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Abstract
Solving semidefinite programs (SDP) in a short time is the key to managing various mathe-

matical optimization problems in practical time. The matrix-completion primal-dual interior-point
method (MC-PDIPM) extracts a structural sparsity of input SDP by factorizing the variable ma-
trices, and it shrinks the computation time. In this paper, we propose a new factorization based
on the inverse of the variable matrix to enhance the performance of the MC-PDIPM. We also com-
bine multithreaded parallel computing to resolve the major bottlenecks in the MC-PDIPM. The
numerical results show that the new factorization and the multithreaded computing successfully
reduce the computation time for the SDPs that posses the structural sparsity.
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1 Introduction

SemiDefinite Program (SDP) is considered to be a fundamental problem in mathematical optimiza-
tion. The range of its applications covers from combinatorial optimization [9] to quantum chem-
istry [7, 21], and sensor network localization problems [4]. More applications can be found at Todd’s
survey paper [24], and the range is still expanding. Hence, solving SDPs in a short time is the key
to managing such applications. The primal-dual interior-point method (PDIPM) [1, 11, 15, 18, 22]
is often employed since it can solve SDPs in a polynomial time. Many solvers have been developed
based on the PDIPM, for example, SDPA [26], CSDP [5], SeDuMi [23], and SDPT3 [25]. An
integration with parallel computing [27] enables us to solve large-scale SDPs arising from practical
applications.

A central difficulty of the PDIPM is that the primal variable matrix X must be handled as
a fully-dense matrix even when all the input data matrices A0, . . . ,Am are considerably sparse.
The standard form discussed in this paper is this primal-dual pair.

(P)
min : A0 •X
subject to : Ak •X = bk (k = 1, . . . ,m)

: X ⪰ O

(D)
max :

∑m
k=1 bkzk

subject to :
∑m

k=1Akzk + Y = A0

: Y ⪰ O
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Let Sn be the space of n × n symmetric matrices. The symbol X ⪰ O(X ≻ O) indicates that
X ∈ Sn is a positive semidefinite(definite) matrix. The notationU•V is the inner-product between
U ,V ∈ Sn defined by U • V =

∑n
i=1

∑n
j=1 UijVij . The input data are A0,A1, . . . ,Am ∈ Sn and

b1, . . . , bm ∈ R. The variable in the primal problem (P) is X ∈ Sn, while the variable in the dual
problem (D) is Y ∈ Sn and z ∈ Rm.

The sparsity of the input matrices directly affects the dual matrix Y = A0−
∑m

k=1Akzk. More
precisely, Yij can be nonzero only when (i, j) is covered by the aggregate sparsity pattern defined
by A = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n, [Ak]ij ̸= 0 for some k = 0, . . . ,m}. Here, [Ak]ij is (i, j)th
element of Ak. Some examples of the aggregate sparsity pattern are illustrated in Figures 3 and
4; they are the aggregate sparsity patterns generated from the SDPs we solved in the numerical
experiments.

On the other hand, all the elements of X in the primal problem (P), in general, must be in-
volved to satisfy X ⪰ O. The matrix-completion primal-dual interior-point method (MC-PDIPM)
proposed by [8, 19] showed that the PDIPM can be executed with the factorization of X in the
form

X = LT
1 L

T
2 · · ·LT

ℓ−1DLℓ−1 · · ·L2L1 (1)

where D is a diagonal-block positive semidefinite matrix and L1,L2, . . . ,Lℓ−1 are lower triangular
matrices. A remarkable feature of this factorization is that D and L1,L2, . . . ,Lℓ−1 inherit the
sparsity of A. When A is considerably sparse, these matrices are also sparse, hence, the MC-
PDIPM has a considerable advantage over handling the fully-dense matrix X. The MC-PDIPM
was fist implemented in the solver called SDPA-C(SemiDefinite Programming Algorithm with the
Completion method), a variation of SDPA [26], and it was reported in [8, 19] that the MC-PDIPM
saves much computation cost of solving SDPs with structural sparsity compared to the standard
PDIPM.

The main objective of this paper is further acceleration of the MC-PDIPM. A chief bottleneck in
the MC-PDIPM is the repeated computation of the formXv for v ∈ Rn. The original factorization
(1) can be summarized as X = L TDL with the lower triangular matrix L = Lℓ−1 · · ·L2L1.
Instead of this factorization, we introduce the Cholesky factorization of the inverse of X; X−1 =

L̂L̂
T
. We show that the lower triangular matrix L̂ directly inherits the sparsity from A. Another

obstacle of (1) is that the presence of D is not a standard form of the Cholesky factorization, and
the matrix D prevents us to employ software packages for the sparse Cholesky factorization, such

as CHOLMOD[6] and MUMPS[2]. Removing D by X−1 = L̂L̂
T
enables us to naturally integrate

the MC-PDIPM framework and these packages. Hence we will obtain the result of Xv in a more
effective way and shrink the computation time of MC-PDIPM.

We also introduce multithreaded parallel computing to this new factorization. Most processors
on modern PCs have multiple cores, and we can process some tasks simultaneously on the different
cores. A parallel computing of the MC-PDIPM on multiple PCs connected by a local area network
was already discussed in [20]. On the contrary, in this paper, we employ different parallel schemes
for multithreading on a single PC, since the difference of memory access, between parallel com-
puting with the Message Passing Interface (MPI) protocol on multiple PCs and multithreading on
a single PC, strongly affects the performance of parallel computing. In addition, to enhance the
performance of multithreading, we control the number of threads involved in our parallel schemes.

Based on the existing version SDPA-C 6.2.1, we have implemented the new version SDPA-
C 7.3.8. (The version numbers reflect the versions of SDPA from which SDPA-C branches.) In the
numerical experiments, we show that the new SDPA-C 7.3.8 successfully reduces the computation

time due to the effectiveness of X−1 = L̂L̂
T
. We also show that the multithreaded computation

further expands the difference in the computation time between SDPA-C 6.2.1 and 7.3.8.
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This paper is organized as follow. In Section 2, we introduce the two preliminary concepts, the
positive matrix completion and the PDIPM. Section 3 will be the main part of this paper, where
we will describe the new implementation in details. Section 4 presents the numerical results to
show its performance. In Section 5, we summarize this paper and discuss future directions.

Throughout this paper, we use |S| to denote the number of elements of the set S. For a matrix
X and two sets S, T ⊂ {1, . . . , n}, we use the notation XST to denote the sub-matrix of X that

collects the elements of Xij with i ∈ S and j ∈ T ; for example, X{2,6},{3,4} =

(
X23 X24

X63 X64

)
.

2 Preliminaries

Here, we briefly describe the basic concepts of the positive matrix completion and the PDIPM.
For more details on the two and their relation, refer to [8, 19] and references therein.

2.1 Positive Matrix Completion

The positive matrix completion is closely related to the Cholesky factorization of the variable
matrices X and Y , in the context of the PDIPM framework. When Y = A0 −

∑m
k=1Akzk is

positive definite, we can apply the Cholesky factorization to obtain the lower triangular matrix
N such that Y = NNT . However, this factorization, in general, generates nonzero elements out
of A, and this phenomenon is called fill-in. Therefore, A is not enough to cover all the nonzeros
in N . It is known that we can prepare a set of appropriate subsets C1, . . . , Cℓ ⊂ {1, 2, . . . , n} so
that the set E = ∪ℓr=1(Cr × Cr) covers the nonzero positions of A and the fill-in. These subsets
C1, . . . , Cℓ ⊂ {1, 2, . . . , n} are called cliques in this paper due to a relation with graph theory, and
they are obtained by the three steps; we permute the rows/columns of Y with an appropriate
order like approximation minimum ordering, then we generate a chordal graph from A, and we
extract the maximal cliques there as C1, . . . , Cℓ.

The set E is called the extended sparsity pattern. Throughout this paper, we assume that E is
considerably sparse; |A| and |E| are much less than fully-dense case n2, for instance, |A| ≤ |E| <
10−2 × n2 for large n. In addition, we assume for simplicity that C1, . . . , Cℓ ⊂ {1, 2, . . . , n} are
sorted in an appropriate order which satisfies the nice property called the running intersection
property in [8]. Such an order can be easily derived from the chordal graph.

Grone et al. [10] proved that if a given matrix X satisfies the positive definite conditions on all
the sub-matrices induced by the cliques C1, C2, . . . , Cℓ, that is, X satisfies XC1C1 ≻ O,XC2C2 ≻
O, . . . ,XCℓCℓ

≻ O, then X can be completed to X such that XCrCr = XCrCr for r = 1, . . . , ℓ

and the entire matrix X is positive definite. Furthermore, it was shown in [8] that the explicit

formula (2) below completes X to the max-determinant completion X̂ which satisfies

det(X̂) = max{det(X) : XCrCr = XCrCr for r = 1, . . . , ℓ, X ≻ O}.

The sparse factorization of X̂ from X is given by

X̂ = LT
1 L

T
2 . . .LT

ℓ−1DLℓ−1 . . .L2L1, (2)

where L1,L2, . . . ,Lℓ−1 are the triangular lower matrices of form

[Lr]ij =


1 (i = j)[
X

−1
UrUr

XUrSr

]
ij

(i ∈ Ur, j ∈ Sr)

0 (otherwise)

(3)
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and D is the diagonal-block matrix

D =


DS1S1

DS2S2

. . .

DSℓSℓ

 (4)

with

Sr = Cr\(Cr+1 ∪ Cr+2 ∪ · · · ∪ Cℓ) (r = 1, 2, . . . , ℓ)

Ur = Cr ∩ (Cr+1 ∪ Cr+2 ∪ · · · ∪ Cℓ) (r = 1, 2, . . . , ℓ)

and

DSrSr =

{
XSrSr −XSrUrX

−1
UrUr

XUrSr (r = 1, 2, . . . , ℓ− 1)

XSℓSℓ
(r = ℓ)

.

It can be shown that the triangular lower matrix L defined by L = Lℓ−1 . . .L2L1 is usually

fully-dense, destructing the structural sparsity of E . Therefore, when we compute w = X̂v =
LTDLv for some vector v ∈ Rm, constructing fully-dense L is not an efficient way. We should
note that it can be shown the inverse L−1 keeps the sparsity of E , that is, [L−1]ij = 0 if (i, j) /∈ E ,
and L−1 is a lower triangular matrix[19]. Hence, solving the two equations L−1w1 = v and
L−Tw = Dw1 can be done with the forward/backward substitutions by exploiting the structure
of E more effectively, and can compute w much faster. In addition, we do not need to compose
fully-dense X̂ via the multiplication of LTDL. This idea saves the computation cost of PDIPM
as discussed in the next subsection.

2.2 Primal-Dual Interior-Point Method

This subsection briefly describes the primal-dual interior-point method(PDIPM) and the modifi-
cation of the computation formula of the PDIPM by the positive matrix completion method.

A basic framework of the PDIPM can be summarized as follow.

A basic framework of the primal-dual interior-point method

Step 0 Prepare an initial point (X,Y , z) such that X ≻ O and Y ≻ O. Choose parameters β from
0 < β < 1 and γ from 0 < γ < 1.

Step 1 If (X,Y , z) satisfies some stopping criteria, output (X,Y , z) as a solution and terminate.

Step 2 Compute a search direction (dX, dY , dz) based on a modified Newton method.

Step 3 Compute the maximum step length αp and αd

αp = max{α ∈ (0, 1] : X + αdX ⪰ O} (5)

αd = max{α ∈ (0, 1] : Y + αdY ⪰ O}.

Step 4 Update (X,Y , z) with (X + γαpdX,Y + γαddY , z + γαddz). Go to Step 1.
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The heaviest computation in the above framework is usually the computation of the search
direction (dX, dY , dz). When we employ the HKM direction [11, 15, 18], the search direction can
be obtained by the following system,

Bdz = g (6)

dY = G−
m∑
k=1

Akdzk

d̂X = βµY −1 −X −XdY Y −1, dX = (d̂X + d̂X
T
)/2 (7)

where

Bij = (XAiY
−1) •Aj (i = 1, . . . ,m, j = 1, . . . ,m) (8)

gk = Ak • (βµY −1 −X −XGY −1) (k = 1, . . . ,m)

with µ = X•Y
n , G = A0 −

∑m
k=1Akzk. The linear system (6) is often called the Schur comple-

ment equation(SCE) and its coefficient matrix, evaluated by (8), is called the Schur complement
matrix(SCM). We first solve the SCE (6) to obtain dz, and then we compute dY and dX.

The matrix completion (1) enables us to replace the fully-dense matrices X̂ and Y −1 with their
sparse matrices in the above computation. As pointed out in [28], one of the main computation
bottleneck is the evaluation of SCM B. From the property of inner-product, the change from X
to X̂ in the formula (8) does not affect Bij , therefore, its formula can be transformed into

Bij = (X̂AiY
−1) •Aj

=

m∑
k=1

(LTDLek)
TAi(N

−TN−1[Aj ]∗k) (9)

where ek and [Aj ]∗k are the kth columns of I and Aj , respectively.
In addition, we modify the computation of the primal search direction dX by evaluating its

auxiliary matrix d̂X in column-wise.

[d̂X]∗k = βµY −1ek − X̂ek − X̂dY Y −1ek

= βµN−TN−1ek −LTDLek −LTDLdY N−TN−1ek (10)

As pointed out in the previous subsection, we can avoid the the fully-dense matrices X̂ and Y −1

in (9) and (10) by solving the linear equations that involve the sparse matrices L −1 and N .The
computation of the step length αp in (5) is also decomposed into the sub-matrices

α̂p = min
r=1,2,...,ℓ

max{α ∈ (0, 1] : XCrCr + αdXCrCr ⪰ O}, (11)

so that XCrCr + α̂pdXCrCr is positive definite for r = 1, . . . , ℓ enough to be completed to the

positive definite matrix X̂.
The numerical results in [19] indicated that the remove of the fully-dense matrices X̂ and Y −1

makes the MC-PDIPM run more effectively than the standard PDIPM (i.e. a PDIPM which does
not use the positive matrix completion method) for some types of SDP that have the structural
sparsity in E .
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3 Fast implementation in the matrix-completion primal-dual interior-
point method

The MC-PDIPM was first implemented in the solver SDPA-C 5[19]. Along with the update of
SDPA based on the standard PDIPM to version 6, SDPA-C was also updated to SDPA-C 6.
SDPA-C 6 utilized the BLAS (Basic Linear Algebra Subprograms) library [16] to accelerate the
linear algebra computation involved in the MC-PDIPM.

The new SDPA-C, version 7.3.8, in this paper further reduces the computation time of the
latest version 6.2.1. In this section, we describe the new features of SDPA-C 7.3.8; the change
in the factorization of X̂, and the multithreaded parallel computing for the SCM B and the
primal auxiliary direction d̂X. In this paper, we abbreviate SDPA-C 6.2.1 and SDPA-C 7.3.8 to
SDPA-C 6 and SDPA-C 7, respectively.

3.1 New Factorization of the Completed Matrix

The factorization of X̂ into X̂ = LTDL is not a standard Cholesky factorization due to the
diagonal-block matrix D. Hence we could not employ software packages for the sparse Cholesky

factorization. The completed matrix X̂ is usually fully-dense, while the sparsity of its inverse X̂
−1

inherits the structure of E , i.e., [X̂
−1

]ij = 0 for (i, j) /∈ E . Therefore, we focus X̂
−1

rather than

X̂ and introduce the new factorization of form X̂
−1

= L̂L̂
T
with the lower-triangular matrix L̂.

We want to emphasize here that L̂ also inherits the structure of E . In this subsection, we show
that we can obtain the factorized matrix L̂ from X in an efficient way using the structure of Sr

and Cr (r = 1, . . . , ℓ).
The algorithm to obtain L̂ can be summarized as Algorithm 1. The input of this algorithm isX,

and since X should be completed to the positive definite matrix X̂, we suppose that XCrCr ≻ O
(r = 1, . . . , ℓ). The validity of algorithm will be discussed later.

Algorithm 1: An efficient algorithm to obtain the Cholesky factorization of the inverse
of the completed matrix

Step 1 Initialize the memory space for L̂ by E = ∪ℓr=1(Cr × Cr).

Step 2 For r = 1, . . . , ℓ, apply the Cholesky factorization to X
−1
CrCr

to obtain the lower triangular

matrix Lr that satisfies X
−1
CrCr

= LrL
T
r . To avoid computing X

−1
CrCr

, we use the following
steps.

Step 2-1 Let P r be the permutation matrix of the dimension |Cr| × |Cr| with{
[P r]ij = 1 if i+ j = |Cr|+ 1

[P r]ij = 0 otherwise

so that P rXCrCrP
T
r has the inverse row/column order of XCrCr .

Step 2-2 Apply the Cholesky factorization to P rXCrCrP
T
r to obtain the lower triangular matrix

M r that satisfies P rXCrCrP
T
r = M rM

T
r .

Step 2-3 Let Lr be P rM
−T
r P T

r .

Step 3 For r = 1, . . . , ℓ, put the first |Sr| columns of Lr to the memory space of L̂CrSr .
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Algorithm 1 requires neither the fully-dense X̂ nor its inverse X̂
−1

. In addition, since most
computation is devoted to the Cholesky factorization of P rXCrCrP

T
r , we can expect considerable

reduction in the computation time when the extended sparsity pattern E is decomposed into small
C1, C2, . . . , Cℓ. Furthermore, Algorithm 1 assures that all the nonzero elements of L̂ appear only
in E .
Proof of Algorithm 1:

We prove the validity of Algorithm 1 based on Lemma 2.6 of [8]. For simplicity, we here focus the
fist clique C1 and wrap up the other clique into C ′

2 := ∪ℓr=2Cr. The other cliques C2, . . . , Cr can be
handled in the same way by the induction on the number of cliques due to the running intersection
property. In addition, from this property, we can suppose that i < j for i ∈ C1 and j ∈ C ′

2\C1. For
X ∈ Sn, we decompose {1, 2, . . . , n} into three sets S = C1\C ′

2, U = C1∩C ′
2 and T = C ′

2\C1. Note
that the extended sparsity pattern E of X is covered by ((S ∪ U)× (S ∪ U))∪((U ∪ T )× (U ∪ T )).
Hence, the situation we consider here is that X is of form

X =

 XSS XSU ?

XUS XUU XST

? XSU XTT


with unknown elements ? in the position (S × T ) ∪ (T × S), and the sub-matrices induced by the
cliques C1, C

′
2 are positive definite,

XC1C1 =

(
XSS XSU

XUS XUU

)
≻ O, XC′

2C
′
2
=

(
XUU XUT

XTU XTT

)
≻ O.

Note that C1 = S ∪ U and C ′
2 = U ∪ T in this situation. Lemma 2.6 of [8] claims that X is

completed to the max-determinant positive definite matrix X̂ of form

X̂ =

 XSS XSU XSUX
−1
UUXUT

XUS XUU XST

XTUX
−1
UUXUS XSU XTT

 ≻ O.

Hence, the validity of Algorithm 1 is now reduced to the proof of X̂ = L̂
−T

L̂
−1

. In Step 2, we
factorize the inverse of the positive definite sub-matrices into the lower triangular matrices by the
Cholesky factorization as follow.(

XSS XSU

XUS XUU

)−1

=

(
MSS

MUS MUU

)(
MT

SS MT
US

MT
UU

)
(

XUU XUT

XTU XTT

)−1

=

(
NUU

NTU NTT

)(
NT

UU NT
TU

NT
TT

)
.

Since the matrices in the left-hand side are positive definite, we can take the inverse of components
of the right-hand side, e.g., M−1

SS . By comparing the elements of both-sides, we obtain

XSS = M−T
SS M

−1
SS +M−T

SS M
T
USM

−T
UUM

−1
UUMUSM

−1
SS

XSU = −M−T
SS M

T
USM

−T
UUM

−1
UU

XUU = M−T
UUM

−1
UU = N−T

UUN
−1
UU +N−T

UUN
T
TUN

−T
TTN

−1
TTNTUN

−1
UU

XUT = −N−T
UUN

T
TUN

−T
TTN

−1
TT

XTT = N−T
TTN

−1
TT .

(12)
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In Step 3, the structure of C1 and C ′
2 locates the elements of the above factorized matrices into

L̂ as

L̂ =

 MSS

MUS NUU

NTU NTT

 , (13)

and because L̂ is lower triangular, its inverse can be explicitly expressed by

L̂
−1

=

 M−1
SS

−N−1
UUMUSM

−1
SS N−1

UU

N−1
TTNTUN

−1
UUMUSM

−1
SS −N−1

TTNTUN
−1
UU N−1

TT

 .

The multiplication L̂
−T

L̂
−1

and the relation of (12) leads to X̂ = L̂
−T

L̂
−1

. This completes the
validity of Algorithm 1. □

With this new factorization, the evaluation formula of SCM (9) and the primal auxiliary
matrix (10) will be replaced by their efficient ones,

Bij =

m∑
k=1

(L̂
−T

L̂
−1

ek)
TAi(N

−TN−1[Aj ]∗k) (14)[
d̂X

]
∗k

= βµN−TN−1ek − L̂
−T

L̂
−1

ek − L̂
−T

L̂
−1

dY N−TN−1ek. (15)

To implement this new factorization based on Algorithm 1 into SDPA-C 7, the five types of
the computation related to Cholesky factorization should be employed;

(i) the dense Cholesky factorization for the SCM B and its forward/backward substitution for
the SCE(6) if B is fully-dense

(ii) the sparse Cholesky factorization for the SCM B and its forward/backward substitution for
the SCE(6) if B is considerable sparse

(iii) the dense Cholesky factorization for the sub-matrices XC1C1 , . . . ,XCℓCℓ
in Step 2 of Algo-

rithm 1

(iv) the forward/backward substitution of L̂ to solve the linear systems of form L̂L̂
T
w = v

(v) the sparse Cholesky factorization for the dual variable matrix Y = NNT and the for-
ward/backward substitution of N to solve the linear systems of form NNTw = v.

For the cases (i) and (ii), the sparsity of the SCM B heavily depends on the types of application
that generates the input SDP, as pointed out in [27]. For example, the SDPs generated from
quantum chemistry [7, 21] have fully-dense SCMs, while the density of SCMs of SDPs arising
from the sensor network localization problems [14] are often less than 1%. Hence, we should
choose appropriate software packages for the fully-dense and sparse SCMs. We employed the
dense Cholesky factorization routine of LAPACK [3] for (i) and the sparse Cholesky factorization
routine of MUMPs [2] for (ii), and we select one of these two routines based on the criteria proposed
in [27] with the information from the input SDP. The LAPACK routine is also applied to the case
(iii).

For the cases (iv) and (v), we choose CHOLMOD[6] rather than MUMPS[2], since we access the
internal data structure of software package in order to locate L̂r in the appropriate space of L̂ in
Step 3 of Algorithm 1. CHOLMOD internally uses a super-nodal Cholesky factorization. We notice
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that the row sets and the column sets of super-nodes computed in CHOLMOD satisfy the running
intersection property, hence the row sets and the columns sets can be used as C1, C2, . . . , Cℓ and
S1, S2, . . . , Sℓ, respectively. CHOLMOD determines the size of super-nodes appropriately using
some heuristics like approximate minimum ordering so that the sparse Cholesky factorization
and the forward/backward substitution can be processed effectively using the BLAS library. In
addition, the structure of memory space allocated for primal L̂ is identical with that of dual N in
the MC-PDIPM. Hence, we first obtain the structure of N by constructing the aggregate sparsity
pattern A and applying CHOLMOD to obtain its symbolic sparse Cholesky factorization, then we
can extract its super-node information (C1, C2, . . . , Cℓ and S1, S2, . . . , Sℓ) to prepare the memory
space for L̂.

Table 1 shows a computation time reduction due to the new factorization of X̂. We compare the
computation time of SDPA-C 6 with the new SDPA-C 7 on an SDP which is a relaxation of max-
clique problem on a lattice graph with the parameters p = 300 and q = 10. The details of this SDP
and the computation environment will be described in Section 4. The dimension of the variable
matricesX and Y is n = p×q = 3000, and the extended sparsity pattern E are decomposed into 438
cliques, C1, . . . , C438. Since the maximum cardinality of cliques, max{|Cr| : r = 1, . . . , 438}, is only
59, the matrices are decomposed into the small cliques. To specify the computation bottlenecks;
we use the following names of three representative bottlenecks, S-ELEMENT is the evaluation time
of the SCM elements by (6), (9) or (14), S-CHOLESKY is the appropriate Cholesky factorization

routine for the SCM, and P-MATRIX is the computation of the primal auxiliary matrix d̂X by
(7), (10) or (15).

Table 1: Computation time reduction due to the new factorization (the time unit is second.)
SDPA-C 6.2.1 SDPA-C 7.3.8

S-ELEMENTS 4205.70 2094.03
S-CHOLESKY 185.36 161.03
P-MATRIX 316.00 242.51

Other 22.22 17.93

Total 4729.28 2515.50

Table 1 indicates that the new factorization reduced the evaluation time of SCM (4205 seconds)
to half (2094 seconds). The computation time on P-MATRIX was also shrunk from 316 seconds to
242 seconds. Consequently, the new factorization brought us 1.88-times speedup. This is because
it does not require the diagonal-block matrix D as the original factorization and it enables us
to use the existing efficient package CHOLMOD. As we will show in Section 4, the effect will be
amplified for the larger SDPs.

3.2 The matrix-completion primal-dual interior-point method with multithreaded
parallel computing

To enhance the performance of SDPA-C 7 further, we also take advantage of multithreaded parallel
computing. Since the processors on modern PCs have multiple cores (computation unit), we can
assign different threads (computation tasks) to the cores and run the multiple tasks simultaneously.
For example, multithreaded BLAS libraries are often employed to reduce the time related to linear
algebra computation in a variety of numerical optimization problems. However, the effect of
multithreaded BLAS libraries is limited to dense linear algebra computation. Hence, we should
apply multithreaded parallel computing not only to the dense linear algebra computation but also
to the upper level of MC-PDIPM.
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We embed multithreaded parallel computing into SDPA-C 7 to resolve the three bottlenecks
of MC-PDIPM, S-ELEMENTS, S-CHOLESKY, and P-MATRIX. A parallel computing for these
bottlenecks was already examined in SDPARA-C [20] with the MPI(Message Passing Interface)
protocol on multiple PCs. To apply multithreaded parallel computing on a single PC, however,
we need different parallel schemes. In this section, we use u to denote the number of cores that
participate in multithreaded computation.

We start our discussion from S-ELEMENTS. The SCM is evaluated by the formula (14), and

we can reuse the results of L̂
−T

L̂
−1

ek and N−TN−1 [Aj ]∗k for all the element in [B]∗j , that is,
the j-th column of B. On the other hand, we can not reuse their results for different columns of

B, since the memory storage of L̂
−T

L̂
−1

ek for all k = 1, . . . , n is equivalent to hold the fully-dense
matrix X̂. It means that we lose the nice sparse structure of E .

Since the computation of each column [B]∗j is independent from the other columns {[B]∗i :
1 ≤ i ≤ m, i ̸= j}, SDPARA-C simply employs the column-wise distribution, in which the p-th
thread evaluates the columns assigned by the set Sp = {j : 1 ≤ j ≤ m, (j − 1) mod u = p − 1},
where a mod b stands for the remainder of the division of a by b. This simple assignment was
necessary for SDPARA-C. since the memory space of B was assumed to be distributed to multiple
PCs and we had to fix the column assignments in order not to send the evaluation result on
a PC to another PC with heavy network communication. On the contrary, all the threads of
multithreading can share the memory space, since they run on a single PC. Hence, we can propose
more aggressive parallel schemes as follow to improve the load-balance over all the threads.

Algorithm 2: Multithreaded parallel computing for the evaluation of SCM

Step 1 Initialize the SCM B = O. Set S = {1, 2, . . . ,m}.

Step 2 Generate u threads.

Step 3 For p = 1, 2, . . . , u, run the p-th thread on the p-th core to execute the following steps:

Step 3-1 If S = ∅, terminate.

Step 3-2 Take the smallest element j from S and update S ← S\{j}.
Step 3-3 Evaluate [B]∗j by

for k = 1, . . . , n
Apply the forward/backward substitution routine of CHOLMOD

to obtain v1 := L̂
−T

L̂
−1

ek and v2 := N−TN−1 [Aj ]∗k.
for i = 1, . . . ,m

Update Bij ← Bij + vT
1 Aiv2.

Figure 1 shows an example of the thread assignment to the SCM B where B ∈ S8 and u = 4.
Note that we evaluate only the lower triangular part of B, since B is symmetric. Now we have 4
threads, thus the p-th thread evaluates the p-th column for p = 1, 2, 3, and 4 in the beginning. Let
us assume the computation cost is same over all Bij in Figure 1, then the 4th thread will finish its
column evaluation in the shortest time among the 4 threads, so the 4th thread will next evaluate
the 5th column. Then, the 3rd thread will finish its first task, and move to the 6th column. On
the other hand, if the 4th column requires more computation time than the 3rd column, the 3rd
thread will take the 5th column and then the 4th thread will evaluate the 6th column.

The overhead in Algorithm 2 is only Step 3-2 where we should guarantee that only one thread
can enter Step 3-2 at the same time. Hence, we can expect Algorithm 2 attains better load-
balance than the simple column-wise distribution employed in SDPARA-C. In particular, the main
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Figure 1: Thread assignment to the Schur complement matrix B

computation cost of each column [B]∗j is L̂
−T

L̂ek and N−TN−1 [Aj ]∗k, therefore it is almost
proportional to the number of nonzero columns of Aj . When only a few of A1, . . . ,Am have
too-many nonzero columns and the others have only a few, the simple column-wise distribution is
difficult to keep nice load-balance. Algorithm 2 can naturally overcome this difficulty.

When we implement Algorithm 2 in the MC-PDIPM, we should pay attention to the number of
threads generated by the BLAS library that CHOLMOD internally calls for the forward/backward

substitution, L̂
−T

L̂ek and N−TN−1 [Aj ]∗k. For example, assume 4 cores are available(u = 4),
if we generate 4 threads in Step 2 of Algorithm 2 and each thread internally generates 4 threads
for the BLAS library, then we need to manage 16 threads in total on the 4 cores. The overhead
of this management is considerably heavy, and when we implemented the multithreaded parallel
computing in this way, SDPA-C took at least 10 times longer computation time than the single-
thread computing. Therefore, we turn off the multithreading of the BLAS library before entering
the forward/backward substitution routine, and turn it on again after the computation of the
routine. This enables us to resolve the thread conflicts.

Now, we move our focus to S-CHOLESKY and P-MATRIX. For S-CHOLESKY, we verified
from preliminary experiments that the usage of multithreaded BLAS library is enough for both
LAPACK and MUMPS to derive the performance of multithreaded parallel computing. In P-
MATRIX, the primal auxiliary matrix d̂X is evaluated by the formula (15). Since this formula

naturally indicates the independence of d̂X columns, the simple column-wise distribution was
employed in SDPARA-C. In the multithreading, all the threads can share the memory space.
Hence, we can replace the column-wise distribution with the first-come first-served concept, the
same parallel concept as Algorithm 2. We also apply the above scheme to control the number of
threads involved in the parallel computing.

Table 2 shows the computation time reduction by the multithreaded parallel computing. We
compare the results of the existing SDPA-C 6, the new SDPA-C 7, and SDPARA-C 1 on the same
SDP as Table 1. In each bottleneck, the upper row is the computation time, and the lower row is
the speed-up ratio compared to a single thread.

In Table 2, SDPA-C 7 with 4 threads reduced S-ELEMENTS from 2094.03 seconds on a single
thread to 731.98 seconds, resulting 2.86-times speed-up. The computation time on P-MATRIX
was also shrunk from 242.51 seconds to 83.54 seconds, and we obtained 2.90-times speed-up.
Consequently, these time reductions brought us the speed-up in the total time from 2515.50 seconds
to 889.15, 2.82-times speed-up.
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Table 2: Computation time reduction due to the multithreaded computing (the time unit is
second.)

SDPA-C 6 SDPARA-C 1 SDPA-C 7

threads 1 1 2 4 1 2 4

S-ELEMENTS 4205.70 3103.51 1904.64 1309.88 2094.03 1170.37 731.98
1.00x 1.62x 2.36x 1.00x 1.78x 2.86x

S-CHOLESKY 185.36 312.41 110.76 65.12 161.03 85.24 47.77
1.00x 2.82x 4.79x 1.00x 1.88x 3.37x

P-MATRIX 316.00 316.04 159.32 81.34 242.51 131.03 83.54
1.00x 1.98x 3.88x 1.00x 1.85x 2.90x

Other 22.22 32.80 44.76 40.69 17.93 23.88 25.86

Total 4729.28 3764.84 2219.48 1497.03 2515.50 1410.52 889.15
1.00x 1.63x 2.51x 1.00x 1.78x 2.82x

When we compared SDPA-C 6 that run using only a single thread with SDPA-C 7 with 4
threads, we obtained 5.31-times speed-up. Table 2 indicates the parallel schemes discussed above

are effectively integrated into the MC-PDIPM and the new factorization X̂
−1

= L̂L̂
T
.

In addition, SDPARA-C 1 consumed longer time than SDPA-C 7 and this was mainly due to
the overhead of MPI protocol. Since the MPI protocol has been designed for multiple PCs, it
is not appropriate for a single PC, and multithreaded computation achieves better performance
on a single PC. In addition, Algorithm 2 works more effectively in multithreaded computing
environment than the simple column-wise distribution of SDPARA-C. This result demonstrates
that the speedup of SDPA-C 7 for S-ELEMENTS on 4 threads was 2.86, and it was higher than
2.36, that of SDPARA-C 1.

4 Numerical Experiments

In this section, we present some numerical results to evaluate the performance of SDPA-C 7. The
computing environment was RedHat Linux with Xeon X5365(3.0GHz, 4cores) and 48GB memory
space. We used the three groups of test problems; the max-clique problems over lattice graphs,
the max-cut problems over lattice graphs, and the spin-glass problems.

The max-clique problems over lattice graphs
We consider a graph G(V,E) with the vertex set V = {1, . . . , n} and the edge set E ⊂ V × V .

A vertex subset S ⊂ V is called a clique if (i, j) ∈ E for ∀i ∈ S,∀j ∈ S. The max-clique problem
is to find a clique which attains the maximum cardinality among all cliques in G(V,E).

Though the max-clique problem itself is NP-hard, Lovász [17] proposed an SDP relaxation
method to obtain a good approximation in polynomial time. The SDP problem below gives a
good upper bound of the max-clique cardinality for G(V,E),

max : eeT •X
subject to : I •X = 1(

eie
T
j + eje

T
i

)
•X = 0 for (i, j) /∈ E

X ⪰ O.

For the numerical experiments, we generated SDPs of this type over lattice graphs. A lattice
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graph G(V,E) is determined by the two parameters p and q, with the vertex set being V =
{1, 2, . . . , p× q} and the edge set E = {(i+ (j − 1)× p, (i+ 1) + (j − 1)× p) : i = 1, . . . , p− 1, j =
1, . . . , q}∪{(i+ (j − 1)× p, i+ j × p) : i = 1, . . . , p, j = 1, . . . , q−1}. An example of lattice graphs
is shown in Figure 2, where the parameters are p = 4, q = 3.

1
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10

117

8 12

2

3

4

Figure 2: The lattice graph with the parameters p = 4, q = 3.

We applied the pre-processing technique proposed in [8] to convert the above SDP into an
equivalent SDP which have better sparsity. The aggregate sparsity pattern A for the max-clique
SDP with p = 300, q = 10 is illustrated in Figure 3. To draw Figure 3, we applied the approximate
minimum degree heuristics to A and this shows that the structural sparsity embedded in this SDP.
Then, the sizes of cliques C1, . . . , Cℓ can be much smaller compared to n = p×q = 300×10 = 3000.
This A does not incur any fill-in, that is, E = A. This SDP was the example SDP solved in
Section 3.
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Figure 3: The aggregate sparsity pattern A for the max-clique SDP with p = 300, q = 10.

The max-cut problems over lattice graphs
The SDP relaxation method for the max-cut problems due to Goemans and Williamson [9]

has been well-known, since it was a starting point of SDP relaxation studies. We consider a graph
G(V,E) with the vertex set V = {1, . . . , n} and the edge set E ⊂ V × V . Each edge (i, j) ∈ E has
the corresponding non-negative weight wij (for simplicity, wij = 0 if (i, j) /∈ E). The weight of cut
C ⊂ V is the total weight of edges that traverse between C and V \C. The max-cut problem is to
find a subset C which maximizes the cut weight,

max :
∑

i∈C,j∈V \C

wij subject to : C ⊂ V.
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An SDP relaxation of this problem is given by

min : A0 •X
subject to :

(
eie

T
i

)
•X = 0 for i = 1, . . . , n

X ⪰ O,

where A0 = (−diag(We) +W ), W is the matrix whose (i, j) element is wij for i = 1, . . . , n, j =
1, . . . , n, e is the vector in which all elements are 1, and diag(w) is the diagonal matrix whose
diagonal elements are the elements of w.

When we generate SDP problems from the max-cut problem over the lattice graphs, the struc-
ture of graph will appear in the coefficient matrix the objective function A0. Hence, we can find
a similar structure in its aggregate sparsity pattern as Figure 3.

The spin-glass problems
The four SDPs of this type were collected as the torus set in the 7th DIMACS benchmark

problems[12]. These SDPs arise from the computation for the ground-state energy of Ising spin
glasses in quantum chemistry. More information on this energy computation can be found at the
web-page of Spin Glass Server [13] and the reference therein.

The Ising spin-glass model has the parameter p (the number of samples), and if generate an
SDP from a 3D spin-glass model, then the dimension of the variable matrices X and Y is n = p3.
Figure 4 illustrates the aggregate sparsity pattern A of the spin-glass SDP with p = 23 and
n = 233 = 12167.
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Figure 4: The aggregate sparsity pattern A of the spin-glass SDP with p = 23.

Table 3 summarizes the SDPs we used for the numerical experiments. The first column is the
name of SDP and the second p is the parameter to generate the SDP (We fix the parameter q = 10
for the max-clique problems and the max-cut problems). The third column n is the dimension of
the variable matrices X and Y . The fourth column is the density of aggregate sparsity pattern

defined by |A|
n2 . The fifth column ℓ is the number of cliques (C1, . . . , Cℓ), and the sixth and seventh

columns are the average and maximum sizes of the cliques defined by
∑ℓ

r=1 |Cr|
ℓ and maxr=1,...,ℓCr,

respectively. The eighth(last) column m is the number of input data matrices A1, . . . ,Am.
In this section, we compare the computation time of the existing SDPA-C 6 [20], the new

SDPA-C 7, and SDPA 7 [26] and SeDuMi 1.3 [23]. The former two implement the MC-PDIPM,
while the latter two implement the standard PDIPM. Here, we do not conduct the numerical
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Table 3: The size of SDPs for the numerical experiments
Name p n density ℓ ave-size max-size m

MaxClique300 300 3000 0.38% 348 28.36 51 5691
MaxClique400 400 4000 0.28% 439 29.89 59 7591
MaxClique500 500 5000 0.23% 581 28.26 50 9491

MaxCut400 400 4000 0.15% 1282 8.05 26 4000
MaxCut500 500 5000 0.12% 1607 8.04 26 5000
MaxCut600 600 6000 0.097% 1932 8.04 26 6000
MaxCut800 800 8000 0.072% 2582 8.03 26 8000
MaxCut1000 1000 10000 0.058% 3232 8.02 26 10000
MaxCut1200 1200 12000 0.048% 3882 8.02 26 12000

SpinGlass10 10 1000 0.80% 155 25.69 294 1000
SpinGlass15 15 3375 0.24% 191 29.97 773 3375
SpinGlass18 18 5832 0.13% 1118 28.13 913 5832
SpinGlass20 20 8000 0.10% 1737 25.75 1080 8000
SpinGlass23 23 12167 0.066% 2556 27.30 1488 12167
SpinGlass25 25 15625 0.051% 3173 29.50 1798 15625

experiment on SDPARA-C, since the overhead due to the MPI protocol is a severe disadvantage
when we run it on a single PC, as shown in Section 3.2.

Table 4 shows the computation time of four solvers using their default parameters. We used 4
threads for SDPA-C 7 and SDPA 7. The symbol ’>2days’ in the table indicates that we gave up
the SeDuMi execution since it required at least two days.

Table 4: The computation time of four solvers for the SDPs in Table 3 (the time unit is second.)
Name SDPA-C6 SDPA-C7 SDPA 7 SeDuMi1.3

MaxClique300 4792.28 889.15 11680.12 10260.15
MaxClique400 12681.16 1903.13 26159.40 24824.05
MaxClique500 19973.98 3733.41 38265.02 46168.56

MaxCut400 386.80 539.22 3686.78 16779.68
MaxCut500 683.27 876.81 6548.26 32557.13
MaxCut600 1194.89 1295.01 11098.35 60444.33
MaxCut800 2518.80 2371.43 25377.62 146235.81
MaxCut1000 4301.11 4032.80 47270.45 >2days
MaxCut1200 7400.28 6030.00 75888.85 >2days

SpinGlass10 50.10 20.77 11.85 228.71
SpinGlass15 1306.00 560.40 336.40 13789.58
SpinGlass18 6734.40 2136.88 1522.60 68570.89
SpinGlass20 15450.13 4552.10 3726.03 >2days
SpinGlass23 55942.57 13184.25 12598.14 >2days
SpinGlass25 107502.48 24913.20 26023.67 >2days

We now examine the details of Table 4. For the max-clique problems, the MC-PDIPM solvers
were faster than the standard PDIPM solvers. Since the matrix-completion method derived the
nice property of lattice graphs; even SDPA-C 6 was twice faster than SDPA 7. The detail time on
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MaxClique400 is displayed in Table 5 (Since SeDuMi does not print out its internal computation
time, we do not list its detail time). As shown in the column of SDPA 7, the standard PDIPM
consumed large computation time for P-MATRIX (7) and Other(mainly, the computation on the
step length by (5)). Though these parts required the O(n3) computation cost, the MC-PDIPM
decomposed the full matrix X into the sub-matrices XCrCr (r = 1, . . . , ℓ), hence, it was able to
save the computation cost of these two parts. Furthermore, SDPA-C 7 resolved the heaviest parts

of SDPA-C 6 by the combination of the new factorization X̂
−1

= L̂L̂
T

and the multithreaded
parallel computing. Consequently, SDPA-C 7 was the fastest solver among the four solvers; in
particular, SDPA-C 7 was 12.36-times faster than SeDuMi for MaxClique500.

Table 5: The computation time on MaxClique400 (the time unit is second)
SDPA-C 6 SDPA-C 7 SDPA 7 SeDuMi 1.3

S-ELEMENTS 9314.34 1431.69 262.04 –
S-CHOLESKY 2601.04 248.55 403.28 –
P-MATRIX 734.41 175.24 13151.10 –

Other 31.37 47.65 12342.98 –

Total 12681.16 1903.13 26159.40 24824.05

We move our focus to the max-cut problems. Though the MC-PDIPM was again superior to
the standard PDIPM, SDPA-C 6 was more effective for MaxCut500 than SDPA-C 7. We now take
a close look at the result of MaxCut500 posted at Table 6. In this SDP, SDPA-C 7 took more
computation time on S-ELEMENTS and P-MATRIX, both of which utilized the multithreaded
computing. We needed an overhead to generate the threads, and the input matrices of the max-
cut problems were too simple to derive the benefit from the multithreaded computing. Indeed,
each input matrix Ai = eie

T
i has only one nonzero element. This can be verified by the short

computation time of S-ELEMENTS in SDPA 7. In the standard PDIPM, the computation of
S-ELEMENTS is an inexpensive task of (8) with Ai = eie

T
i and Aj = eje

T
j , since we obtain the

fully-dense matrices X and Y −1 with the extensive memory space and the heavy computation
through P-MATRIX and the inverse of the fully-dense matrix.

For the large max-cut problems, however, SDPA-C 7 solved the SDPs faster than SDPA-C 6
and SDPA 7. As shown in the Max1200 result of Table 6, SDPA-C 7 still incurred the overhead
of the multithreading for S-ELEMENTS and P-MATRIX, but the multithreaded BLAS library
resolved the principal bottleneck S-CHOLESKY. We can say that SDPA-C 7 matches larger SDPs
of this type.

For the spin-glass SDPs with p = 10, SDPA 7 was the fastest among the four solvers, since
the standard PDIPM was more effective for smaller SDPs where the variable matrices were small
and their decomposition was unnecessary. When we solved larger SDPs increasing p, however, the
difference between SDPA 7 and SDPA-C 7 shrunk, and finally, when p = 25, SDPA-C 7 was faster
than SDPA 7. The reason why the computation time growth in this type was milder in SDPA-C 7
than in SDPA 7 is that the average size of cliques does not grow along with the increment of p as
shown in Table 3. In particular, as seen in the detail computation time in Table 7, this affects P-
MATRIX(the computation of ∆X in (10)). The computation time growth of this part was gradual
in the MC-PDIPM than standard PDIPM. SpinGlass25 was the largest among the spin-glass SDPs
in our experiments, because the generation of SpinGlass26 required almost 48GB memory space,
being close to the capacity of our computing environment. We can expect that SDPA-C 7 would
be more effective for larger SDPs of the spin-glass type. Actually, the ratios of SpinGlass25 over
SpinGlass23 were 107502.48

55942.57 = 1.92 in SDPA-C 6, 24913.20
13184.25 = 1.89 in SDPA-C 7, and 26023.67

12598.14 = 2.07
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Table 6: The computation time on MaxCut500 and MaxCut1200 (the time unit is second)
MaxCut500

SDPA-C 6 SDPA-C 7 SDPA 7 SeDuMi 1.3

S-ELEMENTS 105.25 317.56 16.17 –
S-CHOLESKY 502.43 226.06 214.43 –
P-MATRIX 61.21 315.73 3254.05 –

Other 14.38 17.46 3063.60 –

Total 683.27 876.81 6548.26 32557.13

MaxCut1200

SDPA-C 6 SDPA-C 7 SDPA 7 SeDuMi 1.3

S-ELEMENTS 1265.02 1800.27 107.17 –
S-CHOLESKY 5562.48 2318.17 2674.50 –
P-MATRIX 532.21 1837.53 39490.81 –

Other 40.57 74.03 33616.37 –

Total 7400.28 6030.00 75888.85 >2days

in SDPA 7. Meanwhile, the computation cost of the other parts ’Other’ occupies considerable
amount in the SDPA 7 result. This ’Other’ contains the miscellaneous parts and most of them are
related to the computation of variable matrices X and Y in SDPA 7. Since they are miscellaneous
and we can not say which part of them is principal, we do not examine the details, but we should
note one point that the fully-dense property of X and Y leads to a lowering in the performance
of ’Other’ in SDPA 7.

We should emphasize that the MC-PDIPM alone is not the factor of SDPA-C 7, as we can see

in Table 3 that SDPA-C 6 was much slower than SDPA 7. The new factorization of X̂
−1

= L̂L̂
T

and the multithreaded computing are the key to solving the spin-glass SDPs in the shortest time.

Table 7: The computation time on Spinglass18 and Spinglass25 (the time unit is second)
Spinglass18

SDPA-C 6 SDPA-C 7 SDPA 7 SeDuMi 1.3

S-ELEMENTS 2738.18 1012.13 22.93 –
S-CHOLESKY 178.15 52.70 30.69 –
P-MATRIX 2516.52 984.76 620.54 –

Other 1301.5 87.29 848.44 –

Total 6734.40 2136.88 1522.60 68570.89

Spinglass25

SDPA-C 6 SDPA-C 7 SDPA 7 SeDuMi 1.3

S-ELEMENTS 35314.96 11829.56 220.19 –
S-CHOLESKY 3681.44 945.49 520.39 –
P-MATRIX 45238.37 11594.76 11846.59 –

Other 23267.71 588.39 13436.50 –

Total 107502.48 24913.20 26023.67 >2days

Finally, Table 8 shows the required memory space to sovle the SDPs in Tables 5,6, and 7. The
notation ’> 31G’ indicates that SeDuMi gave up the problem by the time limit (2 days) and used
31gigabyte memory space during the 2-day execution. The MC-PDIPM saved a lot of memory
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space by removing the fully-dense matrices. For example, in MaxClique400, SDPA-C7 consumed
only 1

6 times and 1
10 times memory space of SDPA7 and SeDuMi, respectively. In addition, the

employment of the new factorization reduced the memory space for the largest SDP (Spinglass25)
from 8.1 gigabytes in SDPA-C6 to 3.7 gigabytes in SDPA-C7. Since the new factorization can
reuse the memory structure of CHOLMOD, it is effective to reduce the required memory space.

Table 8: The required memory space for the SDPs in Tables 5,6, and 7 (M and G indicate
megabytes and gigabytes, respectively.)

Name SDPA-C6 SDPA-C7 SDPA 7 SeDuMi1.3

MaxClique400 548M 516M 3.0G 5.2G

MaxCut500 249M 236M 4.1G 6.1G
MaxCut1200 1.2G 1.2G 23G > 31G

SpinGlass18 2.0G 707M 5.6G 8.3G
SpinGlass25 8.1G 3.7G 40G > 36G

5 Conclusions and Future Directions

We implemented the new SDPA-C 7 using the more effective factorization of X̂
−1

= L̂L̂
T

and
the multithreaded parallel computing. From the numerical experiments, we verified that these two
factors strongly enhanced the performance of the MC-PDIPM, and that SDPA-C 7 successfully
reduced the computation time of the max-clique and spin-glass SDPs.

SDPA-C 7 is available at the SDPA web site, http://sdpa.sourceforge.net/. Compared to the
existing SDPA-C 6, SDPA-C 7 has a callable library and a Matlab interface. Hence, SDPA-C 7
can be embedded into other C++ software packages, and can be directly called from the inside
of Matlab. It can be expected that the callable library and the Matlab interface will expand the
SDPA-C usage.

Finally, we discuss some future directions. As shown in the numerical experiments on max-
cut problems, if the structure of input SDP is very simple, we should automatically turn off
the multithreading. However, this would require a complex task to estimate the computation time
accurately over the multiple-threading from the input SDPs. Another point is that SDPA-C 7 has a
tendency to be faster for large SDPs. This is an excellent feature of SDPA-C 7, but it cannot attain
such performance for smaller SDPs. Though this is mainly because the MC-PDIPM is intended to
solve large SDPs with the factorization of the variable matrices based on the structural sparsity,
we should combine some methods that effectively compute the forward/backward substitution of
sparse matrices of small dimensions.
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