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Abstract. We present the moment cone (MC) relaxation and a hierarchy of sparse Lagrangian-
SDP relaxations of polynomial optimization problems (POPs) using the unified framework
established in Part I. The MC relaxation is derived for a POP of minimizing a polynomial
subject to a nonconvex cone constraint and polynomial equality constraints. It is an ex-
tension of the completely positive programming relaxation for QOPs. Under a copositivity
condition, we characterize the equivalence of the optimal values between the POP and its
MC relaxation. A hierarchy of sparse Lagrangian-SDP relaxations, which is parameterized
by a positive integer ω called the relaxation order, is proposed for an equality constrained
POP. It is obtained by combining a sparse variant of Lasserre’s hierarchy of SDP relaxation
of POPs and the basic idea behind the conic and Lagrangian-conic relaxations from the
unified framework. We prove under a certain assumption that the optimal value of the
Lagrangian-SDP relaxation with the Lagrangian multiplier λ and the relaxation order ω in
the hierarchy converges to that of the POP as λ → ∞ and ω → ∞. The hierarchy of sparse
Lagrangian-SDP relaxations is designed to be used in combination with the bisection and
1-dimensional Newton methods, which was proposed in Part I, for solving large-scale POPs
efficiently and effectively.
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1 Introduction

A unified framework for conic and Lagrangian-conic relaxations in Part I [5] was proposed for
quadratic optimization problems (QOPs) and polynomial optimization problems (POPs).
From a theoretical viewpoint, this framework is intended to unify and generalize the existing
results on the completely positive (CPP) relaxation of QOPs [2, 8, 9, 16] and its extension to
POPs, which was called the moment cone (MC) relaxation in [4]. From a practical viewpoint,
the Lagrangian-conic relaxation is proposed to solve large-scale conic optimization problems
(COPs) obtained from effective conic relaxations, including doubly nonnegative (DNN) and
semidefinite programming (SDP) relaxations of QOPs and POPs, by first-order algorithms.
In particular, the CPP relaxation and the sparse DNN relaxation for QOPs in Part I were
discussed from these viewpoints.

We consider a general class of POPs of the following form:

ζ∗ = inf
{
f0(x)

∣∣ x ∈ J, fk(x) = 0 (k = 1, 2, . . . ,m)
}

, (1)

where J denotes a closed (but not necessarily convex) cone in the n-dimensional Eu-
clidean space Rn, and fk(x) a real valued polynomial in x = (x1, x2, . . . , xn) ∈ Rn (k =
0, 1, 2, . . . ,m).

The first purpose of this paper is to derive the moment cone (MC) relaxation for POP
(1). The MC relaxation introduced by Arima, Kim and Kojima [4] for this form of POP
under a hierarchy of copositivity conditions is an extension of the CPP relaxation. The
main emphasis of our discussion here is on a unified treatment of the CPP relaxation of
QOPs and their MC relaxation of POPs. More precisely, we first convert POP (1) into an
equivalent COP which serves as the starting optimization model in the framework. Then,
we can apply the general results established on the COP in Part I [5] to derive not only the
MC relaxation but also the Lagrange-MC relaxation of (1).

Let V be a finite dimensional vector space endowed with an inner product 〈·, ·〉, and
K ⊂ V a (not necessarily convex) cone. Let H0 ∈ V and Qk ∈ V (k = 0, 1, 2, . . . ,m). The
primal COP is of the form:

COP(K): ζp(K) = inf

{
〈Q0, X〉

∣∣∣∣ X ∈ K, 〈H0, X〉 = 1,
〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)

}
. (2)

As a basic assumption, the following copsitivity condition (Condition (I)) is assumed: O ̸=
H0 ∈ K∗ and Qk ∈ K∗ (k = 1, 2, . . . ,m), where K∗ = {Y ∈ V : 〈X, Y 〉 ≥ 0 for every X ∈
K} (the dual of K). The copositivity condition assumed here is stronger than the hierar-
chy of copositivity conditions of [4]. The stronger condition is necessary for deriving the
Lagrangian-conic relaxation consistently.

For the application of the framework to POP (1), we construct a nonconvex cone Γ in
the space V of symmetric matrices with an appropriate dimension, and symmetric matrices
H0, Qk ∈ V (k = 0, 1, 2, . . . ,m) so that COP(Γ) in (2) represents POP (1), i.e., ζ∗ = ζp(Γ).
Then, the MC relaxation of POP (1) is derived as its convexification, i.e., “the strongest
convex relaxation” of COP(Γ) in (2) by replacing Γ with its convex hull, co Γ. For the
equivalence between COP(Γ) in (2) and its convexification COP(co Γ), or for the identity
ζp(Γ) = ζp(co Γ), we assume the copositivitiy condition for K = Γ. This condition is
satisfied for any cone J ∈ Rn if each polynomial fk(x) is a sum of squares polynomials, thus,
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if fk(x) is replaced by fk(x)2 (k = 1, 2, . . . ,m) in POP (1). Under the copositivity condition,
we provide a condition (Condition (IV)) that characterizes the equivalence between POP
(1) and its MC relaxation based on Theorem 3.1 of Part I [5].

The second purpose of applying the unified framework to POPs is to establish a theo-
retical foundation for effective, efficient and stable numerical methods, which can be imple-
mented with first-order algorithms, for solving large-scale POPs. The MC relaxation, i.e.,
COP(co Γ) in (2), can be regarded as the most effective relaxation in terms of the quality
of the lower bound provided for the optimal value of POP (1). It is, however, numerically
intractable even when J is a simple closed convex cone such as Rn or Rn

+ (the nonnegative
orthant of Rn) in (1). As a numerically tractable relaxation of COP(co Γ) in (2) for J = Rn

+,
the doubly nonnegative (DNN) relaxation obtained by choosing a DNN cone for K in COP
(2) and the Lagrangian-DNN relaxation of POP (1) can be considered. In the recent paper
[16], the Lagrangian-DNN relaxation for a class of QOPs with complementarity constraints
was implemented with first-order algorithms. It was shown through numerical results on
some well-known test problems for nonconvex QOPs that the Lagrangian-DNN relaxation
combined with first-order algorithms provided tight lower bounds for their optimal values
efficiently and stably. See also Section 5 of Part I [5]. Those results indicate that applying
the methods in [16] to POP (1) with J = Rn

+ is an important subject that needs further
investigation.

For an alternative to the MC relaxation, a sparse variant [17, 20, 22, 28] of the hierarchy
of SDP relaxations proposed by Lasserre [21] can be used for an equality and inequality
constrained POP. The hierarchy is parameterized by a positive integer ω called the relaxation
order. This relaxation method is numerically tractable and as effective as the MC relaxation,
in the sense that under a certain assumption, the optimal value of the SDP relaxation
with the order ω converges to the optimal value of the given POP as ω → ∞. This is a
theoretically strong result, but solving the SDP relaxations of increasing size with ω is known
to be numerically hard. In fact, SDP solvers [12, 26, 27] based on primal-dual interior-point
methods have difficulties in solving SDP relaxation problems with the dimension larger than
several thousands.

We propose a hierarchy of sparse Lagrangian-SDP relaxations for an equality constrained
POP of the form (1) with J = Rn, by combining the hierarchy of sparse SDP relaxations
and the Lagrangian-conic relaxation in the unified framework. Notice that inequality con-
straints can also be dealt with in the form (1) since any polynomial inequality g(x) ≥ 0 is
equivalent to the equality g(x) − v2 = 0 with a slack variable v ∈ R. Assuming that the
polynomials fk(x) (k = 0, 1, . . . ,m) are sparse, we first embed the structured sparsity char-
acterized by a chordal graph as in [17, 20, 22, 28], and derive a sparse sum of squares (SOS)
problem equivalent to POP (1) with J = Rn by applying a sparse variant (Corollary 3.3 of
[22], Theorem 1 of [20]) of Putinar’s lemma (Lemma 4.1 of [25]) for representing positive
polynomials by SOS polynomials. We then transform the SOS problem into a simpler SOS
problem with a structure that leads to the copositivity condition in the unified framework.
The transformed SOS problem is still not numerically solvable because SOS polynomials
with any degree can be used in the problem. By restricting the degrees of SOS polynomials
by the relaxation order ω, we construct a hierarchy of numerically solvable SOS problems
from the transformed SOS problem. Finally, we convert the hierarchy of SOS problems into
the hierarchy of SDPs in the linear space Vω of symmetric matrices with the dimension
determined by the maximum degree of the polynomials fk(x) (k = 0, 1, 2, . . . ,m) and ω.
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Each SDP with the relaxation order ω in the hierarchy is of the form:

ζd
ω(Kω) = sup

{
y0

∣∣∣∣∣ Q0
ω − H0

ωy0 +
m∑

k=1

Qk
ωyk ∈ K∗

ω

}
(3)

for some cone Kω ⊂ Vω, symmetric matrices H0
ω, Qk

ω ∈ Vω (k = 0, 1, 2, . . . ,m). This
problem corresponds to the dual of (2). It is constructed so that it satisfies the copositivity
condition for K = Kω. Thus, the entire theory of the unified framework can be applied.
In particular, we can derive the following primal-dual pair of Lagrangian-SDP relaxation
problems:

ζp
ω(λ, Kω) = inf

{
〈Q0

ω + λH1
ω, X〉

∣∣ X ∈ Kω, 〈H0
ω, X〉 = 1

}
, (4)

ζd
ω(λ, Kω) = sup

{
y0

∣∣ y0 ∈ R, Q0
ω − H0

ωy0 + λH1
ω ∈ K∗

ω

}
, (5)

where H1
ω =

∑m
k=1 Qk

ω, and λ ∈ R denotes a Lagrangian multiplier (or parameter) pre-
scribed for the problems. These problems are very simple so that efficient first-order algo-
rithms can be designed to solve the problems. In fact, the dual problem (5) involves only
one variable, which makes it possible to effectively utilize the bisection and 1-dimensional
Newton methods proposed in Part I [5]; see Also [16]. They also inherit the structured
sparsity characterized by a chordal graph from the one embedded in POP (1) with J = Rn,
for example, K∗ is described as the Minkovski sum of positive semidefinite cones of small
dimensions and linear subspaces of Vω. Moreover, the following theoretical results will be
established: for every relaxation order ω and Lagrange multiplier λ,

• the optimal value ζd
ω(Kω) of (3) bounds the optimal value ζ∗ of POP (1) with J = Rn

from below, and it monotonically converges to ζ∗ as ω → ∞,

• the optimal value ζd
ω(λ, Kω) of (5) bounds the optimal value ζd

ω(Kω) of (3) from below,
and it monotonically converges to ζd

ω(Kω) as λ → ∞,

• the primal problem (4) is strictly feasible (i.e., there exists a primal feasible solution
that lies in the relative interior of the cone Kω) and it has an optimal solution with
the optimal value ζd

ω(λ, Kω) = ζp
ω(λ, Kω) (the strong duality).

The first two results imply that the lower bound ζd
ω(λ, Kω) for the optimal value ζ∗ of POP

(1) satisfies ζ∗− ϵ < ζd
ω(λ, Kω) for any ϵ > 0 if sufficiently large ω and λ are taken. The last

result contributes to the numerical stability of first-order algorithms.
In section 2, we review the results shown in Part I [5] and describe the notation and

symbols used in this paper. We also present how to represent polynomials with symmetric
matrices of monomials, and introduce SOS of polynomials. Section 3 includes the discussion
on the MC relaxation of POP (1), and section 4 presents the hierarchy of sparse Lagrangian-
SDP relaxations of POP (1) with J = Rn.

2 Preliminaries

2.1 Conic and Lagrangian-conic optimization problems

The results in Part I [5] are summarized in this subsection. We first list some notation used
in Part I. Let V be a finite dimensional vector space endowed with an inner product 〈·, ·〉
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and its induced norm ∥ · ∥, and K a nonempty (but not necessarily convex nor closed) cone
in V. We denote the dual of K by K∗, i.e., K∗ = {Y ∈ V : 〈X, Y 〉 ≥ 0 for every X ∈ K},
and the convex hull of K by co K.

For H0, Qk ∈ V (k = 0, , 2, . . . ,m), H1 =
∑m

k=1 Qk, let

F (K) =
{
X ∈ V

∣∣ X ∈ K, 〈H0, X〉 = 1, 〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)
}

,

F0(K) =
{
X ∈ V

∣∣ X ∈ K, 〈H0, X〉 = 0, 〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)
}

.

In Part I, we introduced the following conditions:

Condition (I) O ̸= H0 ∈ K∗, Qk ∈ K∗ (k = 1, 2, . . . ,m) (copositivity condition).

Condition (II) K is closed and convex.

Condition (III)
{

X ∈ F (K) : 〈Q0, X〉 ≤ ζ̃
}

is nonempty and bounded for some ζ̃ ∈ R.

Condition (IV) 〈Q0, X〉 ≥ 0 for every X ∈ F0(K).

For the primal-dual pairs of problems,

ζp(K) := inf
{
〈Q0, X〉 | X ∈ F (K)

}
= inf

{
〈Q0, X〉

∣∣∣∣ X ∈ K, 〈H0, X〉 = 1,
〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)

}
. (6)

ζd(K) := sup

{
z0

∣∣∣∣∣ Q0 +
m∑

k=1

Qkzk − H0z0 ∈ K∗

}
, (7)

ηp(λ, K) := inf
{
〈(Q0 + λH1), X〉

∣∣ X ∈ K, 〈H0, X〉 = 1
}

, (8)

ηd(λ, K) := sup
{
y0

∣∣ Q0 + λH1 − H0y0 ∈ K∗ }
, (9)

the following results are shown.

Theorem 2.1.

(i) ηd(λ, K)↑λ = ζd(K) ≤ ζp(K) and
(
ηd(λ, K) ≤ ηp(λ, K)

)
↑λ ≤ ζp(K) under Condition

(I).

(ii)
(
ηd(λ, K) = ηp(λ, K)

)
↑λ = ζd(K) ≤ ζp(K) under Conditions (I) and (II).

(iii)
(
ηd(λ, K) = ηp(λ, K)

)
↑λ = ζd(K) = ζp(K) under Conditions (I), (II) and (III).

(iv) ζp(K) = ζp(co K) under Conditions (I) and (IV).

Here ↑λ means “increases monotonically as λ → ∞”.
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2.2 Notation and symbols

For the application of the unified framework to POPs, we use the following notation: Let
R denote the set of real numbers, R+ the set of nonnegative real numbers, and Z+ the
set of nonnegative integers. Let |α| =

∑n
i=1 αi for each α ∈ Zn

+, where αi denotes the
ith element of α ∈ Zn

+. R[x] is the set of real-valued multivariate polynomials in xi ∈ R
(i = 1, . . . , n), where x = (x1, . . . , xn) ∈ Rn. Each polynomial f(x) ∈ R[x] is represented as
f(x) =

∑
α∈F fαxα, where F ⊂ Zn

+ is a nonempty finite set, fα (α ∈ F) real coefficients,
xα = xα1

1 xα2
2 · · · xαn

n and α = (α1, α2, . . . , αn) ∈ Zn
+. We assume that x0

i = 1 even if xi = 0,
in particular, x0 = 1 for any x ∈ Rn. The support of f(x) is defined by supp(f(x)) = {α ∈
F : fα ̸= 0} ⊂ Zn

+, and the degree of f(x) ∈ R[x] is defined by deg(f(x)) = max{|α| : α ∈
supp(f(x))}. For each nonempty subsets F and G of Zn

+, let F +G denote their Minkowski
sum {α + β : α ∈ F , β ∈ G}, and let R[x,F ] = {f(x) ∈ R[x] : supp(f(x)) ⊂ F}.

Let F be a nonempty finite subset of Zn
+. |F| stands for the number of elements of

F . Let RF denote the |F|-dimensional Euclidean space whose coordinate are indexed by
α ∈ F . Each vector of RF with elements wα (α ∈ F) is denoted by (wα : α ∈ F) or
simply (wα : F). We assume that (wα : F) is a column vector when it is multiplied by
a matrix. If x ∈ Rn, xF = (xα : F) denotes the |F|-dimensional (column) vector of
monomials xα ∈ R[x] (α ∈ F). Hence each polynomial f(x) ∈ R[x,F ] is represented
as f(x) = 〈(fα : F), xF〉. SF denotes the linear space of |F| × |F| symmetric matrices
with elements ξαβ (α ∈ F , β ∈ F). We use the notation 2F for the set F × F =
{(α,β) : α, β ∈ F}.

Each matrix of SF is written as (ξαβ : (α, β) ∈ 2F) or simply (ξαβ : 2F). If x ∈ Rn,
xF(xF)T = (xα : F)(xα : F)T = (xα+β : (α, β) ∈ 2F) is a rank-1 symmetric matrix of
monomials xα+β ∈ R[x] ((α,β) ∈ 2F), which is denoted by x2F . (xF)T denotes the row
vector obtained by taking the transpose of the column vector xF .

For every pair of Q = (Qαβ : 2F) and X = (Xαβ : 2F) ∈ SF , 〈Q, X〉 denotes
the matrix inner product, i.e., 〈Q, X〉 = trace(QT X) =

∑
(α,β)∈2F Qαβξαβ. With this

notation, we often write the quadratic form (xF)T QxF as 〈Q, x2F〉 to indicate that x2F =
xF(xF)T will be replaced by X = (Xαβ : 2F) ∈ SF .

Let

SF
+ = the cone of positive semidefinite matrices in SF

=

{
(ξαβ : 2F) ∈ SF :

(wα : F)T (ξαβ : 2F)(wα : F) ≥ 0
for every (wα : F) ∈ RF

}
,

LF =
{
(ξαβ : 2F) ∈ SF : ξαβ = ξγδ if α + β = γ + δ

}
.

Then SF
+ forms a closed convex cone in SF , and LF a linear subspace of SF . We also see

that x2F ∈ SF
+ ∩ LF for every x ∈ Rn. This relation is used repeatedly in the subsequent

discussions.

2.3 Representing polynomials with symmetric matrices of mono-
mials and sums of squares of polynomials

For a nonempty finite subset G of Zn
+, a given polynomial f(x) ∈ R[x,G] is usually repre-

sented as the inner product of its coefficient vector (fα : G) and the vector xG = (xα : G)

6



of monomials in the polynomial, i.e., g(x) = 〈(fα : G), xG〉. However, representing a
polynomial with a symmetric matrix of monomials is more convenient in the subsequent
discussions, in particular, when discussing nonnegative polynomials on Rn and Rn

+, and
exploiting sparsity in conic and Lagrangian-conic relaxations. For the representation of a
polynomial f(x) ∈ R[x,G] using a symmetric matrix of monomials, we need to choose a
finite subset F of Zn

+ satisfying the property G ⊂ F+F . In fact, a smaller-sized F satisfying
this property is preferable for numerical efficiency. See [19] for details of choosing such an
F . See also [4].

Let F be a nonempty subset of Zn
+ and f(x) ∈ R[x,F +F ]. Then we can represent the

polynomial f(x) using the rank-1 symmetric matrix x2F = xF(xF)T of monomials xα+β

((α, β) ∈ 2F) and some Q ∈ SF such that f(x) = 〈Q, x2F〉. Note that x2F contains all
monomials xα (α ∈ F + F), and that the choice of such a Q ∈ SF is not unique as shown
in the following example.

Example 2.1. Consider the polynomial f 1(x) = f 1(x1, x2) in two real variables such that

f 1(x) = 1 − 2x1 − 2x2 + x2
1 + x2

2 + 2x2
1x2 + 2x1x

2
2 + x2

1x
2
2.

Let

G = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (2, 1), (1, 2), (2, 2)},
(f 1

α : G) = (1,−2,−2, 1, 1, 2, 2, 1),

xG = (xα : G) = (1, x1, x2, x
2
1, x

2
2, x

2
1x2, x

2
2.x

2
1x

2
2).

Then R[x,G] ∋ f 1(x) = 〈(f1
α : G), xG〉. To represent f 1(x) using a symmetric matrix of

monomials, we can take F = {(0, 0), (1, 0), (0, 1), (1, 1)} so that

G ⊂ F + F = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 1), (2, 1), (1, 2), (2, 2)}.

Let

Q =


1 −1 −1 0

−1 1 0 1
−1 0 1 1

0 1 1 1

 ∈ SF , P =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 ∈ SF ,

x2F =


1 x1 x2 x1x2

x1 x2
1 x1x2 x2

1x2

x2 x1x2 x2
2 x1x

2
2

x1x2 x2
1x2 x1x

2
2 x2

1x
2
2

 .

Then, R[x,F + F ] ∋ f 1(x) = 〈Q + µP , x2F〉 for every µ ∈ R.

Lemma 2.1. Let F be a nonempty finite subset of Zn
+, Q ∈ SF and P ∈ SF . Then,

R[x,F + F ] ∋ 〈Q, x2F〉 = 〈Q + P , x2F〉 if and only if P ∈
(
LF)⊥

.

Proof. We first show that the linear subspace of SF generated by
{
x2F : x ∈ Rn

}
, i.e.,

L =
{
λx2F + µy2F : x, y ∈ Rn, λ, µ ∈ R

}
,
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coincides with LF . By the definition of LF , we know that
{
x2F : x ∈ Rn

}
⊂ LF , hence

L ⊂ LF . It suffices to show that dim(L) = dim(LF). Let ℓ = dim(LF), which is equivalent
to the number of different elements in F +F . Let M be the linear subspace of Rℓ generated
by the set {xF+F = (xγ : γ ∈ F + F)} ⊂ Rℓ. Then we can identify the linear space L
as the linear space M since each matrix X = λx2F + µy2F ∈ L corresponds to a vector
λxF+F + µyF+F ∈ M and vice versa. As a result, dim(L) = dim(M). On the other
hand, we see that dim(M) = ℓ since there is no nonzero (gα : F + F) such that 〈(gα :
F +F), xF+F〉 = 0 for all x ∈ Rn. Therefore, we obtain that dim(L) = dim(LF) = ℓ. Thus
we have shown that LF = L. Now assume that R[x,F + F ] ∋ 〈Q, x2F〉 = 〈Q + P , x2F〉.
Then 〈P , X〉 = 0 for all X ∈ L = LF , which implies that P ∈

(
LF)⊥

. Conversely if

P ∈
(
LF)⊥

, then R[x,F +F ] ∋ 〈Q, x2F〉 = 〈Q + P , x2F〉 holds from x2F ∈ LF for every
x ∈ Rn.

Lemma 2.1 implies that, for each Q ∈ SF , {Q + P : P ∈
(
LF)⊥} forms an equivalent class

in SF represented by the common polynomial f(x) = 〈Q, x2F〉.
We introduce some additional notation for SOS of polynomials. Let

SOS[x,F ] =

{
r∑

i=1

(ϕi(x))2 : ϕi(x) ∈ R[x,F ] (i = 1, . . . , r) ∃r ∈ Z+

}
for every F ⊂ Zn

+,

SOS[x] = SOS[x, Zn
+].

We call SOS[x] the cone of SOS of polynomials, and each f(x) ∈ SOS[x] an SOS polynomial.
The following lemma provides a characterization of an SOS polynomials.

Lemma 2.2. [10] Let F be a nonempty finite subset of Zn
+. Then

SOS[x,F ] =
{
〈Q, x2F〉 : Q ∈ SF

+

}
.

In Example 2.1, the matrix Q ∈ SF itself is not positive semidefinite. But if we choose
µ = 1, then the matrix Q1 = Q + µP ∈ SF is positive semidefinite. Hence f1(x) =
〈Q1, x2F〉 ∈ SOS[x,F ] by the lemma above. In fact, we see that

SOS[x,F ] ∋ f1(x) = 〈Q1, x2F〉 = (x1 + x2 + x1x2 − 1)2, (10)

where

F = {(0, 0), (1, 0), (0, 1), (1, 1)}, Q1 =


1 −1 −1 −1

−1 1 1 1
−1 1 1 1
−1 1 1 1

 ∈ SF
+.

The following lemma will be used in Sections 3 and 4.

Lemma 2.3. Let F be a nonempty finite subset of Zn
+ and M a linear subspace of SF . Then,

(SF
+ ∩ M) + (

(
LF)⊥ ∩ M) is closed.
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Proof. We first show that the set {X ∈ SF : X + Y ∈ B, X ∈ SF
+, Y ∈

(
LF)⊥} is

bounded for every bounded subset B of SF . Let q = |F|. Since the set of monomials xα

(α ∈ F) is independent, i.e., there is no nonzero (gα : F) such that (gα : F)T (xα : F) is
identically zero for all x ∈ Rn, there exist xj ∈ Rn (j = 1, . . . , q) such that the q× q matrix
A =

(
(xα

1 : F), (xα
2 : F), . . . , (xα

q : F)
)

is nonsingular. For some bounded B of SF , assume
on the contrary that there exists a sequence {Zp = Xp + Y p : p = 1, 2, . . . } satisfying Zp =

Xp + Y p ∈ B, Xp ∈ SF
+, Y p ∈

(
LF)⊥

(p = 1, 2, . . . ) and ∥Xp∥ → ∞ as p → ∞. We

may assume without loss of generality that SF
+ ∋ Xp/∥Xp∥ converges to some nonzero

X ∈ SF
+ as p → ∞. Hence

(
LF)⊥ ∋ Y p/∥Xp∥ = Zp/∥Xp∥ − Xp/∥Xp∥ converges to

−X as p → ∞. Since
(
LF)⊥

is a linear subspace of SF , we obtain that X ∈ SF
+ ∩

(
LF)⊥

.

Recall that xF
j = (xα

j : F)(xα
j : F)T ∈ LF . Hence 〈AAT , X〉 = 〈

∑q
j=1(x

α
j : F)(xα

j :

F)T , X〉 =
∑q

j=1〈(xα
j : F)(xα

j : F)T , X〉 = 0. Since AAT is a q×q positive definite matrix

and X ∈ SF
+, the identity 〈AAT , X〉 = 0 implies that X = O. This is a contradiction.

Thus we have shown that {X ∈ SF : X + Y ∈ B, X ∈ SF
+, Y ∈

(
LF)⊥} is bounded for

every bounded subset B of SF .

Now, we show that (SF
+ ∩ M) + (

(
LF)⊥ ∩ M) is closed. Suppose that Zp = Xp + Y p,

Xp ∈ SF
+ ∩ M, Y p ∈

(
LF)⊥ ∩ M (p = 1, 2, . . . ) and Zp → Z for some Z ∈ SF as p → ∞.

Since the sequence {Zp = Xp +Y p : p = 1, 2, . . . , } is bounded and Xp ∈ SF
+, Y p ∈

(
LF)⊥

(p = 1, 2, . . . ), the sequence {Xp : p = 1, 2, . . . } is bounded. Hence we may assume that it
converges to some X ∈ SF . It follows that Y p = Zp−Xp → Y for some Y ∈ SF as p → ∞.

Since both SF
+ ∩M and

(
LF)⊥∩M are closed subsets of SF , we know that X ∈ SF

+ ∩M and

Y ∈
(
LF)⊥∩M. Therefore, we have shown that Z = X+Y ∈ (SF

+∩M)+(
(
LF)⊥∩M).

3 A class of polynomial optimization problems and

their covexification

Consider a class of POPs of the form (1). Assume that J is a nonempty closed (but not
necessarily convex) cone in Rn, and fk(x) ∈ R[x,F + F ] (k = 0, 1, . . . ,m) for a nonempty
finite subset F of Zn

+ including 0 ∈ Zn
+. For practical applications, we focus on Rn, Rn

+ and
Rℓ × Rn−ℓ with 1 ≤ ℓ ≤ n − 1 for the cone J, but the theoretical results in this section are
valid for any closed cone in Rn.

We transform POP (1) into the COP of the form (6) to present the moment cone (MC)
relaxation of POPs in the unified framework of Section 2, Part I [5]. The MC relaxation
was proposed by [4] as an extension of the completely positive (CPP) relaxation [2, 8] for a
class of linearly constrained QOPs in continuous and binary variables. We also recall that
the CPP relaxation for the class of QOPs was discussed in Section 4 of [16].

Let us take SF for the underlying linear space V, and represent each polynomial fk(x) ∈
R[x,F+F ] as fk(x) = 〈Qk, x2F〉 (k = 0, 1, . . . ,m), where Qk ∈ SF . Let ∆F

1 =
{
x2F ∈ SF

: x ∈ J} . Then, POP (1) can be rewritten as

ζ∗ := inf
{
〈Q0, X〉

∣∣ X ∈ ∆F
1 , 〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)

}
. (11)

We consider the following illustrative example:
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Example 3.1. As in Example 2.1, we take n = 2 and F = {(0, 0), (1, 0), (0, 1), (1, 1)}. Let
m = 1, R[x,F+F ] ∋ f0(x) = 〈Q0, x2F〉 for some Q0 ∈ SF , and let f1(x) ∈ R[x,F+F ] be
a sum of squares of polynomial given in (10). Let J = R2

+. In this case, it is obvious that the
feasible region of POP (14) is bounded and contains two points x = (1, 0) and x = (0, 1),
thus, its finite minimum value ζ∗ is attained at some feasible solution. By definition, we see
that ∆F

1 = {x2F ∈ SF : x ∈ R2
+}.

The problem (11) is in a form similar to COP (6), but we still need to embed ∆F
1 in a

cone K ⊂ SF and introduce an inhomogeneous equality constraint 〈H0, X〉 = 1 such that
∆F

1 = {X ∈ K : 〈H0, X〉 = 1}. This can be achieved by two methods. The first method
is to take the conic hull of ∆F

1 such that

∆F =
{
µX ∈ SF : µ ≥ 0, X ∈ ∆F

1

}
=

{
µx2F ∈ SF : µ ≥ 0, x ∈ J

}
.

The second method is to homogenize ∆F
1 such that

ΓF =
{

(x
τ−|α|
0 xα : F)(x

τ−|α|
0 xα : F)T ∈ SF : (x0,x) ∈ R+ × J

}
,

where τ = max{|α| : α ∈ F}. We note that, for x0 = 0 and x ∈ Rn,

x
τ−|α|
0 xα =

{
0 if τ > |α|
xα otherwise, i.e., if τ = |α|.

Both ∆F and ΓF are cones in SF . The first construction of the cone ∆F was (implicitly)
employed in [24], while the second ΓF in [4].

Let H0 be a matrix in SF with 1 in the (0,0)th element and 0 elsewhere. Then, we
see that 〈H0, x2F〉 = 〈H0, (xα : F)(xα : F)T 〉 = x0x0 = 1 for every x ∈ Rn, and that

〈H0, X〉 = X00 = x2τ
0 for every X = (x

τ−|α|
0 xα : F)(x

τ−|α|
0 xα : F)T ∈ ΓF . It follows that{

X ∈ ∆F : 〈H0, X〉 = 1
}

=
{
µx2F ∈ SF : x ∈ J, µ ≥ 0, 〈H0, µx2F〉 = 1

}
= ∆F

1 ,{
X ∈ ΓF : 〈H0, X〉 = 1

}
=

{
(x

τ−|α|
0 xα : F)(x

τ−|α|
0 xα : F)T : (x0, x) ∈ R+ × J, x0 = 1

}
= ∆F

1 .

(12)

Therefore, both COP (6) with K = ∆F and COP (6) with K = ΓF are equivalent to POP
(11), and ζp(∆F) = ζp(ΓF) = ζ∗.

For Example 3.1, we see that

∆F =




µ µx1 µx2 µx1x2

µx1 µx2
1 µx1x2 µx2

1x2

µx2 µx1x2 µx2
2 µx1x

2
2

µx1x2 µx2
1x2 µx1x

2
2 µx2

1x
2
2

 ∈ SF
+ : (µ, x1, x2) ∈ R3

+

 ,

ΓF =




x4
0 x3

0x1 x3
0x2 x2

0x1x2

x3
0x1 x2

0x
2
1 x2

0x1x2 x0x
2
1x2

x3
0x2 x2

0x1x2 x2
0x

2
2 x0x1x

2
2

x2
0x1x2 x0x

2
1x2 x0x1x

2
2 x2

1x
2
2

 ∈ SF
+ : (x0, x1, x2) ∈ R3

+

 . (13)
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Obviously, for every x1 > 0 and every x2 > 0, the matrix
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 x2

1x
2
2


is contained in ΓF but not in ∆F .

Now, we are ready to apply all the discussions in Section 3 of Part I [5]. In particular,
the following theorem is obtained directly from Theorem 3.1 of [5].

Theorem 3.1. Suppose that Condition (I) holds for K = ΓF . Then,

(i) ζp(co ∆F) = ζ∗;

(ii) Assume that ζ∗ is finite, we have that

ζp(co ΓF) =

{
ζ∗ if Condition (IV) holds for K = ΓF ,
−∞ otherwise.

Next we investigate Conditions (I) and (IV) in detail for K = ΓF , and in particular,
J = Rn and J = Rn

+. First, suppose that J = Rn. Then it follows that ΓF ⊂ SF
+ ∩ LF ,

and
(
ΓF)∗ ⊃ cl

(
SF

+ +
(
LF)⊥)

= SF
+ +

(
LF)⊥

. (See Lemma 2.3 for the last equality).

Therefore, if Qk ∈ SF
+ +

(
LF)⊥

, or, equivalently, if fk(x) = 〈Qk, x2F〉 is a sum of squares
of polynomials (k = 1, 2, . . . ,m) (see Lemma 2.1 and 2.2), then Condition (I) is satisfied for
K = ΓF . (Recall that O ̸= H0 ∈ SF

+ by definition). If a polynomial equation g(x) = 0 is

given, it is equivalent to have (g(x))2 = 0. Thus, Condition (I) for K = ΓF is not a strong
assumption.

Now suppose that J = Rn
+. Then,

ΓF ⊂ (CF)∗ ∩ LF ⊂ SF
+ ∩ NF ∩ LF ,

and (
ΓF)∗ ⊃ cl

(
CF + (LF)⊥

)
⊃ cl

(
SF

+ + NF + (LF)⊥
)
,

where

CF =

{
Y ∈ SF :

(ξα : F)T Y (ξα : F) ≥ 0
for every (ξα : F) ≥ 0

}
(the copositive cone),

(CF)∗ =
{
X ∈ SF : 〈X, Y 〉 ≥ 0 for every Y ∈ CF}

= co
{
(ξα : F)(ξα : F)T ∈ SF : (ξα : F) ≥ 0

}
(the completely positive cone),

NF =
{
X ∈ SF : Xαβ ≥ 0 ((α,β) ∈ 2F)

}
(the cone of nonnegative matrices).
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Therefore, if Qk ∈ SF
+ + NF + (LF)⊥ (or, less restrictively, if Qk ∈ CF + (LF)⊥) (k =

1, 2, . . . ,m), then Condition (I) is satisfied for K = ΓF .
Now we focus on Condition (IV) with K = ΓF . Recall that τ = max{|α| : α ∈ F}. Let

F = {α ∈ F : |α| = τ}. Suppose that

X = (x
τ−|α|
0 xα : F)(x

τ−|α|
0 xα : F)T ∈ F0(Γ

F)

Then,

Xαβ =

{
xα+β if α, β ∈ F ,
0 otherwise.

As a result, if we define Q
k

= (Q
k

αβ : 2F) ∈ SF and f̄k(x) ∈ R[x,F + F ] such that

Q
k

αβ =

{
Qk

αβ if α, β ∈ F
0 otherwise

and f̄k(x) = 〈Qk
, x2F〉

(k = 0, 1, . . . ,m), we can rewrite Condition (IV) for K = ΓF as

f̄0(x) ≥ 0 if x ∈ J and f̄k(x) = 0 (k = 1, 2, . . . ,m).

Usual cases where the condition above holds are:

(a) Q
0

= O ∈ SF or f̄ 0(x) is an identically zero polynomial, i.e., deg(f 0(x)) < 2τ .

(b)
{
x ∈ J : f̄k(x) = 0 (k = 1, 2, . . . ,m)

}
= {0}.

We note that (a) can be always satisfied by choosing a nonempty finite subset F of Zn
+ such

that fk(x) ∈ R[x,F + F ] (k = 0, 1, 2, . . . ,m) and deg(f 0(x)) < 2τ , and that (b) implies
that the feasible region of POP (1) is bounded.

For Example 3.1, we observe that

F0(Γ
F) =

X =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 x2

1x
2
2

 ∈ SF
+ :

(x1, x2) ∈ R2
+,

〈Q1, X〉 = Q1
(1,1)(1,1)X(1,1)(1,1) = 0

 = {O},

where Q1 is given as in (10). Thus, Condition (IV) is satisfied for K = ΓF .
If the cone co Γ is closed, i.e., Condition (II) is satisfied for K = co Γ in addition to

Condition (I), then we can introduce the primal-dual pair of Lagrangian-conic relaxation
problems (8) and (9) for K = co Γ, and apply the discussions given in Section 3 of Part
I [4]. In particular, the relation

(
ηd(λ, K) = ηp(λ, K)

)
↑λ = ζd(K) ≤ ζp(K) follows; see

Theorem 2.1. The cone ΓF as well as its convex hull co ΓF , however, are not necessarily
closed. In fact, ΓF given in (13) is not closed. To see this, let

X =


0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

 .

Then X ̸∈ ΓF , but the matrix (x
τ−|α|
0 xα : α ∈ F)(x

τ−|α|
0 xα : α ∈ F)T ∈ Γ with

(x0, x1, x2) = (ϵ, ϵ, 1/ϵ) and ϵ > 0 converges to X.
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Lemma 3.1. Assume that 0 ∈ F and τei ∈ F (i = 1, 2, . . . , n), where ei denotes the i-th
unit coordinate vector in Rn. Then, ΓF and co ΓF are closed.

Proof. Let {Xp : p = 1, 2, . . . } be a sequence in ΓF converging to X ∈ SF . By Xp ∈ ΓF ,
there exists (xp

0,x
p) ∈ R+×J such that Xp

αβ = (xp
0)

τ−|α|(xp)α(xp
0)

τ−|β|(xp)β, which converges

to Xαβ as p → ∞ for ((α,β) ∈ 2F). Specifically, (xp
0)

τ−|α|(xp)α(xp
0)

τ−|α|(xp)α converges
to Xαα for α = 0 ∈ F and α = τei ∈ F (i = 1, 2, . . . , n). Thus, (xp

0)
2τ and (xp

i )
2τ

(i = 1, 2, . . . , n) converge to X00 and X(τei)(τei) (i = 1, 2, . . . , n), respectively. This implies
that the sequence {(xp

0,x
p) : p = 1, 2, . . . } is bounded, and we can take a subsequence which

converges to (x̄0, x̄) ∈ R+ × J. Therefore,

X = ((x̄0)
τ−|α|(x̄)α : F)((x̄0)

τ−|α|(x̄)α : F)T ∈ ΓF ,

and we have shown that ΓF is closed. The closedness of co ΓF follows from Lemma 3.1 of
[4].

Without loss of generality, the assumption of the previous lemma can be satisfied by
adding 0 ∈ Zn

+ and τei ∈ Zn
+ (i = 1, 2, . . . , n) to F if necessary. For Example 3.1, one can

add (2, 0) and (0, 2) to F to satisfy the assumption.
The MC relaxation problem proposed in [4] as an extension of the CPP relaxation for

QOPs to POPs is essentially equivalent to COP (6) with K = co ΓF . A hierarchy of
copositivity conditions assumed there is weaker than Condition (I) and can be regarded as
a generalization of Condition (I). We have assumed a stronger condition here, Condition (I),
to consistently derive the Lagrangian-conic relaxation (8) in the unified framework. On the
other hand, the additional condition on zeros at infinity assumed in [4], which was also
assumed in [24] for a canonical convexification procedure for a class of POPs, is stronger
than Condition (IV). See Condition (IV)’ and Lemma 3.1 of [5].

If F =
{
α ∈ Zn

+ : |α| ≤ 1
}
, then POP (1) becomes a QOP. In this case, LF = SF

and (LF)⊥ = {0}, and the previous discussions correspond to Section 4.2 of Part I [5],
where the convexification of a linearly constrained QOP with complementarity condition
was discussed.

4 A hierarchy of sparse Lagrangian-SDP relaxations

for POPs

The primal COP (6) and its Lagrangian-conic relaxation (8) have been mainly used when
applying the unified framework of Part I [5] to QOPs and POPs, and their duals. As a result
of this application, the problem of computing tight lower bounds for the optimal values of
general POPs is reduced to the dual COP (7).

In this section, we propose a hierarchy of Lagrangian-SDP relaxations for POPs by
combining the approach in [3, 5, 16] for deriving the Lagrangian-CPP and Lagrangian-DNN
relaxations for a class of QOPs with the hierarchy of SDP relaxations proposed by [21]
for POPs. The motivation for combining these two approaches, which have been studied
almost independently, is to develop efficient and effective numerical methods for POPs. We
simultaneously take account the important issue of exploiting sparsity [17, 22, 28] in the
proposed hierarchy of Largangian-SDP relaxations for POPs. As a result, the description

13



may be slightly complicated, but exploiting sparsity is essential for numerical efficiency of
solving large-scale POPs.

4.1 A class of equality constrained POPs with a structured spar-
sity

Let us fix J = Rn in POP (1) throughout this section. We deal with a class of equality
constrained POP of the form:

ζ∗ = inf
{
f 0(x)

∣∣ x ∈ Rn, f i(x) = 0 (i = 1, 2, . . . ,m0)
}

. (14)

As mentioned in Section 1, we can include inequality constraints since a polynomial inequal-
ity g(x) ≥ 0 can be rewritten as g(x) − v2 = 0 with a slack variable v ∈ R. We assume
that POP (14) is sparse. More precisely, each equality constraint fk(x) = 0 involves only
a small subset of the variables x1, x2, . . . , xn and the objective polynomial f0(x) consists of
monomials whose variables include only a small number of pairs of xi and xj. Under this
assumption, a structured sparsity [17, 22, 28] can be embed in POP (14). Let

Ck ⊂ {1, . . . , n}, Ck ̸= ∅, (k = 1, . . . ,m),
m∪

k=1

Ck = {1, . . . , n},

Aτ =
{
α ∈ Zn

+ : |α| ≤ τ
}

(τ ∈ Z+),

Ak
τ =

{
α ∈ Aτ : αi = 0 if i ̸∈ Ck

}
(τ ∈ Z+, k = 1, . . . ,m),

Ak
∞ =

∪
τ∈Z+

Ak
τ =

{
α ∈ Zn

+ : αi = 0 if i ̸∈ Ck

}
.

Then, the sparsity structure of POP (14) is described as

f 0(x) ∈
m∑

k=1

R[x,Ak
∞] and f i(x) ∈

m∪
k=1

R[x,Ak
∞] (i = 1, 2, . . . ,m0).

From the second inclusion relation, we can partition the index set {1, 2, . . . ,m0} of equality
constraints in (14) into m sets Ik (k = 1, 2, . . . ,m) such that

f i(x) ∈ R[x,Ak
∞] for every i ∈ Ik.

Now, we rewrite POP (14) as

ζ∗ = inf
{
f 0(x)

∣∣ x ∈ Rn, f i(x) = 0 (i ∈ Ik, k = 1, 2, . . . ,m)
}

. (15)

As an illustrative example, we consider the same problem as Example 3.1.

Example 4.1. Let

n = 4, m0 = 3,

F = {0, e1, e2, e1 + e2, 2e3, 2e4} ⊂ Z4
+,

where ei ∈ Z4
+ denotes the ith unit coordinate vector,

f0(x) ∈ R[x,F0 + F0], where F0 = {0, e1, e2, e1 + e2},
f1(x) = x1 − x2

3, f 2(x) = x2 − x2
4, f 3(x) = x1 + x2 + x1x2 − 1.
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Then, the POP in Example 3.1 can be rewritten as

minimize

{
f 0(x)

∣∣∣∣ f1(x) = x1 − x2
3 = 0, f 2(x) = x2 − x2

4 = 0,
f3(x) = x1 + x2 + x1x2 − 1 = 0

}
.

Define Ik = {k} (k = 1, 2, 3), C1 = {1, 3}, C2 = {2, 4} and C3 = {1, 2}. Then, the problem
above can be expressed as in (15).

We impose the following two conditions on POP (15) in the subsequent discussions.

Condition (A)

(a) Each Ck (k = 1, 2, . . . ,m) is a nonempty maximal subset among the family
{C1, C2, . . . , Cm}, i.e., there is no Cs (s ̸= k) that includes Ck.

(b) For every k ∈ {1, . . . ,m − 1}, there is an s ≥ k + 1 such that

Ck ∩
(
Ck+1 ∪ · · · ∪ Cm

)
⊂ Cs and ̸= Cs.

Condition (B) For each k = 1, 2, . . . ,m, there is an i ∈ Ik such that f i(x) = ρk −∑
i∈Ck

x2
i for some ρk > 0.

Let G(N,E) be an undirected graph with the node set N = {1, 2, . . . , n} and the edge set

E = {(i, j) ∈ N × N : i ̸= j and (i, j) ∈ Ck for some k = 1, 2, . . . ,m},

where each edge (i, j) ∈ E is identified with (j, i) ∈ E. It is known that Condition (A)
provides a necessary and sufficient condition for G(N,E) to be a chordal graph and for
C1, C2, . . . , Cm to be its maximal cliques. The property (b) of Condition (A) is called the
running intersection property. See [7] for the definition of a chordal graph and its properties.

Condition (B) implies that the feasible region of POP (15) is bounded. Conversely, if
the feasible region is bounded, we can add the constraints

ρk −
∑
i∈Ck

x2
i − x2

n+k = 0 (k = 1, 2, . . . ,m)

for some ρk > 0, and replace x by (x, xn+1, . . . , xn+m) and Ck by Ck ∪ {n + k} (k =
1, 2, . . . ,m), where xn+k denotes a slack variable (k = 1, 2, . . . ,m). See [17, 22, 28] for more
details on how the structured sparsity can be constructed from a given POP. Condition (B)
can be weakened if Theorem 1 of [20] is used instead of Corollary 3.3 of [22] in the proof of
Lemma 4.1. But its description is slightly complicated, so we prefer to use Condition (B).

We can easily verify that C1, C2 and C3 constructed in Example 4.1 satisfy Condition
(A). In this case, the corresponding graph G(N,E) does not have any cycle, which is a
trivial chordal graph. Although Example 4.1 can be modified to satisfy Condition (B), we
use Example 4.1 for ease of discussion.

15



4.2 A sparse SOS problem equivalent to POP (15)

By applying the sparse SOS relaxation [17, 22, 28] to POP (15), we obtain the following
SOS problem:

ζ̄d
∞ := sup

z0 ∈ R

∣∣∣∣∣∣∣∣
f0(x) − z0

∈
m∑

k=1

(
SOS[x,Ak

∞] +
∑
i∈Ik

R[x,Ak
∞]f i(x)

)  . (16)

Lemma 4.1. Suppose that the feasible region of POP (15) is nonempty and that Conditions
(A) and (B) hold. Then ζ∗ = ζ̄d

∞.

Proof. By Condition (B), the feasible region of POP (15) is bounded, which together with
the nonemptyness of the feasible region ensures that the optimal value ζ∗ is finite. Let
z0 be a feasible solution of SOS problem (16). Then there exist ϕk(x) ∈ SOS[x,Ak

∞] and
ψi(x) ∈ R[x,Ak

∞] (i ∈ Ik, k = 1, 2, . . . ,m) such that

f0(x) − z0 =
m∑

k=1

(
ϕk(x) +

∑
i∈Ik

ψi(x)f i(x)

)
for all x ∈ Rn,

which implies that f 0(x) − z0 ≥ 0 for every feasible solution x of POP (15). Thus we have
shown that ζ∗ ≥ ζ̄d

∞. To prove the converse inequality, let

S =
{
x ∈ Rn : f i(x) = 0 (i ∈ Ik, k = 1, . . . ,m)

}
=

{
x ∈ Rn :

f i(x) ≥ 0 (i ∈ Ik, k = 1, . . . ,m),
−f i(x) ≥ 0 (i ∈ Ik, k = 1, . . . ,m)

}
,

and let ϵ be an arbitrary positive number. Then f0(x) − (ζ∗ − ϵ) > 0 for all x ∈ S. By
Corollary 3.3 of [22],

f0(x) − (ζ∗ − ϵ)

∈
m∑

k=1

(
SOS[x,Ak

∞] +
∑
i∈Ik

(
SOS[x,Ak

∞]f i(x) − SOS[x,Ak
∞]f i(x)

))

=
m∑

k=1

(
SOS[x,Ak

∞] +
∑
i∈Ik

R[x,Ak
∞]f i(x)

)
.

We have shown that for any positive ϵ, z0 = ζ∗ − ϵ is a feasible solution of (16). Thus
ζ̄d
∞ ≥ ζ∗ − ϵ for all ϵ > 0. Therefore, ζ∗ ≤ ζ̄d

∞.

4.3 Replacing SOS problem (16) by a simpler SOS

In this subsection, we establish the equivalence between SOS problem (16) and the following
SOS problem, which is simpler than (16).

ζd
∞ := sup

y0 ∈ R

∣∣∣∣∣∣∣∣∣∣
f 0(x) − y0

∈
m∑

k=1

(
SOS[x,Ak

∞] − yk

∑
i∈Ik

Θk[x](f i(x))2

)
(y0, y1, . . . , ym) ∈ R1+m

 , (17)
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where

θk
τ (x) =

∑
α∈Ak

τ

x2α ∈ SOS[x,Ak
τ ],

Θk[x] = {θk
τ (x) : τ ∈ Z+} ⊂ SOS[x,Ak

∞].

(18)

The second relation in (18) indicates that (17) is simpler than (16). The following lemma
shows the equivalence and plays a key role in analyzing the SOS problem (16) in the unified
framework presented in Part I [5].

Lemma 4.2. ζ̄d
∞ = ζd

∞.

Proof. (i) Proof of ζd
∞ ≤ ζ̄d

∞. We know that

R[x,Ak
∞] ⊃ −ykΘ

k[x]f i(x) for every yk ∈ R (i ∈ Ik, k = 1, . . . ,m).

This implies that if (y0.y1, . . . , ym) is a feasible solution of (17), then z0 = y0 is a feasible
solution of (16). Therefore, the inequality ζd

∞ ≤ ζ̄d
∞ follows.

(ii) Proof of ζd
∞ ≥ ζ̄d

∞. Let z0 be a feasible solution of (16) and ϵ an arbitrary positive
number. We show that there is a feasible solution (y0, y1, . . . , ym) of (17) with objective
value y0 = z0 − ϵ. Since z0 is feasible solution of (16), we see that

m∑
k=1

SOS[x,Ak
∞] ∋ f 0(x) − z0 −

m∑
k=1

∑
i∈Ik

ψi(x)f i(x) (19)

for some ψi(x) ∈ R[x,Ak
∞] (i ∈ Ik, k = 1, . . . ,m). Let τ = max{deg(ψi(x)) : i ∈

Ik, k = 1, . . . ,m}, so that ψi(x) ∈ R[x,Ak
τ ] (i ∈ Ik, k = 1, . . . ,m). Then, each polynomial

ψi(x) ∈ R[x,Ak
τ ] can be represented as

ψi(x) =
∑

α∈Ak
τ

ψi
αxα (i ∈ Ik, k = 1, . . . ,m).

Substituting these identities into the relation (19), we get

m∑
k=1

SOS[x,Ak
∞] ∋ f 0(x) − z0 −

m∑
k=1

∑
i∈Ik

∑
α∈Ak

τ

ψi
αxαf i(x). (20)

Choose a ρ > 0 such that ϵ −
m∑

k=1

∑
i∈Ik

∑
α∈Ak

τ

(1/(2ρ))2 > 0, and let

zk = max{(ρψi
α)2 : α ∈ Ak

τ , i ∈ Ik} (k = 1, . . . ,m).
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Then,

m∑
k=1

SOS[x,Ak
∞] ∋

ϵ −
m∑

k=1

∑
i∈Ik

∑
α∈Ak

τ

(1/(2ρ))2


+

m∑
k=1

∑
i∈Ik

∑
α∈Ak

τ

(
ρψi

αxαf i(x) + 1/(2ρ)
)2

+
m∑

k=1

∑
i∈Ik

∑
α∈Ak

τ

(
zk − (ρψi

α)2
)
(xαf i(x))2

= ϵ +
m∑

k=1

∑
i∈Ik

∑
α∈Ak

τ

ψi
αxαf i(x) +

m∑
k=1

∑
i∈Ik

∑
α∈Ak

τ

zk

(
xαf i(x)

)2
.

It follows from (20) that
m∑

k=1

SOS[x,Ak
∞] ∋ f 0(x) − z0 −

m∑
k=1

∑
i∈Ik

∑
α∈Ak

τ

ψi
αxαf i(x)

+ ϵ +
m∑

k=1

∑
i∈Ik

∑
α∈Ak

τ

ψi
αxαf i(x) +

m∑
k=1

∑
i∈Ik

∑
α∈Ak

τ

zk

(
xαf i(x)

)2

= f 0(x) − (z0 − ϵ) +
m∑

k=1

zk

∑
i∈Ik

∑
α∈Ak

τ

(
xαf i(x)

)2

= f 0(x) − (z0 − ϵ) +
m∑

k=1

zk

∑
i∈Ik

 ∑
α∈Ak

τ

x2α

(
f i(x)

)2

= f 0(x) − (z0 − ϵ) +
m∑

k=1

zk

∑
i∈Ik

θk
τ (x)

(
f i(x)

)2
.

Therefore, we have shown that

f 0(x) − (z0 − ϵ) ∈
m∑

k=1

(
SOS[x,Ak

∞] − zk

∑
i∈Ik

θk
τ (x)

(
f i(x)

)2

)

⊂
m∑

k=1

(
SOS[x,Ak

∞] − zk

∑
i∈Ik

Θk[x]
(
f i(x)

)2

)
,

and that (y0, y1, . . . , ym) = (z0 − ϵ, z1, . . . , zm) is a feasible solution of SOS problem (17).
Thus we have ζd

∞ ≥ y0 = z0 − ϵ for all ϵ > 0. This implies that ζd
∞ ≥ z0 for any feasible z0

of (16). Hence ζd
∞ ≥ ζ̄d

∞.

4.4 A hierarchy of finite SOS subproblems of (17) for numerical
computation

The SOS problem (17) that attains the exact optimal value ζ∗ of POP (15) cannot be solved
numerically because the degree of sum of squares of polynomials involved is not bounded.
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For numerical computation of lower bounds of ζ∗ which converges to ζ∗, we introduce a
hierarchy of SOS subproblems of (17) by bounding the degree of the SOS polynomials to
be used with an increasing sequence of finite integers.

Let ωmin = max{⌈deg(f 0(x))/2⌉, deg(f i(x)) (i ∈ Ik, k = 1, 2, . . . ,m)}. For every
ω ∈ Z+ not less than ωmin, we consider the following SOS problem:

ζd
ω := sup


y0 ∈ R

∣∣∣∣∣∣∣∣∣∣∣∣

f 0(x) − y0 +
m∑

k=1

yk

∑
i∈Ik

θk
τ i(x)(f i(x))2

∈
m∑

k=1

SOS[x,Ak
ω],

(y0, y1, . . . , ym) ∈ R1+m


, (21)

where

τ i = ω − deg(f i(x)) (i ∈ Ik, k = 1, . . . ,m). (22)

We note that

f 0(x) ∈
m∑

k=1

R[x,Ak
ωmin

+ Ak
ωmin

] ⊂ R[x,Aω + Aω],∑
i∈Ik

θk
τ i(x)(f i(x))2 ∈ SOS[x,Ak

ω] ⊂ R[x,Aω + Aω] (k = 1, 2, . . . ,m).
(23)

Therefore, the degree of polynomials in the SOS problem (21) is bounded by 2ω. This SOS
problem can be solved as an SDP (31), as shown in the next subsection.

Now, we apply the discussion above to Example 4.1. First, observe that

deg(f i(x)) = 2 (i = 1, 2, 3), ωmin = 2.

If we take ω = ωmin = 2, then

τ i = ω − deg(f i(x)) = 0,

Ak
τ i = {0} ⊂ Z4

+, θk
τ i = 1 (i = Ik = {i}, k = 1, 2, 3).

If ω = ωmin + 1 = 3, then

τ i = ω − deg(f i(x)) = 1 (i = 1, 2, 3),

A1
τ1 = {0, e1, e3} ⊂ Z4

+, A2
τ2 = {0, e2, e4} ⊂ Z4

+, A3
τ3 = {0, e1, e2} ⊂ Z4

+, (24)

θ1
τ1 = 1 + x2

1 + x2
3, θ2

τ2 = 1 + x2
2 + x2

4, θ2
τ2 = 1 + x2

1 + x2
2,

where ej ∈ Z4
+ denote the jth unit coordinate vector (j = 1, 2, 3, 4).

Lemma 4.3. Suppose that Z+ ∋ ω ≥ ωmin. Then, ζd
ω ↑ω = ζd

∞.

Proof. The inequality ζd
ω ≤ ζd

∞ follows from the definitions of θk
τ (x) and Θk[x] in (18).

Letting ωmin ≤ ω1 < ω2, we now show that ζd
ω1

≤ ζd
ω2

. Suppose that (y0, y1, . . . , ym) is a
feasible solution of (21) with ω = ω1. Then,

m∑
k=1

SOS[x,Ak
ω1

] ∋ f 0(x) − y0 +
m∑

k=1

yk

∑
i∈Ik

θk
τ i
1
(x)(f i(x))2, (25)
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where

τ i
1 = ω1 − deg(f i(x)) (i ∈ Ik, k = 1, . . . ,m).

Let

τ i
2 = ω2 − deg(f i(x)) (i ∈ Ik, k = 1, . . . ,m).

Then,

τ i
2 > τ i

1 (i ∈ Ik, k = 1, . . . ,m),

θk
τ i
2
(x)

(
f i(x)

)2 − θk
τ i
1
(x)

(
f i(x)

)2
=

 ∑
α∈F i

x2α

(
f i(x)

)2 ∈ SOS[x,Ak
ω2

]

(i ∈ Ik, k = 1, . . . ,m),

where

F i = Aτ i
2
\Aτ i

1
=

{
α ∈ Aτ i

2
: α ̸∈ Aτ i

1

}
=

{
α ∈ Aτ i

2
: |α| > τ i

1

}
(i ∈ Ik, k = 1, . . . ,m).

It follows from (25) that
m∑

k=1

SOS[x,Ak
ω2

] ∋ f0(x) − y0 +
m∑

k=1

yk

∑
i∈Ik

θk
τ i
1
(x)(f i(x))2

+
m∑

k=1

yk

∑
i∈Ik

(
θk

τ i
2
(x)

(
f i(x)

)2 − θk
τ i
1
(x)

(
f i(x)

)2
)

= f0(x) − y0 +
m∑

k=1

yk

∑
i∈Ik

θk
τ i
2
(x)(f i(x))2. (26)

Hence, (y0, y1, . . . , ym) remains a feasible solution of SOS problem (21) with ω = ω2. We
have shown that ζd

ω1
≤ ζd

ω2
.

Finally, we show that ζd
ω converges to ζd

∞ as ω → ∞. Let ϵ > 0. Then there exists a
feasible solution (y0, y1, . . . , ym) of (17) such that y0 ≥ ζd

∞ − ϵ. Thus,
m∑

k=1

SOS[x,Ak
ω] ∋ f0(x) − y0 +

m∑
k=1

yk

∑
i∈Ik

θk
σi(x)(f i(x))2

for some σi ∈ Z+ (i ∈ Ik, k = 1, 2, . . . ,m) and some

ω ≥ max
{
σi + deg

(
f i(x)

)
: i ∈ Ik, k = 1, 2, . . . ,m

}
.

Now, define τ i (i ∈ Ik, k = 1, 2, . . . ,m) by (22). Then τ i ≥ σi (i ∈ Ik, k = 1, 2, . . . ,m),
and we can prove that

m∑
k=1

SOS[x,Ak
ω] ∋ f 0(x) − y0 +

m∑
k=1

yk

∑
i∈Ik

θk
τ i(x)(f i(x))2

by the same way as (26) has been derived from (25). As a result, (y0, y1, . . . , ym) is a feasible
solution of (21) with the objective value y0 ≥ ζd

∞ − ϵ. This implies that ζd
∞ − ϵ ≤ ζd

ω. We
already know that ζd

ω ≤ ζd
ω2

≤ ζd
∞ if ω < ω2. Since ϵ > 0 arbitrary, we have shown that ζd

ω

converges to ζd
∞ as ω → ∞.
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4.5 Reducing SOS problem (21) to COP (7)

To derive a COP of the form (7) equivalent to SOS problem (21), we need to convert the
SOS condition

f 0(x) − y0 +
m∑

k=1

yk

∑
i∈Ik

θk
τ i(x)(f i(x))2 ∈

m∑
k=1

SOS[x,Ak
ω] (27)

to a linear matrix inequality. By (23), we can represent the left hand side of (27) as

f0(x) − y0 +
m∑

k=1

yk

∑
i∈Ik

θk
τ i(x)(f i(x))2 =

〈
Q0 − H0y0 +

m∑
k=1

Qkyk, x2Aω

〉
. (28)

Here H0 and Qk (k = 0, 1, . . . ,m) are matrices in SAω chosen such that

f0(x) =
〈
Q0, x2Aω

〉
∈

m∑
k=1

R[x,Ak
ωmin

+ Ak
ωmin

],

1 =
〈
H0, x2Aω

〉
∈

m∩
k=1

SOS[x,Ak
ω],∑

i∈Ik

θk
τ i(x)(f i(x))2 =

〈
Qk, x2Aω

〉
∈ SOS[x,Ak

ω] (k = 1, 2, . . . ,m).

(29)

Specifically, H0 is a matrix in SAω whose elements are all zeros except H0
00 = 1.

Suppose that ω = ωmin + 1 = 3 in Example 4.1. By (24), we see that∑
i∈I1

θ1
τ i(x)(f i(x))2 = (x1 − x2

3)
2 +

(
x1(x1 − x2

3)
)2

+
(
x3(x1 − x2

3)
)2

,∑
i∈I2

θ1
τ i(x)(f i(x))2 = (x2 − x2

4)
2 +

(
x2(x2 − x2

4)
)2

+
(
x4(x2 − x2

4)
)2

,∑
i∈I3

θ1
τ i(x)(f i(x))2 = (x1 + x2 + x1x2 − 1)2 + (x1(x1 + x2 + x1x2 − 1))2

+ (x2(x1 + x2 + x1x2 − 1))2 .

Thus, each Qk ∈ SAω (k = 1, 2, 3) can be represented as the sum of 3 rank-1 positive
semidefinite matrices such that Qk

αβ = 0 if (α,β) ̸∈ 2Ak
ω = Ak

ω ×Ak
ω.

We now begin to discuss the structured sparsity in the matrices Qk ∈ SAω (k =
0, 1, . . . ,m) by introducing some notation and symbols. The discussion presented here is
essentially an extension of the one for cones in the linear space S1+n in Section 5 of Part I [5],
where DNN and Lagrangian-DNN relaxations for a class of sparse QOPs were discussed, to
cones in the linear space SAω . A finite subset E of 2Aω = Aω ×Aω is said to be symmetric
if (α,β) ∈ E implies (β, α) ∈ E . For every cone K ⊂ SAω and every symmetric subset E of
2Aω, we use the following symbols and notation:

Ec = {(α, β) ∈ 2Aω : (α, β) ̸∈ E},
SAω(E , 0) =

{
X = (Xαβ : 2Aω) ∈ SAω : Xαβ = 0 if (α, β) ̸∈ E

}
,

K(E , 0) = K ∩ SAω(E , 0),

K(E , ?) = K + SAω(Ec, 0).
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See Section 5 of Part I [5] for the meaning of the cone K(E , ?). In the subsequent discussion,

the following identities
(
SAω(E , 0)

)∗
=

(
SAω(E , 0)

)⊥
= SAω(Ec, 0) will be frequently used.

These identities can be verified easily.

Let Eω =
m∪

k=1

2Ak
ω. Then 2Ak

ω (k = 1, 2, . . . ,m) and Eω form symmetric sets in 2Aω.

By the relation (29), we can choose matrices Q0 and Qk (k = 1, . . . ,m) from SAω(Eω, 0)
and SAω

+ (2Ak
ω, 0) ⊂ SAω

+ (Eω, 0) (k = 1, 2, . . . ,m), respectively. On the other hand, by
Lemma 2.2, each cone SOS[x,Ak

ω] on the right hand side of (27) can be expressed as

SOS[x,Ak
ω] =

{
〈W k, x2Aω〉 : W k ∈ SAω

+ (2Ak
ω, 0)

}
(k = 1, 2, . . . ,m). Hence, we can rewrite the inclusion relation (27) as〈

Q0 − H0y0 +
m∑

k=1

Qkyk, x2Aω

〉
=

〈 m∑
k=1

W k, x2Aω

〉
,

W k ∈ SAω
+ (2Ak

ω, 0) (k = 1, 2, . . . ,m).

or

Q0 − H0y0 +
m∑

k=1

Qkyk ∈
m∑

k=1

SAω
+ (2Ak

ω, 0) + (LAω)⊥

by Lemma 2.1. Furthermore, since all matrices H0, Qk (k = 0, 1, . . . ,m) and all cones
SAω

+ (2Ak
ω, 0) (k = 1, 2, . . . ,m) are included in the linear subspace SAω(Eω, 0) of SAω , (LAω)⊥

can be replaced by (LAω)⊥ ∩ SAω(Eω, 0). Therefore, the previous inclusion relation is equiv-
alent to:

Q0 − H0y0 +
m∑

k=1

Qkyk ∈
m∑

k=1

SAω
+ (2Ak

ω, 0) + (LAω)⊥ ∩ SAω(Eω, 0). (30)

Lemma 4.4. Suppose that Condition (A) holds. Then,

(i) SAω
+ (Eω, ?) =

m∩
k=1

{
X = (Xαβ : 2Aω) ∈ SAω : (Xαβ : 2Ak

ω) ∈ SAk
ω

+

}
.

(ii)
m∑

k=1

SAω
+ (2Ak

ω, 0) = SAω
+ (Eω, 0) =

(
SAω

+ (Eω, ?)
)∗

,
(
SAω

+ (Eω, 0)
)∗

= SAω
+ (Eω, ?).

(iii) LAω(Eω, ?) =

{
X = (Xαβ : 2Aω) ∈ SAω :

Xαβ = Xγδ if α + β = γ + δ,
(α,β) ∈ Eω and (γ, δ) ∈ Eω

}
.

(iv)
(
LAω(Eω, ?)

)∗
= (LAω)⊥ ∩ SAω(Eω, 0), LAω(Eω, ?) =

(
(LAω)⊥ ∩ SAω(Eω, 0)

)∗
.

Proof. (i) By definition, we know that SAω
+ (Eω, ?) = SAω

+ + SAω
+ (Ec

ω, 0). Thus, X = (Xαβ :
2Aω) ∈ SAω lies in SAω

+ (Eω, ?) if and only if there exists an X = (Xαβ : 2Aω) ∈ SAω
+

such that Xαβ = Xαβ ((α, β) ∈ Eω). The problem of finding such an X ∈ SAω
+ or
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such values Xαβ ((α,β) ∈ Ec
ω) is called the positive semidefinite matrix completion in the

literature [14, 13, 23]. We consider an undirected graph G(Aω, Eo
ω) with the node set Aω

and the edge set Eo
ω = {(α, β) ∈ Eω : α ̸= β}, where each edge (α, β) ∈ Eo

ω is identified
with (β, α) ∈ Eo

ω. By using Condition (A), we can prove that G(Aω, Eo
ω) forms a chordal

graph and that A1
ω,A2

ω, . . . ,Am
ω provide the family of maximal cliques of the graph. See

Lemma 6.1 of [18]. In this case, X = (Xαβ : 2Aω) ∈ SAω lies in SAω
+ (Eω, ?) if and only

if (Xαβ : 2Ak
ω) (k = 1, 2, . . . ,m) are all positive semidefinite [14]. Therefore, assertion (i)

follows. This assertion also follows from assertion (i) of Lemma 5.2 of Part I [5].

(ii) In assertion (i), we have shown that G(Aω, Eo
ω) forms a chordal graph and that

A1
ω,A2

ω, . . . ,Am
ω provide the family of maximal cliques of the graph. By Theorem 2.3 of [1],

we obtain the identity
m∑

k=1

SAω
+ (2Ak

ω, 0) = SAω
+ ∩SAω(Eω, 0) = SAω

+ (Eω, 0). This identity may

be regarded as the dual of assertion (i). (See also Theorem 4.2 of [15]). Since SAω
+ (Eω, ?)

and SAω
+ (Eω, 0) are closed cones by (i) and definition, respectively, we see that(
SAω

+ (Eω, 0)
)∗

=
(
SAω

+ ∩ SAω(Eω, 0)
)∗

= cl
(
SAω

+ + SAω(Ec
ω, 0)

)
= SAω(Eω, ?),(

SAω(Eω, ?)
)∗

=
(
SAω

+ (Eω, 0)
)∗∗

= cl SAω
+ (Eω, 0) = SAω

+ (Eω, 0).

This assertion also follows from Lemmas 5.1 and 5.2 of Part I of [5].

(iii) Let

M =

{
X = (Xαβ : 2Aω) ∈ SAω :

Xαβ = Xγδ if α + β = γ + δ,
(α,β) ∈ Eω and (γ, δ) ∈ Eω

}
.

By definition, LAω(Eω, ?) = LAω + SAω(Ec
ω, 0). Hence, if X ∈ LAω(Eω, ?), then X ∈ M

obviously. Now suppose that X = (Xαβ : 2Aω) ∈ M. Then we can consistently define
X = (Xαβ : 2Aω) ∈ SAω such that

Xαβ =

{
Xγδ if there is a (γ, δ) ∈ Eω such that α + β = γ + δ,
0 otherwise.

It follows that X ∈ LAω and X − X ∈ SAω(Ec
ω, 0). Thus, X = X + (X − X) ∈ LAω +

SAω(Ec
ω, 0) = LAω(Eω, ?).

(iv) Since both LAω(Eω, ?) and (LAω)⊥ ∩ SAω(Eω, 0) are linear subspaces of SAω , we see
that (

(LAω)⊥ ∩ SAω(Eω, 0)
)∗

=
(
(LAω)⊥ ∩ SAω(Eω, 0)

)⊥
= LAω + SAω(Ec

ω, 0) = LAω(Eω, ?),(
LAω(Eω, ?)

)∗
=

(
(LAω)⊥ ∩ SAω(Eω, 0)

)⊥⊥
= (LAω)⊥ ∩ SAω(Eω, 0).

By Lemma 4.4, the inclusion relation (30) can be rewritten as

Q0 − H0y0 +
m∑

k=1

Qkyk ∈
(
SAω

+ (Eω, ?)
)∗

+
(
LAω(Eω, ?)

)∗
.
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Consequently, we obtain the following primal-dual pair of COPs:

ζp
ω := inf

{
〈Q0, X〉

∣∣∣∣∣ X ∈ SAω
+ (Eω, ?) ∩ LAω(Eω, ?),

〈H0, X〉 = 1, 〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)

}
. (31)

ζd
ω := sup

y0 ∈ R

∣∣∣∣∣∣∣∣∣∣
Q0 − H0y0 +

m∑
k=1

Qkyk

∈
(
SAω

+ (Eω, ?)
)∗

+
(
LAω(Eω, ?)

)∗
(y0, y1, . . . , ym) ∈ R1+m

 . (32)

The problem (32) is equivalent to the SOS problem (21).

Theorem 4.1. Suppose that the feasible region of POP(14) is nonempty and that Conditions
(A) and (B) hold. Let Z+ ∋ ω ≥ ωmin. Then ζd

ω ≤ ζp
ω ≤ ζ∗ and ζd

ω ↑ω = ζ∗.

Proof. The inequality ζd
ω ≤ ζp

ω follows from the standard weak duality. To prove the in-
equality ζp

ω ≤ ζ∗, suppose that x ∈ Rn is a feasible solution of (14) with the objective value
f0(x). Let X = x2Aω . By (29), X is a feasible solution of (31) with the same objective
value 〈Q0, X〉 = f0(x). As a result, the inequality ζp

ω ≤ ζ∗ holds. The relation ζd
ω ↑ω = ζ∗

follows from the equivalence between (32) and (23) and Lemmas 4.1, 4.1 and 4.3.

If the previous discussion is applied to Example 4.1, the following is obtained:

C1 = {1, 3}, C2 = {2, 4}, C3 = {1, 2},

Aω = {α ∈ Z4
+ : |α| ≤ ω}, |Aω| =

(
n + ω

ω

)
,

Ak
ω = {α ∈ Aω : αi = 0 (i ̸∈ Ck)}, |Ak

ω| =

(
2 + ω

ω

)
(k = 1, 2, 3),

2Ak
ω = Ak

ω ×Ak
ω, Qk ∈ SAω

+ (2Ak
ω, 0) (k = 1, 2, 3),

Eω =
3∪

k=1

2Ak
ω, |Eω| ≤

3∑
k=1

(
|Ak

ω|
)2

, Q0 ∈ SAω(Eω, 0),

H0 ∈ SAω
+ with H0

00 = 1 and H0
αβ = 0 ((α,β) ̸= (0,0)),

If we take ω = 3, then the size of the matrices Qk (k = 0, 1, 2, 3) and H0 is 35× 35, and
the nonzero elements of the matrices correspond to the elements with indices (α,β) ∈ Eω,
where |Eω| is bounded by 300. If ω = 4, then the size and the bound are 70 × 70 and 675,
respectively. This shows that it is computationally meaningful to exploit sparsity even for
this small example.

Since LAω(Eω, ?) is described in terms of linear equalities as shown in Lemma 4.4,
COP (31) forms an SDP, which has been constructed to satisfy a structured sparsity char-
acterized by the maximal cliques C1, C2, . . . , Cm of the chordal graph G(N,E). For such
an SDP, we could use a primal-dual interior-point method combined with the technique
for exploiting sparsity via positive semidefinite matrix completion [13, 23]. An additional
important feature of COP (31) is that it satisfies Condition (I), which is used to derive the
Lagrangian-SDP relaxation of POP (14) in the next subsection.
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4.6 Lagrangian-SDP relaxations of COPs (31) and (32)

If K = SAω
+ (Eω, ?)∩LAω(Eω, ?), then the problems (31) and (32) coincide with the primal-dual

pair of COPs (6) and (7), respectively. We are now ready to apply the general discussions

on COPs (6) and (7) given in Sections 2, Part I [5]. Let H1 =
m∑

k=1

Qk, and K = SAω
+ (Eω, ?)∩

LAω(Eω, ?) for their Lagrangian-conic relaxation problems (8) and (9). Then we obtain:

ηp
ω(λ) := inf

{
〈Q0 + λH1, X〉

∣∣∣∣∣ X ∈ SAω
+ (Eω, ?) ∩ LAω(Eω, ?),

〈H0, X〉 = 1

}
. (33)

ηd
ω(λ) := sup

{
y0 ∈ R

∣∣∣∣∣ Q0 + λH1 − H0y0

∈
(
SAω

+ (Eω, ?)
)∗

+
(
LAω(Eω, ?)

)∗
, y0 ∈ R

}
. (34)

Theorem 4.2. Let ωmin ≤ ω ∈ Z+. The following results hold.

(i) ηd
ω(λ) ↑λ = ζd

ω.

(ii) ηd
ω(λ) = ηp

ω(λ) for every λ ∈ R. The problem (33) attains the optimal value at a
feasible solution.

Proof. (i) It suffices to show that Condition (I) holds for K = SAω
+ (Eω, ?) ∩ LAω(Eω, ?).

Then, the desired result follows from Lemma 2.3 of Part I [5]. By construction, we know
that H0, Qk ∈ SAω

+ (k = 1, 2, . . . ,m). On the other hand, K = SAω
+ (Eω, ?) ∩ LAω ⊂ SAω

+ .
Therefore K∗ ⊃ SAω

+ , and Condition (I) follows.

(ii) By (i) and (ii) of Lemma 4.4, we see that SAω
+ (Eω, ?) and LAω(Eω, ?) are both

closed convex cones. And, so is their intersection. Therefore, Condition (II) holds for
K = SAω

+ (Eω, ?) ∩ LAω(Eω, ?), and assertion (ii) follows from Lemma 2.4 of Part I [5].

By Theorems 4.1 and 4.2, we can conclude under Conditions (A) and (B) that the
optimal value ζ∗ can be bounded from below by the optimal value ηd

ω(λ) of its Lagrangian-
SDP relaxation (34) with any accuracy if we take sufficiently large ω and λ.

Remark 4.1. We have derived the Lagrangian-SDP relaxation problem (34) of (14) from
SDP (31). By the same argument as above, we can prove directly that (34) is equivalent to
SOS problem:

ηd
ω(λ) := sup

y0 ∈ R

∣∣∣∣∣∣∣∣∣∣
f0(x) − y0 + λ

m∑
k=1

∑
i∈Ik

θk
τ i(x)(f i(x))2

∈
m∑

k=1

SOS[x,Ak
ω], y0 ∈ R

 .

Thus it can be shown that if ωmin ≤ ω1 < ω2, then the inequality ηd
ω1

(λ) ≤ ηd
ω2

(λ) holds for
every λ ≥ 0.
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4.7 A brief discussion on the applications of the bisection and
1-dimensional Newton methods

In order to solve the primal-dual pair of COPs (33) and (34), it is possible to apply the
bisection and 1-dimensional Newton methods proposed in Part I [5]. See also the numerical
method in [16], consisting of a bisection method (Algorithm A of [16]), a proximal alternating
direction multiplier method [11] (Algorithm B) and an accelerated proximal gradient method
[6] (Algorithm C). In fact, we can transform (33) and (34) to a primal-dual pair of COPs
with a cone K = K1 ∩ K2 in some linear space V such that the metric projections from V
onto the cones K1 and K2 are easily computed. See also Remark 4.1 of Part I [5]. This
transformation is essentially the same as the one called the conversion method in [13, 23].
Let

V =
m∏

k=1

SAk
ω =

{
Y = (Y 1,Y 2, . . . , Y m) : Y k ∈ SAk

ω (k = 1, 2, . . . ,m)
}

,

K1 =
{

Y = (Y 1, Y 2, . . . , Y m) ∈ V : Y k ∈ SAk
ω

+ (k = 1, 2, . . . ,m)
}

,

K2 =

{
Y = (Y 1,Y 2, . . . , Y m) ∈ V :

Y j
αβ = Y k

γδ if (α, β) ∈ 2Aj
ω,

(γ, δ) ∈ 2Ak
ω and α + β = γ + δ

}
.

Each Y ∈ V can be identified with a symmetric block diagonal matrix. We use the no-
tation 〈U , Y 〉 =

∑m
k=1〈U

k, Y k〉 for the inner product of U = (U 1, U 2, . . . , Um), Y =
(Y 1, Y 2, . . . , Y m) ∈ V. The cone K1 is described as the Cartesian product of positive
semidefinite cones of smaller dimensions, and the cone K2 is actually a linear subspace of V.
Hence, it is straightforward to implement the metric projections from V onto both cones.

We now associate each X ∈ SAω(Eω, ?) with Y = (Y 1,Y 2, . . . , Y m) ∈ V through Y k =
(Xαβ : 2Ak

ω) (k = 1, 2, . . . ,m). With this correspondence, we see that X ∈ SAω(Eω, ?)+ ∩
LAω(Eω, ?) if and only if Y ∈ K1 ∩K2. Furthermore, we can choose Q̃

0
, H̃

0
, H̃

1
∈ V such

that

〈Q̃
0
, Y 〉 = 〈Q0, X〉, 〈H̃

0
, Y 〉 = 〈H0, X〉 and 〈H̃

1
, Y 〉 = 〈H1, X〉

hold. Consequently, we obtain the following primal-dual pair of COPs which are equivalent
to the primal dual pair of COPs (33) and (34):

ηp
ω(λ) := inf

{
〈Q̃

0
+ λH̃

1
, X〉

∣∣∣ Y ∈ K1 ∩ K2, 〈H̃
0
, X〉 = 1

}
.

ηd
ω(λ) := sup

{
y0 ∈ R

∣∣∣ Q̃
0
+ λH̃

1
− H̃

0
y0 ∈ K∗

1 + K∗
2, y0 ∈ R

}
.

For details, see [13, 16, 23].

5 Concluding remarks

For POP (1) with J = Rn
+, two different approaches, both based on the discussions in

Section 4, can be used. The first one is the hierarchy of sparse Lagrangian-DNN relaxations,
obtained by replacing SDP cones with DNN cones in the construction of the hierarchy
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of sparse Lagrangian-SDP relaxations in Section 4. The second one is the hierarchy of
sparse Lagrangian-SDP relaxation for the reformulated equality constrained POP over R2n,
obtained from adding xi − x2

i+n = 0 (i = 1, 2, . . . , n) and replacing the cone Rn
+ by R2n. We

have taken the second approach in Example 4.1. The lower bounds generated by the first
hierarchy of Lagrangian-DNN relaxations may not be theoretically guaranteed to converge
to the optimal value of the original POP. However, it may work effectively and efficiently
for practical problems with a low relaxation order.

There remain some issues to be investigated for an efficient implementation of the hierar-
chy of sparse Lagrangian-SDP relaxations. We can utilize some of the first-order algorithms
in [16], where the Lagrangian-DNN relaxation was implemented to solve QOPs by applying
a bisection method with the proximal alternating direction multiplier method [11] and the
accelerated proximal gradient method [6]. We can also utilize the 1-dimensional Newton
method proposed in Part I [5]. In addition, how to handle sparsity, which was not consid-
ered in [16], is an important issue. We hope to report some numerical results in the near
future.
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