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Abstract. We propose the moment cone relaxation for a class of polynomial optimiza-
tion problems (POPs) to extend the results on the completely positive cone programming
relaxation for the quadratic optimization (QOP) model by Arima, Kim and Kojima. The
moment cone relaxation is constructed to take advantage of sparsity of the POPs, so that
efficient numerical methods can be developed in the future. We establish the equivalence
between the optimal value of the POP and that of the moment cone relaxation under
conditions similar to the ones assumed in the QOP model. The proposed method is
compared with the canonical convexification procedure recently proposed by Peña, Vera
and Zuluaga for POPs. The moment cone relaxation is theoretically powerful, but nu-
merically intractable. For tractable numerical methods, the doubly nonnegative cone
relaxation is derived from the moment cone relaxation. Exploiting sparsity in the doubly
nonnegative cone relaxation and its incorporation into Lasserre’s semidefinite relaxation
are briefly discussed.
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1 Introduction

The copositive programming (CP) and completely positive programming (CPP) relax-
ation [1, 2, 3, 4, 5, 9, 10, 13, 17, 18] for quadratic optimization problems (QOPs) have
attracted considerable attention in recent years. The class of QOPs considered by Burer
in [4] was binary and continuous non-convex QOPs with linear constraints, and a QOP
with an additional constraint u ∈ D in its variable vector u, where D is a closed (not nec-
essarily convex) set, was represented in a CPP by Eichfelder and Povh [10] (see also [8]),
extending Burer’s results. Burer and Dong [6] generalized the standard CPP relaxation
over nonnegative orthant to ones over second order cone and positive semidefinite cone
to cover a general class of quadratically constrained quadratic programs. More recently,
it was shown in [1] that a QOP model with quadratic constraints could be reformulated
as a CPP under the hierarchy of copositivity and zeros at infinity conditions, which had
also been used in [16]. All of these results show that the proposed CP and CPP relax-
ations are exact for the given QOP, that is, the optimal value of the CPP relaxation is
equivalent to that of the given QOP.

For polynomial optimization problems (POPs), which include QOPs, semidefinite
programming (SDP) relaxations proposed by [14, 15] have been very popular as solution
methods. Noting the CPP relaxations are stronger than SDP relaxations for QOPs, it
is natural to ask whether the results on the CP and CPP relaxations for QOPs can be
extended to a class of POPs. Peña, Vera and Zuluaga [16] extended the CPP relaxation to
POPs and proposed a canonical convexification procedure for POPs under the hierarchy
of copositivity and zeros at infinity conditions. Their procedure was focused on the
theoretical reformulation of the POP into a generalization of the CPP.

The main goal of this paper is to propose the moment cone relaxation for a class of
POPs as an extension of the CPP relaxation given in [1], and present a method to exploit
sparsity of POPs in the doubly nonnegative cone relaxation, a further relaxation of the
moment cone relaxation. Let R[x] be the set of real-valued multivariate polynomials in
n variables x1, . . . , xn ∈ R, where x = (x1, x2, . . . , xn) ∈ Rn. As a theoretical framework
for the moment cone relaxation, we consider the following POP:

minimize ψ(x) subject to h0(x) = 1, hj(x) = 0 (j ∈ J), x ∈ L, (1)

where J = {1, . . . , ℓ}, J0 = {0}
∪

J = {0, 1, . . . , ℓ}, ψ, hj ∈ R[x] (j ∈ J0) and L is
a closed (not necessarily convex) cone in Rn. This model is an extension of the stan-
dard QOP model [3] of minimizing a quadratic form over the simplex represented as{

x ∈ Rn : x ≥ 0, (
∑n

i=1 xi)
2

= 1
}

and the QOP model studied in [1, 2]. We assume

throughout the paper that

ψ, hj ∈ R[x] (j ∈ J0) are homogeneous polynomials

with some degree τ ≥ 1. (2)

Here f ∈ R[x] is called a homogeneous polynomial with degree τ if

f(λx) = λτf(x) for every x ∈ Rn and λ ∈ R.
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We present the moment cone relaxation for POP (1) as an extension of the CPP
relaxation, and show under certain conditions that the optimal value of the POP (1)
coincides with that of the moment cone relaxation of (1). The conditions include the
hierarchy of copositivity and a variation of the zeros at infinity conditions introduced in
[16] and later used in [1]. We note that a simple copositivity condition

hj(x) ≥ 0 for every x ∈ L, (3)

is a stronger version of the hierarchy of copositivity, and

x = 0 if x ∈ L and hj(x) = 0 (j ∈ J0) (4)

is a stronger version of the zero at infinity condition. Condition (3) is not so strong
theoretically because ψ(x) can always be replaced by h0(x)ψ(x) and hj(x) by hj(x)2

(j ∈ J0) in POP (1) to satisfy both (2) and (3). This, however, may destroy sparsity
of the polynomials in the problem. Condition (4), together with (2), requires that the
feasible region of POP (1) is bounded, while the zeros at infinity, a weaker condition,
allows that the feasible region is unbounded.

We compare the proposed moment cone relaxation with the canonical convexification
procedure proposed by Peña, Vera and Zuluaga [16] for POPs. They deal with POP of
the form

minimize ϕ(w) subject to gj(w) = 0 (j ∈ J), w = (w1, . . . , wm) ∈ K, (5)

where K denotes a closed cone, J = {1, . . . , ℓ} and ϕ, gj ∈ R[w] (j ∈ J). We note that
the homogenuity of the polynomials ϕ, gj ∈ R[w] (j ∈ J) is not assumed in POP (5),
but (5) is easily transformed into POP (1) satisfying the homogenuity condition (2) on
the polynomials ϕ, gj ∈ R[w] (j ∈ J) by introducing an auxiliary variable w0 ∈ R+ fixed
to 1, which corresponds to the equality constraint h0(w0,w) = 1, with x = (w0, w) in
(1), and setting the cone L = R+ × K.

For (homogeneous) QOPs, two different descriptions of the completely positive cone
are known:

the convex cone generated by
{
xxT : x ∈ Rn

+

}
and {

q∑
p=1

xpx
T
p : xp ∈ Rn

+ (p = 1, . . . , q), q ≥ 0

}
.

These two descriptions are equivalent. In [16] by Peña, Vera and Zuluaga, the completely
positive cone in the former description is generalized to the cone of completely positive d-
forms. The completely positive cone described as the latter can be generalized similarly.
However, when their canonical convexification procedure is applied to nonhomogeneous
POPs of the form (5), the two generalized descriptions are different. In particular,
the latter is neither convex nor conic. On the one hand, the two descriptions remain
equivalent in our homogeneous POP model (1) satisfying (2) (see Lemma 3.1). This is a
fundamental and essential feature of our POP model, which makes it possible to
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• allow a straightforward extension from the CPP relaxation for the QOP model [1]
to POP (1),

• make the derivation of an equivalent moment cone relaxation of (1) simple,

• directly handle cases where the closed cone L is neither convex nor pointed,

• naturally take account of sparsity of the polynomials ψ, hj ∈ R[x] (j ∈ J0) in POP
(1).

We note that the last advantage is important for developing efficient approximation of the
moment cone relaxation problem in practice, such as the doubly nonnegative relaxation
discussed in Section 6. More detailed comparison is included in Section 5.

POP (1) is quite general in that it includes various types of QOPs and POPs. We refer
to the papers [1, 3, 4, 6, 8, 16, 17] for the QOPs and POPs that are easily transformed
into POPs of the form (1) satisfying the required conditions for the equivalence to its
moment cone relaxation. A popular choice for the closed cone L in (1) may be the
Cartesian product of Rn1 and Rn2

+ for some n1 and n2 satisfying n = n1 + n2. More
generally, we can choose a second order cone, the vectorization of a positive semidefinite
symmetric matrix cone and the vectorization of a cone of nonnegative symmetric matrices
for L. We also note that if L1 and L2 in Rn are cones, so are their intersection, union,
difference, symmetric difference, and Minkowski sum.

The proposed moment cone relaxation for POP (1) is very powerful in theory, but it
is quite difficult to implement the relaxation numerically. Even for the CPP relaxation
of QOPs, neither effective nor efficient numerical methods have been developed. As a
tractable numerical method, we extend the doubly nonnegative cone relaxation [11, 23]
for the CPP problem to the moment cone relaxation of POP (1) with L = Rn

+. For the
extension, we choose a collection of monomials (satisfying a certain symmetric property)
that covers the monomials involved in ψ, hj ∈ R[x] (j ∈ J). Then, the moment cone
with L = Rn

+ and the collection induce a cone that lies in the doubly nonnegative cone
(= the intersection of the positive semidefinite matrix cone and the cone of nonnegative
matrices) in a symmetric matrix space. We also discuss how to exploit sparsity in the
doubly nonnegative relaxation, and briefly shows that the idea of doubly nonnegative
relaxation can easily be incorporated in Lasserre’s SDP relaxation [14].

In Section 2, we summarize the notation and symbols. The illustrative example
described in Section 2 is used throughout for better understanding of the discussions
in this paper. The main results showing the equivalence of the optimal value of (1)
and its moment cone relaxation are stated in Section 3, and their proofs in Section
4. In Section 5, we describe how to transform POP (5) into POP (1), and discuss
some similarities and differences between the proposed moment cone relaxation and the
canonical convexification procedure [16]. In Section 6, the doubly nonnegative cone
relaxations for POPs are discussed. Concluding remarks are included in Section 7.
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2 Preliminaries

2.1 Notation and symbols

Let R denote the set of real numbers, R+ the set of nonnegative real numbers, and
Z+ the set of nonnegative integers. We denote the i-th coordinate unit vector with
the i-th element 1 and all other elements 0 as ei ∈ Rn, and the vector of all elements
1 as 1 ∈ Rn. Let |β|1 =

∑n
i=1 βi for each β ∈ Zn

+. R[x] is the set of real-valued
multivariate polynomials in n variables x1, . . . , xn ∈ R, where x = (x1, x2, . . . , xn) ∈
Rn. Each polynomial f ∈ R[x] is represented as f(x) =

∑
β∈H fβxβ, where H ⊂ Zn

+

is a nonempty finite set, fβ (β ∈ H) are real coefficients, xβ = xβ1

1 xβ2

2 · · ·xβn
n , and

β = (β1, β2, . . . , βn) ∈ Zn
+. We note that if 0 ∈ H then x0 = 1 for any x ∈ Rn and

f0x
0 represents the constant term f0 of the polynomial f ∈ R[x]. The support of f is

defined by supp(f) = {β ∈ H : fβ ̸= 0} ⊂ Zn
+, and the degree of f ∈ R[x] is defined

by deg(f) = max{|β|1 : β ∈ supp(f)}. And, deg(H) = max {|β|1 : β ∈ H} for every
nonempty finite subset H of Zn

+.

Let H be a nonempty finite subset of Zn
+. |H| stands for the number of elements

of H. R[x,H] denotes the set of real-valued multivariate polynomials in x1, . . . , xn ∈ R
whose supports belong to H; i.e., R[x,H] = {f ∈ R[x] : supp(f) ⊂ H}. Let RH

denote the |H|-dimensional Euclidean space whose coordinate are indexed by β ∈ H.
For A ⊂ RH, conv A denotes the convex hull of A, cone A the cone generated by A,
and closure A the closure of A; hence closure conv A is the closure of the convex hull
of A. Each vector of RH with elements zβ (β ∈ H) is denoted as (zβ : H). We assume
that (zβ : H) is a column column vector when it is multiplied by a matrix. If x ∈ Rn,
(xβ : H) denotes the |H|-dimensional (column) vector with elements zβ = xβ (β ∈ H).
Using the symbols introduced here, we frequently write a polynomial f ∈ R[x,H] as
f(x) = (fβ : H) · (xβ : H) for some (fβ : H) ∈ RH, where (fβ : H) · (xβ : H) denotes the
inner product

∑
β∈H fβxβ of (fβ : H) ∈ RH and (xβ : H) ∈ RH.

The following notation and symbols are used in Section 6 where the doubly nonneg-
ative cone relaxation is discussed. Let F be a nonempty finite subset of Zn

+. SF denotes
the linear space of |F| × |F| symmetric matrices with elements wαβ (α ∈ F , β ∈ F).
Each matrix of SF is written as (wαβ : ¤F). If x ∈ Rn, (xα : F)(xβ : F)T is a rank-1
symmetric matrix with elements wαβ = xα+β (α ∈ F , β ∈ F) in SF , which is denoted
by (xα+β : ¤F). Here (xβ : F)T denotes the row vector obtained by taking the transpose
of the column vector (xβ : F).

2.2 An illustrative example

We consider a polynomial optimization problem

minimize x4
1 + 2x2

1x
2
2 − 4x4

3

subject to x4
1 + x4

2 + x4
3 = 1, x1x2 − x2

3 ≥ 0, xi ≥ 0 (i = 1, 2, 3).
(6)

By introducing a slack variable x4 ∈ R and a variable vector x = (x1, x2, x3, x4), we
convert the problem into

minimize ψ(x) subject to h0(x) = 1, h1(x) = 0, x ∈ R4
+, (7)
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where ψ, h0, h1 ∈ R[x] are defined by

ψ(x) = x4
1 + 2x2

1x
2
2 − 4x4

3, h0(x) = x4
1 + x4

2 + x4
3, h1(x) = (x1x2 − x2

3 − x2
4)

2.

In addition to condition (2) with τ = 4, the problem (7) satisfies conditions (3) and (4)
with J0 = {0, 1} and L = R4

+. This problem serves as an illustrative example in the
subsequent discussions.

We see that

deg(ϕ) = 4, deg(h0) = 4, deg(h1) = 4,

supp(ψ) =




4
0
0
0




2
2
0
0




0
0
4
0


 , supp(h0) =




4
0
0
0




0
4
0
0




0
0
4
0


 ,

supp(h1) =




2
2
0
0




1
1
2
0




1
1
0
2




0
0
4
0




0
0
2
2




0
0
0
4


 .

Let

Hmin = supp(ψ)
∪

supp(h0)
∪

supp(h1)

=




4
0
0
0




2
2
0
0




1
1
2
0




1
1
0
2




0
4
0
0




0
0
4
0




0
0
2
2




0
0
0
4


 .

Then, we can regard ψ, h0, h1 ∈ R[x,H] for any H ⊃ Hmin. For example, if we take
H = Hmin, ψ ∈ R[x,H] is represented as follows:

(ψβ : H) =
(
ψ(4000), ψ(2200), ψ(1120), ψ(1102), ψ(0400), ψ(0040), ψ(0022), ψ(0004)

)
,

= (1, 2, 0, 0, 0,−4, 0, 0) ∈ RH,
(xβ : H) = (x4

1, x
2
1x

2
2, x1x2x

2
3, x1x2x

2
4, x

4
2, x

4
3, x

2
3x

2
4, x

4
4) ∈ RH,

ψ(x) = (ψβ : H) · (xβ : H) ∈ R[x,H].

(8)

3 Main results

We consider POP (1) satisfying condition (2). Recall that L denotes a closed (but not
necessarily convex) cone. Let T∗ denote the feasible region of POP (1);

T∗ = {x ∈ L : h0(x) = 1, hj(x) = 0 (j ∈ J)} .

Condition (2) can be restated as

ψ(λx) = λτψ(x), hj(λx) = λτhj(x) (j ∈ J0)

for some integer τ ≥ 1, every x ∈ Rn and every λ ∈ R+. (9)
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Let Hmin = supp(ψ)
∪ (∪

j∈J0
supp(hj)

)
. Then, condition (9) is equivalent to

|β|1 = τ for some positive integer τ ≥ 1 and every β ∈ Hmin. (10)

Let Hmax =
{
β ∈ Zn

+ : |β|1 = τ
}
. Choose H ⊂ Zn

+ such that Hmin ⊂ H ⊂ Hmax.
Then, the polynomials ψ, hj ∈ R[x] (j ∈ J0) is written as

ψ(x) = (ψβ : H) · (xβ : H), hj(x) = ((hj)β : H) · (xβ : H) (j ∈ J0),

for some (ψβ : H), ((hj)β : H) ∈ RH (j ∈ J0). Let

T̃ (H) =
{
(xβ : H) ∈ RH : x ∈ T∗

}
=

{
(xβ : H) ∈ RH :

x ∈ L, ((h0)β : H) · (xβ : H) = 1,
((hj)β : H) · (xβ : H) = 0 (j ∈ J)

}
.

Then, we can rewrite POP (1) as

minimize (ψβ : H) · (zβ : H) subject to (zβ : H) ∈ T̃ (H).

Since the objective function is linear with respect to (zβ : H) ∈ RH, the problem above
is equivalent to

minimize (ψβ : H) · (zβ : H) subject to (zβ : H) ∈ conv T̃ (H). (11)

In the case of POP (7), we see that

T̃ (H) =


(x4

1, x
2
1x

2
2, x1x2x

2
3, x1x2x

2
4, x

4
2, x

4
3, x

2
3x

2
4, x

4
4) :

h0(x) = x4
1 + x4

2 + x4
3 = 1,

h1(x) = (x1x2 − x2
3 − x2

4)
2 = 0, x ∈ R4

+

 ,

(zβ : H) =
(
z(4000), z(2200), z(1120), z(1102), z(0400), z(0040), z(0022), z(0004)

)
.

See also (8) for (ψβ : H) and (xβ : H).

Define the moment cone generated by H and L as

M(H, L) =

{
q∑

p=1

((xp)
β : H) : xp ∈ L (p = 1, 2, . . . , q) and q ∈ Z+

}
. (12)

M(H, L) forms a convex cone by the following lemma. Hence, by Carathéodory’s Theo-
rem [7], the nonnegative integer q to which the summation is taken in the description of
M(H, L) can be fixed to q∗ = |H|;

M(H, L) =

{
q∗∑

p=1

((xp)
β : H) : xp ∈ L (p = 1, 2, . . . , q∗)

}
.

Lemma 3.1 Suppose that L is a closed cone in Rn and that Hmin ⊂ H ⊂ Hmax.

(a) M(H, L) is a convex cone.
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(b) Assume that {τe1, . . . , τen} ⊂ H. If τ is even or L = Rn
+, then M(H, L) is closed,

where ei denotes the i-th coordinate unit vector of Rn.

Proof: See Sections 4.1 and 4.2.

If the assumption in (b) is not satisfied, M(H, L) is not necessarily closed. For exam-
ple, let n = 2, L = R2

+, τ = 2, H = {(2, 0), (1, 1)} ̸∋ (0, 2). Then

M(H, R2
+) =

{
(x2

1, x1x2) + (y2
1, y1y2) : x = (x1, x2), y = (y1, y2) ∈ R2

+

}
.

If we take a sequence
{
xr = (1/r, r) ∈ R2

+ : r = 1, 2, . . .
}
, then the sequence{

((xr)
β : H) = ((1/r)2, 1) ∈ M(H, R2

+) : r = 1, 2, . . . ,
}

converges to (0, 1) ̸∈ M(H, R2
+).

Define

T̂ (H) =

(zβ : H) ∈ RH :
(zβ : H) ∈ M(H, L),
((h0)β : H) · (zβ : H) = 1,
((hj)β : H) · (zβ : H) = 0 (j ∈ J)

 .

We introduce the moment cone relaxation of POP (1).

minimize (ψβ : H) · (zβ : H) subject to (zβ : H) ∈ T̂ (H). (13)

Recall that H can be an arbitrary subset of Zn
+ satisfying

Hmin = supp(ψ)
∪( ∪

j∈J0

supp(hj)

)
⊂ H ⊂ Hmax, or

Hmin

∪
{τe1, . . . , τen} ⊂ H ⊂ Hmax,

for the closedness of M(H, L) when K = Rn
+. If the polynomials ψ, hj ∈ R[x] (j ∈ J0)

of POP (1) are sparse or they involve a small number of monomials, the dimension |H|
of the variable vector (zβ : H) of the problem (13) can be small. Thus, the moment cone
relaxation (13) naturally inherits such sparsity from POP (1).

We note that the problems (11) and (13) have the same linear objective function
(ψβ : H) · (zβ : H). Let

T0 = {x ∈ L : h0(x) ≥ 0} ,

Tj = {x ∈ Tj−1 : hj(x) = 0}
= {x ∈ L : h0(x) ≥ 0, hi(x) = 0 (i = 1, . . . , j)} (j ∈ J).

We consider the following conditions to ensure that (11) and (13) have equivalent feasible

regions in the sense that closure conv T̃ (H) = closure T̂ (H).

h0(x) ≥ 0 for every x ∈ L, i .e., T0 = L, (14)

hj(x) ≥ 0 for every x ∈ Tj−1 (j ∈ J), (15)

T∞
∗ ⊃ {x ∈ L : hj(x) = 0 (j ∈ J0)} . (16)
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Here, for every A ⊂ Rn, A∞ denotes the horizontal cone defined by

A∞ =

{
x ∈ Rn :

there exists (µr,yr) ∈ R+ × A (r=1,2,. . . )
such that (µr, µryr) → (0,x) as r → ∞

}
(see, for examples, [19]). If we τ = 2 or (1) represents a homogeneous QOP, conditions

(14), (15) and (16) are equivalent to the set of conditions (A)’, (B̃), (C̃) and (D) assumed
in [1]. These conditions will be compared to the conditions imposed in [16] on the
nonhomogneous POP of the form (5) for the equivalence to its canonical convixification
in Section 5. It is easily verified that the converse inclusion of (16) always holds.

The following theorem asserts that the closures of feasible regions conv T̃ (H) of POP

(11) and T̂ (H) of the moment cone relaxation problem (13) coincide with each other.
Consequently, (11) and (13) are equivalent. Since POPs (1) and (11) have a same optimal
value, (13) attains the exact optimal value of (1).

Theorem 3.2 Assume that L is a closed cone and that conditions (9), (14), (15) and

(16) hold. If Hmin ⊂ H ⊂ Hmax, then closure conv T̃ (H) = closure T̂ (H) and

inf {ψ(x) : x ∈ T∗} = inf
{

(ψβ : H) · (zβ : H) : (zβ : H) ∈ T̂ (H)
}

(17)

Proof: See Section 4.3 and 4.4.

We conclude this section by extending the previous discussions to more general cases.
This is utilized in the discussion of a doubly nonnegative cone relaxation for POP (1) in
Section 6.

Corollary 3.3 Assume that L is a closed cone and that conditions (9), (14), (15) and
(16) hold. If Hmin ⊂ H (but not necessarily H ⊂ Hmax), then (17) holds.

Proof: We first observe that conditions (9), (14), (15) and (16) do not depend on any
choice of H ⊃ Hmin, and that all definitions of (ψβ : H), ((hj)β : H) ∈ RH (j ∈ J0),

M(H, L), T̃ (H), and T̂ (H) remain consistent, although Lemma 3.1 may not be true.

We can easily verify that T̃ (H) ⊂ T̂ (H). Hence,

inf {ψ(x) : x ∈ T∗} = inf
{

(ψβ : H) · (zβ : H) : (zβ : H) ∈ T̃ (H)
}

≥ inf
{

(ψβ : H) · (zβ : H) : (zβ : H) ∈ T̂ (H)
}

.

On the other hand, if (z̄β : H) ∈ T̂ (H), then (z̄β : H
∩

Hmax) ∈ T̂ (H
∩

Hmax)) and
(ψβ : H) · (z̄β : H) = (ψβ : H

∩
Hmax) · (z̄β : H

∩
Hmax). Therefore,

inf
{

(ψβ : H) · (zβ : H) : ·(zβ : H) ∈ T̂ (H)
}

≥ inf
{

(ψβ : H
∩

Hmax) · (zβ : H
∩

Hmax) :

(zβ : H
∩

Hmax) ∈ T̂ (H
∩

Hmax)
}

= inf {ψ(x) : x ∈ T∗} .

Here the last equality follows from Theorem 3.2.
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4 Proof

4.1 Proof of (a) in Lemma 3.1

Suppose that
∑q

p=1((xp)
β : H) ∈ M(H, L), xp ∈ L (p = 1, . . . , q),

∑q̄
p=1(x̄

β
p : H) ∈

M(H, L), x̄p ∈ L (p = 1, . . . , q̄), λ ≥ 0 and λ̄ ≥ 0. Since L is a cone, we see that λ1/τxp ∈
L (p = 1, . . . , q) and λ̄1/τ x̄p ∈ L (p = 1, . . . , q̄). By H ⊂ Hmax =

{
β ∈ Zn

+ : |β|1 = τ
}
,

λ

q∑
p=1

((xp)
β : H) + λ̄

q̄∑
p=1

((x̄p)
β : H)

=

q∑
p=1

((λ1/τxp)
β : H) +

q̄∑
p=1

((λ̄1/τ x̄p)
β : H) ∈ M(H, L).

Thus we have shown that M(H, L) is a convex cone.

4.2 Proof of (b) in Lemma 3.1

Consider a sequence

M(H, L) ∋ ((zr)β : H) =

q∑
p=1

((xrp)
β : H)

with xrp ∈ L (p = 1, 2, . . . , q) (r = 1, 2, . . . ), (18)

which converges to some (z̄β : H) as r → ∞. We show that the sequence {xrp ∈ L :
r = 1, 2, . . . } is bounded (p = 1, 2, . . . , q). From (18), we observe that

q∑
p=1

(xrp)
β = (zr)β → z̄β as r → ∞ (β ∈ H).

By the assumption, we know that {τe1, . . . , τen} ⊂ H. As a result, the above relation
holds for β = τei ∈ H (i = 1, . . . , n). If each xrp is denoted as (xrp1, . . . , xrpn), then
(xrp)

(τei) = (xrpi)
τ ≥ 0 since τ is a even integer or L = Rn

+ by the assumption. Hence,
we obtain that

0 ≤ (xrpi)
τ ≤

q∑
q=1

(xrqi)
τ =

q∑
q=1

(xrq)
(τei) = (zr)(τei) → z̄(τei) as r → ∞

for i = 1, . . . , n and p = 1, 2, . . . , q (r = 1, 2, . . . , ). (19)

This implies that all sequences {xrp ∈ L : r = 1, 2, . . . , } (p = 1, 2, . . . , q) are bounded.
Thus, we can take a subsequence of (18) along which xrp ∈ L converges to some x̄p ∈ L
as r → ∞ (p = 1, 2, . . . , q). Therefore, (z̄β : H) =

∑q
p=1((x̄p)

β : H) ∈ M(H, L).

4.3 Proof of closure conv T̃ (H) ⊂ closure T̂ (H) in Theorem 3.2

Assume that (zβ : H) = (xβ : H) ∈ T̃ (H). Then, (zβ : H) ∈ T̂ (H) by definition. Since

closure T̂ (H) is convex and closed, closure conv T̃ (H) ⊆ closure T̂ (H) follows.
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4.4 Proof of closure T̂ (H) ⊂ closure conv T̃ (H) in Theorem 3.2

It suffices to show that T̂ (H) ⊂ closure conv T̃ (H). Suppose that (zβ : H) ∈ T̂ (H).
Then,

((h0)β : H) · (zβ : H) = 1, ((hj)β : H) · (zβ : H) = 0 (j ∈ J),

(zβ : H) =

q∑
p=1

((xp)
β : H) for some xp ∈ L (p = 1, . . . , q).

It follows that

1 = ((h0)β : H) ·

(
q∑

p=1

((xp)
β : H)

)

=

q∑
p=1

(
(h0)β : H) · ((xp)

β : H)
)

=

q∑
p=1

h0(xp),

0 = ((hj)β : H) ·

(
q∑

p=1

((xp)
β : H)

)

=

q∑
p=1

(
(hj)β : H) · ((xp)

β : H)
)

=

q∑
p=1

hj(xp) (j ∈ J = {1, . . . , ℓ}). (20)

We will show by induction that

xp ∈ Tj (p = 1, . . . , q) (j = 0, . . . , ℓ). (21)

It follows from xp ∈ L and (14) that xp ∈ T0. Now assume that xp ∈ Tj−1 for some j
with j ∈ J (p = 1, . . . , q). By (15), we see that hj(xp) ≥ 0 (p = 1, . . . , q). Hence (20)
implies that hj(xp) = 0, and xp ∈ Tj (p = 1, . . . , q). Thus we have shown (21).

From xp ∈ T0, we know that λp = h0(xp) is nonnegative (p = 1, 2, . . . , q). Let

I+ = {p : λp = h0(xp) > 0}, I0 = {p : λp = h0(xp) = 0},
x̄p = xp/(λp)

1/τ ∈ L (p ∈ I+).

By (9), (10) and Hmin ⊂ H ⊂ Hmax that

((xp)
β : H) = (((λp)

1/τ x̄p)
β : H) = λp((x̄p)

β : H) (p ∈ I+),

h0(x̄p) = h0(xp/λ
1/τ
p ) = h0(xp)/λp = 1 (p ∈ I+),

hj(x̄p) = hj(xp/λ
1/τ
p ) = hj(xp)/λp = 0 (p ∈ I+) (j ∈ J).

Hence

((x̄p)
β : H) ∈ T̃ (H) (p ∈ I+),

1 =

q∑
p=1

h0(xp) =
∑
p∈I+

h0(xp) =
∑
p∈I+

λp, λp > 0 (p ∈ I+),

(zβ : H) =

q∑
p=1

((xp)
β : H) =

∑
p∈I+

λp((x̄p)
β : H) +

∑
p∈I0

((xp)
β : H),

xp ∈ {x ∈ L : hj(x) = 0 (j ∈ J0)} (p ∈ I0).
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By (16), for each p ∈ I0, there exists a sequence
{
(µpr, ypr) ∈ R+ × T∗

}
such that

(µpr, µprypr) → (0,xp) as r → ∞. Let p̃ ∈ I+ and Ĩ+ = I+\{p̃}. Then, for sufficiently
large r such that λp̃ −

∑
p∈I0

(µrp)
τ > 0,

conv T̃ (H)

∋

(
λp̃ −

∑
p∈I0

(µrp)
τ

)
((x̄p̃)

β : H) +
∑
p∈Ĩ+

λp((x̄p)
β : H) +

∑
p∈I0

(µrp)
τ ((ypr)

β : H)

=

(
λp̃ −

∑
p∈I0

(µrp)
p

)
((x̄p̃)

β : H) +
∑
p∈Ĩ+

λp((x̄p)
β : H) +

∑
p∈I0

((µrpypr)
β : H)

→
∑
p∈I+

λp((x̄p)
β : H) +

∑
p∈I0

((xp)
β : H) = (zβ : H) as r → ∞.

Therefore we have shown that (zβ : H) ∈ closure conv T̃ (H).

5 Nonhomogeneous model

The discussions up to this point has been focused on POP (1) described by homogeneous
polynomials ψ, hj ∈ R[x] (j ∈ J0) characterized by condition (2). In this section,
we deal with POP of the form (5) described by general (nonhomogeneous) polynomials
ϕ, gj ∈ R[w] (j ∈ J = {1, . . . , ℓ}) with any degrees, where w = (w1, . . . , wm) ∈ Rm.
Peña, Vera and Zuluaga [16] applied their canonical convexification procedure to this
type of POP (5) with K = Rm

+ , and presented a linear optimization problem over the
cone of completely positive d-forms equivalent to POP (5) in Theorem 10 of [16]. We
impose conditions similar to but weaker than theirs, and convert POP (5) into POP (1)
satisfying conditions (9), (14), (15) and (16); hence Theorem 3.2 holds.

Let

τ = max{deg(ϕ), deg(gj) (j ∈ J)},

Gmin = supp(ϕ)
∪(∪

j∈J

supp(gj)

)
, Gmax =

{
α ∈ Zm

+ : |α|1 ≤ τ
}

.

Choose G ⊂ Zm
+ such that Gmin

∪
{0} ⊂ G ⊂ Gmax. Then, ϕ, gj ∈ R[w] (j ∈ J) can be

represented as

ϕ(w) = (ϕα : G) · (wα : G) for some (ϕα : G) ∈ RG,

gj(w) = ((gj)α : G) · (wα : G) for some ((gj)α : G) ∈ RG (j ∈ J)

Let Copos(G, K)∗ = cone conv
{
(wα : G) ∈ RG : w ∈ K

}
. We now consider the linear

conic program over the cone Copos(G, K)∗

minimize (ϕα : G) · (yα : G) subject to (yα : G) ∈ Ŝ(G), (22)
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where

Ŝ(G) =

(yα : G) ∈ RG :
(yα : G) ∈ Copos(G, K)∗,
((g0)α : G) · (yα : G) = 1,
((gj)α : G) · (yα : G) = 0 (j ∈ J)

 ,

g0(w) = ((g0)α : G) · (wα : G), where (g0)α =

{
1 if α = 0 ∈ G,
0 if α ∈ G and α ̸= 0,

.

We note that g0 ∈ R[w,G] has been consistently defined since 0 ∈ G. In the literature [16],
the cone Copos(G, K)∗ is called the cone of completely positive d-forms and the procedure
deriving the problem (22) from POP (5) the canonical convexification procedure.

By construction, if w ∈ Rm is a feasible solution of POP (5), then (yα : G) = (wα : G)
is a feasible solution of the problem (22), and the objective value (ϕα : G) · (yα : G)
coincides with the objective value ϕ(w) at w ∈ Rm. Therefore, the problem (22) serves
as a relaxation problem of POP (5), and

inf {ϕ(w) : w ∈ S∗} ≥ inf
{

(ϕα : G) · (yα : G) : (yα : G) ∈ Ŝ(G)
}

. (23)

It is interesting to note that Copos(G, K)∗ is not closed if we take K = Rm
+ and

G = Gmax as in [16]. In fact, the following stronger assertion is true.

Lemma 5.1 Suppose that τ ≥ 1 and dγ ̸= 0 for some d ∈ K and some γ ∈ G with
|γ|1 = τ . Then Copos(G, K)∗ is not closed. (We have assumed that 0 ∈ G).

Proof: Let x(µ) = µd ∈ K for every µ > 0. Then, we see that

lim
µ→∞

x(µ)α

µτ
=

{
dα if α ∈ G and |α|1 = τ ,
0 if α ∈ G and |α|1 < τ.

Hence (1/µτ )(x(µ)α : G) converges to some nonzero (ȳα : G) ∈ closure Copos(G, K)∗

such that ȳ0 = 0 and ȳγ = dγ ̸= 0. On the other hand, we know that the cone
Copos(G, K)∗ is included in the halfspace

{
(yα : G) ∈ RG : y0 ≥ 0

}
, and that (ȳα : G)

lies in its facet, the hyperplane
{
(yα : G) ∈ RG : y0 = 0

}
. Hence, if 0 ̸= (ȳα : G) =∑q

p=1 λp((wp)
α : G) for some λp > 0, wp ∈ Rm

+ (p = 1, . . . , q) and some q ≥ 1 holds,

then ((wp)
α : G) must lie in the halfspace. This is impossible because (wp)

0 = 1
(p = 1, . . . , q).

We now convert POP (5) into POP (1), and the problem (22) into the moment cone
problem (13), respectively, then, show the identity (17) by applying Theorem 3.2. Let
n = 1 + m, L = R+ × K and J0 = {0}

∪
J . Define θ : G → Zn

+ by θ(α) = (1 − |α|1 ,α)
for every α ∈ G. It is obvious that θ is one-to-one mapping from G onto its image
H = θ(G) = {θ(α) : α ∈ G}. Thus, the |G|-dimensional space RG can be identified with
the |H|-dimensional space RH; the coordinate index α ∈ G of the space RG corresponds
to the coordinate index θ(α) ∈ H of the space RH and vice vera. Specifically, the
coordinate index 0 ∈ G corresponds to θ(0) = (τ,0) ∈ H. As a result, the polynomials
ψ, hj ∈ R[x,H] (j ∈ J0) can be consistently defined by

ψ(x) = (ψβ : H) · (xβ : H), where (ψβ : H) = (ϕθ(α) : G) ∈ RH,

hj(x) = (ψβ : H) · (xβ : H), where ((hj)β : H) = ((gj)θ(α) : G) ∈ RH (j ∈ J0).
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We observe that, by construction,

h0(x) = (w0)
τ for every x = (w0, w) ∈ L,

ψ(x) = ϕ(w), hj(x) = gj(w) (j ∈ J) (24)

if x = (w0,w) ∈ L satisfies h0(x) = wτ
0 = 1.

Therefore, POP (5) is equivalent to POP (1) with these polynomials ψ, hj ∈ R[x,H]
(j ∈ J0) and the cone L = R+ × K. Thus,

inf {ϕ(w) : w ∈ S∗} = inf {ψ(x) : x ∈ T∗} . (25)

Now define

Mo(H, L) =

{
q∗∑

p=1

((wp0, wp)
β : H) :

wp0 > 0, (wp0,wp) ∈ L
(p = 1, . . . , q), q ≥ 0

}
.

Lemma 5.2 Copos(G, K)∗ = Mo(H, L) ⊂ M(H, L).

Proof: Suppose that wp0 > 0 and (wp0,wp) ∈ L (p = 1, . . . , q). Then

q∑
p=1

((wp0,wp)
β : H) =

q∑
p=1

(wp0)
τ ((1,wp/wp0)

β : H)

=

q∑
p=1

(wp0)
τ ((wp/wp0)

α : G) ∈ Copos(G, K)∗.

Now suppose that (yα : G) ∈ Copos(G, K)∗. Then there exist λp > 0 and wp ∈ K
(p = 1, . . . , q) such that (yα : G) =

∑q
p=1 λp((wp)

α : G). Hence,

(yα : G) =

q∑
p=1

λp((1,wp)
β : H) =

q∑
p=1

(((λp)
1/τ , (λp)

1/τwp)
β : H)

∈

{
q∑

p=1

((wp0,wp)
β : H) : wp0 > 0, (wp0, wp) ∈ L (p = 1, . . . , q)

}
.

Thus, we have shown the desired identity. The latter inclusion relation follows directly
from definition.

By Lemma 5.2, we can rewrite the problem (22) as

minimize (ψβ : H) · (zβ : H) subject to (zβ : H) ∈ T̂ o(H), (26)

where

T̂ o(H) =

(zβ : H) ∈ RH :
(zβ : H) ∈ Mo(H, L),
((h0)α : H) · (zβ : H) = 1,
((hj)α : H) · (zβ : H) = 0 (j ∈ J)

 .
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Since T̂ o(H) ⊂ T̂ (H), we obtain that

inf
{

(ϕα : G) · (yα : G) : (yα : G) ∈ Ŝ(G)
}

= inf
{

(ψβ : H) · (zβ : H) : (zβ : H) ∈ T̂ o(H)
}

≥ inf
{

(ψβ : H) · (zβ : H) : (zβ : H) ∈ T̂ (H)
}

. (27)

For the conditions imposed on POP (5), we need to introduce some notation and

symbols. Let Sj = {w ∈ K : gi(w) = 0 (i < j)} (j ∈ J), Ĝ = {α ∈ G : |α|1 = τ} . For
each j ∈ J , the homogeneous component of gj with degree τ is written as ĝj(w) = ((gj)α :

Ĝ) · (wα : Ĝ). We assume the following conditions.

gj(w) ≥ 0 for every w ∈ Sj (j ∈ J), (28)

S∞
∗ ⊃ {w ∈ K : ĝj(w) = 0 (j ∈ J)} . (29)

These conditions do not depend on any choice of G ⊂ Zm
+ such that Gmin

∪
{0} ⊂ G ⊂

Gmax. Condition (28) is equivalent to the one assumed in Theorem 10 of [16], while
Condition (29) is weaker and simpler than the one assumed there. In addition, we can
take any closed (even nonconvex and/or nonpointed) cone in Rm in POP (5), while the
cone K is restricted to Rm

+ in Theorem 10 of [16].

If we define Hmin = supp(ψ)
∪ (∪

j∈J supp(hj)
)

and Hmax =
{
β ∈ Zn

+ : |β|1 = τ
}

,

then Hmin ⊂ H ⊂ Hmax obviously holds. In addition, condition (9) holds by construction.
In the remaining of this section, we show that conditions (14), (15) and (16) are satisfied
to apply Theorem 3.2.

By definition, h0(x) = wτ
0 for every x = (w0, w) ∈ L = R+ × K. Thus, (14) follows.

Let j ∈ J . By (9), we observe that the identity

hj(w0,w) = (w0)
τhj(1, w/((w0)

τ ))) = (w0)
τgj(w/((w0)

τ )))

holds for every x = (w0, w) ∈ L with w0 > 0. Hence,

hj(w0, w) ≥ or = 0 for every x = (w0, w) ∈ L = R+ × K with w0 > 0

if and only if gj(w) ≥ or 0 for every w ∈ K, respectively.

By the continuity, we can relax the restriction w0 > 0 into w0 ≥ 0, and obtain that

hj(w0, w) ≥ or = 0 for every x = (w0, w) ∈ L = R+ × K
if and only if gj(w) ≥ or 0 for every w ∈ K, respectively.

This relation holds for every j ∈ J . Therefore, (15) follows from (28).

Assume that x = (w0,w) ∈ {x ∈ L : hj(x) = 0 (j ∈ J0)} . Then w ∈ K, w0 = 0 and
0 = hj(0,w) = ĝj(w) (j ∈ J). By condition (29), there exists a sequence {(µr, vr) ∈ Rn}
such that (µr,vr) ∈ R+ × K, gj(vr) = 0 (j ∈ J) and (µr, µrvr) → (0,w) as r → ∞. By
letting yr = (1,vr) ∈ L ((r = 1, 2, . . . , ), we have

(µr,yr) ∈ R+ × L, h0(yr) = 1, hj(yr) = gj(vr) = 0 (j ∈ J),

(µr, µryr) = (µr, (µr, µrvr)) → (0, (0,w)) = (0, x) as r → ∞.
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This implies that x ∈ T∞
∗ . Consequently, we have shown (16).

By applying Theorem 3.2, we know that the identity (17) is satisfied. Taking account
of all equalities and inequalities in (17), (23), (25) and (27), we finally conclude that the
equality holds in the inequality (23), i.e., POP (5) and its relaxation (22) have a same
optimal objective value.

6 Doubly nonnegative cone relaxation

We assume K = Rn
+ in this section. We apply a doubly nonnegative cone relaxation to

the moment cone programming problem (13) with a special choice of H in Section 6.1,
and show how sparsity can be exploited in the doubly nonnegative cone relaxation in
Section 6.2. In Section 6.3, we briefly discuss on how the idea of doubly nonnegative
cone relaxation can be incorporated into Lasserre’s SDP relaxation.

6.1 Relaxation of the moment cone problem

We choose an H ⊂ Zn
+ such that Hmin ⊂ H = F + F for some F ⊂ Zn

+. In general, we
can take

F =

{ {
β ∈ Zn

+ : |β|1 = τ/2
}

if τ is even,{
β ∈ Zn

+ : ⌊τ/2⌋ ≤ |β|1 ≤ ⌈τ/2⌉
}

otherwise.

To generate a small F , we can apply the following heuristic algorithm.

Algorithm 6.1

Step 0: Let k = 0. Choose an initial F = F0 ⊂ Zn
+ which satisfies Hmin ⊂ F + F .

Step 1: Choose {β} ∈ Fk such that F = Fk\{β} satisfies Hmin ⊂ F + F . If such a
{β} ∈ Fk does not exist, output F = Fk, and stop the iteration.

Step 2: Let Fk+1 = Fk\{β}, k = k + 1, and go to Step 1.

(This algorithm may be very primitive, and more efficient algorithms need to be devel-
oped.)

Let SF denote the space of |F| × |F| symmetric matrices whose row and column
indices are represented by F . We use the notation (wαβ : ¤F) to denote a matrix
in SF . We identify the |H|-dimensional vector (xγ : H) with the rank-1 matrix (xα :
F)(xβ : F)T ∈ SF , which is denoted by (xα+β : ¤F). More precisely, each element xγ

of the vector (xγ : H) is identified with the set of elements of the matrix (xα+β : ¤F)
placed at (α,β)-th positions satisfying α ∈ F , β ∈ F and γ = α + β. Therefore, if
(wαβ : ¤F) = (xα+β : ¤F) ∈ SF , then

wα1β1
= wα2β2

if α1 + β1 = α2 + β2. (30)

This is an important property of the matrix (xα+β : ¤F) ∈ SF , and each matrix of the
moment matrix cone defined in the following inherits this property.
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We introduce the moment matrix cone, a symmetric matrix representation of the
moment cone M(H, Rn

+) defined by (12) with H = F + F and L = Rn
+:

Md(¤F , Rn
+)

=

{
q∑

p=1

((xp)
α+β : ¤F) ∈ SF : xp ∈ Rn

+ (p = 1, . . . , q) and q ∈ Z+

}
.

(The superscript d is used to mean “a dense moment matrix cone” in comparison to “a
sparse moment matrix cone”, which is introduced in the next section). The polynomials
ψ, hj ∈ R[x,H] (j ∈ J0) is rewritten as

ψ(x) = (ψ̄αβ : ¤F) • (xα+β : ¤F),
hj(x) = ((h̄j)αβ : ¤F) • (xα+β : ¤F) (j ∈ J0)

(31)

for some (ψ̄αβ : ¤F), ((h̄j)αβ : ¤F) ∈ SF (j ∈ J0). Here (vαβ : ¤F) • (wαβ : ¤F)
denotes the inner product

∑
α∈F

∑
β∈F vαβ wαβ of (vαβ : ¤F) ∈ SF and (wαβ : ¤F) ∈

SF . Then, we obtain a moment matrix cone problem

minimize (ψ̄αβ : ¤F) • (wαβ : ¤F)
subject to ((h̄0)αβ : ¤F) • (wαβ : ¤F) = 1,

((h̄j)αβ : ¤F) • (wαβ : ¤F) = 0 (j ∈ J),
(wαβ : ¤F) ∈ Md(¤F , Rn

+),

(32)

which is equivalent to (13) with H = F + F , and attains the optimal objective of POP
(1) under conditions (9), (14), (15) and (16) by Corollary 3.3.

Let SF
+ denote the cone of positive semidefinite matrix in SF , and NF the cone of

matrices of nonnegative elements in SF . Notice that every (wαβ : ¤F) ∈ Md(¤F , Rn
+)

lies in SF
+

∩
NF and satisfies (30). (Recall that (xα+β : ¤F) = (xβ : F)(xβ : F)T by

definition). Thus, a doubly nonnegative cone relaxation of POP (1) is obtained as a
relaxation of (32):

minimize (ψ̄αβ : ¤F) • (wαβ : ¤F)
subject to ((h̄0)αβ : ¤F) • (wαβ : ¤F) = 1,

((h̄j)αβ : ¤F) • (wαβ : ¤F) = 0 (j ∈ J),
the condition (30), (wαβ : ¤F) ∈ SF

+

∩
NF .

(33)

If (wαβ : ¤F) is a feasible solution of (32), then it is a feasible solution of (33). The
converse is not true in general. Therefore, (33) serves as a relaxation for POP (1) for
computing a lower bound of the minimum objective value, but the lower bound may not
attain the exact minimum objective value in general.

For the example (7) given in Section 2.1, take

F =




2
0
0
0




1
1
0
0




0
2
0
0




0
0
2
0




0
0
0
2


 , (34)
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so that F satisfies Hmin ⊂ F + F with τ = 4. The variable matrix (wαβ : ¤F) ∈ SF

becomes a 5× 5 matrix. It is easy to check that F +F consists of 14 elements. Thus, if
elements of the variable matrix are identified by the condition (30), the matrix involves
14 independent real variables wαβ (α ∈ F , β ∈ F , α + β ∈ H).

Although (33) is called a dense doubly nonnegative cone relaxation for POP (1) in
the next section, sparsity involved in (1) has already been considered. In other words,
we can expect that the size of variable matrix (wαβ : ¤F) ∈ SF and the number of
independent variables become smaller as the size of the union of support sets Hmin =

supp(ψ)
∪ (∪

j∈J0
supp(hj)

)
decreases.

6.2 Further exploitation of sparsity

The method in Section 6.1 can be easily extended to a more general framework: H =∪t
s=1(F s + F s) for some F s ⊂ Zn

+ (s = 1, . . . , t). We require condition

Hmin ⊂
t∪

s=1

(F s + F s) (35)

We note that the family {F1, . . . ,F t} are not necessary to be disjoint; some F s1 and F s2

with 1 ≤ s1 < s2 ≤ t can have a nonempty intersection. Let F =
∪t

s=1 F s ⊂ Zn
+. Then

F satisfies Hmin ⊂ F + F . We implicitly assume that the polynomials ψ, hj ∈ R[x,H]
(j ∈ J0) are sparse such that H =

∪t
s=1(F s + F s) can be chosen with the size of much

smaller than the sizes of Hmax and F + F . We present a method for generating F s

(s = 1, . . . , t) at the end of this section.

We now replace Md(¤F , Rn
+) by a sparse moment matrix cone

Ms(¤F1, . . . , ¤F t, Rn
+)

=

{
q∑

p=1

(
((xp)

α+β : ¤F1), . . . , ((xp)
α+β : ¤F t)

)
: xp ∈ Rn

+ (p = 1, . . . , q) and q ∈ Z+
}

,

and the representation (31) of the polynomials ψ, hj ∈ R[x,H] (j ∈ J0) by

ψ(x) =
t∑

s=1

((ψ̄s)αβ : ¤F s) • (xα+β : ¤F s),

hj(x) =
t∑

s=1

((h̄sj)αβ : ¤F s) • (xα+β : ¤F s) (j ∈ J0)

for some ((ψ̄s)αβ : ¤F s), ((h̄sj)αβ : ¤F s) ∈ SFs (s = 1, . . . , t, j ∈ J0). Then, a sparse
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moment matrix cone problem equivalent to POP (1) is obtained as

minimize
t∑

s=1

((ψ̄s)αβ : ¤F s) • (wαβ : ¤F s)

subject to
t∑

s=1

((h̄s0)αβ : ¤F s) • (wαβ : ¤F s) = 1,

t∑
s=1

((h̄sj)αβ : ¤F s) • (wαβ : ¤F s) = 0 (j ∈ J),

((wαβ : ¤F1), . . . , (wαβ : ¤F t)) ∈ Ms(¤F1, . . . , ¤F t, Rn
+),

(36)

and a sparse doubly nonnegative cone relaxation of POP (1) is given by

minimize
t∑

s=1

((ψ̄s)αβ : ¤F s) • (wαβ : ¤F s)

subject to
t∑

s=1

((h̄s0)αβ : ¤F s) • (wαβ : ¤F s) = 1,

t∑
s=1

((h̄sj)αβ : ¤F s) • (wαβ : ¤F s) = 0 (j ∈ J),

the condition (30), (wαβ : ¤F s) ∈ SFs
+

∩
NFs (s = 1, . . . , t).

(37)

Since F =
∑t

s=1 F s satisfies Hmin ⊂ F+F , the dense moment cone matrix relaxation
(32) and doubly nonnegative cone relaxation (33) can be applied to POP (1). The
moment matrix cone relaxations (32) and (36) are equivalent in the sense that both
attain the exact optimal value of POP (1) under conditions (9), (14), (15) and (16).
However, the sparse doubly nonnegative cone relaxation (37) may not be as effective as
the dense one (33); the lower bound obtained by (37) for the optimal objective value of
POP (1) may be inferior to the lower bound by (33). In fact, if (w̄αβ : ¤F) is a feasible
solution of (33), we can construct a feasible solution ((ŵαβ : ¤F1), . . . , (ŵαβ : ¤F t)) with
the same objective value as the feasible solution (w̄αβ : ¤F) of (33). The converse is not
true in general. The advantage of (37) over (33) is its size, which makes more efficient to
compute a lower bound of the optimal objective value of POP (1).

For the example (7) given in Section 2.1, let

F1 =




2
0
0
0




0
2
0
0


 and F2 =




1
1
0
0




0
0
2
0




0
0
0
2


 ,

which are obtained by Algorithm 6.2 with F given by (34). Then

F1 + F1 =




4
0
0
0




2
2
0
0




0
4
0
0


 ,
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F2 + F2 =




2
2
0
0




1
1
2
0




1
1
0
2




0
0
4
0




0
0
2
2




0
0
0
4


 ,

2∪
s=1

F s = F ,
2∩

s=1

F s = ∅,

2∪
s=1

(F s + F s) = Hmin,
2∩

s=1

(F s + F s) =




2
2
0
0


 .

The sparse doubly nonnegative cone relaxation problem (37) involves two variable ma-
trices, 2× 2 (wαβ : ¤F1) and 3× 3 (wαβ : ¤F2). If the elements of the variable matrices
are identified by the condition (30), the matrix involves |Hmin| = 8 independent real
variable, while the dense matrix cone relaxation problem (33) involves 14 independent
variables, as seen in Section 6.1.

We conclude this section by presenting a method for computing F s ⊂ Zn (s = 1, . . . , t)
that satisfies the condition (35).

Algorithm 6.2

Step 0: Choose a F ⊂ Zn
+ that satisfies Hmin ⊂ F +F . (Algorithm 6.1 can be applied

in advance).

Step 1: Construct an undirected graph G(F , E) with the node set F and the edge
set E ⊂ F × F given by (α,β) ∈ E if and only if α ̸= β and α + β ∈ Hmin.
((α, β) ∈ E is identified with (β,α) ∈ E since the graph G(F , E) is undirected).

Step 2: Choose the maximal cliques F s (s = 1, . . . , t).

In general, finding all maximal cliques of a given graph is a difficult problem. To avoid
this difficulty, the following step may be inserted between Step 1 and 2.

Step 1.5: Replace the graph G(F , E) by a chordal extension of G(F , E).

Finding the maximal cliques of a chordal graph is a tractable problem and the number of
its maximal cliques is bounded by |F|. In addition, this step strengthens the effectiveness
of the doubly nonnegative cone relaxation of POP (1). Step 1.5 was originally proposed
for the sparse version [21] of Lasserre’s SDP relaxation [14].

6.3 Incorporation of the doubly nonnegative cone relaxation
into Lasserre’s SDP relaxation

If the doubly nonnegative condition (wαβ : ¤F) ∈ SF
+

∩
NF is replaced by an SDP

condition (wαβ : ¤F) ∈ SF
+ in (33), the resulting problem may be regarded as a variant

of Lasserre’s SDP relaxation [14] (with the lowest hierarchy) applied to POP (1). In the
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previous discussions, we have focused on the POP of the form (1) satisfying conditions
(9), (14), (15) and (16) to theoretically ensure that the resulting moment cone relaxations
(13), (32) and (36) are exact, and derived the doubly nonnegative cone relaxations (33)
and (37) for POP (1). But, the doubly nonnegative cone relaxation can be directly applied
to a fairly general POP with nonnegative variables, and incorporated into Lasserre’s SDP
relaxation [14].

Let J = {1, . . . , ℓ}, J0 = {0}
∪

J , ψ, gj ∈ R[x] (j ∈ J0) and x ∈ Rn. Consider a
POP

minimize g0(x) subject to gj(x) ≥ 0 (j ∈ J). (38)

An equality constraint g(x) = 0 with g ∈ R[x] can be included in POP (38) as two
inequality constraints g(x) ≥ 0 and −g(x) ≥ 0. Let

ωj = ⌈deg(gj)/2⌉ (j ∈ J0), ωmax = max {ωj (j ∈ J0)} ,

Aη =
{
α ∈ Zn

+ : |α|1 ≤ η
}

for every η ∈ Z+.

Choose ω ∈ Z+ not less than ωmax. Then, POP (38) is equivalent to the polynomial SDP

minimize g0(x)

subject to gj(x)(xα+β : Aω−ωj
)(xα+β : Aω−ωj

)T ∈ S
Aω−ωj

+ (j ∈ J),
(xα+β : Aω)(xα+β : Aω)T ∈ SAω

+ .

(39)

The problem (39) can be rewritten as

minimize ((c0)αβ : ¤Aω) • (xα+β : ¤Aω)

subject to
∑

γ∈Aω

∑
δ∈Aω

(
(cjγδ)αβ : ¤Aω−ωj

)
xγ+δ ∈ S

Aω−ωj

+ (j ∈ J),

(xα+β : ¤Aω) ∈ SAω
+ ,

(40)

for some ((c0)αβ : ¤Aω) ∈ SAω ,
(
(cjγδ)αβ : ¤Aω−ωj

)
∈ SAω−ωj (j ∈ J, γ ∈ Aω, δ ∈ Aω).

Each (wαβ : ¤Aω) = (xα+β : ¤Aω) satisfies not only (wαβ : ¤Aω) ∈ SAω
+ , but also

(30). Thus, we have Lasserre’s SDP relaxation of POP (38) with the hierarchy level ω:

minimize ((c0)αβ : ¤Aω) • (wαβ : ¤Aω)

subject to
∑

γ∈Aω

∑
δ∈Aω

(
(cjγδ)αβ : ¤Aω−ωj

)
wγδ ∈ S

Aω−ωj

+ (j ∈ J),

the condition (30), (wαβ : ¤Aω) ∈ SAω
+ .

(41)

See [14] for more details. It is shown in [14] that the optimal value of SDP (41) converges
to the optimal value of POP (38) monotonically as ω → ∞ under a certain moderate
assumption that requires the boundedness of the feasible region of POP (38).

Now suppose that xi ≥ 0 (i = 1, . . . , n) are included in the inequality constraints
gj(x) ≥ 0 (j ∈ J) of POP (38). In this case, xγ ≥ 0 for every feasible solution x of

(38) and γ ∈ Zn
+. Therefore, the positive semidefinite matrix cones S

Aω−ωj

+ (j ∈ J) and
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SAω
+ can be replaced by their intersections with NAω−ωj (j ∈ J) and NAω , respectively,

in (39), (40) and (41). The resulting doubly nonnegative cone relaxation of (38) is:

minimize ((c0)αβ : ¤Aω) • (wαβ : ¤Aω)

subject to
∑

γ∈Aω

∑
δ∈Aω

(
(cjγδ)αβ : ¤Aω−ωj

)
wγδ ∈ S

Aω−ωj

+

∩
NAω−ωj (j ∈ J),

the condition (30), (wαβ : ¤Aω) ∈ SAω
+

∩
NAω .

(42)

The doubly nonnegative cone relaxation (42) is at least as strong as the SDP relaxation
(41) for POP (38), but its computational costs are higher than (41).

For the example (6) given in Section 2.1, we have ωmax = 2. If the lowest hierarchy
level ω = ωmax = 2 is chosen, then Aω =

{
α ∈ Z3 : |α|1 ≤ ω

}
consists of 10 elements,

and the variable matrix (wαβ : ¤Aω) of the doubly nonnegative cone relaxation (42) is
10 × 10. Therefore, (42) is a much larger doubly nonnegative cone problem than (33) in
Section 6.1 and (37) in Section 6.2, although it provides a slightly better lower bound for
the optimal objective value of POP (1) than (33) and (37), as will be seen in the next
section.

A sparse version of Lasserre’s SDP relaxation [14] was proposed in [21] by Waki, Kim,
Kojima and Muramatsu. See also [12]. The discussions in this section can be modified
and extended so that doubly nonnegative cone relaxation can be incorporated into the
sparse version.

7 Concluding remarks

We have extended the results on the CPP relaxation for QOPs [1] to POP (1) that
satisfies conditions (9), (14), (15) and (16) by introducing the moment cone (12) and the
moment cone relaxation (13) of the POP. The moment cone relaxation provides the exact
optimal value of the POP, but its numerical implementation is quite difficult. As a further
relaxation that can be numerically tractable, the doubly nonnegative cone relaxation has
been derived, and sparsity exploitation has been discussed.

It is interesting to see how the doubly nonnegative cone relaxation derived from the
moment cone relaxation works in comparison to Lasserre’s SDP relaxation, and to see how
exploiting sparsity enhances the performance of the doubly nonnegative cone relaxation.
We applied the following relaxations to the numerical example (6).

(a) Lasserre’s SDP relaxation provided by SparsePOP [22].

(b) Doubly nonnegative cone relaxation (33).

(c) SDP relaxation obtained by replacing SF
+

∩
NF by SF

+ in (33).

(d) Doubly nonnegative cone relaxation (37).

(e) SDP relaxation obtained by replacing SFs
+

∩
NFs by SFs

+ (s = 1, . . . , t) in (37).
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Relaxation Relaxation
SDP LBD Size of A DN cone LBD Size of A
(a) -4.3050087e-1 (34,165)
(c) -4.0000000e+1 (3,25) (b) -4.3057829e-1 (13,35)
(e) -4.0000000e+1 (3,13) (d) -4.3058400e-1 (7,17)

Table 1: Comparison of the five relaxations applied to POP (6).

The results are shown in Table 1.

Each relaxation problem was solved by SeDuMi [20] after it was converted to an
SDP. “LBD” denotes the lower bound computed as the optimal value of the SDP for
the unknown optimal value of the POP (6), and “Size of A” indicates the size of the
coefficient matrix A in the standard SDP format of SeDuMi. POP (6) is very small, so all
SDPs were solved less than 0.2 seconds. A sparse version [21] of Lasserre’s relaxation (a)
was also applied to POP (6) but the results were the same as those of (a) because POP
(6) did not satisfy the structured sparsity that can be exploited by the sparse version.

SparsePOP also provided an approximate optimal value -4.3050087e-1 to the unknown
optimal value. Lasserre’s relaxation (a) attained this bound (in 8 digits), a very accurate
result. The two SDP relaxations (c) and (e) respectively derived from the moment
cone relaxations (33) and (37) did not work effectively. We observe that the doubly
nonnegative cone relaxations (b) and (d) are slightly less effective than (a), and that
their Sizes of A are much smaller than that of (a). To evaluate the effectiveness and
efficiency of the doubly nonnegative relaxations (b) and (d) in comparison to (a) and its
sparse version [21], extensive numerical experiments are necessary. This will be a subject
of our study in the future.
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