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Abstract.
We propose a class of quadratic optimization problems whose exact optimal objective values can be
computed by their completely positive cone programming relaxations. The objective function can
be any quadratic form. The constraints of each problem are described in terms of quadratic forms
with no linear terms, and all constraints are homogeneous equalities, except one inhomogeneous
equality where a quadratic form is set to be a positive constant. For the equality constraints, “a
hierarchy of copositvity” condition is assumed. This model is a generalization of the standard
quadratic optimization problem of minimizing a quadratic form over the standard simplex, and
covers many of the existing quadratic optimization problems studied for exact copositive cone and
completely positive cone programming relaxations. In particular, it generalizes the recent results
on quadratic optimization problems by Burer and the set-semidefinite representation by Eichfelder
and Povh.
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1 Introduction

A nonconvex quadratic optimization problem (abbreviated as QOP) with quadratic equality and
inequality constraints is known to be an NP hard problem. It may include binary variables, and
covers many important combinatorial optimization problems such as max-cut problems, maximum
stable set problems, and quadratic assignment problems. Semidefinite programming relaxation
techniques have been effectively used to compute bounds for their optimal values and approximate
optimal solutions [10, 12, 16].

In recent years, theoretically stronger relaxations using copositive cones and completely positive
cones have been intensively studied and attracted a great deal of attention [2, 4, 5, 7, 8, 11, 13,
14, 15]. In particular, Burer [4] formulated the class of QOPs with linear constraints in both
nonnegative continuous variables and binary variables as a linear optimization problem over a
completely positive cone (abbreviated as CPP); more precisely, the exact optimal value of a QOP
in the class can be computed by its CPP relaxation. Eichfelder and Povh [8] extended Burer’s
results to a QOP with an additional constraint u ∈ D in its variable vector u, where D is a closed
(not necessarily convex) set. This paper presents a further extension of their results.

For related work, a QOP on the standard simplex was formulated as a CPP [1, 2]. The
maximum stable set problem in [11], a graph tri-partitioning problem in [14], and the quadratic
assignment problem [14], were considered and reduced to CPPs. More recently, general QOPs
with quadratic constraints were represented as generalized CPPs in [6]. However, it is not well
understood yet whether a general class of QOPs can be formulated as CPPs.

Our main purpose of this paper is to propose a new class of QOPs whose exact optimal values
can be computed by their CPP relaxations. The proposed class not only covers the class of QOPs
with linear constraints in both nonnegative continuous variables and binary variables, but also
increases the prospects for formulating various QOPs in a more general form as CPPs. We will
employ a QOP with a cone constraint x ∈ K in its n-dimensional vector x, where K is a closed (not
necessarily convex) cone. Although working with x in the n-dimensional nonnegative orthant Rn

+,
the most important special case, was the starting point of this work, it immediately became clear
that the generalization from the nonnegative orthant to a general closed cone is straightforward
by just replacing Rn

+ by K and modifying slightly. This generalization is described in the main
results in Section 3 and their proofs in Section 4. In fact, Rn

+ is a convex cone, but its convexity
does not play any essential role.

This paper is organized as follows. In Section 2, we provide some notation and symbols for
the subsequent sections, and introduce a standard form QOP whose exact CPP relaxation is a
main subject of this paper. The QOP is described in terms of quadratic forms with no linear
terms. The objective function is a quadratic form, and all constraints are homogeneous equalities
in nonnegative variables, except one inhomogeneous equality where a quadratic form is set to be
a positive constant. We show how a general QOP with a constraint u ∈ D in its variable vector u
can be described in the standard form QOP. We also introduce a CPP relaxation of the standard
form QOP.

In Section 3, we build a hierarchical structure into the constraint of the QOP. Two sets of
conditions, simple ones in Section 3.1 and general ones in Section 3.2, are imposed on the hierar-
chically structured constraint to ensure that the QOP and its CPP relaxation have an equivalent
optimal value. Among those conditions, “a hierarchy of copositivity” plays an essential role, which
may be regarded as an extension of a one step copositivity condition in [4]. Section 3.1 deals with
a simple case where a stronger and simple set of conditions on the compactness of the feasible
region of the QOP is assumed. The main result (Theorem 3.2) is a special case of Theorem 3.5
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in Section 3.2, where a similar result is established under a general and weaker set of conditions.
The simple arguments in Section 3.1 may facilitate understanding of the arguments in Section 3.2.

Section 4 is devoted to proofs of the lemmas in Section 3.2. Four examples are presented in
Section 5 to show that they can be reduced to the standard form QOP that satisfies either the
simple set of conditions or the general set of conditions. Section 5.1 includes a QOP with linear
equality constraints in nonnegative continuous variables and binary variables, and an additional
constraint u ∈ D in its variable vector u. This type of QOPs was studied in [8]. The last two
examples demonstrate that the standard form QOP satisfying the general set of conditions can
cover new types of QOPs. In Section 6, the concluding remarks are included.

2 Preliminaries

2.1 Notation and symbols

We use the following notation and symbols throughout the paper.

Rn = the space of n-dimensional column vectors,

Rn
+ = the nonnegative orthant of Rn,

K = a closed (not necessarily convex) cone in Rn,

Sn = the space of n× n symmetric matrices,

Sn+ = the cone of n× n symmetric positive semidefinite matrices,

N = the cone of n× n symmetric nonnegative matrices,

CK =
{
A ∈ Sn : xTAx ≥ 0 for all x ∈ K

}
(a generalized copositive cone)

C∗
K =

{
r∑

i=1

xjx
T
j : xj ∈ K (j = 1, 2, . . . , r) for some r ≥ 1

}
(a generalized completely positive cone).

We know by Corollary 1.5 of [8] that C∗
K is a closed convex cone and that CK and C∗

K are dual of
each other in Sn;

C∗
K = {X ∈ Sn : A •X ≥ 0 for every A ∈ CK} ,

CK = {A ∈ Sn : A •X ≥ 0 for every X ∈ C∗
K} .

Here A • X denotes the inner product
∑n

i=1

∑n
j=1AijXij of A ∈ Sn and X ∈ Sn. If we take

K = Rn
+, CK and C∗

K are known as the copositive cone and the completely positive cone, which
will be simply denoted by C and C∗, respectively. If K = Rn, both CK and C∗

K coincide with Sn+.
We have the relation C∗ ⊂ Sn+

∩
N ⊂ Sn+ ⊂ Sn+ + N ⊂ C.

For x ∈ Rn, xT denotes the transposition of x, and xT is an n-dimensional row vector. We
use notation (u, s) ∈ Rm+n for the (m+ n)-dimensional column vector consisting of u ∈ Rm and
s ∈ Rn. The quadratic form xTQx associated with a matrix Q ∈ Sn is represented as Q • xxT

for every x ∈ Rn. In the subsequent discussions, Q • xxT is used to suggest that Q • xxT with
x ∈ K is relaxed to Q •X with X ∈ C∗

K.

For each subset U of Sn, conv U denotes the convex hull of U , cl U the closure of U , and
cone U the cone generated U ; cone U = {µX : X ∈ U, µ ≥ 0} .
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2.2 A standard form QOP and its CPP relaxation

Let ρ > 0, Q ∈ Sn and Hk ∈ Sn (k = 0, 1, 2, . . . , p). For the discussion on QOP, we consider a
QOP of the form

minimize Q • xxT

subject to x ∈ K, H0 • xxT = ρ, Hk • xxT = 0 (k = 1, 2, . . . , p).

Let

G̃p =
{
xxT : x ∈ K, H0 • xxT = ρ, Hk • xxT = 0 (k = 1, 2, . . . , p)

}
.

Then, the QOP is rewritten as

minimize Q • xxT subject to xxT ∈ G̃p. (1)

The important features of QOP (1) are: (i) the objective and constraint functions are all repre-
sented in terms of quadratic forms and (ii) the constraints are homogeneous equalities, except one
nonhomogeneous equality where a quadratic form is set to a positive number. These two features
play an essential role for the discussions in the next section.

We show that QOP (1) represents fairly general quadratic optimization problems. Let D be
an arbitrary closed subset of Rn. Consider a general QOP of the form

minimize uTQ0u+ 2cT0 u+ γ0
subject to uTQku+ 2cTku+ γk = 0 (k = 1, 2, . . . , p), u ∈ D,

(2)

where Qk ∈ Sm, ck ∈ Rm and γk ∈ R (k = 0, 1, . . . , p). We embed the closed set D ⊂ Rm into the
higher dimensional space R1+m by letting K be the closure of

{
(u0, u0u) ∈ R1+m : u0 ≥ 0, u ∈ D

}
.

Then, we can rewrite QOP (2) as

minimize uTQ0u+ 2u0c
T
0 u+ γ0u

2
0

subject to (u0,u) ∈ K, u20 = 1, uTQju+ 2u0c
T
j u+ γju

2
0 = 0 (j = 1, 2, . . . , p).

By definition, K is a closed cone in R1+m, and not necessarily convex. Now, the objective and
constraint functions are represented in quadratic forms of (u0,u) ∈ R1+m with no linear nor
constant terms. If we let

n = 1 +m, ρ = 1, x =

(
u0
u

)
∈ Rn, Q =

(
γ0 cT0
c0 Q0

)
∈ Sn,

H0 =

(
1 0T

0 O

)
∈ Sn, Hk =

(
γk cTk
ck Qk

)
∈ Sn (k = 1, 2, . . . , p),

we can reduce a general QOP in the form of (2) to QOP (1).

Our CPP relaxation of QOP (1) is obtained by replacing xxT with X ∈ C∗
K.

minimize Q •X subject to X ∈ Ĝp, (3)

where

Ĝp = {X ∈ C∗
K : H0 •X = ρ, Hk •X = 0 (k = 1, 2, . . . , p)} .

Our main results presented in Section 3 assert that CPP (3) has the same optimal objective value
as QOP (1) under certain assumptions.
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Remark 2.1. A special case of QOP (2) was studied in [8] where Eichfelder and Povh extended
Burer’s result [4] on QOPs with linear constraints in both continuous nonnegative variables and
binary variables to QOPs with an additional nonconvex constraint x ∈ D. In particular, more
general cones of symmetric matrices than CK and C∗

K were introduced in [8]. Let K be an ar-
bitrary nonempty subset of Rn. Then, CK =

{
A ∈ Sn : A • xxT ≥ 0 for all x ∈ K

}
was called

K-semidefinite (or set-semidefinite) cone. They reduced the special case of QOP (2) to a linear
optimization problem over the dual of C1×D, where 1×D = {(1,d) : d ∈ D}. See also Remark 5.1.
One contribution of this paper is that the special case is extended to a QOP (1), which is more
general than QOP (2).

3 Main results

In order to describe the assumptions on QOP (1), we construct a hierarchy into its constraint set
G̃p. Define subsets G̃ℓ of C∗

K (ℓ = 0, 1, 2, . . . , p) recursively by

G̃0 =
{
xxT : x ∈ K, H0 • xxT = ρ

}
,

G̃ℓ =
{
xxT ∈ G̃ℓ−1 : Hℓ • xxT = 0

}
=

{
xxT : x ∈ K, H0 • xxT = ρ and Hk • xxT = 0 (k = 1, 2, . . . , ℓ)

}
(ℓ = 1, . . . , p).

(4)

Since the objective function of QOP (1) is linear in xxT , QOP (1) is equivalent to

minimize Q •X subject to X ∈ cl conv G̃p. (5)

More precisely, inf
{
Q • xxT : xxT ∈ G̃p

}
= inf

{
Q •X : X ∈ cl conv G̃p

}
. We impose some

conditions on H0, Hℓ and G̃ℓ−1 (ℓ = 1, 2, . . . , p) that ensure the identity Ĝp = cl conv G̃p. Then,
QOP (5) and CPP (3) have an equivalent optimal value.

We describe a simple case in Section 3.1 and a general case under weaker assumptions in
Section 3.2. The simple case may be regarded as a special case of the general case. The discussion
in Section 3.1 is intended to help the readers understand slightly elaborate arguments in Section 3.2.

3.1 A simple case

We impose the following conditions on H0, Hℓ and G̃ℓ−1 (ℓ = 1, 2, . . . , p) throughout Section 3.1.

(A) R ∋ ρ > 0 and H0 • xxT > 0 for every nonzero x ∈ K.

(B̃) For every ℓ = 1, 2, . . . , p,

Hℓ • xxT ≥ 0 if xxT ∈ G̃ℓ−1. (6)

Remark 3.1. We discuss the relationship between the conditions above and the two conditions
in the middle of page 488 of [4], which were said to be essential to prove an equivalence of a
QOP with linear equality constraints in nonnegative continuous variables and binary variables
to its CPP relaxation. Condition (B̃) may be regarded as an extension of the first condition to
our hierarchical QOP model, and Condition (D) in Section 3.2 is a generalization of the second
condition. It was mentioned in Section 3.2 of [4] that complementarity constraint xi ≥ 0, xj ≥ 0
and xixj = 0 satisfies the first condition, thus, complementarity constraints could be added to
their QOP if the constraints satisfies the second condition. This also applies to our hierarchical
QOP model.
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Clearly, G̃0 is bounded by (A), and so are G̃ℓ (ℓ = 1, 2, . . . , p) since G̃ℓ ⊂ G̃0 (ℓ = 1, 2, . . . , p).
If Hℓ is positive definite, then (B̃) is trivially satisfied. In this case, however, G̃ℓ = ∅ (ℓ = 1, . . . , p)
since 0 ̸∈ G0. In general, low rank matrices are used for Hℓ (ℓ = 1, . . . , p). Condition (A)
requires H0 to be chosen from the interior of CK. Let ℓ ∈ {1, 2, . . . , p}. If G̃ℓ = {xxT : xxT ∈
G̃ℓ−1, Hℓ•xxT = 0} is nonempty, then (6) means that {X ∈ Sn : Hℓ•X = 0} forms a supporting
hyperplane of G̃ℓ−1 at every xxT ∈ G̃ℓ.

In the hierarchical construction of G̃ℓ (ℓ = 0, 1, 2, . . . , p) in (4), a single homogeneous equality
Hℓ • xxT = 0 is added at each level ℓ ≥ 1. We can extend this construction so that multiple
homogeneous equalities are added at each level ℓ ≥ 1. Suppose that

G̃ℓ =
{
x ∈ Gℓ−1 : Hℓi • xxT = 0 (i = 1, 2, . . . , iℓ)

}
(ℓ = 1, . . . , p),

where Hℓi ∈ Sn (i = 1, 2, . . . , iℓ, ℓ = 1, 2, . . . , p). In this case, (B̃) is replaced by

(B̃)’ For every ℓ = 1, 2, . . . , p, Hℓi • xxT ≥ 0 (i = 1, 2, . . . , iℓ) if xx
T ∈ G̃ℓ−1.

But, under Condition (B̃)’, we see that xxT ∈ G̃ℓ−1 and Hℓi • xxT = 0 (i = 1, 2, . . . , iℓ) if and

only if x ∈ G̃ℓ−1 and
(∑iℓ

i=1Hℓi

)
• xxT = 0. As a result, if we let Hℓ =

∑iℓ
i=1Hℓi, then G̃ℓ can

be rewritten as in (4) with a single homogeneous equality added at each level ℓ. We emphasize
that this technique is effective in reducing the number of equality constraints in QOP (1) and its
CPP relaxation (3). In particular, it is shown in Section 5.1 that a QOP with linear constraints in
both continuous nonnegative variables and binary variables is formulated as an QOP with three
equality constraints.

Now, we introduce the completely positive cone relaxations Ĝℓ of G̃ℓ (ℓ = 0, 1, 2, . . . , p) by

Ĝ0 = {X ∈ C∗
K : H0 •X = ρ} ,

Ĝℓ =
{
X ∈ Ĝℓ−1 : Hℓ •X = 0

}
= {X ∈ C∗

K : H0 •X = ρ and Hk •X = 0 (k = 1, 2, . . . , ℓ)}
(ℓ = 1, 2, . . . , p).

(7)

Theorem 3.2. Assume Conditions (A) and (B̃). Then, conv G̃ℓ = Ĝℓ (ℓ = 0, 1, . . . , p).

Proof: Let ℓ ∈ {0, 1, . . . , p}. Since G̃ℓ ⊂ Ĝℓ and Ĝℓ is convex, conv G̃ℓ ⊂ Ĝℓ follows. We apply
the induction on ℓ = 0, 1, . . . , p to prove Ĝℓ ⊂ conv G̃ℓ.

Let ℓ = 0. Suppose that X ∈ Ĝ0. Then X ̸= O and there exist nonzero xix
T
i ∈ G̃0

(i = 1, 2, . . . , r) such that

X =

r∑
i=1

xix
T
i , H0 •

(
r∑

i=1

xix
T
i

)
= ρ.

Let λi = H0 • xix
T
i /ρ (i = 1, 2, . . . , r), which are positive by (A), and let

yi = xi/
√

λi ∈ K (i = 1, 2, . . . , r), Y i = yiy
T
i (i = 1, 2, . . . , r),

Then,

H0 • Y i = H0 • (xi/
√

λi)(xi/
√
λi)

T =
H0 • xix

T
i

λi
= ρ (i = 1, 2, . . . , r).
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As a result, Y i ∈ G̃0 (i = 1, 2, . . . , r). Furthermore, we see that

X =

r∑
i=1

λi(xi/
√

λi)(xi/
√

λi)
T =

r∑
i=1

λiyiy
T
i =

r∑
i=1

λiY i,

r∑
i=1

λi =

r∑
i=1

H0 • xix
T
i /ρ = 1, λi > 0 (i = 1, 2, . . . , r).

Therefore, we have shown that X is a convex combination of Y i ∈ G̃0 (i = 1, 2, . . . , r).

Now, let ℓ ≥ 1 and assume the inclusion relations Ĝk ⊂ conv G̃k (k = 1, 2, . . . , ℓ− 1) to prove
the relation Ĝℓ ⊂ conv G̃ℓ. Suppose that X ∈ Ĝℓ. It follows from Ĝℓ ⊂ Ĝℓ−1 ⊂ conv G̃ℓ−1 that
X ∈ conv G̃ℓ−1. Hence, there exist xix

T
i ∈ G̃ℓ−1 and λi > 0 (i = 1, 2, . . . , r) such that

X =

r∑
i=1

λixix
T
i ,

r∑
i=1

λi = 1.

By Condition (B̃),Hℓ•xix
T
i ≥ 0 (i = 1, 2, . . . , r).On the other hand, we knowX =

∑r
i=1 λixix

T
i ∈

Ĝℓ. Thus, 0 = Hℓ • X =
∑r

i=1 λi

(
Hℓ • xix

T
i

)
. By the inequalities Hℓ • xix

T
i ≥ 0 and λi > 0,

we obtain that Hℓ •xix
T
i = 0, which, with xix

T
i ∈ G̃ℓ−1, implies that xix

T
i ∈ G̃ℓ (i = 1, 2, . . . , r).

Since X is a convex combination of xix
T
i ∈ G̃ℓ (i = 1, 2, . . . , r), we have shown that X ∈ conv G̃ℓ.

Theorem 3.2 ensures that conv G̃ℓ (ℓ = 0, 1, . . . , p) are closed and that QOP (5) and CPP (3)
are equivalent under Conditions (A) and (B̃). In Theorem 3.2, we can replace Condition (B̃) with

(B̂) For every ℓ = 1, 2, . . . , p, Hℓ •X ≥ 0 if X ∈ Ĝℓ−1.

In fact, we see that (B̂) implies (B̃) since G̃ℓ−1 ⊂ Ĝℓ−1, and that if (B̃) holds then G̃ℓ−1 = Ĝℓ−1

by the theorem.

3.2 A general case under weaker conditions

When a given QOP is formulated in the form of (1) by constructing the hierarchy of its feasible
region with G̃ℓ (ℓ = 0, 1, . . . , p), Condition (A) on the boundedness of G̃0 may prevent a straight-
forward reformulation, even when the resulting feasible region G̃p is bounded. Motivated by this

observation, we deal with the problems where G̃p can be unbounded in this subsection.

Let

L̃0 =
{
ddT : d ∈ K, H0 • ddT = 0

}
,

L̃ℓ =
{
ddT ∈ L̃ℓ−1 : Hℓ • ddT = 0

}
(ℓ = 1, 2, . . . , p).

(8)

Let ℓ ∈ {0, 1, . . . , p}. We call ddT ∈ C∗
K an asymptotic unbounded direction of G̃ℓ if there is a

sequence {
(µs,us(us)T ) ∈ R+ × G̃ℓ : s = 1, 2, . . .

}
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such that ∥us∥ → ∞ and (
√
µs,

√
µsus) → (0,d) (or equivalently (µs,us(us)T ) → (0,ddT )) as

s → ∞. We can prove that if ddT ∈ C∗
K is an asymptotic unbounded direction of G̃ℓ, then

ddT ∈ L̃ℓ. But, the converse is not necessarily true in general, even when K = Rn
+. We show

such examples below and in Section 5.4. It will be required that L̃p\{O} coincides with the set of

asymptotic unbounded direction of G̃p in Lemma 3.4.

It can be easily verified that L̃ℓ is a closed cone (ℓ = 0, 1, 2, . . . , p). Thus, we have

conv L̃ℓ =


q∑

j=1

djd
T
j : djd

T
j ∈ L̃ℓ (j = 1, 2, . . . , q) for some q ≥ 0

 .

In the reminder of this section, we establish

cl conv G̃p = conv G̃p + conv L̃p = Ĝp. (9)

with additional assumptions. Note that L̃ℓ = {O} (ℓ = 0, 1, . . . , p) if Condition (A) holds. In this
case, we have already confirmed that conv G̃p = Ĝp in Section 3.1.

Lemma 3.3.

(i) cl conv G̃ℓ ⊂ conv G̃ℓ + conv L̃ℓ (ℓ = 0, 1, . . . , p).

(ii) conv G̃ℓ + conv L̃ℓ ⊂ Ĝℓ (ℓ = 0, 1, . . . , p).

Proof: See Section 4.1.

We now introduce additional conditions.

(A)’ R ∋ ρ > 0 and O ̸= H0 ∈ CK

(C̃) For every ℓ = 1, 2, . . . , p,

Hℓ • ddT ≥ 0 if ddT ∈ L̃ℓ−1. (10)

(D) Every nonzero ddT ∈ L̃p is an asymptotic unbounded direction of G̃p.

Condition (A)’ is weaker than Condition (A). Specifically, we can now choose any nonzeroH0 ∈ CK
to satisfy Condition (A)’, and G̃p can be unbounded.

Let ℓ ∈ {1, 2, . . . , p} be fixed. It can be easily verified that the following three statements are
equivalent:

Both (6) and (10) hold. (11)

Hℓ •X ≥ 0 if X ∈ conv G̃ℓ−1 + conv L̃ℓ−1. (12)

Hℓ •X ≥ 0 if X ∈ cone conv G̃ℓ−1 + conv L̃ℓ−1. (13)

Using almost the same argument as in the proof of (iii) of Lemma 3.4 (see the first paragraph of
Section 4.2), we can prove that cone conv G̃0+conv L̃0 = C∗

K. Hence, we need to choose H1 from

CK under Conditions (B̃) and (C̃).
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Suppose that ℓ ≥ 2. Obviously, we have

cone conv G̃ℓ−1 + conv L̃ℓ−1 ⊃ cone conv G̃ℓ + conv L̃ℓ. (14)

If this inclusion is not proper, i.e. cone conv G̃ℓ−1 + conv L̃ℓ−1 = cone conv G̃ℓ + conv L̃ℓ, then
(13) implies that

Hℓ •X ≥ 0 and Hℓ+1 •X ≥ 0 for every X ∈ cone conv G̃ℓ−1 + conv L̃ℓ−1.

In this case, we have

G̃ℓ+1 =
{
xxT ∈ G̃ℓ : Hℓ+1 • xxT = 0

}
=

{
xxT ∈ G̃ℓ−1 : Hℓ • xxT = 0, Hℓ+1 • xxT = 0

}
=

{
xxT ∈ G̃ℓ−1 : (Hℓ +Hℓ+1) • xxT = 0

}
,

L̃ℓ+1 =
{
xxT ∈ G̃ℓ−1 : (Hℓ +Hℓ+1) • xxT = 0

}
.

Thus, we can reconstruct the hierarchical structure such that

G̃ℓ =
{
xxT ∈ G̃ℓ−1 : (Hℓ +Hℓ+1) • xxT = 0

}
,

G̃ℓ+2 =
{
xxT ∈ G̃ℓ : Hℓ+2 • xxT = 0

}
,

G̃ℓ =
{
xxT ∈ G̃ℓ−1 : (Hℓ +Hℓ+1) • xxT = 0

}
,

G̃ℓ+2 =
{
xxT ∈ G̃ℓ : Hℓ+2 • xxT = 0

}
.

and skip the hierarchical level ℓ+1. Consequently, we may assume under Conditions (B̃) and (C̃)
that the inclusion in (14) is proper. This implies that the dual cone of cone conv G̃ℓ−1+conv L̃ℓ−1,
which Hℓ needs to be chosen from, expands monotonically as ℓ increases from 2 through p.

We now consider a simple example to show why Condition (D) is necessary. Let

n = 2, p = 1, ρ = 1, K = R2
+, H0 =

(
1 0
0 0

)
∈ S2+, H1 =

(
0 1
1 0

)
∈ C,

to define G̃0 and G̃1 by (4), and L̃0 and L̃1 by (8). Then,

G̃1 =
{
xxT : x = (x1, x2) ∈ R2

+, x1 = 1, x1x2 = 0
}
= {(1, 0)} ,

L̃1 =
{
xxT : x = (x1, x2) ∈ R2

+, x1 = 0, x1x2 = 0
}
= {(0, x2) : x2 ≥ 0} .

Thus, cl conv G̃1 = {(1, 0)} ̸= {(1, x2) : x2 ≥ 0} = conv G̃1 + conv L̃1. Notice that it has resulted
in cl conv G̃1 ̸= conv G̃1 + L̃1, even with a closed bounded convex set G̃1. This simple example
does not satisfy Condition (D) because L̃1 contains a nonzero ddT with d = (0, 1) and G̃1 is
bounded.

Generally, we can prove under Condition (D) that L̃ℓ = {O} if and only if G̃ℓ is bounded. We
also mention that Condition (D) does not necessarily require (D)’ described in the following:

(D)’ For every ℓ = 0, 1, 2, . . . , p, every nonzero ddT ∈ L̃ℓ is an asymptotic unbounded direction
of G̃ℓ.
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Lemma 3.4.

(iii) Assume Conditions (A)’, (B̃) and (C̃). Then, conv G̃ℓ + conv L̃ℓ ⊃ Ĝℓ (ℓ = 0, 1, . . . , p).

(iv) Assume Condition (D). Then, cl conv G̃p ⊃ conv G̃p + conv L̃p.

Proof: See Section 4.2.

If Conditions (A)’, (B̃) and (C̃) are satisfied, then conv G̃ℓ + conv L̃ℓ = Ĝℓ (ℓ = 0, 1, . . . , p)
by (ii) of Lemma 3.3 and (iii) of Lemma 3.4. This implies that either of (11), (12) and (13) with
ℓ = 1, 2, . . . , p is equivalent to Hℓ • X ≥ 0 if X ∈ Ĝℓ−1. Therefore, the two conditions (B̃) and
(C̃) can be combined into (B̂) without weakening the assertion (iii) of Lemma 3.4. By Lemmas 3.3
and 3.4, we obtain:

Theorem 3.5. Assume Conditions (A)’, (B̂) and (D) (or equivalently, Conditions (A)’, (B̃),
(C̃) and (D)). Then, the identity (9) holds. Moreover, if G̃p is bounded (hence L̃p = {O}) then

conv G̃p = Ĝp. (In this case, Condition (D) is irrelevant).

4 Proofs

Before presenting the proofs of Lemmas 3.3 and 3.4, we describe a characterization of points in
G̃ℓ and conv L̃ℓ. Let ℓ ∈ {0, 1, . . . , p}. We know that Y ∈ conv G̃ℓ if and only if there exist
Y i ∈ G̃ℓ, yi ∈ K and λi ∈ R (i = 1, 2, . . . , r) such that

Y =
r∑

i=1

λiY i,
r∑

i=1

λi = 1, λi ≥ 0 (i = 1, 2, . . . , r), Y i ∈ G̃ℓ (i = 1, 2, . . . , r), i.e.,

Y i = yi(yi)
T , yi ∈ K, H0 • Y i = ρ, Hk • Y i = 0 (k = 1, 2, . . . , ℓ) (i = 1, 2, . . . , r).

(15)

Note that D ∈ conv L̃ℓ if an only if there exist dj ∈ K (j = 1, 2, . . . , q) such that

D =

q∑
j=1

djd
T
j , Hk • djd

T
j = 0 (k = 0, 1, . . . , ℓ) (j = 1, 2, . . . , q). (16)

We can fix both r and q so that dim Sn + 1 = n(n+ 1)/2 + 1 (Carathéodory’s theorem).

4.1 Proof of Lemma 3.3

Proof of (i) cl conv G̃ℓ ⊂ conv G̃ℓ + conv L̃ℓ (ℓ = 0, 1, . . . , p): Let ℓ ∈ {0, 1, . . . , p}.
Assume that X ∈ cl conv G̃ℓ. Then, there is a sequence {Xs ∈ conv G̃ℓ : s = 1, 2, . . . }
converging to X. Each Y = Xs is characterized by (15) for some Y i = Xs

i ∈ G̃ℓ, yi = xs
i ∈ K

and λi = λs
i ∈ R (i = 1, 2, . . . , r). Since both

√
λs
ix

s
i (
√

λs
ix

s
i )

T and Xs −
√

λs
ix

s
i (
√

λs
ix

s
i )

T are
positive semidefinite (i = 1, 2, . . . , r, s = 1, 2, . . . ) and Xs → X as s → ∞, the sequence{(√

λs
1x

s
1,
√

λs
2x

s
2, . . . ,

√
λs
rx

s
r

)
: s = 1, 2, . . .

}
is bounded. And, the sequence {(λs

1, λ
s
2, . . . , λ

s
r) : s = 1, 2, . . . } is also bounded. We may assume

without loss of generality that(√
λs
1x

s
1,
√

λs
2x

s
2, . . . ,

√
λs
rx

s
r

)
→ (d1,d2, . . . ,dr) and (λs

1, λ
s
2, . . . , λ

s
r) → (λ1, λ2, . . . , λr)
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as s → ∞ for some (d1,d2, . . . ,dr) and (λ1, λ2, . . . , λr). Let

Ibd =

{
i : sup

s
∥xs

i∥ < ∞
}

and I∞ =

{
j : sup

s
∥xs

j∥ = ∞
}
.

Then, we can take a subsequence of {(xs
1,x

s
2, . . . ,x

s
r)} along which

xs
i → xi for some xi ∈ K (i ∈ Ibd) and ∥xs

j∥ → ∞, λs
j → 0 (j ∈ I∞).

Consequently,

Xs =
∑

i∈Ibd

λs
ix

s
i (x

s
i )

T +
∑
j∈I∞

(
√

λs
jx

s
j)(
√

λs
jx

s
j)

T ,

1 =
∑

i∈Ibd

λs
i +

∑
j∈I∞

λs
j , λs

i ≥ 0 (i ∈ Ibd), xs
i ∈ K (i ∈ Ibd),

√
λs
jx

s
j ∈ K (j ∈ I∞),

ρ = H0 •Xs
i = H0 • xs

i (x
s
i )

T (i ∈ Ibd),

λs
iρ = λs

i

(
H0 • xs

i (x
s
i )

T
)
= H0 •

√
λs
ix

s
i

(√
λs
ix

s
i

)T
(i ∈ I∞),

0 = Hk •Xs
i = Hk • xs

i (x
s
i )

T (k = 1, 2, . . . , ℓ) (i ∈ Ibd),

0 = λs
i ×Hk •Xs

i = Hk •
√

λs
ix

s
i

(√
λs
ix

s
i

)T
(k = 1, 2, . . . , ℓ) (i ∈ I∞).

Taking the limit along the subsequence, we obtain

X =
∑

i∈Ibd

λixi(xi)
T +

∑
j∈I∞

djd
T
j ,

1 =
∑

i∈Ibd

λi, λi ≥ 0 (i ∈ Ibd), xi ∈ K (i ∈ Ibd), dj ∈ K (j ∈ I∞),

ρ = H0 • xix
T
i (i ∈ Ibd), 0 = H0 • djd

T
j (j ∈ I∞),

0 = Hk • xix
T
i (i ∈ Ibd), 0 = Hk • djd

T
j (j ∈ I∞), (k = 1, 2, . . . , ℓ).

(17)

Thus, we have shown that X ∈ conv G̃ℓ + conv L̃ℓ.

Proof of (ii) conv G̃ℓ + conv L̃ℓ ⊂ Ĝℓ (ℓ = 0, 1, . . . , p): Let ℓ ∈ {0, 1, . . . , p}. Suppose that
X ∈ conv G̃ℓ + conv L̃ℓ. Then, X = Y + D for some Y ∈ conv G̃ℓ and some D ∈ conv L̃ℓ.
Recall that Y ∈ conv G̃ℓ and D ∈ conv L̃ℓ are characterized by (15) and (16), respectively.
Hence,

X =

r∑
i=1

(
√

λiyi)(
√

λiyi)
T +

q∑
j=1

djdj ∈ C∗
K,

H0 •X = H0 •

 r∑
i=1

λiY i +

q∑
j=1

djdj

 =
r∑

i=1

λi (H0 • Y i) = ρ
r∑

i=1

λi = ρ,

Hk •X = Hk •

 r∑
i=1

λiY i +

q∑
j=1

djdj

 = 0 (k = 1, 2, . . . , ℓ).

This implies X ∈ Ĝℓ.
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4.2 Proof of Lemma 3.4

Proof of (iii) conv G̃ℓ + conv L̃ℓ ⊃ Ĝℓ (ℓ = 0, 1, . . . , p) under Condition (A)’, (B̃) and
(C̃): We use an induction argument to prove conv G̃ℓ + conv L̃ℓ ⊃ Ĝℓ (ℓ = 0, 1, . . . , ). Let
ℓ = 0. Assume that X ∈ Ĝ0. Then, there exist xi ∈ K (i = 1, 2, . . . , r) such that

X =
r∑

i=1

xix
T
i , H0 •X = ρ.

Let λi = (H0 • xixi)/ρ (i = 1, 2, . . . , r). By Condition (A)’, λi ≥ 0 (i = 1, 2, . . . , r). Let

I+ = {i : λi > 0}, I0 = {i : λi = 0}, yi = xi/
√

λi ∈ K (i ∈ I+).

Then,

X =
∑
i∈I+

λiyiy
T
i +

∑
j∈I0

xjx
T
j , λi > 0 (i ∈ I+),

∑
i∈I+

λi =
∑
i∈I+

(H0 • xixi)/ρ =

r∑
i=1

(H0 • xixi)/ρ = (H0 •X)/ρ = 1,

H0 • yiy
T
i = H0 • (xi/

√
λi)(xi/

√
λi)

T = (H0 • xix
T
i )/λi = ρ (i ∈ I+),

H0 • xjx
T
j = 0 (j ∈ I0).

This implies X ∈ conv G̃0 + conv L̃0.

Now, we assume that Ĝk ⊂ conv G̃k + conv L̃k (k = 0, 1, . . . , ℓ − 1) holds with 1 ≤ ℓ ≤ p
and prove Ĝℓ ⊂ conv G̃ℓ + conv L̃ℓ. Suppose that X ∈ Ĝℓ. Since Ĝℓ ⊂ Ĝℓ−1 ⊂ conv G̃ℓ−1 +
conv L̃ℓ−1, we see that X ∈ conv G̃ℓ−1 + conv L̃ℓ−1. Thus,

X =
r∑

i=1

λiY i +

q∑
j=1

djd
T
j , λi > 1 (i = 1, 2, . . . , r),

r∑
i=1

λi = 1,

Y i ∈ G̃ℓ−1 (i = 1, 2, . . . , r), djd
T
j ∈ L̃ℓ−1 (j = 1, 2, . . . , q).

To complete the proof, it suffices to show that Y i ∈ G̃ℓ (i = 1, 2, . . . , r) and djd
T
j ∈ L̃ℓ (j =

1, 2, . . . , q). By Conditions (B̃) and (C̃), we have

Hℓ • Y i ≥ 0 (i = 1, 2, . . . , r) and Hℓ • djd
T
j ≥ 0 (j = 1, 2, . . . , q).

On the other hand, it follows from X ∈ Ĝℓ that

0 = Hℓ •X =
r∑

i=1

λi(Hℓ • Y i) +

q∑
j=1

Hℓ • djd
T
j .

Since λi > 0 (i = 1, 2, . . . , r), we obtain that

Hℓ • Y i = 0 (i = 1, 2, . . . , r), Hℓ • djd
T
j = 0 (j = 1, 2, . . . , q).

Thus, we have shown that Y i ∈ G̃ℓ (i = 1, 2, . . . , r) and djd
T
j ∈ L̃ℓ (j = 1, 2, . . . , q).

Proof of (iv) cl conv G̃p ⊃ conv G̃p + conv L̃p under Condition (D): Suppose that

X = Y + D for some Y ∈ conv G̃p and D ∈ conv L̃p. Then, we have (15) with ℓ = p for
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some Y i ∈ G̃ℓ, yi ∈ K and λi ∈ R (i = 1, 2, . . . , r), and (16) with ℓ = p for some dj ∈ K
(j = 1, 2, . . . , q). By Condition (D), for every j = 1, 2, . . . , q, there is a sequence{

(µs
j ,u

s
j(u

s
j)

T ) ∈ R+ × G̃p : s = 1, 2, . . .
}

such that ∥us
j∥ → ∞ and (

√
µs
j ,
√

µs
ju

s
j) → (0,dj) as µ → ∞. For every s = 1, 2 . . . , let

γs = 1 +

q∑
j=1

µs
j , λs

i = λi/γ
s (i = 1, 2, . . . , r), νsj = µs

j/γ
s (j = 1, 2, . . . , q),

Xs =
r∑

i=1

λs
iyiy

T
i +

q∑
j=1

νsju
s
j(u

s
j)

T .

Then,

λs
i ≥ 0, νsj ≥ 0,

r∑
i=1

λs
i +

q∑
j=1

νsj = 1,

yiy
T
i ∈ G̃p (i = 1, 2, . . . , r), us

j(u
s
j)

T ∈ G̃p (j = 1, 2, . . . , q),

as a result, Xs ∈ conv G̃p (s = 1, 2, . . . ). We can also verify that

γs → 1, λs
i → λi (i = 1, 2, . . . .r), νsj → 0 (j = 1, 2, . . . , q),

νsju
s
j(u

s
j)

T → djd
T
j , conv G̃p ∋ Xs → X

as s → ∞. Thus, we have shown that X ∈ cl conv G̃p.

5 Examples

We present four examples to show the QOP model (1) covers various types of nonconvex QOPs.
The first example is a QOP with linear equality constraints in nonnegative continuous variables
and binary variables, and an additional constraint u ∈ D in its variable vector u, where D is a
closed subset of Rm. This type of problems was studied in [8] as an extension of a QOP with linear
equality constraints in nonnegative continuous variables and binary variables studied in [4]. The
second example shows how the hierarchy of constraint set G̃ℓ (ℓ = 0, 1, . . . , p) satisfying Conditions
(A) and (B̂) can be constructed for complicated combinatorial constraints. The last two examples
demonstrate that QOP (1) satisfying Conditions (A)’, (B̂) and (D) can deal with new types of
nonconvex QOPs, although they may look somewhat unnatural.

5.1 A QOP with linear equality constraints in nonnegative continuous variables
and binary variables, and an additional constraint u ∈ D in its variable
vector u

Let D be a closed subset of Rm, A a q × m matrix, b ∈ Rq and r ≤ m a positive integer. We
consider a QOP of the form

minimize uTQ0u+ 2cTu
subject to u ∈ D, Au− b = 0, ui(1− ui) = 0 (i = 1, 2, . . . , r).

(18)
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Define K = cl
{
(u0, u0u) ∈ R1+m

+ : u0 ∈ R+, u ∈ D
}
. Then, we can rewrite QOP (18) as

minimize uTQ0u+ 2cTu0u
subject to (u0,u) ∈ K, u0 = 1, Au− bu0 = 0, ui(u0 − ui) = 0 (i = 1, 2, . . . , r).

(19)

We assume that

0 ≤ ui ≤ u0 (i = 1, 2, . . . , r) if (u0,u) ∈ K, Au− bu0 = 0. (20)

Note that 0 ≤ ui ≤ u0 implies ui(u0 − ui) ≥ 0 (1, 2, . . . , r). Thus, we can replace the multiple
quadratic equalities ui(u0−ui) = 0 (i = 1, 2, . . . , r) in QOP (19) by a single equality

∑r
i=1 ui(u0−

ui) = 0, and we see that

r∑
i=1

ui(u0 − ui) ≥ 0 if (u0,u) ∈ K, Au− bu0 = 0. (21)

Let ρ = 1. We rewrite the problem as

minimize uTQ0u+ 2u0c
Tu

subject to (u0,u) ∈ K, u20 = ρ, (Au− bu0)
T (Au− bu0) = 0,

r∑
i=1

ui(u0 − ui) = 0.

Let n = 1 + m. To represent the quadratic form of the problem above in the form of QOP (1),
we introduce a variable vector x = (u0,u) ∈ Rn and take matrices Q ∈ Sn, Hk ∈ Sn (k = 0, 1, 2)
such that the following identities hold.

Q • xxT = uTQ0u+ 2u0c
Tu, H0 • xxT = u20,

H1 • xxT = (Au− bu0)
T (Au− bu0), H2 • xxT =

r∑
i=1

ui(u0 − ui).

Defining G̃0, G̃1, G̃2 as in (4), we can finally rewrite the problem as a QOP of the form (1) with
p = 2. t is trivial to confirm that Condition (A)’ is satisfied, and Conditions (B̃) and (C̃) are
satisfied by H0 ∈ Sn+, H1 ∈ Sn+ and (21).

For Condition (D), we need an additional assumption on D.

(E) If 0 ̸= v ∈ Rm is an asymptotic unbounded direction of D, i.e., there is a sequence

{(µs,us) ∈ R+ ×D : s = 1, 2, . . . }

such that ∥us∥ → ∞ and (µs, µsus) → (0,v) as s → ∞, then, for every u ∈ D, there exists
a sequence {νs : s = 1, 2, . . . } of positive numbers such that

u+ νsv ∈ D (s = 1, 2, . . . ) and νs → ∞ as s → ∞. (22)

By definition, D satisfies (E) if it is bounded. We can prove that if D is convex, then it
satisfies (E); more precisely every asymptotic unbounded direction v of D is an unbounded
direction such that u + νv ∈ D for every ν ≥ 0 and u ∈ D. For other examples, the set{
(x1, x2) ∈ R2 : x1 ≥ 0, x2 = sinx1

}
is a nonconvex set that satisfies (E). A typical example that

does not satisfy (E) is the set of points characterized by complementarity {(x1, x2) ∈ R2
+ : x1x2 =
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0}, which will be used in the remark below. Also the set
{
(x1, x2) ∈ R2

+ : 1 ≤ x1, x21 − x22 ≤ 1
}

does not satisfy (E).

Now, assume that (E) holds. Let O ̸= ddT ∈ L̃2, and choose a feasible solution u ∈ Rn of
QOP (18). Let d = (v0,v) ∈ R1+m. Then, we have

v0 = 0, (0,v) ∈ K, H1 • ddT = 0, H2 • ddT =

r∑
i=1

−vivi = 0.

The identity H1 • ddT = 0 implies that H1d = 0 since H1 ∈ Sn+, and the last identity implies
that vi = 0 (i = 1, 2, . . . , r) and H2d = 0. On the other hand, it follows from (0,v) ∈ K =
cl
{
(u0, u0u) ∈ Rn

+ : u0 ∈ R+, u ∈ D
}
that 0 ̸= v ∈ Rn is an asymptotic unbounded direction of

D. Hence, there exists a sequence {νs : s = 1, 2, . . . } of positive numbers satisfying (22) with the
feasible solution u ∈ Rn, which has been initially chosen. Let u0 = 1 and x = (u0,u) ∈ R1+n be
a feasible solution of QOP (19). Then, for every s = 1, 2, . . . ,

u+ νsv ∈ D; hence x+ νsd ∈ K,

H0 • (x+ νsd)(x+ νsd)T = ρ,

Hℓ • (x+ νsd)(x+ νsd)T = 0 (ℓ = 1, 2).

Hence (x+νsd)(x+νsd) ∈ G̃2 (s = 1, 2, . . . , ). We also observe that (1/νs, (x+νsd)/νs) → (0,d)
as s → ∞. Thus, ddT is an asymptotic unbounded direction of G̃2, and (D) holds.

Remark 5.1. Eichfelder and Povh stated in [8] an equivalence of QOP of the form (18) and
a linear optimization problem over the dual cone of a set-semidefinite cone, which is a further
generalization of the generalized completely positive cone in this paper, without any assumption
on D. (D corresponds to K in [8].) Lemma 9 in [8] is essential to show the equivalence. However,
there is a logical gap in its proof, so the proof is incomplete. We briefly describe the logical gap,
and give a counter example to Lemma 9. Lemma 9 asserts the identity cl S = (cl T )

∩
U for

some sets S, T and U of (1+n)-dimensional symmetric matrices, where U is closed but the other
two S and T are not necessarily closed. The inclusion relation cl S ⊂ (cl T )

∩
U follows directly

from the definitions of S, T and U . To prove the converse inclusion, they first established the
inclusion relation S ⊃ T

∩
U . To the best of our knowledge, “by just taking the closure of both

side”, they concluded cl S ⊃ (cl T )
∩
U . This is wrong. What we can conclude is the inclusion

relation cl S ⊃ cl (T
∩

U). In general, cl (T
∩

U) ⊂ (cl T )
∩

(cl U) holds, but the identity does
not necessarily hold. As a simple counter example to Lemma 9, we consider

(QP) minimize − x22 subject to (x1, x2) ∈ K ≡
{
(x1, x2) ∈ R2

+ : x1x2 = 0
}
, x1 = 1.

Using the notation of the paper [8], we have

S = Feas+(QP) =


 1

1
0

 1
1
0

T
 =


 1 1 0

1 1 0
0 0 0

 ,

T =


∑
i

λi

 1
ui1
0

 1
ui1
0

T

+
∑
j

µj

 1
0

vj2

 1
0

vj2

T

:
λi ≥ 0, ui1 ≥ 0,

µj ≥ 0, vj2 ≥ 0

 ,

C∗
1×K = cl T,

U =

Y =

 1 1 x2
1 1 X12

x2 X21 X22

 ∈ S3
 .
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We note that for every X22 ≥ 0 and µ > 0 µ 0
√
X22µ

0 0 0√
X22µ 0 X22

 = µ

 1
0√

X22/µ

 1
0√

X22/µ

T

∈ T.

Taking the limit as µ → 0, we have that 0 0 0
0 0 0
0 0 X22

 ∈ cl T for every X22 ≥ 0.

It follows that  1 1 0
1 1 0
0 0 X22

 ∈ (cl T )
∩

U, for every X22 ≥ 0.

Therefore, we have shown that cl S = cl Feas+(QP) is a proper subset of (cl T )
∩

U = C∗
1×K

∩
U .

5.2 A set of complicated combinatorial constraints

Consider the set F of u = (u1, u2, u3, u4) ∈ R4
+ satisfying the following conditions.

0 ≤ ui ≤ 1 (i = 1, 2, 3, 4),
u1 = 1 and/or u2 = 1,
u4 = 0 and/or u4 = 1,
u3 = 0 and/or u3 = u1 + u2,
u4 = 0 and/or u1 + u2 + u3 = 2.

 (23)

We introduce a slack variable vector x = (x1, x2, . . . , x8) ∈ R8
+, and rewrite the above conditions

as

ρ = 16, eTx =
√
ρ,

fi(x) ≡ xi + xi+4 − (eT /
√
ρ)x = 0 (i = 1, 2, 3, 4),

g11(x) ≡ x5x6 = 0, g12(x) ≡ x4x8 = 0,
g2(x) ≡ x3(x1 + x2 − x3) = 0,
g3(x) ≡ x4

(
(2eT /

√
ρ)x− x1 − x2 − x3

)
= 0,

where e = (1, 1, . . . , 1) ∈ R8. Now let

K = R8
+, G̃0 =

{
xxT : x ∈ K, eeT • xxT = ρ

}
,

G̃1 =
{
xxT ∈ G̃0 : fi(x) = 0 (i = 1, 2, 3, 4), g11(x) = 0, g12(x) = 0

}
,

G̃2 =
{
xxT ∈ G̃1 : g2(x) = 0

}
, G̃3 =

{
xxT ∈ G̃2 : g3(x) = 0

}
.

Then,

F =

{
(x1, x2, x3, x4) ∈ R4 :

x = (x1, x2, . . . , x8) ∈ K, xxT ∈ G̃3

for some (x5, x6, x7, x8) ∈ R4

}
.

We can verify that

g2(x) ≥ 0 if xxT ∈ G̃1 and g3(x) ≥ 0 if xxT ∈ G̃2. (24)
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Choose a 4 × 8 matrix A and 8 × 8 symmetric matrices H11, Hk (k = 0, 1, 2, 3) such that the
following identities hold.

H0 = eeT ∈ S8+,


f1(x)
f2(x)
f3(x)
f4(x)

 = Ax, g11(x) + g12(x) = H11 • xxT ,

H1 ≡ ATA+H11 ∈ S8+ + N ⊂ C, g2(x) = H2 • xxT g3(x) = H3 • xxT .

(25)

Consequently, G̃ℓ (ℓ = 0, 1, 2, 3) are described as in (4), and we confirm that Conditions (A) and
(B̃) hold by H0 = eeT ∈ S8+, H1 ∈ C, and (24).

We have described the set F of u = (u1, u2, u3, u4) ∈ R4
+ satisfying (23) in terms of our

hierarchical model with three levels. This model can be reduced to the hierarchical model with
one level by introducing additional slack variable vector s = (s1, s2) ∈ R2. To show this, we first
rewrite the 4th and 5th conditions in (23) as

f5(x, s1, s) ≡ s1 − (x1 + x2 − x3) = 0 and g13(x, s) ≡ x3s1 = 0,

f6(x, s1, s) ≡ s2 − ((2eT /
√
ρ)x− x1 − x2 − x3) = 0 and g14(x, s) ≡ x4s2 = 0.

We can add s1 ≥ 0 and s2 ≥ 0, which are implied by (23). Then, x3 ≥ 0, s1 ≥ 0 and x3s1 = 0 as
well as x4 ≥ 0, s2 ≥ 0 and x4s2 = 0 form a standard complementarity condition. Now we redefine

K = R10
+ , G̃0 =

{
(x, s)(x, s)T : (x, s) ∈ K, eeT • xxT = ρ

}
,

G̃1 =

{
(x, s)(x, s) ∈ G̃0 :

fi(x) = 0 (i = 1, 2, 3, 4), g11(x) = 0, g12(x) = 0,
fj(x, s) = 0 (j = 5, 6), g13(x, s) = 0, g14(x, s) = 0

}
to represent F as follows:

F =

{
(x1, x2, x3, x4) ∈ R4 :

(x, s) ∈ K, (x, s)(x, s)T ∈ G̃1

for some (x5, x6, x7, x8, s1, s2) ∈ R6

}
.

Finally, we choose H0 ∈ S10+ and H1 ∈ S10+ +N ⊂ C in a similar way to (25) so that G̃0 and G̃1 are

represented as in (4) with p = 1. Conditions (A)’, (B̃) and (C̃) are satisfied since O ̸= H0 ∈ S10+
and H1 ∈ C, and Condition (D) since G̃1 is bounded.

We can apply the method mentioned above for decreasing the levels of hierarchy to QOP (18)
in the previous section. First, we replace D by D

∩(
Rr
+ × Rm−r

)
so that

0 ≤ ui (i = 1, 2, . . . , r) if u ∈ D.

Next, introducing slack variable vector v = (v1, v2, . . . , vr) ∈ Rr, we add constraints ui + vi =
1, vi ≥ 0 (i = 1, 2, . . . , r) to QOP (18), and rewrite QOP (18) as

minimize uTQ0u+ 2cTu
subject to (u,v) ∈ D × Rr

+, Au− b = 0, ui + vi = 1 (i = 1, 2, . . . , r),
uivi = 0 (i = 1, 2, . . . , r).

Now the binary condition ui(1 − ui) = 0 has been replaced by the complemetarity condition
uivi = 0 with the additional constraints ui + vi = 1 and vi ≥ 0 (i = 1, 2, . . . , r). Redefining

K =
{
(u0, u0u, u0v) ∈ R1+m+r : u0 ∈ R+, (u,v) ∈ D × Rr

+

}
,
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we replace QOP (19) by

minimize uTQ0u+ 2cTu0u
subject to (u0,u,v) ∈ K, u0 = 1,

Au− bu0 = 0, ui + vi − u0 = 0 (i = 1, 2, . . . , r),
r∑

i=1

uivi = 0,

and replace G̃0 and G̃1 by

G̃0 =
{
(u0,u,v)(u0,u,v)

T : (u0,u,v) ∈ K, u20 = 1
}
,

G̃1 =

(u0,u,v)(u0,u,v)
T ∈ G̃0 :

Au− bu0 = 0,
ui + vi − u0 = 0 (i = 1, 2, . . . , r),
uivi = 0 (i = 1, 2, . . . , r)

 .

Finally, we choose appropriate H0 ∈ S1+m+r
+ and H1 ∈ S1+m+r

+ + N ⊂ C to represent G̃0 and G̃1

as in (4) with p = 1.

5.3 QOPs involving a variable vector in a sphere

Let ρ be a positive number, A a q×m matrix and I the m×m identity matrix. We consider the
set F of u ∈ Rm

+ satisfying

I • uuT = ρ, Au ≤ 0. (26)

Introduce a variable vector x = (u, s) ∈ Rm+q
+ , where s ∈ Rq serves as a slack vector for the

inequality Au ≤ 0, and matrices Hℓ (ℓ = 0, 1) such that

H0 =

(
I O
O O

)
∈ Sm+q

+ , H1 =
(
A I

)T (
A I

)
∈ Sm+q

+ .

Let n = m+ q. Define G̃0 and G̃1 as in (4) with p = 1. Then, we can rewrite F as

F =
{
u ∈ Rm

+ : x = (u, s) ∈ Rn
+, xxT ∈ G̃1 for some s ∈ Rq

}
.

Apparently, Condition (A) is satisfied, so is Condition (B̂) because both H0 and H1 are positive
semidefinite. Since G̃1 is bounded, Condition (D) holds.

Notice that the inequality Au ≤ 0 can be replaced by Au−beTu ≤ 0, and the coefficient eTu
of b varies from

√
ρ through

√
mρ. But, the inequality can not be replaced by an inhomogeneous

inequality Au − b ≤ 0 in the discussions above. For this, we need a different formulation, which
can be described as

x = (u0,u, s) ∈ R1+m+q
+ , u20 = 1, (−bu0 +Au+ s)T (−bu0 +Au+ s) = 0,

I • uuT − ρu20 = 0
(
or ρu20 − I • uuT = 0

)
.

If we define

H0 =

 1 0T 0T

0 O OT

0 O O

 , H1 =

 bTb2 −bTA −bT

−ATb ATA AT

−b A I

 ,

H2 =

 −ρ2 0T 0T

0 I OT

0 O O

 or H2 =

 ρ2 0T 0T

0 −I OT

0 O O

  ,

(27)
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and G̃ℓ (ℓ = 0, 1, 2) as in (4) with p = 2, then we have{
u ∈ Rm

+ : I • uuT = ρ, Au− b ≤ 0
}

=
{
u ∈ Rm

+ : x = (u0,u, s) ∈ R1+m+q
+ , xxT ∈ G̃2 for some (u0, s) ∈ R1+q

}
.

However, the inequality

ρ− I • uuT ≥ 0 if u ∈ Rm
+ and Au− b ≤ 0

(or I • uuT − ρ ≥ 0 if u ∈ Rm
+ and Au− b ≤ 0

)
is required for Condition (B̃) to be satisfied. In other words, the polyhedral set {u ∈ Rm

+ : Au−b ≤
0} needs to be inside (or outside) of the ball

{
u ∈ Rm : ∥u∥ ≤ √

ρ
}
, touching the ball only at its

boundary points. This requirement may be regarded as too strong. It seems difficult to formulate
the inhomogeneous problems in terms of our framework with K = Rn

+.

Now, we formulate the inhomogeneous case as follows

K = cl cone
{
x = (u0, u0u, u0s) ∈ R1+m+q : (u0,u, s) ∈ R1+m+q

+ , I • uuT = ρ
}
,

x = (u0,u, s) ∈ K, u20 = 1, (−bu0 +Au+ s)T (−bu0 +Au+ s) = 0,

H0 and H1 as in (27), G̃0 and G̃1 as in (4) with p = 1.

Then, we have {
u ∈ Rm

+ : I • uuT = ρ, Au− b ≤ 0
}

=
{
u ∈ Rm

+ : x = (u0,u, s) ∈ G̃1 for some (u0, s) ∈ R1+q
}
.

Condition (A)’ is obviously satisfied, so is Condition (B̂) by H1 ∈ S1+m+q
+ . We also see that

L̃1 =
{
ddT : d = (v0,v, t) ∈ K, H0 • ddT = 0, H1 • ddT = 0

}
=

{
ddT : d = (0,v, t) ∈ K, Au+ s = 0

}
= {O}.

Here the last identity follows from the definition of K above. Thus, (D) holds.

5.4 A QOP involving a copositive matrix

The 5× 5 matrix

M =


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1


is known to be a copositive matrix, which is not a sum of any pair of a positive semidefinite matrix
and a nonnegative matrix [9]. See also [3]. The associated quadratic form is represented as

M • xxT = (x1 − x2 + x3 − x4 + x5)
2 + 4x2x5 + 4x1(x4 − x5)

= (x1 − x2 + x3 + x4 − x5)
2 + 4x2x4 + 4x3(x5 − x4),
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which shows that M is copositive. In fact, if x ≥ 0 and x4 ≥ x5 then M •xxT is nonnegative by
the first representation, and if x ≥ 0 and x5 ≥ x4, then it is nonnegative by the second.

We consider the set F of x = (x1, x2, x3, x4, x5) ∈ R5
+ satisfying

x1 = 1, M • xxT = 0, 2x4 + x5 ≤ 3 (28)

or equivalently,

x1 = 1, (29)

(x1 − x2 + x3 − x4 + x5)
2 + 4x2x5 + 4x1(x4 − x5) = 0, (30)

3x1 − 2x4 − x5 − x6 = 0. (31)

for a slack variable x6 ≥ 0. We rewrite these constraints as

x = (x1, x2, . . . , x6) ∈ R6
+, H0 • xxT = 1, H1 • xxT = 0, H2 • xxT = 0,

where

e1 = (1, 0, 0, 0, 0, 0) ∈ R6, a = (3, 0, 0,−2,−1,−1) ∈ R6
+

H0 = e1e
T
1 ∈ S6+, H1 =

(
M 0
0T 0

)
∈ C, H2 = aaT ∈ S6+.

Define G̃ℓ (ℓ = 0, 1, 2) as in (4) with n = 6, ρ = 1 and p = 2. Then, we obtain

F =
{
(x1, x2, . . . , x5) ∈ R5 : x = (x1, x2, . . . , x6) ∈ R6

+, xxT ∈ G̃2 for some x6 ∈ R+

}
.

Since O ̸= H0 ∈ S6+, H1 ∈ C and H2 ∈ S6+, Conditions (A)’ and (B̂) with p = 2 are satisfied. To

confirm that Condition (D) with p = 2 holds, we let O ̸= ddT ∈ L̃2. Then, x = d ∈ R6 satisfies
x1 = 0, (30) and (31). Thus, d is of the form d = δ(0, 1, 1, 0, 0, 0) ∈ R6

+ for some δ > 0. Let
x(ν) = (1, 1 +

√
νδ,

√
νδ, 0, 0, 3) ∈ R6

+ for every ν ≥ 0. Then, x(ν) ∈ R6
+ satisfies (29), (30) and

(31). Thus, x(ν)x(ν)T ∈ G̃2. We observe that (1/
√
ν,x(ν)/

√
ν) → (0,d) as ν → ∞. Therefore

ddT is an asymptotic unbounded direction of G̃2.

Now, we consider the case where the set F ⊂ R5
+ is given by

x1 = 1, M • xxT = 0, x5 ≤ 3

instead of (28). Note that the last inequality 2x4 + x5 ≤ 3 in (28) is replaced by x5 ≤ 3. If we
replace (31) by

3x1 − x5 − x6 = 0 (32)

and a = (3, 0, 0,−2,−1,−1) ∈ R6
+ by a = (3, 0, 0, 0, 1,−1) ∈ R6

+, all the previous discussions

remain valid, except the one on Condition (D). In this case, d ∈ R6
+ such that ddT ∈ L̃2 is

characterized by x = d satisfying x1 = 0, (30) and (32). For example, ddT with d = (0, 0, 1, 1, 0, 0)
lies in L̃2. But dd

T can not be an asymptotic unbounded direction of G̃2. To verify this, assume on

the contrary that there is a sequence
{
(µs,us(us)T ) ∈ R+ × G̃2 : s = 1, 2, . . .

}
such that ∥us∥ →

∞ and (
√
µs,

√
µsus) → (0,d) as s → ∞. From us(us)T ∈ G̃2, we have us1 = 1 and us4 = us5. This

implies that d4 = d5, which is a contradiction to d4 = 1 and d5 = 0. Thus, we have shown that
ddT is not an asymptotic unbounded direction of G̃2.
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6 Concluding Remarks

The reformulation of a class of QOPs into CPPs has been proposed under two sets of sufficient
conditions. The key idea has been constructing a hierarchical structure into their feasible regions
(see (4)) and imposing the copositivity condition (Condition (B) and (B)’) recursively on each level
of the constraints of hierarchical structure. Although the class of QOPs that can be reformulated
into CPPs using this idea may seem limited, they do include various QOPs as seen in Section 5.
When it is applied to a QOP with linear constraints in continuous nonnegative variables and binary
variables, the resulting equivalent CPP involves just three equality constraints (or even only two
equality constraints, see the last paragraph of Section 5.2). Therefore, its dual has only three (or
two) variables. This property is indeed a significant advantage of our QOP model for exact CPP
relaxation, and may be very useful for developing new and powerful numerical methods for such a
QOP.

On the other hand, the reformulation of a QOP in Section 5.4, which simultaneously involves
a sphere constraint I • uuT = ρ and an inhomogeneous inequality constraint Au − b ≤ 0 in
u ∈ Rm

+ , into an equivalent CPP relaxation has not been successful. The main reason for this is
that each QOP in our class is allowed to have one inhomogeneous equality for the construction of
the hierarchy of copositivity. When the proposed idea is considered to be applied to a wider class
of applications in practice, this issue needs to be resolved. This will be a subject of future study
for generalizing the QOP model.
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