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Abstract

We consider spatial stochastic models of downlink heterogeneous cellular networks

(HCNs) with multiple tiers, where the base stations (BSs) of each tier have a particular

spatial density, transmission power and path-loss exponent. Prior works on such spatial

models of HCNs assume, due to its tractability, that the BSs are deployed according to

homogeneous Poisson point processes. This means that the BSs are located independently

of each other and their spatial correlation is ignored. In the current paper, we propose two

spatial models for the analysis of downlink HCNs, in both of which the BSs are deployed

according to α-Ginibre point processes. The α-Ginibre point processes constitute a class

of determinantal point processes and account for the repulsion between the BSs. Besides,

the degree of repulsion can be adjusted according to the value of α ∈ (0, 1]. For such pro-

posed models, we derive computable representations for the coverage probability of a typical

user—the probability that the downlink signal-to-interference-plus-noise ratio for the typical

user achieves a target threshold. We exhibit the results of some numerical experiments and

compare the proposed models and the Poisson based model.
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1 Introduction

Due to the increasing variety and popularity of mobile applications, modern cellular networks

have been becoming complex. In fact, one of the key features in 3G or LTE cellular networks is

the heterogeneity (see, e.g., [1, 12]). A heterogeneous cellular network (HCN) consists of multiple

tiers of wireless base stations (BSs), where the BSs of each tier have a particular spatial density,

a transmission power, a path-loss exponent and so on, so that a conventional macrocell based

cellular network is overlaid with diverse kinds of small cells such as microcells, picocells and

femtocells. On the other hand, the statistics of signal-to-interference-plus-noise ratio (SINR)

over a cellular network critically depend on the configuration of the BSs. Thus, to capture the

irregularity of BS locations, many researchers have considered and analyzed spatial stochastic

models of the HCNs with multiple tiers (see, e.g., [4, 15, 10, 13, 5, 6]), where the BS locations

are modeled by spatial point processes and the analysis is based on the theory of point processes

and stochastic geometry (see, e.g., [3, 8]).

Such prior works are inherently extensions of the downlink model with a single tier by Andrews

et al. [2] and assume that the BSs of each tier are deployed according to a homogeneous Poisson

point process. This means that the BSs are located independently of each other and their spatial

correlation is ignored. While this assumption of Poisson processes indeed makes the analysis

tractable, a real cellular network could be designed such that the BSs are not too close to

each other. In fact, the numerical experiments of [2] shows that the coverage probability of

a typical user—the probability that the downlink SINR for the typical user achieves a target

threshold—for the spatial model using the real data of actual BS deployments lies between those

of the Poisson based model and the square lattice model, where the BSs are located at the

grids of square lattice. This observation suggests that the actual BSs would be deployed more

regularly than Poisson point processes. Recently, Miyoshi and Shirai [14] proposed and analyzed

a downlink cellular network model with a single tier such that the BSs are deployed according to

the Ginibre point process. The Ginibre point process is one of the determinantal point processes

and accounts for the repulsion between the BSs (see, e.g., Hough et al. [9], Shirai & Takahashi [16]

and Soshnikov [17] for the Ginibre and general determinantal point processes). We can find in

the numerical experiments of [14] that the coverage probability for the Ginibre based model

shows the similar feature to that using the real data of the actual BS deployments given in [2].

In the current paper, we extend the model of [14] and propose the spatial models for the

analysis of the downlink HCNs, where the BSs are deployed according to α-Ginibre point pro-
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cesses. The α-Ginibre point processes are also determinantal point processes and are introduced

by Goldman [7] for constituting an intermediate class between the Poisson and Ginibre point

processes. The usual Ginibre process is just the one with α = 1 and the α-Ginibre point pro-

cess converges in distribution to a homogeneous Poisson process as α → 0. That is, the degree

of repulsion is tunable by the value of α ∈ (0, 1]. We propose two distinct models using the

α-Ginibre point processes. In one model, the BSs of different tiers are deployed according to

mutually independent α-Ginibre processes, where the α can take different values in the different

tiers. This model can express the HCN, where the BSs of the high-power tier generating the

macrocells are deployed more regularly while the BSs of the low-power tier are deployed rather

close to a Poisson process. In this model, however, we can not account for the repulsion between

a BS of one tier and another. In the other model, all the BSs are deployed according to an

α-Ginibre point process and are classified into multiple tiers by mutually independent marks. In

this model, all the BSs repel with each other while we can not alter the degree of repulsion in dif-

ferent tiers (it should be noted that for the Poisson based models, these two classifications yield

an identical model). For both of such models, we derive numerically computable representations

for the coverage probability of a typical user. We then compare the proposed models and also

the Poisson based model through numerical experiments.

The rest of the paper is organized as follows. In the next section, we make a brief review on

the α-Ginibre point processes, where we present the definition and some fundamental properties.

In section 3, we first consider the downlink cellular network model with a single tier, where the

BSs are deployed according to an α-Ginibre point process. We derive a numerically computable

representation for the coverage probability and investigate, through a numerical experiment,

how the value of α has an impact on the coverage probability. The multitier HCN models

are then proposed in section 4, where two distinct models are considered and the computable

representation of the coverage probability is derived for each model. The results of numerical

experiments are exhibited in section 5, where we compare the proposed models and the Poisson

based model.

2 α-Ginibre point processes

As is the usual Ginibre point process, the α-Ginibre processes are determinantal point processes

on the complex plain C defined as follows. Let Φ denote a simple point process on C and

ρn: Cn → R+, n ∈ N, denote its joint intensities with respect to some locally finite measure µ
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on (C,B(C)); that is, for any disjoint C1, C2, . . . , Cn ∈ B(C),

E(Φ(C1)Φ(C2) · · ·Φ(Cn)) =

∫
C1×C2×···×Cn

ρn(z1, z2, . . . , zn)µ(dz1)µ(dz2) · · ·µ(dzn),

and ρn(z1, z2, . . . , zn) = 0 when zi = zj for i ̸= j (see e.g., [9, 16, 17]). The point process Φ is

said to be a determinantal point process with kernel K: C2 → C with respect to the reference

measure µ if ρn, n ∈ N, satisfy

ρn(z1, z2, . . . , zn) = det(K(zi, zj))1≤i,j≤n, z1, z2, . . . , zn ∈ C,

where det denotes the determinant. The determinantal point process Φ∗α is said to be an α-

Ginibre process with α ∈ (0, 1] when the kernel is given as K∗α(z, w) = ezw/α, z, w ∈ C, with

respect to the (scaled) Gaussian measure µ∗α(dz) = π−1 e−|z|2/α m(dz), where w denotes the

complex conjugate of w ∈ C and m denotes the Lebesgue measure on (C,B(C)). The choice

of pair (K∗α, µ∗α) is not unique and the determinantal point process with kernel K̃∗α(z, w) =

π−1 e−(|z|2+|w|2)/(2α) ezw/α with respect to the Lebesgue measure m defines the same process as

Φ∗α (see [9, Section 4.2]). The usual Ginibre point process is just the one with α = 1 and it can

be shown that Φ∗α converges in distribution to a homogeneous Poisson point process as α → 0

(see [7]). That is, the α-Ginibre processes constitute an intermediate class between the Poisson

and Ginibre point processes by adjusting the value of α ∈ (0, 1]. As is the usual Ginibre point

process, it can be verified that the α-Ginibre processes are motion-invariant (stationary and

isotropic) and their intensities are equal to π−1; that is, EΦ∗α(C) = π−1 m(C), C ∈ B(R), for

α ∈ (0, 1]. Thus, to make it have the intensity parameter λ > 0, we consider the scaled process

Φ∗α
λ which has the kernel

K∗α
λ (z, w) = eπλzw/α, (1)

with respect to

µ∗α
λ (dz) = λ e−πλ|z|2/α m(dz). (2)

Or equivalently, K̃∗α
λ (z, w) = λ e−πλ(|z|2+|w|2)/(2α) eπλzw/α with respect to the Lebesgue measure.

Due to the radial symmetry of α-Ginibre point processes, we can apply Theorem 4.7.1 of [9] to

(1) and (2) above, and we obtain the following proposition, which is a generalization of Kostlan’s

result [11] for the usual Ginibre point process.

Proposition 1 Let Xi, i ∈ N, denote the points of the α-Ginibre point process with intensity λ.

Then, the set {|Xi|2}i∈N has the same distribution as Y̌ = {Y̌i}i∈N, which is constructed from

Y = {Yi}i∈N such that Yi, i ∈ N, are mutually independent and each Yi follows the ith Erlang
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distribution with rate parameter π λ/α (Yi ∼ Gamma(i, π λ/α)) and it is included in Y̌ with

probability α independently of others.

According to Proposition 1, we can construct the α-Ginibre point process Φ∗α
λ with intensity

λ from the usual Ginibre point process Φ∗1
λ/α = {Xi}i∈N with intensity λ/α by independent α-

thinning; that is, by deleting each point Xi, i ∈ N, of Φ∗1
λ/α with probability 1−α independently.

Note that, by Proposition 1, the set {|Xi|2}i∈N has the same distribution as Y = {Yi}i∈N such

that Yi ∼ Gamma(i, π λ/α), i ∈ N, are mutually independent. Let {ξi}i∈N denote the set of

marks of Φ∗1
λ/α such that ξi, i ∈ N, are mutually independent and identically distributed as

P(ξi = 1) = α and P(ξi = 0) = 1− α. Then, Φ∗α
λ is obtained by

Φ∗α
λ (C) =

∑
i∈N

ξi 1C(Xi), C ∈ B(C). (3)

which we use as the building block of our analysis in the following sections.

3 Downlink network model with a single tier

We here consider the downlink cellular network model with a single tier (see, e.g., [2, 14]) and

investigate the impact of the α-Ginibre point processes on the performance. Let Φ = {Xi}i∈N

denote a point process on R2, where the order of X1, X2, . . . is arbitrary. We assume that Φ is

almost surely (a.s.) simple and locally finite, and also stationary with intensity λ > 0. The point

process Φ represents the configuration of the BSs and we refer to the BS located at Xi as BS i.

The transmission power of each BS is constant at p > 0. We assume that each user is associated

with the closest BS; that is, the users in the Voronoi cell of a BS are associated with that BS.

Due to the stationarity of Φ and the equality of BSs, we can focus on a typical user located at

the origin o = (0, 0). We assume the Rayleigh fading for the random effect of fading/shadowing

from each BS to a user, so that the fading effect Fi from BS i to the typical user is an exponential

random variable with unit mean; Fi ∼ Exp(1), where Fi, i ∈ N, are mutually independent and

also independent of Φ. The path-loss function representing the attenuation of signals with the

distance is given by ℓ(r) = c r−β , r > 0, for some c > 0 and β > 2, where c and β are called

respectively the path-loss coefficient and path-loss exponent. The SINR of the typical user from

the associated BS is then expressed as

SINRo =
pFBo ℓ(|XBo |)
Wo + Io(Bo)

, (4)
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where Bo denotes the index of the BS associated with the typical user; that is, {Bo = i} =

{|Xi| ≤ |Xj |, j ∈ N}, Wo denotes a random variable representing the thermal noise at the

origin and Io(i) = p
∑

j∈N\{i} Fj ℓ(|Xj |) represents the cumulative interference signal from all

the BSs except i. We assume that Wo is independent of {(Xi, Fi)}i∈N and the Laplace-Stieltjes

transform (LST) of Wo is known to be computable. We consider the coverage probability as

a performance index, which is the probability P(SINRo > θ) that the SINR of the typical user

achieves a predefined threshold θ > 0.

In this setting, suppose that Φ = Φ∗α
λ ; that is, the BSs are deployed according to the α-

Ginibre point process with intensity λ (where a point z = x+ i y ∈ C is identified as (x, y) ∈ R2).

We then have the following.

Theorem 1 Consider the cellular network model with a single tier such that the BSs are deployed

according to the α-Ginibre point process with intensity λ. Then, the downlink coverage probability

of a typical user is given by

P(SINRo > θ) = α

∫ ∞

0

e−s LW

( θ

p c

(α s

π λ

)β/2)
M(s, θ)S(s, θ) ds, (5)

where LW denotes the LST of Wo and

M(s, θ) =

∞∏
j=0

(
1− α+

α

j!

∫ ∞

s

tj e−t

1 + θ (s/t)β/2
dt

)
, (6)

S(s, θ) =

∞∑
i=0

si
(
(1− α) i! + α

∫ ∞

s

ti e−t

1 + θ (s/t)β/2
dt

)−1

. (7)

Proof: The proof intimately follows the same line as that of Theorem 1 in [14]. The main

difference is that we here construct the α-Ginibre point process Φ by (3) from the usual Ginibre

point process Φ = Φ∗1
λ/α = {Xi}i∈N with intensity λ/α. Recall that {ξi}i∈N in (3) is the set

of independent marks of Φ such that P(ξi = 1) = α and P(ξi = 0) = 1 − α. Note that a

BS really exists at Xi only when ξi = 1, i ∈ N, so that {Bo = i} = {ξi = 1} ∩ Ai, where

Ai = {|Xi| < |Xj | for j ∈ Nξ \ {i}} with random subset Nξ = {j ∈ N | ξj = 1} of N. Thus, we

have from (4) that

P(SINRo > θ) =
∑
i∈N

P(SINRo > θ, Bo = i)

= α
∑
i∈N

P
(
Fi >

θ (Wo + Io(i))

p ℓ(|Xi|)
, Ai

)
, (8)
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where we use that ξi is independent of others with P(ξi = 1) = α in the second equality. Note

also that the cumulative interference Io(i), given ξi = 1, is now reduced to

Io(i) = p
∑

j∈N\{i}

ξj Fj ℓ(|Xj |). (9)

Since Fi ∼ Exp(1) is independent of others, and also Wo and Io(i) are independent of each other,

conditioning the inside of P in (8) yields

P
(
Fi >

θ (Wo + Io(i))

p ℓ(|Xi|)
, Ai

)
= E

(
e−θWo/(pℓ(|Xi|)) e−θIo(i)/(pℓ(|Xi|)) 1Ai

)
= E

(
LW

( θ

p ℓ(|Xi|)

)
E
(
e−θIo(i)/(pℓ(|Xi|))

∣∣∣ Φ, {ξj}j∈N\{i}

)
1Ai

)
, (10)

where 1A denotes the indicator for a set A. Furthermore, since Fj ∼ Exp(1), j ∈ N, are mutually

independent, the expression (9) of interference Io(i) leads to

E
(
e−θIo(i)/(pℓ(|Xi|))

∣∣∣ Φ, {ξj}j∈N\{i}

)
=

∏
j∈N\{i}

E
(
e−θξjFjℓ(|Xj |)/ℓ(|Xi|)

∣∣ Φ, {ξj}j∈N\{i}

)
=

∏
j∈N\{i}

(
1 + θ ξj

ℓ(|Xj |)
ℓ(|Xi|)

)−1

, (11)

where the second equality follows from the LST LF (s) = (1+s)−1 of Fj ∼ Exp(1). On the other

hand, note that

1Ai =
∏

j∈N\{i}

1{ξj=1,|Xj |>|Xi|}∪{ξj=0},

and ξj , j ∈ N, are mutually independent. Thus, conditioning on Φ, we have from (8), (10) and

(11) that

P(SINRo > θ) = α
∑
i∈N

E

(
LW

( θ

p ℓ(|Xi|)

) ∏
j∈N\{i}

(
1 + θ ξj

ℓ(|Xj |)
ℓ(|Xi|)

)−1

1{ξj=1,|Xj |>|Xi|}∪{ξj=0}

)

= α
∑
i∈N

E

(
LW

( θ

p ℓ(|Xi|)

) ∏
j∈N\{i}

[
1− α+ α

(
1 + θ

ℓ(|Xj |)
ℓ(|Xi|)

)−1

1{|Xj |>|Xi|}

])
.

(12)

Now, we apply Proposition 1 again to (12); that is, {|Xi|2}i∈N =d {Yi}i∈N with Yi = αZi/(π λ)

such that Zi ∼ Gamma(i, 1), i ∈ N, are mutually independent. Noting that {Yj > Yi} = {Zj >

Zi}, j ∈ N \ {i}, are conditionally independent given Zi and recalling ℓ(r) = c r−β , r > 0, we

have

P(SINRo > θ)
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= α
∑
i∈N

E

(
LW

( θ

p c

(αZi

π λ

)β/2) ∏
j∈N\{i}

[
1− α+ αE

((
1 + θ

(Zi

Zj

)β/2)−1

1{Zj>Zi}

∣∣∣ Zi

)])
.

Finally, applying the density function of Zi ∼ Gamma(i, 1), i ∈ N, to the above, we obtain (5)

after some manipulations.

Remark 1 We find in (5)–(7) that parameters λ, p and c only appear in LW , which implies

that, in the noise-free (interference-limited) case, the coverage probability does not depend on

the spatial density of BSs, transmission power and path-loss coefficient.

Remark 2 Similar to Theorem 2 in [14], we can verify that, in the noise-free case, the coverage

probability has the asymptotic property as

lim
θ→∞

θ2/β P(SINRo > θ) = α

∫ ∞

0

∞∏
j=2

[
1− α+

α

(j − 1)!

∫ ∞

0

tj−1 e−t

1 + (s/t)β/2
dt
]
ds.

That is, the distribution of the SINR for the typical user has the Pareto tail with exponent −2/β.

This asymptotic property is, however, due to the unboundedness of the path-loss function ℓ at

the origin. If ℓ is bounded, we can show that the coverage probability decays faster than any

polynomials as θ → ∞ (see [14] for the detail).

In Figure 1, we compare the coverage probability with the different values of α. Each plot

gives the coverage probability for a given value of θ in the case of Wo ≡ 0 (noise-free) and c = 1,

β = 4 (ℓ(r) = r−4). We find that the coverage probability is increasing in α. The larger value

of α indicates that the BSs are deployed more repulsively, so that we have a conjecture that the

coverage probability is increasing, or equivalently, the SINR is stochastically increasing, in the

repulsion of BS deployments. The rigorous proof of this monotonicity is still open.

4 Downlink network models with multiple tiers

We extend the single tier model in the preceding section to the multitier HCN models. Let

K denote a positive integer and let K = {1, 2, . . . ,K}. The model consists of K tiers of BSs,

where the BSs of tier k ∈ K have the specific spatial density λk, transmission power pk, path-loss

function ℓk(r) = ck r
−βk , r > 0, given ck > 0 and βk > 2, and the SINR target threshold θk.

The BSs of tier k are deployed according to a stationary and a.s. simple point process Φk on

R2 with intensity λk. Due to the stationarity of Φk, i ∈ K, we can also focus on a typical user

located at the origin o = (0, 0). As in the single tier model, we assume mutually independent
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Figure 1: Comparison of coverage probability in terms of α in the single tier model (ℓ(r) = r−4,

no noise).

Rayleigh fading from all the BSs and also an independent thermal noise at the origin. We here

consider the unbiased cell association; that is, each user is associated with the BS that offers the

strongest average received power. That is, the typical user at the origin is associated with the

ith BS of tier k, which is deployed at Xk,i, when

pk ℓk(|Xk,i|) ≥ pm ℓm(|Xm,j |) for all (m, j) ∈ K × N, (13)

where pk ℓk(|Xk,i|) represents the average received power at the origin from the ith BS of tier k

since the fading effect is averaged out. Note that the modification to biased association is easy

by introducing the bias factor (see [10]). We propose two distinct models below. In Model 1,

the BSs of the respective tiers are deployed according to mutually independent α-Ginibre point

processes, where the values of α can take different values for the different tiers. In Model 2, on

the other hand, all the BSs are deployed according to an α-Ginibre point process and they are

classified into multiple tiers by mutually independent marks. Note here that, for the Poisson

based models, these two classifications of tiers result in an identical model since the superposition

of mutually independent Poisson processes forms a Poisson process and the independent thinning

of a Poisson process also yields another Poisson process (see e.g., [3, Section 1.3]).
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4.1 Model 1: Mutually independent tiers

The BSs of tier k are deployed according to the αk-Ginibre point process Φk = {Xk,i}i∈N,

where Φk, k ∈ K, are mutually independent and we refer to the BS at Xk,i as BS (k, i). Let

Bo = (ζo, ηo) represent the index of the BS to which the typical user is associated; that is, ζo

denotes the tier with which the typical user is associated and {Bo = (k, i)} = {pk ℓk(|Xk,i|) ≥

pm ℓm(|Xm,j |), (m, j) ∈ K × N} by the unbiased association (13). The SINR of the typical user

is then expresses as

SINR(1)
o =

pζo FBo ℓζo(|XBo |)
Wo + I

(1)
o (Bo)

,

where Fk,i ∼ Exp(1), (k, i) ∈ K×N, represent the fading effect from BS (k, i) to the typical user

and the interference Io is given by

I(1)o (k, i) =
∑

(m,j)∈K×N\{(k,i)}

pm Fm,j ℓm(|Xm,j |). (14)

Theorem 2 Consider the HCN model with K tiers, where the tiers are mutually independent

and the BSs of tier k are deployed according to the αk-Ginibre point process with intensity λk,

k ∈ K. Then, the downlink coverage probability of a typical user is given by

P(SINRo > θζo) =
K∑

k=1

αk

∫ ∞

0

e−s LW

( θk
pk ck

(αk s

π λk

)βk/2)
M

(1)
k (s, θk)S

(1)
k (s, θk) ds, (15)

where

M
(1)
k (s, θ) =

K∏
m=1

∞∏
j=0

(
1− αm +

αm

j!

∫ ∞

C
(1)
k,m(s)

tj e−t

1 + θ
(
C

(1)
k,m(s)/t

)βm/2
dt

)
,

S
(1)
k (s, θ) =

∞∑
i=0

si
(
(1− αk) i! + αk

∫ ∞

s

ti e−t

1 + θ (s/t)βk/2
dt

)−1

,

and

C
(1)
k,m(s) =

π λm

αm

(pm cm
pk ck

)2/βm
(αk s

π λk

)βk/βm

, s ≥ 0. (16)

Proof: The proof is similar to that of Theorem 1 but is slightly complicated due to the multiple

tiers. For k ∈ K, let Φk = {Xk,i}i∈N denote the usual Ginibre point process with intensity λk/αk

and let {ξk,i}i∈N denote the sequence of independent marks of Φk such that P(ξk,i = 1) = αk

and P(ξk,i = 0) = 1− αk. The αk-Ginibre point process Φk is then constructed by

Φk(C) =
∑
i∈N

ξk,i 1C(Xk,i), C ∈ B(C),

10



and the interference (14) is reduced to

I(1)o (k, i) =
∑

(m,j)∈K×N\{(k,i)}

pm ξm,j Fm,j ℓm(|Xm,j |). (17)

Note that {Bo = (k, i)} = {ξk,i = 1} ∩ A(1)
k,i , where

A(1)
k,i =

{
pk ℓk(|Xk,i|) > pm ℓm(|Xm,j |) for (m, j) ∈ (K × N)ξ \ {(k, i)}

}
,

with (K × N)ξ = {(m, j) ∈ K × N | ξm,j = 1}. Thus, we have

P(SINR(1)
o > θζo) =

∑
(k,i)∈K×N

P
(
SINR(1)

o > θk, Bo = (k, i)
)

=
∑

(k,i)∈K×N

αk P

(
Fk,i >

θk (Wo + I
(1)
o (k, i))

pk ℓk(|Xk,i|)
, A(1)

k,i

)
, (18)

where we use that ξk,i is independent of others with P(ξk,i = 1) = αk in the second equality.

Similar to deriving (10) and (11), we have by applying (17),

P

(
Fk,i >

θk (Wo + I
(1)
o (k, i))

pk ℓk(|Xk,i|)
, A(1)

k,i

)
= E

(
LW

( θk

pk ℓk(|Xk,i|)

) ∏
(m,j)∈K×N\{(k,i)}

(
1 + θk ξm,j

pm ℓm(|Xm,j |)
pk ℓk(|Xk,i|)

)−1

1A(1)
k,i

)
. (19)

Here, note that

1A(1)
k,i

=
∏

(m,j)∈K×N\{(k,i)}

1{ξm,j=1, pm ℓm(|Xm,j |)<pk ℓk(|Xk,i|)}∪{ξm,j=0},

so that, applying this to (19) and conditioning on Φk, we have

P(SINR(1)
o > θζo)

=
∑

(k,i)∈K×N

αk E

(
LW

( θk

pk ℓk(|Xk,i|)

)
×

∏
(m,j)∈K×N\{(k,i)}

[
1− αm + αm

(
1 + θk

pm ℓm(|Xm,j |)
pk ℓk(|Xk,i|)

)−1

1{pm ℓm(|Xm,j |)<pk ℓk(|Xk,i|)}

])
.

Thus, applying Proposition 1 such that {|Xk,i|2}i∈N =d {Yk,i}i∈N with Yk,i = αk Zk,i/(π λk)

where Zk,i ∼ Gamma(i, 1) are mutually independent and recalling ℓk(r) = ck r
−βk , r > 0, we

have

P(SINR(1)
o > θζo)
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=
∑

(k,i)∈K×N

αk E

(
LW

( θk
pk ck

(αk Zk,i

π λk

)βk/2)

×
∏

(m,j)∈K×N\{(k,i)}

[
1− αm + αm E

((
1 + θk

(C(1)
k,m(Zk,i)

Zm,j

)βm/2)−1

1{Zm,j>Ck,m(Zk,i)}

∣∣∣ Zk,i

)])
,

where C
(1)
k,m in (16) is applied. Finally, applying the density function of Zk,i to the above, we

obtain (15) after some manipulations.

Remark 3 We find in Theorem 2 that, in the noise-free case, the coverage probability does not

depend on the values of pk and ck, k ∈ K, but on the ratios pm cm/(pk ck), k,m ∈ K. In addition,

if all βk, k ∈ K, are equal, it does not also depend on the values of λk but on the ratios λm/λk,

k,m ∈ K.

4.2 Model 2: Classification by independent marks

In the second model, all the BSs are deployed according to an α-Ginibre point process Φ =

{Xi}i∈N with intensity λ =
∑K

k=1 λk, where we refer to the BS at Xi as BS i. Let {κi}i∈N

denote a sequence of independent marks of Φ such that κi, i ∈ N, are mutually independent and

distributed as P(κi = k) = λk/λ, k ∈ K, i ∈ N; that is, κi represents the tier of BS i. Let Bo

denote the index of the BS to which the typical user is associated. Then, in this model, we have

{Bo = i} = {pκi ℓκi(|Xi|) ≥ pκj ℓκj (|Xj |), j ∈ N} by the unbiased association (13) and the SINR

of the typical user is given by

SINR(2)
o =

pκBo
FBo ℓκBo

(|XBo |)
Wo + I

(2)
o (Bo)

,

with mutually independent fading Fi ∼ Exp(1), i ∈ N, and the interference,

I(2)o (i) =
∑

j∈N\{i}

pκj Fj ℓκj (|Xj |). (20)

Theorem 3 Consider the HCN model with K tiers, where the BSs are deployed according to

the α-Ginibre point process with intensity λ and each BS belongs to the kth tier with probability

λk/λ, k ∈ K, independently of others. Then, the downlink coverage probability of a typical user

is given by

P(SINR(2)
o > θκBo

) = α
K∑

k=1

λk

λ

∫ ∞

0

e−s LW

( θk
pk ck

(α s

π λ

)βk/2)
M

(2)
k (s, θk)S

(2)
k (s, θk) ds, (21)
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where

M
(2)
k (s, θ) =

∞∏
j=0

(
1− α+

α

j!

K∑
m=1

λm

λ

∫ ∞

C
(2)
k,m(s)

tj e−t

1 + θ
(
C

(2)
k,m(s)/t

)βm/2
dt

)
,

S
(2)
k (s, θ) =

∞∑
i=0

si
(
(1− α) i! + α

K∑
m=1

λm

λ

∫ ∞

C
(2)
k,m(s)

ti e−t

1 + θ
(
C

(2)
k,m(s)/t

)βm/2
dt

)−1

,

and

C
(2)
k,m(s) =

(π λ

α

)1−βk/βm
(pm cm
pk ck

)2/βm

sβk/βm , s ≥ 0.

Proof: The proof is similar to those of Theorems 1 and 2, and we note only the differences. As in

the proof of Theorem 1, let Φ = {Xi}i∈N denote the usual Ginibre point process with intensity

λ/α, and let {ξi}i∈N denote the set of independent marks of Φ such that P(ξi = 1) = α and

P(ξi = 0) = 1− α. The interference (20) then reduces to

I(2)o (i) =
∑

j∈N\{i}

pκj ξj Fj ℓκj (|Xj |).

Instead of the event {Bo = i} in the proofs of Theorems 1 and 2, we here use {Bo = i, κi = k} =

{ξi = 1, κi = k} ∩ A(2)
k,i , where

A(2)
k,i =

{
pk ℓk(|Xi|) > pκj

ℓκj
(|Xj |) for j ∈ Nξ \ {i}

}
,

with Nξ = {j ∈ N | ξj = 1}. The remaining procedures are almost the same as those in the

proofs of previous theorems except that we use P(ξi = 1, κi = k) = αλk/λ, i ∈ N, k ∈ K, and

are omitted.

Remark 4 As in Model 1, in the noise-free case, the coverage probability for Model 2 does

not depend on the values of pk and ck, k ∈ K, but on the ratios pm cm/(pk ck), k,m ∈ K.

Furthermore, if all βk, k ∈ K, are equal, it does not depend on the values of λk but on the ratios

λm/λk, k,m ∈ K.

5 Numerical experiments

We compare the analytical results on the coverage probability for the two proposed models as

well as that for the Poisson based model through some numerical experiments. Following [10],

the coverage probability for the Poisson based model is given by

P(SINR(P)
o > θζo) =

K∑
k=1

∫ ∞

0

LW

( θk
pk ck

( v

π λk

)βk/2)
exp

{
−

K∑
m=1

C
(P)
k,m(v)

(
1 + ρ(θk, βm)

)}
dv,

(22)
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where SINR(P)
o denotes the SINR of a typical user in the Poisson based model and

C
(P)
k,m(v) = π λm

(pm cm
pk ck

)2/βm
( v

π λk

)βk/βm

, (23)

ρ(θ, β) =
2 θ2/β

β

∫ ∞

1/θ

u−1+2/β

1 + u
du. (24)

Throughout the experiments, we restrict ourselves to two-tier network models consisting of

macrocells and picocells for simplicity and assume the noise-free case. We further set the path-

loss coefficients and exponents at c1 = c2 = 1 and β1 = β2 = 3; that is, ℓ1(r) = ℓ2(r) = r−3,

r > 0. It is, of course, not difficult to extend these studies to more general settings. Since the

path-loss functions are identical for the different tiers in the noise-free case, the coverage prob-

ability does not depend on the values of pk or λk, k = 1, 2, but on the ratios p1/p2 and λ1/λ2

for both of the two proposed models (see Remarks 3 and 4). We can also find by (22)–(24) that

this is the case for the Poisson based model. We set p1/p2 = 100 in the experiments below.

In the first experiment, we examine the impact of the values of (α1, α2) on the coverage

probability for Model 1. Figure 2 shows the plots of the coverage probability for the given values

of the SINR threshold θ = θ1 = θ2, where the ratio of the intensities is set at λ1/λ2 = 1/3. We

can see that the difference in the values of α2 hardly has the influence on the coverage probability

while the coverage probability decreases when the value of α1 decreases. This implies that the

repulsion in the low-power BSs has little effect on the coverage probability while that in the

high-power BSs has the influence. As expected, the independent configuration (by the Poisson

based model) shows the smallest coverage probability.

In the second experiment, we compare Models 1, 2 and the Poisson based model for varying

ratio of the intensities λ1/λ2. Figure 3 plots the coverage probability for the given values of the

SINR threshold θ = θ1 = θ2, where we fix α1 = α2 = α = 1 for Models 1 and 2. While the values

of coverage probability for Model 2 and Poisson based model remain almost unchanged for the

different values of λ1/λ2, that for Model 1 decreases when the intensity of the tier 2 increases.

This result suggests that, if you would increase the number of low-power BSs, then you should

take care of the repulsion between the different tiers.
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