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Abstract. For a quadratic optimization problem (QOP) with linear equality constraints in
continuous nonnegative variables and binary variables, we propose three relaxations in simplified
forms with a parameter λ: Lagrangian, completely positive, and copositive relaxations. These re-
laxations are obtained by reducing the QOP to an equivalent QOP with a single quadratic equality
constraint in nonnegative variables, and applying the Lagrangian relaxation to the resulting QOP.
As a result, an unconstrained QOP with a Lagrangian multiplier λ in nonnegative variables is
obtained. The other two relaxations are a primal-dual pair of a completely positive program-
ming (CPP) relaxation in a variable matrix with the upper-left element set to 1 and a copositive
programming (CP) relaxation in a single variable. The CPP relaxation is derived from the uncon-
strained QOP with the parameter λ, based on the recent result by Arima, Kim and Kojima. The
three relaxations with a same parameter value λ > 0 work as relaxations of the original QOP. The
optimal values ζ(λ) of the three relaxations coincide, and monotonically converge to the optimal
value of the original QOP as λ tends to infinity under a moderate assumption. The parameter λ
serves as a penalty parameter when it is chosen to be positive. Thus, the standard theory on the
penalty function method can be applied to establish the convergence.
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1 Introduction

We consider a class of linearly constrained quadratic optimization problems (QOPs) in continuous
nonnegative and binary variables. The standard 0-1 mixed integer linear optimization problem
is included in this class as a special case. This class of QOPs has long been studied for various
solution methods, including semidefinite programming (SDP) relaxation.

Recently, completely positive programming (CPP) relaxation for this class of QOPs was pro-
posed by Burer [3]. The class was extended to a more general class of QOPs by Eichfelder and
Povh [6, 7] and by Arima, Kim and Kojima [1]. Theoretically strong results were presented in
their papers [3, 6, 7, 1] showing that the exact optimal values of QOPs in their classes coincide
with the optimal values of their CPP relaxation problems.

A general CPP problem is characterized as linear optimization problems over closed convex
cones as a general SDP problem. It is well-known, however, that solving a general CPP problem,
or even a simple CPP problem derived as the CPP relaxation problem of the QOP over the simplex
[2] is much more difficult than solving a general SDP problem. Efficient numerical methods for
solving CPPs have not been developed whereas the primal-dual interior-point methods have been
effective for solving SDPs. In fact, the fundamental problem of determining whether a given
variable matrix is completely positive (or copositive) still remains a very challenging problem.

If developing efficient numerical methods for CPP relaxations from QOPs in the classes is an
important goal to achieve in the future, a first step toward that goal may be representing the QOPs
in a simplified form. We say that the QOPs are in a simplified form if the numbers of constrains and
variables are reduced. Then, CPP relaxations derived from the simplified QOPs have a reduced
number of constraints and variables, alleviating some of difficulties of handling a large number of
constrains and variables. This will decrease the difficulty of solving CPP relaxations.

For this purpose, three types of “extremely simple” relaxations are proposed for a class of
linearly constrained QOPs in continuous and nonnegative variables and binary variables, the class
studied in Burer [3]. The first relaxation is an unconstrained QOP in nonnegative variables.
The other two relaxations are a primal-dual pair of an unconstrained CPP problem in a variable
matrix whose upper-left element is fixed to 1 and a copositive programming (CP) problem in a
single variable. We may regard that such a CPP is one of the simplest CPPs, except trivial ones
over the completely positive cone with no constraint, and that such a CP problem is one of the
simplest CPs, except trivial ones with no variable. If the problem of determining whether a given
variable matrix is completely positive is resolved in the future [15], the proposed relaxations can
be used for designing efficient numerical methods for solving the class of QOPs.

A technique to reduce a linearly constrained QOP in continuous nonnegative variables and
binary variables to a QOP with a single quadratic equality constraint in nonnegative variables was
introduced by Arima, Kim and Kojima in [1]. The resulting QOP was relaxed to a CPP problem
with a single linear equality constraint in a variable matrix with upper-left element fixed to 1.
They showed that the optimal value of the CPP relaxation problem coincides with the optimal
value of the original QOP. Taking the dual of the CPP problem leads to a CP problem in two
variables. As will be shown in the subsequent section, the dual CP has no optimal solution in
general. This is the second motivation of this paper.

The first proposed relaxation is obtained by applying the Lagrangian relaxation to the QOP
with a single quadratic equality constraint in nonnegative variables, which has been reduced from
the given QOPs using the technique in [1]. The application of the Lagrangian relaxation results in
an unconstrained QOP with the Lagrangian multiplier parameter λ in nonnegative variables. For
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any fixed λ, the optimal value of this unconstrained QOP in nonnegative variables, denoted by
ζ(λ), bounds the optimal value of the original linearly constrained QOP in continuous nonnegative
variables and binary variables, denoted by ζ∗, from below. If the Lagrangian multiplier parameter λ
is chosen to be positive, λ works as a penalty parameter. Thus, the standard theory on the penalty
function method [8] can be utilized to prove that the optimal value ζ(λ) of the unconstrained QOP
with the parameter value λ > 0 monotonically converges to ζ∗ as λ tends to ∞ under a moderate
assumption. In addition, the unconstrained QOP may play an important role for developing
numerical methods. More precisely, if the feasible region of the original QOP can be scaled into
the unit box [0, 1]n, then the box constraints can be added to the unconstrained QOP. Many global
optimization technique developed for this type of QOPs can be used. See, for example, [4, 5].

The application of CPP relaxation in [1] to the QOP with the parameter λ > 0 provides a
primal-dual pair of an unconstrained CPP problem with the parameter λ > 0 in a variable matrix
with the upper-left element fixed to 1 and a CP problem with the parameter λ in a single variable.
We show under the same moderate assumption that the primal-dual pair of problems with the
parameter value λ > 0 both have optimal solutions with no duality gap, and share the optimal
value ζ(λ) with the QOP for the parameter value λ > 0.

After introducing notation and symbols in Section 2, we state our main results, Theorem 3.1
and 3.3 in Section 3. We give a proof of Theorem 3.1 in Section 4, and some remarks in Section 5.

2 Notation and symbols

We use the following notation and symbols throughout the paper.

Rn = the space of n-dimensional column vectors,
Rn

+ = the nonnegative orthant of Rn,

Sn = the space of n × n symmetric matrices,
Sn

+ = the cone of n × n symmetric positive semidefinite matrices,
C =

{
A ∈ Sn : xT Ax ≥ 0 for all x ∈ Rn

+

}
(the copositive cone),

C∗ =

{
r∑

i=1

xjx
T
j : xj ∈ Rn

+ (j = 1, 2, . . . , r) for some r ≥ 1

}

(the completely positive cone),
Y • Z = trace of Y Z for every Y , Z ∈ Sn (the inner product),

cl conv G = the closure of the convex hull of G ⊂ Sn.

3 Main results

3.1 Linearly constrained QOPs in continuous and binary variables

Let A be a q × m matrix, b ∈ Rq, c ∈ Rm and r ≤ m a positive integer. We consider a QOP of
the form

minimize uT Q0u + 2cT u
subject to u ∈ Rm

+ , Au + b = 0, ui(1 − ui) = 0 (i = 1, 2, . . . , r). (1)

Burer [3] studied this type of QOP, and proposed a completely positive cone programming (CPP)
relaxation whose objective value is the same as the QOP (1). When Q0 = O is taken, the problem
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becomes a standard 0-1 mixed integer linear optimization problem. We assume throughout the
paper that QOP (1) has an optimal solution u∗ with the optimal value ζ∗.

We first convert the QOP (1) into a QOP with a single equality constraint according to the
discussions in Section 5.1 and 5.2 of [1]. Note that the constraint ui(1−ui) = 0 implies 0 ≤ ui ≤ 1
(i = 1, 2, . . . , r), thus, we may assume without loss of generality that q ≥ r, m ≥ 2r, and that
the equalities ui + ui+r − 1 = 0 (i = 1, 2, . . . , r) are included in the equality Au + b = 0. More
precisely, we assume that A and b are of the forms

A =
(

A11 A12 A13

I I O

)
, b =

(
b1

−e

)
, (2)

where I denotes an r×r matrix and e the r-dimensional column vector of ones. If the 0-1 constraint
ui(1 − ui) = 0 is replaced by the complementarity constraint uiui+r = 0 (i = 1, 2, . . . , r) and the
linear equality constraint Au + b = 0 by a quadratic equality constraint (Au + b)T (Au + b) = 0,
QOP (1) is rewritten by

minimize uT Q0u + 2cT u
subject to u ∈ Rm

+ , (Au + b)T (Au + b) = 0, uiui+r = 0 (i = 1, 2, . . . , r). (3)

Notice that the left hand sides of all quadratic equality constraints (Au + b)T (Au + b) = 0 and
uiui+r = 0 (i = 1, 2, . . . , r) are nonnegative for every u ∈ Rm

+ . Thus, we can unify the constraints
into a single equality constraint to reduce the QOP (3) to

minimize uT Q0u + 2cT u subject to u ∈ Rm
+ , g(u) = 0, (4)

where g(u) = (Au + b)T (Au + b) +
r∑

i=1

uiui+r.

In the main results presented in Theorems 3.1 and 3.3, one of the following conditions will be
imposed on (4).

(a) The feasible region of QOP (4) is bounded.

(b) Q0 is copositive-plus and the set of optimal solutions of QOP (4) is bounded. Here A ∈ C
is called copositive-plus if u ≥ 0 and uT Au = 0 imply Au = 0.

3.2 A parametric unconstrained QOP over the nonnegative orthant

We now introduce a Lagrangian relaxation of QOP (4) by defining a Lagrangian function f :
Rm

+ × R → R by f(u,λ) = uT Q0u + 2cT u + g(u)λ,

minimize f(u,λ) subject to u ∈ Rm
+ . (5)

Notice that (5) is an unconstrained QOP over the nonnegative orthant with the Lagrangian mul-
tiplier parameter λ ∈ R for the equality constraint of QOP (4).

Let us choose a positive number for λ so that g(·)λ : Rm
+ → R serves as a penalty function for

QOP (4). In fact, we see that

g(u) ≥ 0 for every u ∈ Rm
+ ,

g(u) = 0 if and only if u ∈ Rm
+ satisfies the equality constraint of (4),

g(u)λ → ∞ as 0 ≤ λ → ∞ otherwise.

4



For each λ > 0, define a level set L(λ) =
{
u ∈ Rm

+ : ζ∗ ≥ f(u,λ)
}

and the optimal objective value
ζ(λ) = inf

{
f(u,λ) : u ∈ Rm

+

}
of QOP (5). Then, for 0 < λ < µ,

L(λ) ⊃ L(µ) ⊃ the set of optimal solutions of (4),
ζ(λ) = inf {f(u,λ) : u ∈ L(λ)} ≤ ζ(µ) ≤ ζ∗.

(6)

Hence, if L(λ̄) is bounded for some λ̄ > 0 and λ ≥ λ̄, then QOP (5) has an optimal solution with
the finite objective value ζ(λ), and all optimal solutions of QOP (5) are contained in the bounded
set L(λ̄). The next theorem ensures that QOP (5) with the parameter λ > 0 serves as sequential
unconstrained QOPs over Rm

+ for solving QOP (4) under condition (a) or (b).

Theorem 3.1.

(i) If condition (a) is satisfied, then L(λ) is bounded for every sufficiently large λ > 0.

(ii) If condition (b) is satisfied, then L(λ) is bounded for any λ > 0.

(iii) Assume that L(λ̄) is bounded for some λ̄ > 0. Let
{
λk ≥ λ̄ : k = 1, 2, . . . ,

}
be a sequence

diverging monotonically to ∞ as k → ∞, and
{
uk ∈ Rm

+ : k = 1, 2, . . . ,
}

a sequence of
optimal solutions of QOP (5) with λ = λk. Then, any accumulation point of the sequence{
uk ∈ Rm

+

}
is an optimal solution of QOP (4), and ζ(λk) converges monotonically to ζ∗ as

k → ∞.

Although some of the assertions in Theorem 3.1 can be proved easily by applying the standard
arguments on the penalty function method (for example, see [8]), we present complete proofs of
all assertions for completeness in Section 4.

It would be desirable if any optimal solution of the problem (5) were an optimal solution of
(4) for every sufficiently large λ. However, this is not true in general, as shown in the following
illustrative example:

minimize 2u1 subject to u1 ≥ 0, u1 − 1 = 0, (7)

which has the unique optimal solution u∗
1 = 1 with the optimal value ζ∗ = 2. In this case, the

Lagrangian relaxation problem is described as

minimize 2u1 + (u1 − 1)2λ subject to u1 ≥ 0.

For every λ > 1, this problem has the unique minimizer u∗
1 = 1 − 1/λ with the optimal value

ζ(λ) = 2 − 1/λ.

3.3 Completely positive cone programming and copositive cone programming
relaxations of QOP (5) with the parameter λ > 0

We now relate the Lagrangian relaxation (5) of QOP (4) to the CPP relaxation of QOP (4), which
was discussed in Sections 5.1 and 5.2 of [1]. Let

n = 1 + m, x =
(

u0

u

)
∈ Rn, Q =

(
0 cT

c Q0

)
∈ Sn,

Ci = the m × m matrix with the (i, i + r)th component 1/2 and 0 elsewhere
(i = 1, 2, . . . , r),

H0 =
(

1 0T

0 O

)
∈ Sn, H1 =

(
bT b bT A

AT b AT A

)
+

r∑

i=1

(
0 0T

0 Ci + CT
i

)
.
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Then,

Q • xxT = Q •
(

u0

u

)(
u0

u

)T

= uT Q0u + 2cT u0u,

H0 • xxT = H0 •
(

u0

u

)(
u0

u

)T

= u2
0,

H1 • xxT = H1 •
(

u0

u

)(
u0

u

)T

= (bu0 + Au)T (bu0 + Au) +
r∑

i=1

uiui+r

for every x =
(

u0

u

)
∈ Rn. It should be noted that H0, H1 ∈ C. Using these identities, we

rewrite QOP(4) as

minimize Q • X subject to X ∈ G̃1, (8)

and QOP (5) as

minimize (Q + H1λ) • X subject to X ∈ G̃0. (9)

Here,

G̃0 =
{
xxT ∈ Sn : x ∈ Rn

+, H0 • xxT = 1
}

=
{
xxT ∈ Sn : x ∈ Rn

+, x2
1 = 1

}
,

G̃1 =
{

xxT ∈ G̃0 : H1 • xxT = 0
}

=
{
xxT ∈ Sn : x ∈ Rn

+, H0 • xxT = 1, H1 • xxT = 0
}

.

It was shown in [1] that the constraint sets cl conv G̃0 and cl conv G̃1 coincide with their CPP
relaxations Ĝ0 and Ĝ1, respectively, where

Ĝ0 = {X ∈ C∗ : H0 • X = 1} = {X ∈ C∗ : X11 = 1} ,

Ĝ1 =
{

X ∈ Ĝ0 : H1 • X = 0
}

= {X ∈ C∗ : H0 • X = 1, H1 • X = 0} .

See Theorem 3.5 of [1]. Since the objective functions of the problems (8) and (9) are linear with
respect to X ∈ Sn, (8) has the same optimal objective value as

minimize Q • X subject to X ∈ Ĝ1 (= cl conv G̃1), (10)

and (9) has the same optimal objective value as

minimize (Q + H1λ) • X subject to X ∈ Ĝ0 (= cl conv G̃0). (11)

We note that CPP (10) and QOP (4) have the equivalent optimal value ζ∗, and that both CPP
(11) and QOP (5) have the optimal value ζ(λ) ≤ ζ∗.

As dual problems of (10) and (11), we have

maximize y0 subject to Q − H0y0 + H1y1 ∈ C, (12)

and

maximize y0 subject to Q − H0y0 + H1λ ∈ C, (13)
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respectively. Either (12) or (13) forms a simple copositive cone programming (CP). The difference
is that y1 is a variable in (12) whereas λ > 0 is a parameter to be fixed in advance in (13). As a
result, (13) involves just one variable. Obviously, CPP (11) has an interior feasible solution. By
the standard duality theorem (see, for examples, Theorem 4.2.1 of [14]), CP (13) and CPP (11)
have an equivalent optimal value. It is already observed that CPP (11) and QOP (5) share the
common optimal value ζ(λ). Thus, Theorem 3.1 leads to the following theorem. It shows that,
under condition (a) or (b), (11) and (13) serve as a parametric CPP relaxation and a parametric
CP relaxation, respectively, and these parametric CP and CPP relaxations bound the optimal
value ζ∗ of QOP (4) from below by ζ(λ) converging monotonically to ζ∗ as λ → ∞.

Theorem 3.2. Assume that condition (a) or (b) holds.

(iv) CPP (11) and QOP (5) have the equivalent optimal value ζ(λ) ≤ ζ∗, which converges
monotonically to ζ∗ as λ → ∞.

(v) CP (13) and QOP (5) have the equivalent optimal value ζ(λ) ≤ ζ∗, which converges mono-
tonically to ζ∗ as λ → ∞.

Now, we discuss whether the dual (12) of CPP (10) has an optimal solution with the same
optimal objective value ζ∗ of CPP (10).

Theorem 3.3.

(vi) rank X ≤ n − rank A if X ∈ Ĝ1.

(vii) Assume that condition (a) or (b) is satisfied. Then, the strong duality equality between CPP
(10) and CP (12)

ζ∗ = min
{

Q • X : X ∈ Ĝ1

}
= sup {y0 : Q − H0y0 + H1y1 ∈ C} (14)

holds.

Since C∗ ⊂ Sn
+ and any X ∈ Sn with rank X < n lies on the boundary of Sn

+, (vi) of Theorem 3.3
implies that CPP (10) does not have an interior feasible solution. Hence, the standard duality
theorem can not be applied to the primal dual pair of (10) and (12). Thus, the assertion (vii) is
important.

Proof of (vi): Suppose that xxT ∈ G̃1. Then,

x ∈ Rn
+, 0 = H1 • xxT =

((
bT b bT A

AT b AT A

)
+

r∑

i=1

(
0 0T

0 Ci + CT
i

))
• xxT ,

(
bT b bT A

AT b AT A

)
• xxT ≥ 0,

(
r∑

i=1

(
0 0T

0 Ci + CT
i

))
• xxT ≥ 0.

It follows that

0 = xT

(
bT b bT A

AT b AT A

)
x = xT

(
bT

AT

) (
b A

)
x.
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Thus, (b A) xxT = O holds for every xxT ∈ G̃1. Consequently, we have that (b A) X =
O for every X ∈ cl conv G̃1 = Ĝ1, which implies that rank X ≤ n− rank (b A) = n− rank A.

Proof of (vii): By assertion (ii) of Theorem 3.2, we know that

ζ∗ = lim
0<λ→∞

ζ(λ) = sup
λ>0

max {y0 : Q − H0y0 + H1λ ∈ C} .

This implies the desired result.

In general, (12) does not have an optimal solution with the optimal objective value ζ∗. To
verify this, assume on the contrary that (12) has an optimal solution (y∗0, y∗1) with the optimal
value y∗0 = ζ∗. Since H1 ∈ C, (y∗0, y1) remains an optimal solution with the optimal value y∗0 = ζ∗

for every y1 ≥ y∗1. Thus, (13) attains the optimal value ζ∗ for every λ > max{0, y∗1}. By the weak
duality relation, (11) (hence (5)) attains the optimal value ζ∗ of QOP (4) for every λ > max{0, y∗1}.
This contradicts what we have observed in the simple example (7). Furthermore, if we reformulate
the simple problem (7) as (8), the constraint of (12) becomes

(
−y0 + y1 1 − y1

1 − y1 y1

)
∈ C. (15)

We can verify numerically that if y0 = ζ∗ = 2, then, for any finite y1 ∈ R, the matrix on the left
side has a negative eigenvalue λ with a eigenvector v > 0. Thus,

vT

(
−2 + y1 1 − y1

1 − y1 y1

)
v = λvT v < 0.

As a result, the matrix on the left side of (15) with y0 = ζ∗ = 2 can not be in C for any y1 ∈ R.
This is a direct proof for the assertion that (12) does not have an optimal solution with the optimal
value y∗0 = ζ∗. If y0 < ζ∗ = 2, then the matrix on the left side of (15) becomes positive definite
for every sufficiently large y1 > 0. Thus, the strong duality equality (14) holds.

4 Proof of Theorem 3.1

A sequence
{
(uk, λk) ∈ Rm+1 : k = 1, 2, . . . ,

}
is used in the proofs of assertions (i), (ii) and (iii)

below such that

uk ≥ 0, λk > 0, (16)
ζ∗ ≥ f(uk,λk) = (uk)T Q0u

k + 2cT uk + g(uk)λk. (17)

We note that such a sequence always satisfies

(Auk + b)T (Auk + b) ≥ 0,
r∑

i=1

uk
i u

k
i+r ≥ 0, (18)

ζ∗ ≥ (uk)T Q0u
k + 2cT uk. (19)
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4.1 Proof of assertion (i)

Assume on the contrary that L(λ) is unbounded for any λ > 0. Then, λk → ∞ and ‖uk‖ → ∞ as
k → ∞ for some sequence

{
(λk, uk) : k = 1, 2, . . . ,

}
satisfying (16) through (19). We may assume

without loss of generality that uk/‖uk‖ converges to some nonzero d ≥ 0.

We divide the inequality (17) by λk‖uk‖2 and the inequalities in (18) by ‖uk‖2, respectively,
and take the limit on the resulting inequalities as k → ∞. Then, we observe that d ≥ 0 satisfies

0 ≥ (Ad)T (Ad) +
r∑

i=1

dk
i d

k
i+r, (Ad)T (Ad) ≥ 0,

r∑

i=1

dk
i d

k
i+r ≥ 0. (20)

It follows that Ad = 0 and di = 0 (i = 1, 2, . . . , 2r) (recall that A is of the form (2)). Hence,
u∗ + νd remains a feasible solution of (4) for every ν ≥ 0. This can not happen if condition (a) is
satisfied.

4.2 Proof of assertion (ii)

Let us fix λ > 0 arbitrarily. Assume that {u ≥ 0 : ζ∗ ≥ f(u,λ)} is unbounded. We can take a
sequence {uk : k = 1, 2, . . . , } satisfying (16) through (19) with λk fixed to λ and ‖uk‖ → ∞ as
k → ∞. We may assume that uk/‖uk‖ converges to some nonzero d ≥ 0. Since Q0 is assumed to
be copositive-plus, it follows from (17) that

ζ∗ ≥ 2cT uk +

(
(Auk + b)T (Auk + b) +

r∑

i=1

uk
i u

k
i+r

)
λ, (21)

and from (19) that ζ∗ ≥ 2cuk. We first divide the inequality (21) by λ‖uk‖2, the inequalities
in (18) by ‖uk‖2, and the inequalities (19) by ‖uk‖2, respectively. Next, take the limit on the
resulting inequalities and the inequality ζ∗/‖uk‖ ≥ 2cT uk/‖uk‖ as k → ∞. Then, we obtain (20),
which implies Ad = 0 and di = 0 (i = 1, 2, . . . , 2r), and 0 ≥ 2cT d. In addition, 0 ≥ dT Q0d, which
implies dT Q0d = and Q0d = 0 (recall that Q0 is copositive-plus). Therefore, u∗ + νd remains a
feasible solution of QOP (4) for every ν ≥ 0 and that ζ∗ ≥ (u∗ + νd)T Q0(u∗ + νd)+2cT (u∗ + νd)
for every ν ≥ 0. This contradicts condition (b).

4.3 Proof of assertion (iii)

We observe that the sequence
{
(uk,λk)

}
satisfies (16) through (19) with f(uk,λk) = ζ(λk). Let

{ukj : j = 1, 2, . . . , } be a subsequence that converges to ū ≥ 0. From (17),

ζ∗

λkj
≥ (ukj )T Q0u

kj + 2cT ukj

λkj
+ g(ukj ), g(ukj ) ≥ 0, ζ∗ ≥ ζ(λkj ) ≥ (ukj )T Q0u

kj + 2cT ukj

(j = 1, 2, . . . , ) hold. Taking the limit as j → ∞ in the inequality above, we have g(ū) = 0 and
ζ∗ ≥ limj→∞ ζ(λkj ) ≥ (ū)T Q0ū+2cT ū. Thus, ū is an optimal solution of (4) and limj→∞ ζ(λkj ) =
ζ∗. By (6), we also know that ζ(λ) ≤ ζ(µ) ≤ ζ∗ if λ ≤ µ. Consequently, the sequence

{
ζ(λk)

}

itself converges monotonically to ζ∗ as k → ∞.
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5 Concluding remarks

We have proposed the three relaxations, the unconstrained QOP (5) in nonnegative variables,
the CPP problem (11) and the CP problem (13). Computing an optimal solution of any of the
proposed relaxations numerically is difficult. As mentioned in Section 1, to develop a numerical
method for the second and third relaxations, the problem of checking whether a given matrix lies
in the completely positive cone and the copositive cone needs to be resolved, respectively, which
was shown in [12] as a co-NP-complete problem.

One practical method to overcome this difficulty is to relax the completely positive cone C∗ by
the so-called doubly nonnegative cone Sn

+

⋂
N in (11), where N denotes the cone of n×n symmetric

matrices with nonnegative components. This idea of replacing C∗ by Sn
+

⋂
N in CPP problems

has been used in [9, 16]. Even in their cases, the resulting SDPs can not be solved efficiently
when the size of variable matrix X is large because of the (n − 1)n/2 inequality constraints
Xij ≥ 0 (1 ≤ i < j ≤ n). In particular, the inequality constraints make it difficult to exploit
sparsity in the SDPs, which is an effective tool to solve large scale SDPs efficiently.

If we replace C∗ by Sn
+

⋂
N in (11), we have the following problem rewritten as an SDP, which

serves as a relaxation of (11).

minimize (Q + H1λ) • X subject to X11 = 1, Xij ≥ 0 (1 ≤ i < j ≤ n), X ∈ Sn
+. (22)

Note that the number of inequalities is increased. As a result, sparsity can not be exploited
efficiently, although it involves only a single equality constraint X11 = 1. To exploit sparsity
in (22), we need to reduce the number of inequality constraints. For example, we can take
K = {(i, j) : 1 ≤ i < j ≤ n, [Q + H1λ]ij += 0}, expecting that K satisfies a structured sparsity
in practice, and replace the inequality constraints by Xij ≥ 0 ((i, j) ∈ K). Further studies and
numerical experiments along this direction are important subjects of future research. We refer to
[10, 11, 13] for exploiting sparsity in SDPs.
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