäım & Le Boudec [1] (see also Bordenave et al. [2]) and apply the limit
theorem for it. While the limit theorem for the mean field interaction model in [1] captures the transient
behavior of the model in average, it does not yield a satisfiable result on the stationary behavior. For
the stationary analysis, we apply the recent result by Le Boudec [10] exploiting the reversibility of the
stochastic model under consideration. We can see that the fluid limit of stationary fault probability,
which we obtain, is coincident with the approximated fault probability provided in [3], so that, we can
say that our fluid limit analysis gives a rigorous theoretical foundation to Dan-Towsley’s approximation.

The rest of this paper is organized as follows. In the next section, we describe our stochastic model
of caching system and make a brief review on some related existing results in [9], [4] and [3]. The main
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results are given in Section 3, where we first derive the fluid limit of empirical measure for the cache
contents in the transient state and we then obtain the corresponding fluid limit in the steady state.
The fluid limits of fault probabilities are derived from those of the empirical measure. The proofs are
provided in Section 4, where we apply the limit theorem for the mean field interaction model in [1] for
the proof of transient result and then apply the result of [10] for the steady state. We finally make some
concluding remarks in Section 5.

2 Model and related existing results

The model consists of the set of items and a buffer with finite capacity, called a cache. The number of
items is N (∈ N = {1, 2, . . .}) and the set of items is denoted by N = {1, 2, . . . , N}. We assume that
all items are of the same size and the cache has the capacity of K (< N) items. An item is requested
randomly among N at each time slot. If the requested item is in the cache, then no change occurs.
When the requested item is not in the cache, we call it a cache fault. What happens when a cache fault
occurs depends on the caching algorithm. In this paper, we consider the following two algorithms.

First-in first-out (FIFO): When the requested item is not in the cache, the item which stays in the
cache for the longest time is replaced with the requested one.

Random replacement (RR): When the requested item is not in the cache, an item is chosen uniformly
at random among ones in the cache and it is replaced with the requested one.

Throughout the paper, we consider the independent reference model; that is, requested items are
independent and identically distributed for all time slots. The probability with which item i (∈ N ) is
requested is denoted by pi, satisfying pi ≥ 0 for all i ∈ N and

∑N
i=1 pi = 1.

In the remainder of this section, we make a brief review on related existing results for the independent
reference models of the FIFO and RR caches; that is, i) King’s exact stationary analysis of the FIFO
caching in [9], ii) Gelenbe’s identity of the stationary fault probabilities for the FIFO and RR caches
in [4] and iii) Dan-Towsley’s approximation of the stationary fault probability for the FIFO cache in [3].
Though they also analyzed the LRU caching, we here omit the results on it. For the moment, we assume
that pi > 0 for all i ∈ N (while we relax this assumption in the next section).

King’s exact stationary analysis of the FIFO caching ([9]): For the FIFO caching algorithm,
King [9] considered the evolution of cache contents as a homogeneous Markov chain and derived the fault
probability in the steady state. Consider the list of K items corresponding to the contents of FIFO cache
as follows. When the requested item is found in the list, the list remains unchanged. On the other hand,
if the requested item is not in the list, then it is placed at the first position of the list, other items are
shifted one position down and the item at the last (Kth) position is pushed out. The item at the first
position is then the newest one in the cache and the item at the last position is the oldest. This list forms
a homogeneous Markov chain within the state space ΛN,K , which denotes the set of K-permutations
(arrangements of K elements) taken from N = {1, 2, . . . , N}; that is, ΛN,K = {(i1, i2, . . . , iK) ∈ NK :
ik 6= i` for k 6= `}. Since this Markov chain is irreducible in the finite state space, the unique stationary
distribution exists and is given by

πFIFO(i1, i2, . . . , iK) =
pi1pi2 · · · piK∑

(j1,...,jK)∈ΛN,K
pj1pj2 · · · pjK

, (i1, i2, . . . , iK) ∈ ΛN,K . (1)
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The stationary fault probability ρFIFO is the probability with which the requested item is not found in
the list, so that (see [9] for detail),

ρFIFO =
∑

A∈ΛN,K

πFIFO(A)
∑

j∈N\A

pj .

Unfortunately, evaluating the fault probability by using this formula suffers from the computational
complexity when the number of items and/or the capacity of cache become large.

Gelenbe’s identity of the stationary fault probabilities for the FIFO and RR caches ([4]):
For the RR caching algorithm, we can consider a Markov chain whose state represents the set of items in
the cache. Let ΘN,K denote the state space of this Markov chain; that is, ΘN,K = {A ⊂ N : |A| = K},
the set of subsets of N with size K, where |A| denotes the size of set A. If the requested item is found
in the set A representing the current state, then the state remains unchanged. However, if the requested
item is not in the current set A, then an item in A is chosen uniformly at random and it is replaced with
the requested one. This Markov chain is also homogeneous and irreducible in the finite state space, so
that, the unique stationary distribution exists and is given by

πRR({i1, i2, . . . , iK}) =
pi1pi2 · · · piK∑

{j1,...,jK}∈ΘN,K
pj1pj2 · · · pjK

, {i1, i2, . . . , iK} ∈ ΘN,K . (2)

The stationary fault probability ρRR is then given by

ρRR =
∑

A∈ΘN,K

πRR(A)
∑

j∈N\A

pj .

Here, noting in (1) and (2) that∑
(i1,...,iK)∈ΛN,K

pi1pi2 · · · piK
= K! ×

∑
{i1,...,iK}∈ΘN,K

pi1pi2 · · · piK
,

we can find that ρFIFO = ρRR; that is, the fault probabilities for the RR and FIFO caches are identical
in the steady state (see [4] for detail).

Dan-Towsley’s approximation of the stationary fault probability for the FIFO cache ([3]):
Since the evaluation of fault probability based on the exact analysis suffers from the computational com-
plexity, Dan & Towsley [3] presented a computationally efficient approximation evaluating the stationary
fault probability for the FIFO cache. Consider, as in King’s analysis, the list of K items representing
the contents of FIFO cache. Let Yi ∈ {0, 1, . . . ,K}, i ∈ N , denote a random variable representing the
position of item i in the list in the steady state, where Yi = 0 means that item i is not in the cache. The
probability with which item i is not in the cache and is brought in is given by pi P(Yi = 0). On the other
hand, the probability with which item i is in the cache and is pushed out by a newly requested one is∑

j∈N\{i} pj P(Yi = K,Yj = 0). According to the flow conservation in the steady state, we then have

pi P(Yi = 0) =
∑

j∈N\{i}

pj P(Yi = K,Yj = 0), i ∈ N . (3)

By the stationary distribution (1), we have P(Yi = `) = P(Yi 6= 0)/K for ` = 1, 2, . . . ,K. Thus, taking
P(Yi = K,Yj = 0) ≈ K−1 P(Yi 6= 0) P(Yj = 0) and N \ {i} ≈ N in (3) approximately,

pi P(Yi = 0) ≈ P(Yi 6= 0)
K

ρ, i ∈ N ,
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where ρ =
∑N

j=1 pj P(Yj = 0) denotes the stationary fault probability. Some algebraic manipulation
yields P(Yi 6= 0) ≈ K pi/(ρ + K pi), so that, since

∑N
i=1 P(Yi 6= 0) = E

(∑N
i=1 1{Yi 6=0}

)
= K, we obtain

the approximation of stationary fault probability as the unique solution ρ on [0, 1) to
N∑

i=1

K pi

ρ + K pi
= K. (4)

It is reported in [3] that equation (4) is well solved numerically and the approximation is valid in many
cases.

3 Fluid limit analysis of random replacement caching

In this section, we consider the fluid limit of RR caching. Since the stationary fault probability for the
RR cache is identical to that for the FIFO ([4]), our result on the stationary fault probability is still valid
for the FIFO caching and it is shown that the same result as Dan-Towsley’s approximation is derived
exactly in the fluid limit. We here relax the assumption that pi > 0 for all i ∈ N , which is imposed in
the preceding section, and we write N0 = {i ∈ N : pi = 0} and N+ = {i ∈ N : pi > 0}.

To derive the fluid limit, we consider scaling the original RR caching model as follows. Let n (∈ N)
denote a scaling parameter and consider the nth scaled model such that the number of items is nN and
the capacity of cache is of nK items. The set of items are denoted by N (n) = N × {1, 2, . . . , n} and
the probability with which item (i, `) (∈ N (n)) is requested is pi/n for all ` = 1, 2, . . . , n. For i ∈ N , we
refer to an item (i, `), ` = 1, 2, . . . , n, as an item of class i. Note here that n = 1 represents the original
(non-scaled) model and the ratio of the number of items and the capacity of cache remains the same
as N/K for all n ∈ N. We define 0-1-random variables X

(n)
i,` (k) for (i, `) ∈ N (n), k ∈ Z+, such that

X
(n)
i,` (k) = 1 when item (i, `) is in the cache at time k and X

(n)
i,` (k) = 0 otherwise. For each i ∈ N , we

also define

M
(n)
i (k) =

1
n

n∑
`=1

X
(n)
i,` (k), k ∈ Z+; (5)

that is, nM
(n)
i (k) represents the number of class i items in the cache at time k and it always holds that∑N

i=1 M
(n)
i (k) = K. Then, M (n)(k) = (M (n)

1 (k),M (n)
2 (k), . . . ,M (n)

N (k)), k ∈ Z+, forms a homogeneous
Markov chain within a finite state space ∆(n) =

{
(m1,m2, . . . ,mN ) ∈ {0, 1/n, 2/n, . . . , 1}N :

∑N
i=1 mi =

K
}

and, when |N+| ≥ K, the unique stationary distribution is directly obtained from (2) as

Π(n)(m) = (C(n))−1
N∏

i=1

( n

n mi

) (pi

n

)nmi

, m = (m1,m2, . . . ,mN ) ∈ ∆(n), (6)

where C(n) =
∑

m∈∆(n)

∏N
i=1

( n
nmi

) (
pi/n

)nmi .

We further scale the time and define a continuous-time process M̂ (n)(t) = M (n)(bn tc), t ≥ 0,
where bxc = max{i ∈ Z : i ≤ x} for x ∈ R. We then have the following theorems, where
∆ =

{
(m1,m2, . . . ,mN ) ∈ [0, 1]N :

∑N
i=1 mi = K

}
and ‖ · ‖ denotes the L2-norm in RN .

Theorem 1 Suppose that the initial state M (n)(0) converges in probability to a constant m ∈ ∆ as
n → ∞. Then, for any T ≥ 0 and any ε > 0,

lim
n→∞

P
(

sup
t∈[0,T ]

‖M̂ (n)(t) − µ(t)‖ > ε
)

= 0, (7)

where µ(t) = (µ1(t), µ2(t), . . . , µN (t)), t ≥ 0, is the solution to the system of differential equations;

dµi(t)
dt

= pi (1 − µi(t)) −
µi(t)
K

(
1 −

N∑
j=1

pj µj(t)
)
, i ∈ N , t ≥ 0, (8)
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µ(0) = m. (9)

The proof of theorem relies on the result for mean field interaction models considered in [1] and is
given in the next section. Theorem 1 says that, provided that the initial state M (n)(0) converges in
probability to a constant m ∈ ∆ as n → ∞, then, for each finite t ≥ 0, M̂ (n)(t) converges in probability
to the solution to the differential equation (8) with (9). We refer to this solution (µ(t))t≥0 as the fluid
limit of

(
M (n)(k)

)
k∈Z+

, n ∈ N. The theorem, however, does not say the convergence of stationary

distribution (6) of M (n)(k), k ∈ Z+, as n → ∞ unless, for all initial points m ∈ ∆, the trajectories of
fluid limit converge to a unique stationary point as t → ∞. This is in general hard to verify and we here
apply another recent result in [10], which leads to the following.

Theorem 2 Suppose |N+| ≥ K and that M (n)(0) follows the stationary distribution (6) for each n ∈ N.
Then, for any ε > 0,

lim
n→∞

P
(
‖M (n)(0) − m∗‖ > ε

)
= 0, (10)

where m∗ = (m∗
1,m

∗
2, . . . ,m

∗
N ) ∈ ∆ is given by

m∗
i =


K pi

ρ∗ + K pi
, i ∈ N+,

0, i ∈ N0,
(11)

and ρ∗ is the unique solution in [0, 1) to ∑
i∈N+

K pi

ρ∗ + K pi
= K, (12)

and satisfies ρ∗ = 1 −
∑N

j=1 pj m∗
j .

This theorem is also proved in the next section. Theorem 2 says that, when |N+| ≥ K, M (n)(0) in
the steady state converges in probability to the constant m∗ ∈ ∆ given by (11) and (12) as n → ∞; that
is, the fluid limit of M (n)(0) in the steady state is m∗. In other words, the stationary distribution (6)
converges weakly to the Dirac measure with mass at m∗.

Once Theorems 1 and 2 are provided, the fluid limits of fault probabilities are derived as corollaries
of them. We first consider the transient case. Let ρ(n)(k), k ∈ Z+, n ∈ N, denote the fault probability
for the nth scaled model at time k + 1; that is, the probability with which an item, that is not in the
cache at time k, is requested at time k + 1. Since the requested item at time k + 1 is independent of the
cache contents at time k, we have

ρ(n)(k) =
N∑

i=1

n∑
`=1

pi

n
P(X(n)

i,` (k) = 0) =
N∑

i=1

n∑
`=1

pi

n

(
1 − E(X(n)

i,` (k))
)

= 1 −
N∑

i=1

pi E
(
M

(n)
i (k)

)
, (13)

where the last equality follows from (5). Let also ρ̂(n)(t) = ρ(n)(bn tc) for t ≥ 0. We then have the
following.

Corollary 1 Suppose that the initial state M (n)(0) converges in probability to a constant m ∈ ∆ as
n → ∞. Then, for any t ≥ 0,

lim
n→∞

ρ̂(n)(t) = 1 −
N∑

i=1

pi µi(t), (14)

where µ(t) = (µ1(t), µ2(t), . . . , µN (t)), t ≥ 0, is the solution to (8) and (9) in Theorem 1.
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Proof: Under the assumption that M (n)(0) converges in probability to m ∈ ∆ as n → ∞, Theorem 1
ensures that M̂ (n)(t) = M (n)(bn tc) converges in probability to µ(t) which is the solution to (8) and (9).
Hence, (14) follows from (13) since M̂

(n)
i (t) is bounded for i ∈ N and t ≥ 0.

In the case of steady state, we have the following.

Corollary 2 Suppose |N+| ≥ K and that M (n)(0) follows the stationary distribution (6) for each n ∈ N.
Then, we have limn→∞ ρ(n)(0) = ρ∗, which is the unique solution in [0, 1) to (12) in Theorem 2.

Proof: Since M (n)(0) converges in probability to m∗ in (11) as n → ∞ by Theorem 2 and M (n)(0) is
bounded, we have from (13) that

lim
n→∞

ρ(n)(0) = 1 −
N∑

i=1

pi m∗
i = ρ∗,

where the last equality also follows from Theorem 2.

Comparing (4) and (12), we find that the fluid limit ρ∗ of stationary fault probability is coincident
with the approximation of stationary fault probability for the FIFO cache provided in [3]. Since the
stationary fault probabilities for the FIFO and RR caches are identical, we can say that our fluid limit
analysis gives an exact theoretical foundation to Dan-Towsley’s approximation.

4 Proofs of theorems

4.1 Proof of Theorem 1

To prove Theorem 1, we associate our model of RR caching with a mean field interaction model considered
in [1]. Consider the nth scaled model; that is, the set of items is N (n) = N ×{1, 2, . . . , n} and the cache
buffer consists of n K cells, each of which holds an item. At each time, an item, say (i, `) ∈ N (n), is
requested with probability pi/n independently of requests at other times. We here regard the cells of
cache as the objects in [1]. Namely, there are nK objects and the state of an object is i ∈ N when the
corresponding cell has an item of class i. This system of objects evolves stochastically as follows. If an
item of class i′ is requested at time k + 1 and it is not in the cache at time k, then one of nK cells
is chosen uniformly at random and the item in the chosen cell is replaced with the requested one. In
this case, if the randomly chosen cell has the item of class i at time k, then the corresponding object
changes its state from i to i′ (including the case of i = i′, in which case, the object does note change
its state while a cache fault occurs). Let Y

(n)
j (k) denote the state of object j (∈ {1, 2, . . . , nK}) at

time k. Then, Y (n)(k) =
(
Y

(n)
1 (k), Y (n)

2 (k), . . . , Y (n)
nK (k)

)
, k ∈ Z+, forms a homogeneous Markov chain

satisfying
∑nK

j=1 1{Y
(n)

j (k)=i} ∈ {0, 1, . . . , n} for each i ∈ N and k ∈ Z+. Furthermore, due to the RR

algorithm, the state transition of
(
Y (n)(k)

)
k∈Z+

is invariant from the labeling of objects, so that, the

process
(
Y (n)(k)

)
k∈Z+

is thought as a mean field interaction model without a resource (see [1] for more
detail).

For the process
(
Y (n)(k)

)
k∈Z+

, we have from (5),

1
n

nK∑
j=1

1{Y
(n)

j (k)=i} =
1
n

n∑
`=1

X
(n)
i,` (k) = M

(n)
i (k), i ∈ N , k ∈ Z+;

that is, we can see M (n)(k) =
(
M

(n)
1 (k),M (n)

2 (k), . . . ,M (n)
N (k)

)
as the empirical measure of Y (n)(k) on

∆(n) =
{
(m1,m2, . . . ,mN ) ∈ {0, 1/n, 2/n, . . . , 1}N :

∑N
i=1 mi = K

}
for each k ∈ Z+. To the mean field

6



interaction model above, we apply the result in [1], which is given as follows with translation into our
notations.

Proposition 1 (Theorem 1 of [1]) We suppose the following.

(i) There exist a sequence (εn)n∈N and a function f : ∆ → RN such that limn→∞ εn = 0 and, for any
m(n) ∈ ∆(n), n ∈ N, and m ∈ ∆ satisfying limn→∞ m(n) = m,

lim
n→∞

E
(
M (n)(k + 1) | M (n)(k) = m(n)

)
− m(n)

εn
= f(m).

(ii) For each n ∈ N, there exist a random sequence (W (n)(k))k∈N and a constant c > 0 such that

nK∑
j=1

1{Y
(n)

j (k+1) 6=Y
(n)

j (k)} ≤ W (n)(k + 1) and E
(
W (n)(k)2

)
≤ c n2 εn

2.

(iii) There exist a constant β > 0 and a continuously differentiable function ϕ: ∆ × [0, β] → RN such
that, for any n ∈ N and any m(n) ∈ ∆(n),

E
(
M (n)(k + 1) | M (n)(k) = m(n)

)
− m(n)

εn
= ϕ

(
m(n),

1
n

)
.

Also, let M
(n)

(t), t ≥ 0, denote the linear interpolation of M (n)(bt/εnc); that is,

M
(n)

(t) =
[
M (n)(bt/εnc + 1) − M (n)(bt/εnc)

]
(t/εn − bt/εnc) + M (n)(bt/εnc), t ≥ 0.

Then, for all T ≥ 0, there exist constants C1,T , C2,T and a random variable B
(n)
T such that

sup
t∈[0,T ]

‖M (n)
(t) − µ(t)‖ ≤ C1,T

(
B

(n)
T + ‖M (n)(0) − µ(0)‖

)
with probability 1,

E
(
B

(n)
T

2)
≤ C2,T εn,

where µ(t) is the solution to

dµ(t)
dt

= f(µ(t)), (15)

µ(0) = m. (16)

Remark 1 Conditions (i), (ii) and (iii) in Proposition 1 respectively correspond to H2, H3 and H5
in [1]. Since our model has no resource, which is supposed in [1], conditions H1 and H4 are irrelevant
(that is, automatically satisfied here). Furthermore, the state space in [1] is ∆ = {(m1,m2, . . . ,mN ) ∈
[0,∞)N :

∑N
i=1 mi = 1}; that is, the sum of elements is always unity. However, dividing our M (n)(k) by

K and considering n′ = nK as the scaling parameter, we can easily reduce our model to that in [1].

Proof of Theorem 1: Before we verify that our model satisfies conditions (i)–(iii) in Proposition 1, we
now suppose that with εn = 1/n, n ∈ N, and f = (f1, f2, . . . , fN ) such as

fi(m) = pi (1 − mi) −
mi

K

(
1 −

N∑
j=1

pj mj

)
, i ∈ N , m ∈ ∆. (17)

Then, applying the proposition under the assumption that M (n)(0) converges in probability to m ∈ ∆
as n → ∞, we have for any T ≥ 0 and any ε > 0,

lim
n→∞

P
(

sup
t∈[0,T ]

‖M (n)
(t) − µ(t)‖ > ε

)
= 0, (18)
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where µ(t), t ≥ 0, is the solution to (15) and (16) with f = (f1, f2, . . . , fN ) given by (17); that is, the
differential equation (15) with the initial condition (16) is coincident with (8) with (9). Furthermore,
since we take εn = 1/n, n ∈ N, we have

‖M (n)
(t) − M̂ (n)(t)‖ ≤ ‖M (n)(bn tc + 1) − M (n)(bn tc)‖ ≤

√
2

n
,

so that, with probability 1,
lim

n→∞
sup

t∈[0,T ]

‖M (n)
(t) − M̂ (n)(t)‖ = 0,

which, together with (18), leads to (7).
From the discussion above, it remains to show that our model satisfies conditions (i)–(iii) in Propo-

sition 1 with εn = 1/n, n ∈ N, and f = (f1, f2, . . . , fN ) given by (17). First, condition (ii) follows
immediately since our model satisfies

nK∑
j=1

1{Y
(n)

j (k+1) 6=Y
(n)

j (k)} ≤ 1, k ∈ Z+;

that is, at most one object (cell of the cache) changes its state at each time slot.
We next consider condition (iii). For m(n) = (m(n)

1 ,m
(n)
2 , . . . ,m

(n)
N ) ∈ ∆(n), the next states from m(n)

are expressed by m(n) + (ei′ − ei)/n, i, i′ ∈ N such as m
(n)
i 6= 0 and m

(n)
i′ 6= 1, where ei, i ∈ N , denotes

the N -dimensional unit vector such as the ith element is equal to one and others are zero. Since an item
of class i′ is requested with probability pi′/n independently from the current state m(n), the probability
with which one of class i′ items outside the cache is requested is pi′/n× (n−nm

(n)
i′ ) = pi′ (1−m

(n)
i′ ). On

the other hand, since the item which is pushed out by the newly requested one is chosen with probability
1/(nK) among ones in the cache, the probability with which one of class i items in the cache is pushed
out is (n m

(n)
i )/(nK) = m

(n)
i /K. Namely, for m(n) ∈ ∆(n) and k ∈ Z+,

P
(
M (n)(k+1) = m(n)+

ei′ − ei

n

∣∣∣ M (n)(k) = m(n)
)

=


m

(n)
i

K
pi′ (1 − m

(n)
i′ ), i 6= i′

1
K

N∑
i=1

pi m
(n)
i (1 − m

(n)
i ) +

N∑
i=1

pi m
(n)
i , i = i′,

(19)
where, in the case of i = i′, the first term denotes the probability with which a cache fault occurs but
the requested and pushed-out items are of the same class while the second term denotes the probability
with which a cache fault does not occur, noting that pi m

(n)
i = pi/n × n m

(n)
i represents the probability

with which one of class i items stored in the cache is requested. Thus, we have

E
(
M (n)(k + 1) | M (n)(k) = m(n)

)
− m(n) =

N∑
i=1

N∑
i′=1

ei′ − ei

n

m
(n)
i

K
pi′ (1 − m

(n)
i′ )

=
1
n

N∑
i′=1

ei′ pi′ (1 − m
(n)
i′ ) − 1

nK

N∑
i=1

ei m
(n)
i

(
1 −

N∑
i′=1

pi′ m
(n)
i′

)
,

where we use
∑N

i=1 m
(n)
i = K in the second equality. The ith element of the above is given by

E
(
M

(n)
i (k + 1) | M (n)(k) = m(n)

)
− m

(n)
i =

1
n

pi (1 − m
(n)
i ) − m

(n)
i

nK

(
1 −

N∑
j=1

pj m
(n)
j

)
.

Therefore, applying εn = 1/n, we have

E
(
M

(n)
i (k + 1) | M (n)(k) = m(n)

)
− m

(n)
i

1/n
= pi (1 − m

(n)
i ) − m

(n)
i

K

(
1 −

N∑
j=1

pj m
(n)
j

)
, (20)
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so that, condition (iii) holds with ϕ = (ϕ1, ϕ2, . . . , ϕN ) such as ϕi(m,α) = fi(m) in (17) for any α ∈ [0, β]
with an arbitrary β > 0. Finally, when m(n) → m ∈ ∆ as n → ∞, condition (i) follows from (20) with
f = (f1, f2, . . . , fN ) given in (17). Hence, the proof is completed.

Remark 2 By the discussion deriving (19), we have pj m
(n)
j as the conditional probability with which

one of class j items stored in the cache is requested given the current state m(n) = (m(n)
1 , m

(n)
2 , . . . ,m

(n)
N );

that is, the conditional fault probability for the nth scaled model given the current state m(n) is 1 −∑N
j=1 pj m

(n)
j . Since the fluid limit of M (n)(k), k ∈ Z+, is deterministic function µ(t), t ≥ 0, we see that

(14) is also derived from this observation.

4.2 Proof of Theorem 2

To prove Theorem 2, we apply the recent result in [10], exploiting the reversibility of stochastic process
to show the convergence of its stationary version to the stationary point of fluid limit, which is given as
follows also with translation into our notations.

Proposition 2 (Corollary 1 of [10]) We suppose the following.

(i)
(
M̂ (n)(t)

)
t≥0

is reversible under a probability measure Π̂(n) on ∆ such that Π̂(n)(∆(n)) = 1 in the
sense that, for every t ≥ 0 and any bounded and continuous function h: ∆2 → R,∫

∆

E
(
h(m, M̂ (n)(t)) | M̂ (n)(0) = m

)
Π̂(n)(dm) =

∫
∆

E
(
h(M̂ (n)(t),m) | M̂ (n)(0) = m

)
Π̂(n)(dm).

(21)

(ii) The sequence (Π̂(n))n∈N is tight.

(iii) For any m(n) ∈ ∆(n), n ∈ N, and m ∈ ∆ satisfying limn→∞ m(n) = m, there exists a semi-flow
φt: ∆ → ∆, t ≥ 0, such that φs+t = φs ◦ φt for s, t ≥ 0, φ0(m) = m and, for every t ≥ 0,
the conditional law of M̂ (n)(t) given M̂ (n)(0) = m(n) converges weakly to the constant φt(m) as
n → ∞; that is, for all bounded and continuous function h: ∆ → R,

lim
n→∞

E
(
h(M̂ (n)(t)) | M̂ (n)(0) = m(n)

)
= h(φt(m)).

(iv) The semi-flow φt, t ≥ 0, has a unique stationary point m∗ such that m∗ = φt(m∗) for all t ≥ 0.

Then, the sequence (Π̂(n))n∈N converges weakly to the Dirac measure with mass at m∗ as n → ∞.

Remark 3 It should be noted, and is also noted in [10], that our state space ∆ is a subset of RN , so
that the semi-flow φt, t ≥ 0, can be a differential equation of the form of (15). In this case, the stationary
points of φt are the solutions to f(m) = 0.

Proof of Theorem 2: Since the state space ∆ in our model is compact, condition (ii) in Proposition 2
necessarily holds. Also, given that M̂ (n)(0) = M (n)(0) = m(n) ∈ ∆(n) and m(n) → m ∈ ∆ as n → ∞,
Theorem 1 implies that M̂ (n)(t) converges in probability to µ(t) given by (8) and (9) for any t ≥ 0, so
that, condition (iii) in Proposition 2 holds for φt(m) = µ(t) with µ(0) = m. Therefore, if we can verify
that our model further satisfies conditions (i) and (iv) in Proposition 2 with Π̂(n)({m}) = Π(n)(m) in (6)
for m ∈ ∆(n) and with m∗ ∈ ∆ given by (11) and (12), then we can apply the proposition and obtain
(10).

We first show that, when |N+| ≥ K, condition (iv) holds in our model with m∗ ∈ ∆ given by
(11) and (12). Since the semi-flow φt, t ≥ 0, is given as the solution µ(t) to the differential equation

9



dµ(t)/dt = f(µ(t)), t ≥ 0, its stationary points are the solutions to f(m) = 0; that is, it suffices to show
that, when |N+| ≥ K, the system of equations

pi (1 − mi) −
mi

K

(
1 −

N∑
j=1

pj mj

)
= 0, i ∈ N , (22)

has a unique solution m∗ = (m∗
1,m

∗
2, . . . ,m

∗
N ) ∈ ∆, which is given by (11) and (12). In order for (22) to

hold for i ∈ N0 = {i ∈ N : pi = 0}, either of the following must be true for m = (m1,m2, . . . ,mN ) ∈ ∆;

(a)
∑

i∈N0
mi = 0,

(b)
∑

i∈N0
mi > 0 and

∑N
j=1 pj mj = 1.

If we assume (b) above, (22) leads to mi = 1 for i ∈ N+ = {i ∈ N : pi > 0}. Then, since |N+| ≥ K and∑N
i=1 mi = K for m ∈ ∆, we have

∑
i∈N0

mi = K −
∑

i∈N+
mi = K − |N+| ≤ 0, which contradicts the

assumption of (b). Therefore, (a) is true and (11) is valid for i ∈ N0. For i ∈ N+, arranging (22) with
taking ρ = 1 −

∑N
j=1 pj mj , we have

mi =
K pi

ρ + K pi
, i ∈ N+. (23)

Since
∑N

i=1 mi = K and
∑

i∈N0
mi = 0 from (a), (23) yields

∑
i∈N+

K pi

ρ + K pi
= K.

Let us see the left-hand side above as a function g(ρ) of ρ. Then, g(ρ) is decreasing in ρ ≥ 0 with g(0) =
|N+| ≥ K and g(1) =

∑
i∈N+

[K pi (1+K pi)−K2 pi
2]/(1+K pi) = K −

∑
i∈N+

K2 pi
2/(1+K pi) < K,

so that, g(ρ) = K has a unique solution on [0,∞) and this solution ρ∗ lies in [0, 1). Applying this ρ∗, we
have m∗

i in (11) for i ∈ N+, which is uniquely determined by (23).
We next show that our model satisfies condition (i) in Proposition 2 with Π̂(n)({m}) = Π(n)(m) for

m ∈ ∆(n). To this end, we first show the reversibility of Markov chain
(
M (n)(k)

)
k∈Z+

. For i 6= i′, by
the stationary distribution (6) and the transition probability (19), we have

Π(n)(m) P
(
M (n)(1) = m +

ei′ − ei

n

∣∣∣ M (n)(0) = m
)

= (C(n))−1
N∏

j=1

( n

nmj

)(pj

n

)nmj mi

K
pi′ (1 − mi′).

On the other hand, we have from (6),

Π(n)
(
m +

ei′ − ei

n

)
= (C(n))−1

N∏
j=1

( n

nmj

)(pj

n

)nmj nmi

n − nmi + 1
n − nmi′

nmi′ + 1

(pi

n

)−1 (pi′

n

)
,

and from (19),

P
(
M (n)(1) = m

∣∣∣ M (n)(0) = m +
ei′ − ei

n

)
=

pi

K

(
1 − mi +

1
n

)(
mi′ +

1
n

)
.

Therefore, it holds that

Π(n)(m)P
(
M (n)(1) = m +

ei′ − ei

n

∣∣∣ M (n)(0) = m
)

= Π(n)
(
m +

ei′ − ei

n

)
P
(
M (n)(1) = m

∣∣∣ M (n)(0) = m +
ei′ − ei

n

)
. (24)
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This is, of course, the case of i = i′ and the Markov chain
(
M (n)(k)

)
k∈Z+

is reversible. By the induction

from (24), we have for any k ∈ Z+ and any m,m′ ∈ ∆(n),

Π(n)(m) P
(
M (n)(k) = m′ | M (n)(0) = m

)
= Π(n)(m′)P

(
M (n)(k) = m | M (n)(0) = m′).

Hence, taking Π̂(n)({m}) = Π(n)(m) for m ∈ ∆(n), we have for any t ≥ 0 and any bounded and continuous
function h: ∆2 → R,∫

∆

E
(
h(m, M̂ (n)(t)) | M̂ (n)(0) = m

)
Π̂(n)(dm)

=
∑

m,m′∈∆(n)

h(m,m′) P
(
M (n)(bn tc) = m′ | M (n)(0) = m

)
Π(n)(m)

=
∑

m,m′∈∆(n)

h(m,m′) P
(
M (n)(bn tc) = m | M (n)(0) = m′) Π(n)(m′)

=
∫

∆

E
(
h(M̂ (n)(t),m′) | M̂ (n)(0) = m′) Π̂(n)(dm′);

that is, (21) holds and the proof is completed.

Remark 4 In order for (22) to have a unique solution in ∆, the condition |N+| ≥ K is necessary.
Suppose |N+| < K and consider case (a) in the proof of Theorem 2. Then, since mi ∈ [0, 1], we have∑N

i=1 mi =
∑

i∈N+
mi ≤ |N+| < K, which contradicts

∑N
i=1 mi = K for m ∈ ∆. Therefore, (b) is true

in this case. From (22), it must be mi = 1 for i ∈ N+ and there are uncountably many solutions mi for
i ∈ N0 satisfying

∑
i∈N0

mi = K −
∑

i∈N+
mi = K − |N+| > 0.

5 Concluding remarks

In this paper, to evaluate the performance of FIFO caching, we have instead studied the RR caching and
have derived the fluid limit of transient behavior by applying the limit theorem for mean field interaction
models in [1]. The fluid limit in the steady state has also been obtained by applying the result in
[10]. As a result, we have seen that the fluid limit of stationary fault probability is coincident with the
approximation of that for the FIFO caching provided in [3]. Though we have considered the independent
reference model, we may extend some results to a dependent reference model by associating it with the
mean field interaction model with a resource (see [1] and [2] for detail). To investigate more complex
caching algorithms by the fluid limit approach, we may have to further develop the limit theory of mean
field models with interactions.
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