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Abstract

Recently, stochastic geometry models for wireless communication networks have been attracting

much attention. This is because the performance of such networks critically depends on the spatial

configuration of wireless nodes and the irregularity of node configuration in a real network can be

captured by a spatial point process. However, most analyses of such stochastic geometry models for

wireless networks assume, due to its tractability, that the wireless nodes are located according to

homogeneous Poisson point processes. This means that the wireless nodes are located independently

with each other and their spatial correlation is ignored. In this work, we propose a stochastic ge-

ometry model of cellular networks such that the wireless base stations are located according to the

Ginibre point process. The Ginibre point process is one of the determinantal point processes and ac-

counts for the repulsion between the base stations. For the proposed model, we derive a computable

representation for the coverage probability—the probability that the signal-to-interference-plus-noise

ratio (SINR) for a mobile user achieves a target threshold. To capture its qualitative property, we

further investigate the asymptotics of coverage probability as the SINR threshold becomes large in

a special case. The results of numerical experiments are also exhibited.
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1 Introduction

Recently, stochastic geometry models for wireless communication networks have been attracting much

attention (see, e.g., introductory articles by Andrews et al. [2] and Haenggi et al. [8], and a monograph

by Baccelli & BÃlaszczyszyn [3]). This is because the performance of such networks critically depends on

the spatial configuration of wireless nodes and the irregularity of node configuration in a real network

can be captured by a spatial point process. For cellular networks, some works have also proposed and

analyzed the stochastic geometry models, where the wireless base stations and mobile users are located

randomly on the Euclidean plane, and various performance indices such as the coverage probability—the

probability that the signal-to-interference-plus-noise ratio (SINR) for a mobile user achieves a target

threshold—have been evaluated (see, e.g., [1, 5, 6] which are reviewed briefly in the next section).

Most analyses of such stochastic geometry models for wireless networks, however, assume that the

wireless nodes are located according to homogeneous Poisson point processes though the modeling is

possible using general spatial point processes. While this assumption makes the models tractable, it

means that the wireless nodes are located independently with each other and their spatial correlation is

ignored. Since real networks can be designed such that two wireless nodes are not too close, the models

accounting for repulsion between the nodes must be required. A few works have so far allowed the non-

Poisson configurated wireless nodes except the classical grid models for cellular networks. For example,

BÃlaszczyszyn & Yogeshwaran [3] studied the connectivity of sub-Poisson SINR graphs and Ganti et al. [7]

developed the series expansion for functions of interference using the factorial moment expansion.

In this work, we propose a stochastic geometry model of cellular networks such that the wireless

base stations are located according to the Ginibre point process. The Ginibre point process is one of

the determinantal point processes, which are used to model fermions in quantum mechanics and account

for the repulsion between the particles, and has been studied well since it has several desirable features

(see, e.g., Hough et al. [9], Shirai & Takahashi [11] and Soshnikov [12]). For the proposed model, we

derive a computable representation for the coverage probability. Furthermore, to capture its qualitative

property, we investigate the asymptotics of coverage probability as the SINR threshold becomes large

in the interference-limited case. Though we here focus on the coverage probability in a basic model, it

would be possible to extend our results to more practical problems developed in [1, 5, 6].

The rest of paper is organized as follows. In the next section, we describe our stochastic geometry

model of cellular networks by following [1] and make a brief review on some related works with Poisson

configurated base stations. We also derive a basic formula for the coverage probability, which plays a key

role in our analysis. In Section 3, we give the definition and some useful properties of the Ginibre point

process, where we further define a scaled version of that process. The computable integral representation

for the coverage probability is derived in Section 4. The effect of random frequency reuse is also considered

there. In Section 5, we investigate the asymptotic property of coverage probability as the SINR threshold

becomes large in the interference-limited case. The results of numerical experiments are exhibited in

Section 6. Finally, concluding remarks are made in Section 7.
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2 Stochastic geometry model of cellular networks

We here describe a stochastic geometry model of cellular wireless networks, which mainly follows [1]

though some notations are altered for convenience. Let Φ denote a point process on R2 and Xi, i ∈ N,

denote the points of Φ, where the order of X1, X2, . . . is arbitrary. The point process Φ represents the

configuration of wireless base stations and we refer to the base station located at Xi as station i. We

assume that Φ is simple and locally finite a.s. and also motion-invariant (stationary and isotropic). The

transmission power of each base station is constant at 1/µ, µ > 0. Each mobile user is associated with

the closest base station; that is, the mobile users in the Voronoi cell of a base station are associated with

that station. Thus, due to the motion invariance of point process and the homogeneity of base stations,

we can focus on a typical mobile user located at the origin o = (0, 0). We assume the Rayleigh fading

for the random effect of fading/shadowing from each base station to a user, so that the transmission

power multiplied by the fading effect from station i to the typical user at the origin, denoted by Fi, is

an exponential random variable with mean 1/µ, where Fi, i ∈ N, are mutually independent and also

independent of point process Φ. The path-loss function ` representing the attenuation of signals with

the distance is given by `(r) = α r−2β , r > 0, for some α > 0 and β > 1.

In the setting described above, the cumulative interference received by the typical user is given by

Io =
∑

j∈N\{Bo}

Fj `(|Xj |), (1)

where Bo denotes the base station associated with the typical user. The SINR of typical user from the

associated base station is then expressed as

SINRo =
FBo `(|XBo |)

Wo + Io
, (2)

where Wo denotes the thermal noise at the origin and is independent of ΦF = {(Xi, Fi)}i∈N. We

assume that the Laplace-Stieltjes transform of Wo is known to be computable. We consider the coverage

probability as the performance index, which is defined as p(θ, β) = P(SINRo > θ); the probability that

the SINR of typical mobile user achieves a predefined threshold θ > 0.

Some works have so far considered similar cellular network models, where the base stations are located

according to homogeneous Poisson point processes. Andrews et al. [1] dealt with more general fading

distributions and evaluated the coverage probability and the mean achievable rate defined as τ(β) =

E ln(1 + SINRo). Decreusefond et al. [5] proposed the model incorporating the time-invariant shadowing

and the time-variant fading, and evaluated the handover probability under the assumption that the

associated base stations are altered when the SINR from the current associated station continues to be

lower than the threshold. Dhillon et al. [6] extended the model to that with multi-tiers of heterogeneous

base stations, which generates the macro, pico or femto cells.

In this paper, we adopt the Ginibre point process (or its scaled version) as the point process Φ

representing the configuration of base stations. Samples of Poisson and Ginibre point processes with the

same intensity are found in Fig. 1, where we can see that the points of Ginibre process are distributed
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Figure 1: Samples of Poisson point process (left) and Ginibre point process (right).

more evenly. Also, comparing it with Fig. 2 in [1], we can find that the point configuration of Ginibre

process is relatively closer to a real base station deployment by a major service provider in a relatively

flat urban area than that of a Poisson process. Before proceeding to the description of Ginibre point

process, we give a basic formula for the coverage probability, which plays a key role in our analysis.

Lemma 1 For the cellular network model described above, the coverage probability for a typical mobile

user satisfies

p(θ, β) = E
(
LW

(µ θ |XB0 |2β

α

) ∏
j∈N\{B0}

(
1 + θ

∣∣∣XB0

Xj

∣∣∣2β)−1)
, (3)

where LW denotes the Laplace-Stieltjes transform of Wo.

Proof: We have from (2) that

P(SINRo > θ) =
∞∑

i=1

P(SINRo > θ,Bo = i)

=
∞∑

i=1

P
(
Fi >

θ (Wo + Io)
`(|Xi|)

, |Xi| ≤ |Xj |, j ∈ N
)
. (4)

Since Fi is exponentially distributed with mean 1/µ, and Wo and Io are mutually independent, condi-

tioning yields

P
(
Fi >

θ (Wo + Io)
`(|Xi|)

, |Xi| ≤ |Xj |, j ∈ N
)

= E
(
e−µθWo/`(|Xi|) e−µθIo/`(|Xi|) 1{|Xi|≤|Xj |,j∈N}

)
= E

(
LW

( µ θ

`(|Xi|)

)
E
(
e−µθIo/`(|Xi|) | Φ

)
1{|Xi|≤|Xj |,j∈N}

)
, (5)
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where 1A denotes the indicator for a set A. Furthermore, since Fj , j ∈ N, are mutually independent,

applying (1) under the condition that |Xi| ≤ |Xj |, j ∈ N, we have

E
(
e−µθIo/`(|Xi|) | Φ

)
=

∏
j∈N\{i}

E
(
e−µθFj`(|Xj |)/`(|Xi|) | Φ

)
=

∏
j∈N\{i}

(
1 + θ

∣∣∣Xi

Xj

∣∣∣2β)−1

, (6)

where the Laplace-Stieltjes transform LF (s) = µ/(µ + s) of Fj and `(r) = α r−2 β , r > 0, are applied in

the second equality. Hence, applying (5) and (6) to (4), we obtain (3).

3 Ginibre point process

In this section, we give the definition of Ginibre point process and make a brief review on its useful

properties (see, e.g., [9, 11, 12] for details). The Ginibre point process is one of the determinantal point

processes on the complex plane C defined as follows. Let Φ denote a simple point process on C and

ρn: Cn → R+, n ∈ N, denote its correlation functions (joint intensities) with respect to some Radon

measure ν on C; that is, for any disjoint C1, C2, . . . , Cn ∈ B(C),

E
(
Φ(C1)Φ(C2) · · ·Φ(Cn)

)
=

∫
C1×C2×···×Cn

ρn(z1, z2, . . . , zn) ν(dz1) ν(dz2) · · · ν(dzn), (7)

and ρn(z1, z2, . . . , zn) = 0 when zi = zj for i 6= j. The point process Φ is said to be a determinantal

point process with kernel K: C2 → C with respect to ν if ρn, n ∈ N, satisfy

ρn(z1, z2, . . . , zn) = det
(
K(zi, zj)

)
1≤i,j≤n

, z1, z2, . . . , zn ∈ C, n ∈ N. (8)

Furthermore, Φ is said to be the Ginibre point process when the kernel K is given by K(z, w) = ezw,

z, w ∈ C, with respect to ν(dz) = π−1 e−|z|2 m(dz), where w denotes the conjugate of w ∈ C and m

denotes the Lebesgue measure on C. It is also equivalent that K(z, w) = π−1 e−(|z|2+|w|2)/2 ezw with

respect to ν(dz) = m(dz). The Ginibre point process is known to be motion-invariant. One of its useful

properties comes from the radial symmetricity and is described as follows (see, e.g., Kostlan [10] or [9,

Section 4.7]).

Proposition 1 (Kostlan [10]) Let Xi, i ∈ N, denote the points of Ginibre point process. Then, the set

{|Xi|}i∈N has the same distribution as {
√

Yi}i∈N, where Yi, i ∈ N, are mutually independent and each Yi

follows the ith Erlang distribution with the unit rate parameter, denoted by Yi ∼ Gamma(i, 1), i ∈ N.

By the definition of Ginibre point process, we see EΦ(C) = π−1 m(C) for C ∈ B(C); that is, the (first

order) intensity is equal to π−1 with respect to the Lebesgue measure. To make it possible to control the

intensity, we consider a scaled version Φc of Ginibre point process with the scaling parameter c > 0. That

is given by the kernel Kc(z, w) = c eczw with respect to the reference measure νc(dz) = π−1 e−c|z|2 m(dz),

or equivalently, Kc(z, w) = (c/π) e−c(|z|2+|w|2)/2 eczw with respect to the Lebesgue measure. The scaled
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Ginibre point process Φc has the intensity c/π and, for the points Xi, i ∈ N, of Φc, the set {|Xi|}i∈N has

the same distribution as {
√

Yi}i∈N, where Yi, i ∈ N, are mutually independent and each Yi follows the

ith Erlang distribution with rate parameter c, denoted by Yi ∼ Gamma(i, c), i ∈ N.

4 Performance analysis

We adopt the scaled Ginibre point process Φc given in Section 3 as the configuration of base stations

in the cellular network model described in Section 2, where a point z = x + i y ∈ C is identified as

(x, y) ∈ R2.

4.1 Integral representation of coverage probability

Theorem 1 Consider the cellular network model described in Section 2 with the base stations located

according to the scaled Ginibre point process Φc defined in Section 3. Then, the coverage probability of a

typical mobile user is given by

p(θ, β) =
∫ ∞

0

e−v LW

(µ θ

α

(v

c

)β)
M(v, θ, β)S(v, θ, β) dv, (9)

where

M(v, θ, β) =
∞∏

j=1

1
(j − 1)!

∫ ∞

v

sj−1 e−s

1 + θ (v/s)β
ds, (10)

S(v, θ, β) =
∞∑

i=1

vi−1
(∫ ∞

v

si−1 e−s

1 + θ (v/s)β
ds

)−1

. (11)

Note that the coverage probability p(θ, β) given in (9)–(11) is not closed-form but computable by

numerical integration provided the Laplace-Stieltjes transform LW of Wo.

Proof: Let Yj ∼ Gamma(j, c), j ∈ N, be mutually independent. For the points Xi, i ∈ N, of point

process Φc, {|Xi|}i∈N has the same distribution as {
√

Yi}i∈N by the arguments in the preceding section.

Thus, from (3) in Lemma 1 and the conditional independence of 1{Yj≥Yi}, j ∈ N \ {i}, given Yi, we have

P(SINRo > θ) =
∞∑

i=1

E
(
LW

(µ θ Yi
β

α

) ∏
j∈N\{i}

(
1 + θ

(Yi

Yj

)β)−1

1{Yj≥Yi}

)

=
∞∑

i=1

∫ ∞

0

ci ui−1 e−c u

(i − 1)!
LW

(µ θ uβ

α

) ∏
j∈N\{i}

∫ ∞

u

cj yj−1 e−c y

(j − 1)!

(
1 + θ

(u

y

)β)−1

dy du,

(12)

where the second equality follows from applying the density functions of Yj , j ∈ N. Hence, changing the

variables to s = c y and v = c u, we obtain (9) after some manipulations.

Remark 1 We can see from (9) that, in the interference-limited case (Wo ≡ 0), the coverage probability

p(θ, β) is irrelevant to the parameters c, α and µ. This is also the case where the base stations are
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located according to a homogeneous Poisson point process. In such a case, following Theorem 2 of [1]

(or applying the Laplace functional of Poisson point process to (3)), the coverage probability is given by

p(Poi)(θ, β) =
∫ ∞

0

LW

(µ θ

α

( v

π λ

)β)
exp

{
−v

(
1 + ρ(θ, β)

)}
dv, (13)

where λ > 0 denotes the intensity of Poisson point process and

ρ(θ, β) =
θ1/β

β

∫ ∞

1/θ

u−1+1/β

u + 1
du. (14)

Remark 2 As in [1], it is not difficult to generalize the distribution of fading/shadowing from the

interfering base stations while it remains experiencing the Rayleigh fading from the associated base

station. Provided that |Xi| ≤ |Xj | for all j ∈ N, we assume that Fi is still exponentially distributed

with mean µ−1, but Fj = µ−1 Gj for j ∈ N \ {i} where Gj ’s are mutually independent and identically

distributed nonnegative random variables with the unit mean, and also independent of Φc = {Xi}i∈N, Fi

and W0. Let LG denote the Laplace-Stieltjes transform of Gj . Then, the coverage probability is obtained

similar to Theorem 1 by replacing (1 + θ (v/s)β)−1 in (10) and (11) as LG(θ (v/s)β). In this case, the

coverage probability is still computable whenever so is LG (e.g., the probability density function of Gj

is available).

Remark 3 Besides the coverage probability, [1] evaluated the mean achievable rate τ(β) = E ln(1 +

SINRo) of a typical mobile user, which comes from Shannon’s channel capacity B log2(1 + SNR) with

bandwidth B and signal-to-noise ratio SNR. We can also derive the numerically computable representa-

tion for the mean achievable rate from Theorem 1. Since ln(1 + SINRo) > 0 a.s.,

τ(β) =
∫ ∞

0

P(ln(1 + SINRo) > t) dt =
∫ ∞

0

P(SINRo > et − 1) dt =
∫ ∞

0

p(et − 1, β) dt.

4.2 Frequency reuse

The frequency reuse is one of the ways to increase the coverage probability by reducing the number

of interfering base stations. In this section, we follow [1] and consider the per-cell random frequency

reuse technique. The reuse factor δ ∈ N determines the number of different frequency bands used by

the network; that is, the total frequency band is divided into δ subbands and each base station chooses

one of the δ subbands uniformly at random for the use of its own cell. The interfering base stations for

the typical user are then those using the same frequency band as his/her associated base station. Let

Ri denote the frequency band of station i, where Ri, i ∈ N, are mutually independent and distributed

as P(Ri = k) = 1/δ, k = 1, 2, . . . , δ, and also independent of ΦF = {(Xi, Fi)}i∈N and Wo. The SINR of

typical user from the associated base station is given by

SINR(FR)
o =

FBo `(|XBo |)
Wo + I

(FR)
o

,

where

I(FR)
o =

∑
j∈N\{Bo}

Fj `(|Xj |)1{Rj=RBo}.

6



The coverage probability then reduces to p(θ, β, δ) = P(SINR(FR)
o > θ).

Corollary 1 Consider the cellular network model as in Theorem 1 but applying the random frequency

reuse such that δ frequency bands are randomly allocated to the cells. The coverage probability is then

given by

p(θ, β, δ) =
∫ ∞

0

e−v L
(µθ

α

(v

c

)β)
M(v, θ, β, δ)S(v, θ, β, δ) dv, (15)

where

M(v, θ, β, δ) =
∞∏

j=1

1
(j − 1)!

∫ ∞

v

sj−1e−s
{

1 − 1
δ

[
1 −

(
1 + θ

(v

s

)β)−1]}
ds,

S(v, θ, β, δ) =
∞∑

i=1

vi−1
(∫ ∞

v

si−1e−s
{

1 − 1
δ

[
1 −

(
1 + θ

(v

s

)β)−1]}
ds

)−1

.

Proof: In this case, formula (3) in Lemma 1 reduces to

p(θ, β, δ) = E
(
LW

(µ θ |XB0 |2β

α

) ∏
j∈N\{B0}

{
1 − 1

δ

[
1 −

(
1 + θ

∣∣∣XB0

Xj

∣∣∣2β)−1]})
. (16)

The remaining procedures are the same as those for Theorem 1 and are omitted.

Remark 4 It is clear from (16) that the coverage probability is increasing in δ = 1, 2, . . . for general

stationary point process Φ = {Xi}i∈N. Since the frequency band is divided by δ, the mean achievable

rate considered in Remark 3 is now given by

τ(β, δ) = δ−1 E ln(1 + SINR(FR)
o ) =

1
δ

∫ ∞

0

p(et − 1, β, δ) dt.

5 Asymptotic analysis in interference limited case

By Theorem 1, we can evaluate the coverage probability p(θ, β) numerically. In this section, we investigate

its asymptotic property as θ → ∞ in the interference-limited case.

Theorem 2 In the interference-limited case, the coverage probability derived in Theorem 1 satisfies

lim
θ→∞

θ1/β p(θ, β) =
∫ ∞

0

∞∏
j=2

1
(j − 1)!

∫ ∞

0

yj−1 e−y

1 + (v/y)β
dy dv. (17)

The right-hand side of (17) is finite and also computable by numerical integration.

Proof: In the interference-limited case, since LW (·) = 1, (12) reduces to

p(θ, β) =
∞∑

i=1

E

( ∏
j∈N\{i}

(
1 + θ

(Yi

Yj

)β)−1

1{Yj≥Yi}

)

= E

( ∞∏
j=2

(
1 + θ

(Y1

Yj

)β)−1

1{Yj≥Y1}

)
+

∞∑
i=2

E

( ∏
j∈N\{i}

(
1 + θ

(Yi

Yj

)β)−1

1{Yj≥Yi}

)
, (18)

7



where Yj ∼ Gamma(j, 1), j ∈ N, are mutually independent. We now evaluate the two terms on the

right-hand side (RHS) of (18) separately. First, since Y1 is exponentially distributed with the unit mean,

(1st term on RHS of (18)) =
∫ ∞

0

e−u
∞∏

j=2

E

((
1 + θ

( u

Yj

)β)−1

1{Yj≥u}

)
du

= θ−1/β

∫ ∞

0

e−θ−1/βv
∞∏

j=2

E
((

1 +
( v

Yj

)β)−1

1{Yj≥θ−1/βv}

)
dv, (19)

where the second equality follows from changing the variable to v = θ1/β u. The right-hand side of

(19) multiplied by θ1/β converges to that of (17) as θ → ∞ by the monotone convergence theorem

with e−θ−1/βv ↑ 1 and 1{Yj≥θ−1/βv} ↑ 1 and by applying the density functions of Yj ∼ Gamma(j, 1),

j = 2, 3, . . ..

It remains to show that the second term on the right-hand side of (18) is o(θ−1/β) as θ → ∞. Since(
1 + θ (Yi/Yj)β

)−1 ≤ 1,

(2nd term on RHS of (18)) ≤
∞∑

i=2

E
((

1 + θ
( Yi

Y1

)β)−1

1{Y1≥Yi}

)
. (20)

Applying the density functions of Y1 ∼ Gamma(1, 1) and Yi ∼ Gamma(i, 1), i = 2, 3, . . ., to the summand

of (20), we have

E
((

1 + θ
( Yi

Y1

)β)−1

1{Y1≥Yi}

)
=

∫ ∞

0

ui−1 e−u

(i − 1)!

∫ ∞

u

e−y
(
1 + θ

(u

y

)β)−1

dy du

=
1

(i − 1)!

∫ ∞

1

(
1 +

θ

sβ

)−1
∫ ∞

0

ui e−(s+1)u du ds

= i

∫ ∞

1

1
(s + 1)i+1

(
1 +

θ

sβ

)−1

ds, (21)

where the second equality follows from changing the variable to s = y/u and the third equality holds by

the definition of Gamma functions. Here, letting β∗ = bβ + 1c and summing up the right-hand side of

(21) over i = β∗, β∗ + 1, . . ., we have

∞∑
i=β∗

i

∫ ∞

1

1
(s + 1)i+1

(
1 +

θ

sβ

)−1

ds ≤ θ−1
∞∑

i=β∗

i

∫ ∞

1

sβ

(s + 1)i+1
ds

= θ−1

∫ ∞

1

(β∗ s + 1) sβ−2

(s + 1)β∗ ds,

where we use (1 + θ/sβ)−1 ≤ sβ/θ in the inequality. The last integrand is O(s−β∗−1+β) as s → ∞, so

that the integration is finite; that is, the last expression is O(θ−1) as θ → ∞. On the other hand, for

i = 2, 3, . . . , β∗ − 1 ≤ β, the right-hand side of (21) satisfies

i

∫ ∞

1

1
(s + 1)i+1

(
1 +

θ

sβ

)−1

ds ≤ i

∫ ∞

1

s−i−1
(
1 +

θ

sβ

)−1

ds

=
i θ−i/β

β

∫ ∞

1/θ

t−i/β

t + 1
dt

≤ i θ−i/β

β

[∫ 1

1/θ

t−i/β dt +
∫ ∞

1

t−i/β−1 dt

]

8



=


β

β − i
θ−i/β − i

β − i
θ−1 ≤ β

β − i
θ−i/β for i < β,

θ−1 (ln θ + 1) for i = β,

where the first equality follows from changing the variable to t = sβ/θ and the next inequality follows

from 1/(t + 1) ≤ min(1, 1/t). The last expressions are o(θ−1/β) as θ → ∞ for both i < β and i = β,

which completes the proof.

Remark 5 Theorem 2 states that, in the interference-limited case, the distribution of the SINR of

typical mobile user has the Pareto tail without the mean. This result is also the case where the base

stations are located according to a homogeneous Poisson point process. In the interference-limited case

of the Poisson base station model, (13) reduces to

p(Poi)(θ, β) =
1

1 + ρ(θ, β)
.

Here, we have from (14) that

θ−1/β ρ(θ, β) =
1
β

∫ ∞

1/θ

u−1+1/β

u + 1
du → π

β
csc

π

β
as θ → ∞,

which implies that

lim
θ→∞

θ1/β p(Poi)(θ, β) =
β

π
sin

π

β
. (22)

6 Numerical experiments

In this section, we show the results of some numerical experiments for computing the coverage proba-

bilities. We first compare the results of computing (9) for the Ginibre base station model with those of

(13) for the corresponding Poisson model. In Fig. 2, each plot shows the coverage probability for a given

value of θ, where the intensity λ = c/π is set at 1/π for both the point processes and the thermal noise

is given as a constant such that SNR = (µWo)−1 (SNR = ∞ stands for no noise). The coefficient α of

path-loss function is set at 1 and two cases of β = 1.25 and β = 2.0 (that is, `(r) = r−2.5 and `(r) = r−4)

are computed. For both the Ginibre and Poisson models, the gaps between the cases of SNR = 10 and

SNR = ∞ are small, particularly for small value of β, which implies that the thermal noise is not a

very important consideration. Furthermore, comparing Fig. 2 with Fig. 4 in [1], we can find that the

coverage probability for the Ginibre model is very close to that for the corresponding model with a real

base station deployment by a major service provider in a relatively flat urban area. This confirms that

the Ginibre base station model is considerable as a good approximative model for real cellular networks.

Next, to see the effect of frequency reuse on the coverage probability, the results of computing (15)

are exhibited in Fig. 3, where the curves for δ = 1 are the same as those for the Ginibre model with

SNR = ∞ in Fig. 2. We can see that the coverage probability is much improved by the frequency reuse.

In the third and final experiment, we compare the coverage probability with the corresponding asymp-

totics in the interference-limited case. In Fig. 4, the comparison results between (9) and (17) for the
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Figure 2: Comparison of coverage probability between the Ginibre base station model and the corre-

sponding Poisson model for β = 1.25 (left) and β = 2.0 (right).
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Figure 3: Effect of frequency reuse on the coverage probability for β = 1.25 (left) and β = 2.0 (right).
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Figure 4: Comparison between the coverage probability and its asymptotic results for β = 1.25 (left)

and β = 2.0 (right).

Ginibre model as well as those between (13) and (22) for the Poisson model are exhibited, where the

curves for the coverage probability are the same as those for SNR = ∞ in Fig. 2. Figure 4 shows that,

in the Poisson model, the asymptotic results well agree with the coverage probability for relatively small

values of θ and β. In the Ginibre model, however, the asymptotic results agree with the coverage prob-

ability only for large values of θ, particularly when the value of β is large. This implies that, to obtain

a better approximation of the coverage probability in the Ginibre model, it is required to take not only

the main term obtained by the asymptotic analysis but also some more terms of o(θ−1/β) as θ → ∞ into

consideration.

7 Concluding remarks

We have considered a cellular network model such that the base stations are located according to the

Ginibre point process and have derived the computable integral representation for the coverage probabil-

ity. We have also investigated the asymptotic property of coverage probability in the interference-limited

case. For future work, we can consider some problems in various directions. For example, although

we have studied just a basic model, we could apply the Ginibre base station model to more practical

problems such as those developed in [1, 5, 6]. Also, we could consider the applications to other wireless

networks, where the percolation of SINR graphs might be attractive. As extensions of the model, we

could consider more general stationary point processes. Since Proposition 1 comes from the radially

symmetric property of Ginibre point process, the results obtained in the paper might be generalized to

the models with other radially symmetric determinantal point processes. It might be also interesting to

give a general condition that the coverage probability has the decay rate θ−1/β as θ → ∞.
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