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Abstract

We consider subgradient- and gradient-based methods for convex optimization problems
whose feasible region is simple enough. We unify the way of constructing the subproblems
which are necessary to be solved at each iteration of these methods. Our unifying framework
provides a novel analysis of (sub)gradient-based methods and permit us to propose a family of
optimal complexity methods. For the non-smooth case, we propose an extension of the mirror-
descent method originally proposed by Nemirovski and Yudin [8] and overcame its drawback
on optimal convergence. Our analysis is also applied to the dual-averaging method proposed
by Nesterov [14] using simpler arguments for its complexity analysis. Finally, we propose
(inexact) gradient-based methods for structured optimization problems such as with composite
structure or using an inexact oracle model. The proposed family of classical gradient methods
and its accelerations generalizes some of primal/dual gradient and Tseng’s accelerated proximal
gradient methods [6, 13, 16, 17].

Keywords: non-smooth/smooth convex optimization, structured convex optimization, subgra-
dient/gradient-based proximal method, mirror-descent method, dual-averaging method, com-
plexity bounds.

Mathematical Subject Classification (2010): 90C25, 68Q25, 49M37

1 Introduction

1.1 Background

The gradient-based method proposed by Nesterov in 1983 for smooth convex optimization problems
brought a surprising class of “optimal complexity” methods with preeminent performance over
classical gradient methods for the worst case instances [9]. A minimization of a smooth convex
function, whose gradient is Lipschitz continuous with constant L, by these optimal complexity
methods ensure an ε-solution for the objective value within O(

√
LR2/ε) iterations, while the

∗corresponding author
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classical gradient methods require O(LR2/ε) iterations; R is the distance between an optimal
solution and the initial point. It is important to observe that in all of those methods, the iteration
complexity is with respect to the convergence rate of the approximate optimal values and not with
respect to the approximate optimal solutions. The Nesterov’s optimal complexity method, as well
as further improvements and extensions [1, 10, 12], applied or extended for solving non-smooth
convex problems [4, 11, 12, 15, 16, 17] with composite structure [3, 11, 12, 13] and the inexact
oracle model [6], changed substantially the approach on how to solve large-scale structured convex
optimization problems arising in compressed sensing, image processing, statistics, etc.

Many of those methods for smooth and structured convex problems were unified and generalized
by Tseng [16, 17] and it was shown that they preserve the O(

√
LR2/ε) iteration complexity. It is

important to notice that the computational complexity of each iteration will strongly depend on
the structure of the objective function, the feasible region, and the choice of the proximal operation
to define the auxiliary subproblems solved at each iteration.

For a general non-smooth convex problem, the complexity analysis of those methods becomes
quite different compared to the smooth case. The optimal complexity in the non-smooth case
is O(M2R2/ε2) iterations for an ε-solution, where M is a Lipschitz constant for the objective
function. A well known optimal method for this case is the Mirror-Descent Method (MDM)
proposed by Nemirovski and Yudin [8] which was later related to the subgradient algorithm by
Beck and Teboulle [2]. It can be proved that the MDM achieves the optimal complexity when we
know in advance an upper bound for R. The Dual-Averaging Method (DAM) proposed by Nesterov
[14], on the other hand, removed this requirement and still ensured the same complexity. The key
contribution of the DAM was the introduction of a sequence which we call scalling parameter βk

in this paper.
The (approximate) gradient-based methods proposed as the primal and dual gradient methods

in [6, 13] can be interpreted as particular cases of the MDM and the DAM for the correspond-
ing smooth convex problems, respectively, as it will be clear along the article. They ensure the
same complexity O(LR2/ε) as the classical gradient methods. Particular cases of Tseng’s optimal
methods [16, 17] can be also seen as accelerated versions of these methods.

1.2 Contribution

Our contribution will be a modest one over these methods, i.e., identifying a common property
intrinsic to the MDM and the DAM. This property will provide a unifying framework for analyzing
(sub)gradient-based methods which can be applied for non-smooth and smooth cases as well as for
structured problems.

Our unifying framework will permit us to propose a new family of optimal methods which
includes the MDM and the DAM for the non-smooth case (Method 9).

We will introduce two models to update the auxiliary subproblems, which are necessary to
be solved at each iteration, called the extended MD model (11) and the DA model (12). Based
on them, our family of methods ensure the optimal complexity O(M2R2/ε2) for the non-smooth
case. As a by-product, the proposed extended MDM overcomes the drawback of the original MDM
which requires in advance the knowledge of an upper bound R to ensure the optimal complexity.

Furthermore, our unifying framework can be extended to structured problem whose objective
functions are smooth, have composite structure, saddle structure, or their values as well as their
subgradients depend on an inexact oracle [6]. For all these cases, we propose two general methods
(Methods 16 and 17) whose complexity to obtain an ε-solution are O(LR2/ε) and O(

√
LR2/ε),

respectively (excepting for the inexact oracle case). The former method includes the classical
gradient methods analyzed in [6, 13] and the latter one, which is optimal for smooth optimization,
includes Tseng’s second and third Accelerated Proximal Gradient (APG) methods [17] which are
particular cases of Tseng’s ones [16].

2



A unifying framework for structured optimization problems was already provided by Tseng
[16, 17]. However, our result distinguishes in finding a common set of properties (Property 2)
which the auxiliary functions should satisfy. This fact will simplify the subsequence convergence
analysis of the proposed methods. In fact, our optimal complexity methods can be regarded as
situated between the extended MDM and the DAM. Table 1 shows the relation between our family
of (sub)gradient-based methods and other known methods.

Table 1: Relation between our family of (sub)gradient-based methods and other known methods.
The star (*) corresponds to our result. “Complexity” indicates the number of iteration to obtain an
ε-solution when the objective function has no inexactness for its oracle. [13] is included considering
that its Lipschitz constant is known in advance.

problem class complexity known methods generalized methods

non-smooth
optimal

O
(
M2R2/ε2

) mirror-descent [2, 8]
*Method 9 (a) with the model (11)

≡ extended mirror-descent: Method 13
dual-averaging [14] *Method 9 (a) with the model (12)

structured/
smooth

classical
O(LR2/ε)

primal gradient [6, 7, 13] *Method 16 with the model (11)
dual gradient [6, 13] *Method 16 with the model (12)

optimal
O(
√
LR2/ε)

FISTA [3] Tseng’s first APG [17]
Nesterov’s method [12] Tseng’s modified method; see [16, (35-36)]

Tseng’s second APG [17]
*Method 20 ≡ Method 17 with the model (11)
Tseng’s method [16, Algorithm 1]

Tseng’s third APG [17]
*Method 21 ≡ Method 17 with the model (12)
Tseng’s method [16, Algorithm 3]

At each iteration, all of the above methods need to solve one or two convex subproblems which
can be easy or hard depending on the structure and/or the feasible region of the original problem.
Nesterov’s optimal methods [12, 13] require two subproblems at each iteration while Tseng’s ones
need only one subproblem and even preserve the same complexity. The proposed methods in this
paper need only one subproblem at each iteration.

The structure of this article is as follows. First, we review some existing methods, in particular
the MDM and the DAM for non-smooth and smooth objective functions (Section 2). In Section 3,
we propose the Property 2 which will be required for all auxiliary functions of our methods, as
well as some supporting lemmas. We then propose in Section 4 the unifying method and prove
its convergence rate, in particular for the extended MDM and the DAM, and subsequently for the
structured problems in Section 5.

1.3 Notations

In this paper, we consider a finite dimensional real vector space E endowed with a norm ‖ · ‖. The
dual space of E is denoted by E∗ endowed with the dual norm ‖ · ‖∗ defined by

‖s‖∗ = max
‖x‖≤1

〈s, x〉, s ∈ E∗

where 〈s, x〉 denotes the value of s ∈ E∗ at x ∈ E. We consider subgradient-based and gradient-
based methods to solve the following convex optimization problem :

min
x∈Q

f(x) (1)

where Q is a nonempty closed convex and possibly unbounded subset of E, and f : E → R∪{+∞}
is a proper lower semicontinuous convex function with Q ⊂ dom f := {x ∈ E : f(x) < +∞}.
For each x ∈ dom f , the subdifferential of f at x is denoted by ∂f(x) := {g ∈ E∗ : f(y) ≥
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f(x) + 〈g, y − x〉 , ∀y ∈ E}. We assume throughout this paper that the problem (1) always has
an optimal solution x∗ ∈ Q, and the structure of Q is simple enough or has some special structure
which permits one to solve a subproblem over it with moderate easiness. See [12] for some examples.

We additionally assume that there is a proper lower semi-continuous convex function d : E →
R ∪ {+∞} satisfying the following properties:

• d(x) is a strongly convex function on Q with parameter σ > 0, i.e.,

d(τx+ (1 − τ)y) ≤ τd(x) + (1 − τ)d(y) − 1
2
στ(1 − τ)‖x− y‖2, ∀x, y ∈ Q, ∀τ ∈ [0, 1].

• d(x) is continuously differentiable on Q.

We denote by ξ(z, x) the Bregman distance [5] between z and x:

ξ(z, x) := d(x) − d(z) − 〈∇d(z), x− z〉, z, x ∈ Q.

The Bregman distance satisfies ξ(z, x) ≥ σ
2 ‖x − z‖2 for any x, z ∈ Q by the strong convexity of

d(x).
We also assume that d(x0) = minx∈Q d(x) = 0 for x0 := argminx∈Q d(x) ∈ Q, which is used for

the initial point of our methods.1 Finally, we define R as R :=
√

1
σd(x

∗), R :=
√

1
σ ξ(x0, x∗), or

their upper bounds, which quantifies the distance between the optimal solution x∗ and the initial
point x0 in view of properties d(x0) = 0 and d(x) ≥ σ

2‖x− x0‖2 for every x ∈ Q.

2 Existing optimal methods

In this section, we review some well-known subgradient-based and gradient-based methods. In
particular, we focus on the Mirror-Descent Method (MDM) and Dual-Averaging Method (DAM)
for non-smooth objective functions, and on Nesterov’s accelerated gradient and Tseng’s Accelerated
Proximal Gradient (APG) methods for smooth objective functions (or for non-smooth ones with
some special structures).

The purpose of this section is to unify the notation of these methods in order to introduce a
unifying framework for them in Section 3. For that, we sometimes changed the variables’ names,
shifted their indices, and added constants in the objective functions of optimization subproblems
compared to the original articles.

2.1 Optimal methods for the non-smooth case

Let us first assume that f(x) in (1) is non-smooth. The MDM [8] in the form reinterpreted by Beck
and Teboulle [2] generates the following iterates from the initial point x0 := argminx∈Q d(x) ∈ Q.

xk+1 := argmin
x∈Q

{λk[f(xk) + 〈gk, x− xk〉] + ξ(xk, x)} , k = 0, 1, 2, . . . , (2)

where gk ∈ ∂f(xk) and λk > 0 is a weight. The parameter λk is also referred to as a stepsize; it is
known that the procedure (2) reduces to the classical subgradient method xk+1 := πQ(xk − λkgk)
when E is an Euclidean space, ‖·‖ is the norm of E induced by its inner product, d(x) := 1

2‖x−x0‖2,
and πQ is the orthogonal projection onto Q (see also Auslender-Teboulle [1] and Fukushima-Mine
[7] for some related works).

1We can always assume this requirement for an arbitrary point x0 ∈ Q by replacing d(x) by ξ(x0, x).
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The MDM produces the following estimate [2]:

∀k ≥ 0, min
0≤i≤k

f(xi) − f(x∗) ≤
∑k

i=0 λif(xi)∑k
i=0 λi

− f(x∗) ≤
ξ(x0, x

∗) + 1
2σ

∑k
i=0 λ

2
i ‖gi‖2

∗∑k
i=0 λi

(3)

where the right hand side can be bounded by M
√

2σ−1ξ(x0, x∗)/
√
k + 1 if M := sup{‖g‖∗ : g ∈

∂f(x), x ∈ Q} is finite and if we choose the constant weights λi := M−1
√

2σξ(x0, x∗)/
√
k + 1, i =

0, . . . , k for a fixed k ≥ 0. If we further know an upper bound R ≥
√

1
σ ξ(x0, x∗), this convergence

result ensures an ε-solution in O(M2R2/ε2) iterations which provides the optimal complexity for
the non-smooth case [2]. The above choice of weights, however, is impractical since it depends on
the final iterate k and an upper bound for ξ(x0, x

∗); a more practical choice λi := r/
√
i+ 1 for

some r > 0 only ensures an upper bound ξ(x0,x∗)+(2σ)−1r2M2(1+log(k+1))

2r(
√

k+2−1)
= O(log k/

√
k) for the right

hand side of (3).
The DAM proposed by Nesterov [14] overcomes the dependence of weights of the MDM on k

and even achieves the rate of convergence O(1/
√
k). This method employs non-decreasing positive

scaling parameters {βk}k≥−1 (βk+1 ≥ βk > 0) in addition to the weights {λk}k≥0. From the initial
point x0 := argminx∈Q d(x) ∈ Q, the DAM is performed as

xk+1 := argmin
x∈Q

{
k∑

i=0

λi[f(xi) + 〈gi, x− xi〉] + βkd(x)

}
, k = 0, 1, 2, . . . (4)

In order to ensure the rate of convergence O(1/
√
k), we do not even need a prior knowledge of an

upper bound for ξ(x0, x
∗); for instance, choosing λk := 1 and βk := γβ̂k where γ > 0 and

β̂−1 := β̂0 := 1, β̂k+1 := β̂k + β̂−1
k , ∀k ≥ 0, (5)

it yields the estimate

∀k ≥ 0, min
0≤i≤k

f(xi) − f(x∗) ≤
∑k

i=0 λif(xi)∑k
i=0 λi

− f(x∗) ≤
(
γd(x∗) +

M2

2σγ

)
0.5 +

√
2k + 1

k + 1
,

which achieves the optimal complexity if we choose γ := M/
√

2σd(x∗).
A key of the analysis of the DAM in [14] is the use of dual approach such as the conjugate

function of βd(x) for β > 0. In this paper, we prove the same result with simpler arguments (in
Section 4) for the DAM and (an extension of) the MDM without employing it.

Observe that for both methods, we do not need to evaluate any function value at any iteration
and xk+1 is determined uniquely even if Q is unbounded since d(x) is strongly convex [14, Lemma
6].

2.2 Optimal methods for the smooth case

Let us assume now that the function f(x) in (1) is convex and continuously differentiable on Q.
Nesterov [12] and Tseng [16, 17] proposed optimal methods whenever we could further assume that
its gradient is Lipschitz continuous on Q. Let L > 0 be this Lipschitz constant, i.e.,

‖∇f(x) −∇f(y)‖∗ ≤ L‖x− y‖, ∀x, y ∈ Q.

Given positive weights {λk}k≥0, both methods depend on the following computation of optimal
solutions ẑk and/or zk of auxiliary subproblems:

(a) ẑk := argminx∈Q

{
λk[f(xk) + 〈∇f(xk), x− xk〉] + L

σ ξ(zk−1, x)
}
,

(b) zk := argminx∈Q

{∑k
i=0 λi[f(xi) + 〈∇f(xi), x− xi〉] + L

σ d(x)
} (6)
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where {xk}k≥0 ⊂ Q is the sequence generated by those methods. Note that the subproblem (a) is
closely related to the one of the MDM (2) and the subproblem (b) corresponds to the one of the
DAM (4) with βk = L/σ. Similarly to the non-smooth case, it is not necessary to evaluate the
function values at xk’s and the minimums are uniquely defined.

The Nesterov’s optimal method (see modified method in [12, Section 5.3]) with a particular
choice for the weights λk is described as follow.
Nesterov’s method: Set λk := (k + 1)/2 for k ≥ 0 and x0 := z−1 := argminx∈Q d(x). Compute
ẑ0 by (a) and set x̂0 := z0 := ẑ0. For k ≥ 0, iterate the following procedure:

Set xk+1 := (1 − τk)x̂k + τkzk, where τk := λk+1
Pk+1

i=0 λi
,

Compute ẑk+1 by (a),
Set x̂k+1 := (1 − τk)x̂k + τkẑk+1,
Compute zk+1 by (b).

(7)

On the other hand, Tseng’s second and third Accelerated Proximal Gradient (APG) methods
[17] which are particular cases of algorithms 1 and 3 in [16], only require the solution of either
subproblem (a) or (b), respectively.

Tseng’s second APG method: Set λ0 := 1, λk+1 := 1+
√

1+4λ2
k

2 for k ≥ 0, and x0 := z−1 :=
argminx∈Q d(x). Compute ẑ0 by (a) and set x̂0 := ẑ0. For k ≥ 0, iterate the following procedure:

Set xk+1 := (1 − τk)x̂k + τkẑk, where τk := λk+1
Pk+1

i=0 λi
,

Compute ẑk+1 by (a) replacing zk by ẑk,
Set x̂k+1 := (1 − τk)x̂k + τkẑk+1.

(8)

Tseng’s third APG method: Set λ0 := 1, λk+1 := 1+
√

1+4λ2
k

2 for k ≥ 0, and x0 := z−1 :=
argminx∈Q d(x). Compute z0 by (b) and set x̂0 := z0. For k ≥ 0, iterate the following procedure:

Set xk+1 := (1 − τk)x̂k + τkzk, where τk := λk+1
Pk+1

i=0 λi
,

Compute zk+1 by (b),
Set x̂k+1 := (1 − τk)x̂k + τkzk+1.

(9)

Remark 1. To see the equivalence to Tseng’s second APG method, notice that x0 is not used at
all in [17]. Then defining d(x) := D(x, z0) = η(x)−η(z0)−〈∇η(z0), x−z0〉 for an arbitrary z0 ∈ Q,
we have σ = 1 in (a). Finally, making the correspondence zk → zk−1, yk → xk, xk → x̂k, and
θk → 1

λk
, it will result in our notation. For the Tseng’s third APG method, identical observations

are valid, excepting that we define d(x) := η(x) − η(z0) instead.

It can be shown that both Nesterov’s and Tseng’s methods attain the optimal convergence rate;
Nesterov’s method (7) and Tseng’s third APG method (9) satisfy

∀k ≥ 0, f(x̂k) − f(x∗) ≤ 4Ld(x∗)
σ(k + 1)(k + 2)

while Tseng’s second APG method (8) satisfies

∀k ≥ 0, f(x̂k) − f(x∗) ≤ 4Lξ(x0, x
∗)

σ(k + 2)2
.

The convergence analysis of these three methods are performed in different ways. What we
propose in Section 5 is a unified analysis for them using the following Nesterov’s strategy [12]:
Find a sequence {x̂k} ⊂ Q such that

6



Skf(x̂k) ≤ min
x∈Q

{
k∑

i=0

λi[f(xi) + 〈∇f(xi), x− xi〉] +
L

σ
d(x)

}
where Sk =

∑k
i=0 λi.

The above gradient-based methods for smooth problems can be generalized for non-smooth
convex problems with special structures preserving the same iteration complexity. The structures
of the composite objective function and the inexact oracle model are remarkably important since
they have significant applications for compressed sensing, image processing, and statistics (see
[3, 6, 17] for some examples). These structures will be detailed in Section 5. The Nesterov’s
method (7) was generalized for the composite structure [13] and the inexact oracle model [6].
Tseng’s above methods were originally proposed for the composite objective function unifying
some existing methods [1, 3, 12], while we only have described the particular ones for the smooth
case.

3 General conditions for the auxiliary functions in the unifying
framework

For all methods we reviewed for non-smooth or smooth objective functions, we need to form one
or two auxiliary functions ψk(x) and solve the corresponding subproblem(s) minx∈Q ψk(x) at each
iteration. In this section, we will propose general conditions which these auxiliary functions should
satisfy in order to provide a unifying analysis. In particular, we can show that these auxiliary
functions are derived from the extended MD model (11), the DA model (12), or a mixture of them.
Based on these results, we will propose a family of methods in a unifying framework for non-smooth
functions in Section 4 and for structured convex problems in Section 5 which includes the smooth
functions.

We use the following notations for the description and the analysis of our methods. For a point
y ∈ Q, denote by lf (y;x) : E → R ∪ {+∞} a proper lower semicontinuous convex function with
f(x) ≥ lf (y;x), ∀x ∈ E, i.e., a lower approximation of f(x) at y ∈ Q. The explicit description of
the function lf (y;x) will be given in Sections 4 and 5 and will vary according to the property of
f(x). For the function d(x), we denote ld(y;x) := d(y) + 〈∇d(y), x− y〉. Note that d(x) ≥ ld(y;x)
and ξ(y, x) = d(x) − ld(y;x) for any x, y ∈ Q.

We introduce two kinds of “parameters” for our methods, namely, the weight parameter {λk}k≥0

and the scaling parameter {βk}k≥−1. We define Sk :=
∑k

i=0 λi. Moreover, we use {x̂k}k≥0 ⊂ Q
and {xk}k≥0 ⊂ Q for sequences of approximate solutions and test points (for which we compute
the (sub)gradients), respectively (recall that x0 := argminx∈Q d(x)).

Finally, we consider auxiliary functions ψk(x) whose unique minimizers on Q are denoted by
zk := argminx∈Q ψk(x). The function ψk(x) is assumed to be defined by {λi}k

i=0, {βi}k
i=−1, {xi}k

i=0

and {zi}k−1
i=0 for each k ≥ 0. We also consider ψ−1(x) (and z−1 := argminx∈Q ψ−1(x)) for conve-

nience.
The following property will be a fundamental one for the construction of auxiliary functions

{ψk(x)}k≥−1 in our unifying framework.

Property 2. Let {λk}k≥0 be a sequence of positive weight parameters, {βk}k≥−1 be a sequence
of positive and non-decreasing scaling parameters, and {xk}k≥0 be a sequence of test points. Let
ψk(x) be auxiliary functions which are determined by {λi}k

i=0, {βi}k
i=−1, {xi}k

i=0, and {zi}k−1
i=0

where zi := argminx∈Q ψi(x) for each k ≥ −1. Then the following conditions hold:

(i) minx∈Q ψ−1(x) = 0 and z−1 = x0.

7



(ii) The following inequality holds for every k ≥ −1 :

∀x ∈ Q, ψk+1(x) ≥ min
z∈Q

ψk(z) + λk+1lf (xk+1;x) + βk+1d(x) − βkld(zk;x).

(iii) The following inequality holds for every k ≥ 0 :

min
x∈Q

ψk(x) ≤ min
x∈Q

{
k∑

i=0

λilf (xi;x) + βkld(zk;x)

}
.

On the construction of an auxiliary function, the following lemma [16, Property 2] is useful.

Lemma 3. Let h : E → R ∪ {+∞} be a proper lower semicontinuous convex function with
Q ⊂ domh and β be a positive number. Denote ψ(x) = h(x) + βd(x). Then the minimization
problem minx∈Q ψ(x) has a unique solution z∗ ∈ Q and it satisfies

ψ(x) ≥ ψ(z∗) + βξ(z∗, x), ∀x ∈ Q.

We now propose a family of auxiliary functions which satisfy Property 2.

(0) Define ψ−1(x) := β−1d(x).
(1) For each k ≥ −1, define ψk+1(x) by either the extended Mirror-Descent (MD)

model (11) or the Dual-Averaging (DA) model (12).

 (10)

Extended MD model:

ψk+1(x) := min
z∈Q

ψk(z) + λk+1lf (xk+1;x) + βk+1d(x) − βkld(zk;x). (11)

DA model:
ψk+1(x) := ψk(x) + λk+1lf (xk+1;x) + βk+1d(x) − βkd(x). (12)

In both cases, ψk+1(x) is proper lower semicontinuous and strongly convex on Q.

Proposition 4. Any sequence of auxiliary functions {ψk(x)} constructed by (10) satisfies Prop-
erty 2.

Proof. Since minx∈Q d(x) = d(x0) = 0, ψ−1(x) = β−1d(x) satisfies condition (i).
If we construct ψk+1(x) by (11), then it is clear that the condition (ii) holds. Let us consider

the case (12). Notice that on the construction (10), we can show by induction that the functions
hk(x) := ψk(x) − βkd(x) are always proper lower semicontinuous and convex. Thus Lemma 3
implies that ψk(x) ≥ minz∈Q ψk(z) + βkξ(zk, x) for every x ∈ Q. Therefore, we obtain

ψk+1(x) = ψk(x) + λk+1lf (xk+1;x) + βk+1d(x) − βkd(x)
≥ [min

z∈Q
ψk(z) + βkξ(zk, x)] + λk+1lf (xk+1;x) + βk+1d(x) − βkd(x)

= min
z∈Q

ψk(z) + λk+1lf (xk+1;x) + βk+1d(x) − βkld(zk;x)

for all x ∈ Q.
Let us finally prove the condition (iii) by induction. We actually show that it is also valid

for k ≥ −1. The case k = −1 is due to the optimality condition for z−1 = argminx∈Q ψ−1(x) =

8



argminx∈Q β−1d(x), that is, minx∈Q β−1d(x) = minx∈Q β−1ld(z−1;x) holds. Suppose that the con-
dition (iii) holds for some k ≥ −1. Consider the auxiliary function ψk+p(x) for a positive integer p
defined as follows. Define ψk+1(x) by (11) and define ψk+i+1(x) by (12) for i = 1, . . . , p− 1. Then

ψk+p(x) = ψk(zk) +
k+p∑

i=k+1

λilf (xi;x) + βk+pd(x) − βkld(zk;x), (13)

and using Lemma 3 we have

min
x∈Q

ψk+p(x) ≤ ψk+p(x) − βk+pξ(zk+p, x)

=

[
ψk(zk) +

k+p∑
i=k+1

λilf (xi;x) + βk+pd(x) − βkld(zk;x)

]
− βk+pξ(zk+p, x)

(iii)

≤

[
k∑

i=0

λilf (xi;x) + βkld(zk;x)

]

+
k+p∑

i=k+1

λilf (xi;x) + βk+pd(x) − βkld(zk;x) − βk+pξ(zk+p, x)

=
k+p∑
i=0

λilf (xi;x) + βk+pld(zk+p;x)

for all x ∈ Q. This proves the condition (iii) for ψk+p(x). It is, therefore, enough to prove the
condition (iii) in the case when the auxiliary function ψk(x) is defined only by (12) updates. We
have ψk(x) =

∑k
i=0 λilf (xi;x) + βkd(x) in this case and again Lemma 3 implies that

min
x∈Q

ψk(x) ≤ ψk(x) − βkξ(zk, x) =
k∑

i=0

λilf (xi;x) + βkld(zk;x)

for every x ∈ Q.

Remark 5. Proposition 4 proves that the following auxiliary functions satisfy Property 2 for
appropriate choices of lf (xi;x)’s.

• Constructing {ψk(x)} by (10) with only extended MD model updates (11) yields

ψk(x) = minx∈Q ψk−1(x) + λklf (xk;x) + βkd(x) − βk−1ld(zk−1;x),
zk = argminx∈Q

{
λklf (xk;x) + βkd(x) − βk−1ld(zk−1;x)

} (14)

which coincides with the MDM (2) for βk = 1 and xk = zk−1, and the subproblems of Tseng’s
second APG method (8) for βk = L/σ.

• Constructing {ψk(x)} by (10) with only DA model updates (12) yields

ψk(x) =
∑k

i=0 λilf (xi;x) + βkd(x),
zk = argminx∈Q

{∑k
i=0 λilf (xi;x) + βkd(x)

} (15)

which coincides with the DAM (4) and the subproblems of Tseng’s third APG method (9)
with βk = L/σ.
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Notice that a pure extended MD model updates (14) considers only the previous lf (xk;x) while the
DA model updates (15) accumulates all lf (xi;x)’s. Moreover, Proposition 4 shows that Property 2
is satisfied even if we mix the strategies (14) and (15) which correspond in selecting some of previous
lf (xi;x)’s to define the subproblem as shown in (13). Note that, for a fixed ψk(x), the construction
(11) of ψk+1(x) is the minimalist choice which satisfies Property 2; according to (ii), any auxiliary
function ψk+1(x) majorizes the one defined by (11) on the set Q.

To conclude this section, we define the following relation based on the Nesterov’s approach
[12]; we propose (sub)gradient-based methods which generates approximate solutions {x̂k} ⊂ Q
satisfying the following relation for every k ≥ 0 :

(Rk) Skf(x̂k) ≤ min
x∈Q

ψk(x) + Ck (16)

where Ck is defined according to the problem structure.
This relation yields the following lemma which provides a convergence rate of all methods.

Lemma 6. Let {ψk(x)} be a sequence of auxiliary functions satisfying Property 2 associated with
weight parameters {λk}k≥0, scaling parameters {βk}k≥−1, and test points {xk}k≥0. If a sequence
{x̂k} ⊂ Q satisfies the relation (Rk) for some k ≥ 0, then we have

f(x̂k) − f(x∗) ≤ βkld(zk;x∗) + Ck

Sk

where zk := argminx∈Q ψk(x).

Proof. Since
∑k

i=0 λilf (xi;x) ≤ Skf(x) for all x ∈ Q, using the condition (iii) of Property 2 yields

min
x∈Q

ψk(x) ≤ min
x∈Q

{
k∑

i=0

λilf (xi;x) + βkld(zk;x)

}
≤ min

x∈Q
{Skf(x) + βkld(zk;x)} ≤ Skf(x∗)+βkld(zk;x∗).

Therefore, the relation (Rk) implies

Skf(x̂k) ≤ min
x∈Q

ψk(x) + Ck ≤ Skf(x∗) + βkld(zk;x∗) + Ck.

4 A family of subgradient-based methods in the unifying frame-
work

4.1 The unifying framework

In this section, we propose novel subgradient-based methods for solving problem (1). Throughout
this section, we assume that subgradients of the objective function f , g(y) ∈ ∂f(y), are computable
at any point y ∈ Q and a lower approximation lf (y; ·) at the same point is defined by

lf (y;x) := f(y) + 〈g(y), x− y〉 , ∀x ∈ Q.

For a test point xk ∈ Q, we denote gk = g(xk) ∈ ∂f(xk). In this case, the subproblems zk =
argminx∈Q ψk(x) constructed from (10) are of the form

min
x∈Q

{〈s, x〉 + βd(x)} (17)

for some s ∈ E∗ and β > 0.
We use the following lemma for our analysis.
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Lemma 7. Let {xk}k≥0 ⊂ Q and gk ∈ ∂f(xk), k ≥ 0. Then, for λ ∈ R, β > 0 and x, z ∈ Q, we
have

〈λgk, x− z〉 + βξ(z, x) +
1

2σβ
‖λgk‖2

∗ ≥ 0, ∀k ≥ 0,

and, in particular,

λlf (xk, x) + βξ(xk, x) +
λ2

2σβ
‖gk‖2

∗ ≥ λf(xk), ∀k ≥ 0.

Proof. Since for every x ∈ E and s ∈ E∗ the inequality 1
2‖x‖

2 + 1
2‖s‖

2
∗ ≥ 〈s, x〉 holds, we have

〈λgk, x− z〉 + βξ(z, x) +
1

2σβ
‖λgk‖2

∗ ≥ 〈λgk, x− z〉 +
σβ

2
‖x− z‖2 +

1
2σβ

‖λgk‖2
∗ ≥ 0.

Substituting z = xk for this inequality and adding λf(xk) to both sides, we obtain the second
assertion.

Let us consider the relation (Rk) defined at the previous section with

Ck =
1
2σ

k∑
i=0

λ2
i

βi−1
‖gi‖2

∗. (18)

We also use the following alternative relation:

(R̂k)
k∑

i=0

λif(xi) ≤ min
x∈Q

ψk(x) + Ck. (19)

Note that the relation (R̂k) provides an alternative to Lemma 6 which can be proven in the same
way: If {ψk(x)} admits Property 2 and the relation (R̂k) is satisfied for some k ≥ 0, then we have

1
Sk

k∑
i=0

λif(xi) − f(x∗) ≤ βkld(zk;x∗) + Ck

Sk
. (20)

Now, let us show the following key result which will provide efficient subgradient-based methods
in a straightforward way.

Theorem 8. Let {ψk(x)} be a sequence of auxiliary functions satisfying Property 2 associated
with weight parameters {λk}k≥0, scaling parameters {βk}k≥−1, and test points {xk}k≥0. Denote
zk = argminx∈Q ψk(x) and define Ck by (18). Then the following assertions hold.

(a) The relations (R0) and (R̂0) are satisfied by setting x̂0 := x0.

(b) Suppose that the relation (Rk) is satisfied for some integer k ≥ 0. If the relation xk+1 = zk
holds, then the relation (Rk+1) is satisfied by setting

x̂k+1 :=
Skx̂k + λk+1xk+1

Sk+1
.

Moreover, if the relations (R̂k) is satisfied for some k ≥ 0 and xk+1 = zk holds, then (R̂k+1)
is satisfied.
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(b’) Suppose that the relation (Rk) is satisfied for some integer k ≥ 0. If the relation

xk+1 =
Skx̂k + λk+1zk

Sk+1

holds, then the relation (Rk+1) is satisfied by setting x̂k+1 := xk+1.

Proof. We remark that using condition (ii) of Property 2 we obtain the inequality

∀k ≥ −1, min
x∈Q

ψk+1(x) ≥ min
x∈Q

ψk(x) + λk+1lf (xk+1, zk+1) + βkξ(zk, zk+1)

by setting x = zk+1 = argminx∈Q ψk+1(x) (recall that d(x) ≥ 0 (x ∈ Q) and βk+1 ≥ βk).
(a) Letting k = −1 in the condition (ii) and using the condition (i) of Property 2, we have

min
x∈Q

ψ0(x) +
λ2

0

2σβ−1
‖g0‖2

∗ ≥
[
min
x∈Q

ψ−1(x) + λ0lf (x0; z0) + β−1ξ(z−1, z0)
]
+

λ2
0

2σβ−1
‖g0‖2

∗

= λ0lf (x0; z0) + β−1ξ(z−1, z0) +
λ2

0

2σβ−1
‖g0‖2

∗

= λ0lf (x0; z0) + β−1ξ(x0, z0) +
λ2

0

2σβ−1
‖g0‖2

∗

≥ λ0f(x0)
= S0f(x̂0),

where the last inequality is due to Lemma 7.
(b) By the condition (ii) of Property 2 and the assumptions for xk+1 and x̂k+1, we obtain that

min
x∈Q

ψk+1(x) +
1
2σ

k+1∑
i=0

λ2
i

βi−1
‖gi‖2

∗

≥
[
min
x∈Q

ψk(x) + λk+1lf (xk+1; zk+1) + βkξ(zk, zk+1)
]

+
λ2

k+1

2σβk
‖gk+1‖2

∗ +
1
2σ

k∑
i=0

λ2
i

βi−1
‖gi‖2

∗

= min
x∈Q

ψk(x) +
1
2σ

k∑
i=0

λ2
i

βi−1
‖gi‖2

∗ +

[
λk+1lf (xk+1; zk+1) + βkξ(xk+1, zk+1) +

λ2
k+1

2σβk
‖gk+1‖2

∗

]

≥

[
min
x∈Q

ψk(x) +
1
2σ

k∑
i=0

λ2
i

βi−1
‖gi‖2

∗

]
+ λk+1f(xk+1)

≥ Skf(x̂k) + λk+1f(xk+1)

≥ Sk+1f

(
Skx̂k + λk+1xk+1

Sk+1

)
= Sk+1f(x̂k+1),

where we used Lemma 7, the relation (Rk), and the convexity of f in the last three inequalities,
respectively. This implies that the relation (Rk+1) holds. Moreover, replacing the use of (Rk) by
(R̂k) in the above inequality, we obtain the relation (R̂k+1), which proves the latter assertion.

(b’) Denote x′k+1 =
Skx̂k + λk+1zk+1

Sk+1
. Then the relation xk+1 =

Skx̂k + λk+1zk
Sk+1

yields

zk+1 − zk =
Sk+1

λk+1
(x′k+1 − xk+1).

Thus the condition (ii) of Property 2 and the relation (Rk) imply that
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min
x∈Q

ψk+1(x) +
1
2σ

k+1∑
i=0

λ2
i

βi−1
‖gi‖2

∗

≥ min
x∈Q

ψk(x) + λk+1lf (xk+1; zk+1) + βkξ(zk, zk+1) +
λ2

k+1

2σβk
‖gk+1‖2

∗ +
1
2σ

k∑
i=0

λ2
i

βi−1
‖gi‖2

∗

≥ Skf(x̂k) + λk+1lf (xk+1; zk+1) + βkξ(zk, zk+1) +
λ2

k+1

2σβk
‖gk+1‖2

∗

≥ Sklf (xk+1; x̂k) + λk+1lf (xk+1; zk+1) + βkξ(zk, zk+1) +
λ2

k+1

2σβk
‖gk+1‖2

∗

= Sk+1lf

(
xk+1;

Skx̂k + λk+1zk+1

Sk+1

)
+ βkξ(zk, zk+1) +

λ2
k+1

2σβk
‖gk+1‖2

∗

= Sk+1lf (xk+1;x′k+1) + βkξ(zk, zk+1) +
λ2

k+1

2σβk
‖gk+1‖2

∗

= Sk+1f(xk+1) +
〈
gk+1, Sk+1(x′k+1 − xk+1)

〉
+βkξ(zk, zk+1) +

λ2
k+1

2σβk
‖gk+1‖2

∗

= Sk+1f(xk+1) + 〈λk+1gk+1, zk+1 − zk〉 + βkξ(zk, zk+1) +
λ2

k+1

2σβk
‖gk+1‖2

∗

≥ Sk+1f(xk+1)
= Sk+1f(x̂k+1)

where the last inequality is due to Lemma 7.

Now we are ready to propose the following two novel subgradient-based methods for the non-
smooth case.

Method 9 (Unifying framework). Choose weight parameters {λk}k≥0 and scaling parameters
{βk}k≥−1. Generate sequences {(zk−1, xk, gk, x̂k)}k≥0 by

(a) xk := zk−1 := argmin
x∈Q

ψk−1(x), x̂k :=
1
Sk

k∑
i=0

λixi, gk ∈ ∂f(xk), for k ≥ 0 (21)

or by

(b) zk−1 := argmin
x∈Q

ψk−1(x), x̂k := xk :=
1
Sk

k∑
i=0

λizi−1, gk ∈ ∂f(xk), for k ≥ 0 (22)

where {ψk(x)}k≥−1 is defined using the construction (10) as well as any construction which admits
Property 2.

Notice that the sequences {zk}k≥−1 and {xk}k≥0 are dummy ones for the methods (a) and (b),
respectively, but we kept them to preserve the notation.

4.2 Convergence analysis of the unifying framework method

Corollary 10. Given the weight parameter {λk}k≥0, the scaling parameter {βk}k≥−1, and any
sequence {(zk−1, xk, gk, x̂k)}k≥0 generated by

13



(a) the first procedure (21) in Method 9, we have:

f(x̂k) − f(x∗) ≤ 1
Sk

k∑
i=0

λif(xi) − f(x∗) ≤
βkld(zk;x∗) +

1
2σ

k∑
i=0

λ2
i

βi−1
‖gi‖2

∗

Sk
(23)

for all k ≥ 0; or

(b) the second procedure (22) in Method 9, we have:

f(x̂k) − f(x∗) ≤
βkld(zk;x∗) +

1
2σ

k∑
i=0

λ2
i

βi−1
‖gi‖2

∗

Sk
(24)

for all k ≥ 0.

Proof. The first inequality in (23) is from the convexity of f(x). Proposition 4 and Theorem 8 show
that the sequences generated by the procedures (21) and (22) satisfy the relation (Rk); futhermore,
the former construction (21) also satisfies (R̂k). Thus, Lemma 6 and the alternative (20) of Lemma
6 for (R̂k) prove the assertion.

In [14], Nesterov proposed to use of the auxiliary sequence (5) to ensure an efficient convergence
of the DAM (4). This sequence also satisfies the identity

β̂k =
k−1∑
i=−1

1

β̂i

(k ≥ 0) (25)

and the inequality

∀k ≥ 0,
√

2k + 1 ≤ β̂k ≤ 1
1 +

√
3

+
√

2k + 1. (26)

Corollary 11 (see also [14]). Consider the following two choices for the parameters.

(Simple Averages) Let {(zk−1, xk, gk, x̂k)}k≥0 be generated by Method 9 with parameters λk := 1
and βk := γβ̂k for some γ > 0. Then we have

∀k ≥ 0, f(x̂k) − f(x∗) ≤
(
γld(zk;x∗) +

M2
k

2σγ

)
0.5 +

√
2k + 1

k + 1
(27)

and

∀k ≥ −1, zk, xk+1, x̂k+1 ∈
{
x ∈ Q : ‖x− x∗‖2 ≤ 2d(x∗)

σ
+

M2
k

σ2γ2

}
(28)

where M−1 = 0 and Mk = max
0≤i≤k

‖gi‖∗ for k ≥ 0.

(Weighted Averages) Let {(zk−1, xk, gk, x̂k)}k≥0 be generated by Method 9 with parameters λk :=
1

‖gk‖∗
and βk :=

β̂k

ρ
√
σ

for some ρ > 0. Then we have

∀k ≥ 0, f(x̂k) − f(x∗) ≤Mk
1√
σ

(
ld(zk;x∗)

ρ
+
ρ

2

)
0.5 +

√
2k + 1

k + 1
(29)

and

∀k ≥ −1, zk, xk+1, x̂k+1 ∈
{
x ∈ Q : ‖x− x∗‖2 ≤ 2d(x∗) + ρ2

σ

}
. (30)
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Moreover, for both simple and weighted averages, the above f(x̂k)−f(x∗)’s can be replaced by its
upper bound 1

Sk

∑k
i=0 λif(xi)−f(x∗) when we use the first procedure (21) in Method 9. In this case,

the left hand side of the inequality can be replaced by min{f(x̂k)− f(x∗),min0≤i≤k f(xi)− f(x∗)}.

Proof. Substituting the specified λk and βk into the estimations in Corollary 10 and using the
properties (25) and (26) of β̂k, we obtain (27) and (29), respectively. Denote by Bk the ball on
the right hand side of (28) for k ≥ −1. Then Bk ⊂ Bk+1 for each k ≥ −1. The inequality
(27) implies that γld(zk;x∗) + (2σγ)−1M2

k ≥ 0 for all k ≥ 0. Using the strong convexity, d(x∗) ≥
ld(zk;x∗)+ σ

2‖x
∗−zk‖2, and therefore, shows that zk ∈ Bk for each k ≥ 0. We also have z−1 ∈ B−1;

since z−1 = x0 = argminx∈Q d(x), d(z−1) = d(x0) = 0, and d(x∗) ≥ ld(z−1;x∗) + σ
2‖z−1 − x∗‖2 ≥

σ
2 ‖z−1 − x∗‖2. Finally, we conclude that xk+1, x̂k+1 ∈ Bk for all k ≥ −1 because they are convex
combinations of {zi}k

i=−1. The proof of (30) is similar.

Remark 12. Notice that in our approach, the bounds in (27) and (29) are slightly smaller than
the ones in (3.3) and (3.5) in [14], respectively, since ld(zk;x∗) ≤ d(x∗) ≤ D. However, essentially,
Nesterov’s original argument also arrives to the same one when d(x) is continuously differentiable
on Q (note that the argument in [14] does not impose the differentiability for d(x)). In fact, in
[14], Theorems 2 and 3 rely on the estimate (2.15) which is implied from (2.18). Notice in (2.18)
that we have

−Vβk+1
(−sk+1) = min

x∈Q
{〈sk+1, x− x0〉 + βk+1d(x)} = min

x∈Q
{〈sk+1, x− x0〉 + βk+1ld(xk+1;x)}

by the optimality of xk+1 = πβk+1
(−sk+1). Then adding

∑k
i=0 λi[f(xi) + 〈gi, x0 − xi〉] and using

sk+1 =
∑k

i=0 λigi in (2.18), it yields

k∑
i=0

λif(xi) ≤ min
x∈Q

{
k∑

i=0

λi[f(xi) + 〈gi, x− xi〉] + βk+1ld(xk+1;x)

}
+

1
2σ

k∑
i=0

λ2
i

βi
‖gi‖2

∗

which corresponds to the relation (R̂k)2. Thus we obtained the same bound as our analysis for the
DA model.

A consequence of Corollary 11 is that if M := sup{‖g‖∗ : g ∈ ∂f(x), x ∈ Q} is finite, Method
9 generates a sequence {x̂k} such that f(x̂k) → f(x∗) with a rate O(1/

√
k) in the number k of

iterations. Therefore, the estimates (27) and (29) achieve the optimal complexity for the non-
smooth case when we choose γ := M/

√
2σd(x∗) and ρ :=

√
2d(x∗), respectively. Also Method 9

with the parameters suggested in Corollary 11 produces bounded sequences {xk}, {x̂k}, and {zk}
(even if M = +∞ for the Weighted Averages case).

4.3 Particular cases: The extended MD and the DA models

Restricting to the extended MD model (11) in Method 9, the first procedure (21) provides the
following extension of the MDM.

Method 13 (Extended Mirror-Descent). Set x0 := argminx∈Q d(x). Choose weight parameters
{λk}k≥0 and scaling parameters {βk}k≥−1. Generate sequences {(xk, gk, x̂k)}k≥0 by

gk ∈ ∂f(xk),
xk+1 := argmin

x∈Q

{
λk[f(xk) + 〈gk, x− xk〉] + βkd(x) − βk−1ld(xk;x)

}
,

x̂k :=
1
Sk

k∑
i=0

λixi

2Notice that xk+1 and βk+1 in [14] are called zk and βk here, respectively.
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for k ≥ 0.

The iteration updates described by (2) of the original MDM corresponds to Method 13 with
βk := 1. Corollary 11 shows, in particular, that this extended MDM has a better complexity bound
for the objective function compared to the original MDM described in Section 2.

On the other hand, restricting to the DA model (12) in Method 9, the first procedure (21)
yields the Nesterov’s DAM (4) described in Section 2. In particular, Corollary 10 and subsequently
Corollary 11 provide a small improvement over the original result assuming the differentiability of
d(x) as pointed out before. Since our analysis does not introduce the dual space, the argments are
more straighforward than the original one.

We can also obtain variants of the extended MDM and the DAM from the second procedure
(22). An upper bound of f(x̂k) − f(x∗) for the sequence {x̂k} generated by these methods can be
derived from Corollaries 10 or 11.

5 A family of (inexact) gradient-based methods for structured
problems in the unifying framework

The framework discussed in Section 3 can be also applied to develop efficient (inexact) gradient-
based methods for structured convex problems.

In this section, we assume that the objective function f(x) of the problem (1) has the following
structure; for any y ∈ Q, there exists a lower approximation lf (y;x) of f(x), which is convex in x,
and satisfies the inequalities

lf (y;x) ≤ f(x) ≤ lf (y;x) +
L(y)

2
‖x− y‖2 + δ(y), ∀x ∈ Q, (31)

for some L(y) > 0 and δ(y) ≥ 0. We also assume that for any y ∈ Q, s ∈ E∗, and β > 0, we can
compute the optimal solution of the (sub)problem

min
x∈Q

{lf (y;x) + 〈s, x〉 + βd(x)}. (32)

Let us see some examples which admit these assumptions.

Example 14. The first four cases were already considered in the literature.

(i) Smooth case. If the convex objective function f(x) is continuously differentiable on Q and
its gradient ∇f(x) is Lipschitz continuous on Q with a constant L > 0, defining lf (y;x) :=
f(y)+ 〈∇f(y), x− y〉 yields the condition (31) with L(·) ≡ L and δ(·) ≡ 0. Then subproblem
(32) is of the form

min
x∈Q

{f(y) + 〈s+ ∇f(y), x− y〉 + βd(x)}. (33)

(ii) Composite structure. Let the objective function f(x) has the form

f(x) = f0(x) + Ψ(x) (34)

where f0(x) : E → R ∪ {+∞} is convex and continuously differentiable on Q with Lipschitz
continuous gradient and Ψ(x) : E → R∪ {+∞} is a closed convex function with Q ⊂ domΨ .
Letting L > 0 be the Lipschitz constant of ∇f0 on Q, we can define lf (y;x) := f0(y) +
〈∇f0(y), x− y〉 + Ψ(x) so that we have (31) with L(·) ≡ L and δ(·) ≡ 0. The corresponding
(sub)problem has the form

min
x∈Q

{f0(y) + 〈s+ ∇f0(y), x− y〉 + βd(x) + Ψ(x)}.
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A generalization of classical methods such as proximal gradient method for this model was
proposed by Fukushima and Mine [7] (without assuming convexity for f0(x)). Nesterov’s
optimal method (7) can be also generalized to this case [13]. Smoothing techniques are also
an important approach for this example. Nesterov [12] showed a significant improvement on
the convergence rate for a particular class and Beck and Teboulle [4] proposed an unifying
generalization.

(iii) Inexact oracle model. Let us assume that our oracle for f(x) has inexactness [6], that is, we
can compute (f̄(y), ḡ(y)) ∈ R × E∗ at each y ∈ Q such that

0 ≤ f(x) − (f̄(y) + 〈ḡ(y), x− y〉) ≤ Ly

2
‖x− y‖2 + δy, ∀x ∈ Q (35)

is satisfied for some Ly > 0 and δy ≥ 0. Then defining lf (y;x) := f̄(y)+〈ḡ(y), x− y〉, L(y) :=
Ly, and δ(y) := δy we have exactly (31). This model was investigated in [6] and the primal,
dual, and fast gradient method was proposed. These methods were also implemented in [15]
for a particular class of this model, equipped by an iterative scheme to estimate the Lipschitz
constants Ly at each iteration. The fast gradient methods can be seen as generalizations of
Nesterov’s optimal method (7) to those cases.

(iv) Saddle structure. Let us consider an objective function with the following structure:

f(x) = sup
u∈U

φ(u, x)

where U is a compact convex set of a finite dimensional real vector space E′ and φ : U×E →
R ∪ {+∞} is a concave-convex function satisfying the following conditions.

• φ(·, x) is a closed concave function for all x ∈ Q.

• φ(u, ·) is a closed convex function with Q ⊂ domφ(u, ·) for all u ∈ U .

• For all u ∈ U , φ(u, ·) is a continuously differentiable on Q and its gradient is Lipschitz
continuous on Q, i.e., there exists a constant Lu ≥ 0 such that

‖∇xφ(u, x1) −∇xφ(u, x2)‖∗ ≤ Lu‖x1 − x2‖, ∀x1, x2 ∈ Q.

• L := maxu∈U Lu is finite and positive.

Then defining
lf (y;x) := max

u∈U
{φ(u, y) + 〈∇xφ(u, y), x− y〉} , (36)

it satisfies condition (31) with L(·) ≡ L, δ(·) ≡ 0, and we will have the following subproblem:

min
x∈Q

{
max
u∈U

{φ(u, y) + 〈s+ ∇xφ(u, y), x− y〉} + βd(x)
}
.

This case is a generalization of the structured convex problem discussed in [9], namely,
E′ ≡ Rm and, for each u = (u(1), . . . , u(m)) ∈ U , defining φ(u, x) =

∑m
i=0 u

(i)fi(x) for given
differentiable convex functions f1(x), . . . , fm(x) on E with Lipschitz continuous gradient.
The convexity of φ(u, ·) is satisfied by imposing the following assumption as in [9]: If there
exists u ∈ U such that u(i) < 0, then fi(x) is a linear function. Letting L(i) be a Lipchitz
constant of ∇fi(x) for i = 1, . . . ,m, we have L = maxu∈U Lu = maxu∈U

∑m
i=1 u

(i)L(i).
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The definition of lf (y;x) can be simplified when Q ⊂ int(dom f) and φ(·, x) is strictly concave
for all x ∈ Q. In this case, denoting ux = argmaxu∈U φ(u, x), we have ∇f(x) = ∇xφ(ux, x)
and therefore we can define

lf (y;x) := φ(uy, y) + 〈∇xφ(uy, y), x− y〉

which satisfies (31) with L(·) ≡ L and δ(·) ≡ 0. Its subproblem is of the form (33). This
situation is also discussed in Tseng’s methods [16].

(v) Mixed structure. The above examples can be combined with each other; for instance, con-
sidering the function f0(x) in (ii) with inexactness (iii) or with the saddle structure (iv), or
considering the function φ(u, x) in (iv) with inexactness (iii) or with the composite structure
(ii) satisfies our requirement (31).

5.1 The unifying framework

We will propose (inexact) gradient-based methods for structured convex optimization problems
which satisfies (31) and admits computable solutions for (32) highlighted by Example 14. These
methods generate approximate solutions {x̂k} ⊂ Q satisfying the relation (Rk). We also consider,
in this section, the following alternative of this relation (Rk) for some constant Ck:

(R̂′
k)

k∑
i=0

λif(xi+1) ≤ min
x∈Q

ψk(x) + Ck. (37)

Notice that the relation (R̂k) is sightly different from that of the non-smooth case (19). We use the
following alternative of Lemma 6 for this relation; if {ψk(x)} satisfies Property 2 and the relation
(R̂′

k) is satisfied for some k ≥ 0, then we have

1
Sk

k∑
i=0

λif(xi+1) − f(x∗) ≤ βkld(zk, x∗) + Ck

Sk
. (38)

The following theorem validates our methods.

Theorem 15. Let {ψk(x)}k≥−1 be a sequence of auxiliary functions satisfying Property 2 associated
with weight parameters {λk}k≥0, scaling parameters {βk}k≥−1, and test points {xk}k≥0. Denote
zk = argminx∈Q ψk(x). Then the following assertions hold.

(a) If σβ−1/λ0 ≥ L(x0) holds, then relation (R0) is satisfied with x̂0 := z0 and C0 := λ0δ(x0) .

(b) Suppose that the relation (Rk) is satisfied for some integer k ≥ 0. If the relations xk+1 = zk
and σβk/λk+1 ≥ L(xk+1) hold, then the relation (Rk+1) is satisfied with

x̂k+1 :=
Skx̂k + λk+1zk+1

Sk+1
, Ck+1 := Ck + λk+1δ(xk+1). (39)

Moreover, if the relations (R̂′
k) is satisfied for some integer k ≥ 0, and the relations σβk/λk+1 ≥

L(xk+1) and xk+1 = zk hold, then the relation (R̂′
k+1) is satisfied with Ck+1 := Ck +

λk+1δ(xk+1).

(b’) Suppose that the relation (Rk) is satisfied for some integer k ≥ 0. If the relations

xk+1 =
Skx̂k + λk+1zk

Sk+1
and σβkSk+1/λ

2
k+1 ≥ L(xk+1)
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hold, then the relation (Rk+1) is satisfied with

x̂k+1 :=
Skx̂k + λk+1zk+1

Sk+1
, Ck+1 := Ck + Sk+1δ(xk+1).

Proof. Denote Lk = L(xk) and δk = δ(xk).
(a) Condition (ii) with k = −1 and condition (i) of Property 2 yields that

min
x∈Q

ψ0(x) + λ0δ0 ≥ min
x∈Q

ψ−1(x) + λ0lf (x0; z0) + β−1ξ(z−1, z0) + λ0δ0

= λ0

(
lf (x0; z0) +

β−1

λ0
ξ(x0, z0) + δ0

)
≥ λ0

(
lf (x0; z0) +

σβ−1

λ0

1
2
‖z0 − x0‖2 + δ0

)
≥ λ0

(
lf (x0; z0) +

L0

2
‖z0 − x0‖2 + δ0

)
≥ λ0f(z0) = S0f(x̂0)

where the last inequality is due to (31).
(b) Condition (ii) of Property 2 implies that

min
x∈Q

ψk+1(x) + Ck+1 ≥ min
x∈Q

ψk(x) + Ck + λk+1lf (xk+1; zk+1) + βkξ(zk, zk+1) + λk+1δk+1

= min
x∈Q

ψk(x) + Ck + λk+1lf (xk+1; zk+1) + βkξ(xk+1, zk+1) + λk+1δk+1

≥ min
x∈Q

ψk(x) + Ck + λk+1

(
lf (xk+1; zk+1) +

σβk

2λk+1
‖zk+1 − xk+1‖2 + δk+1

)
≥ min

x∈Q
ψk(x) + Ck + λk+1

(
lf (xk+1; zk+1) +

Lk+1

2
‖zk+1 − xk+1‖2 + δk+1

)
≥ min

x∈Q
ψk(x) + Ck + λk+1f(zk+1) (40)

≥ Skf(x̂k) + λk+1f(zk+1) (41)

≥ Sk+1f

(
Skx̂k + λk+1zk+1

Sk+1

)
= Sk+1f(x̂k+1)

where the inequalities (40) and (41) are due to (31) and (Rk), respectively. When we use (R̂′
k) at

(41), it yields the relation (R̂′
k+1).

(b’) The assumptions for xk+1 and x̂k+1 implies zk+1 − zk = Sk+1

λk+1
(x̂k+1 − xk+1). Thus, from
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condition (ii) of Property 2 and relation (Rk), we obtain

min
x∈Q

ψk+1(x) + Ck+1 ≥ min
x∈Q

ψk(x) + Ck + λk+1lf (xk+1; zk+1) + βkξ(zk, zk+1) + Sk+1δk+1

≥ Skf(x̂k) + λk+1lf (xk+1; zk+1) + βkξ(zk, zk+1) + Sk+1δk+1

≥ Sklf (xk+1; x̂k) + λk+1lf (xk+1; zk+1) + βkξ(zk, zk+1) + Sk+1δk+1

≥ Sk+1lf

(
xk+1;

Skx̂k + λk+1zk+1

Sk+1

)
+ βkξ(zk, zk+1) + Sk+1δk+1

≥ Sk+1lf (xk+1; x̂k+1) +
σβk

2
‖zk+1 − zk‖2 + Sk+1δk+1

= Sk+1

(
lf (xk+1; x̂k+1) +

σβkSk+1

2λ2
k+1

‖x̂k+1 − xk+1‖2 + δk+1

)

≥ Sk+1

(
lf (xk+1; x̂k+1) +

Lk+1

2
‖x̂k+1 − xk+1‖2 + δk+1

)
≥ Sk+1f(x̂k+1).

Now we are ready to propose the following two unifying framework methods.

Method 16 (Classical Gradient Method (CGM)). Choose weight parameters {λk}k≥0 and scaling
parameters {βk}k≥−1. Generate sequences {(zk−1, xk, x̂k)}k≥0 by setting

xk := zk−1 := argmin
x∈Q

ψk−1(x), x̂k :=
1
Sk

k∑
i=0

λixi+1,

for k ≥ 0, where {ψk(x)}k≥−1 is defined using the construction (10) as well as any construction
which admits Property 2.

Method 17 (Fast Gradient Method (FGM)). Choose weight parameters {λk}k≥0 and scaling pa-
rameters {βk}k≥−1. Set x0 := z−1 := argminx∈Q d(x) and x̂0 := z0 := argminx∈Q ψ0(x). Generate
sequences {(zk−1, xk, x̂k)}k≥0 by setting

xk+1 :=
∑k

i=0 λizi + λk+1zk
Sk+1

,

zk+1 := argmin
x∈Q

ψk+1(x),

x̂k+1 :=
1

Sk+1

k+1∑
i=0

λizi,

for k ≥ 0 where {ψk(x)}k≥−1 is defined using the construction (10) as well as any construction
which admits Property 2.

Notice that in this case, only the sequence {zk}k≥−1 is a dummy one for the CGM.

5.2 Convergence analysis of unifying framework methods

By the same observation as Corollary 10, combining Theorem 15 and Lemma 6 (or the alternative
(38) of Lemma 6), we arrive at the following estimates.
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Corollary 18. (a) Let {(zk−1, xk, x̂k)}k≥0 be generated by the CGM associated with weight pa-
rameters {λk}k≥0 and scaling parameters {βk}k≥−1. If σβk−1/λk ≥ L(xk) holds for all k ≥ 0,
then we have

∀k ≥ 0, f(x̂k) − f(x∗) ≤ 1
Sk

k∑
i=0

λif(xi+1) − f(x∗) ≤
βkld(zk;x∗) +

∑k
i=0 λiδ(xi)

Sk
.

(b) Let {(zk−1, xk, x̂k)}k≥0 be generated by the FGM associated with weight parameters {λk}k≥0

and scaling parameters {βk}k≥−1. If σβk−1Sk/λ
2
k ≥ L(xk) holds for all k ≥ 0, then we have

∀k ≥ 0, f(x̂k) − f(x∗) ≤
βkld(zk;x∗) +

∑k
i=0 Siδ(xi)

Sk
.

Particular choices for the parameters λk and βk in the above estimates simplify the situation.

Corollary 19. Suppose that δ(·) ≡ δ and L(·) ≡ L are constants.

(a) Any sequence {(zk−1, xk, x̂k)}k≥0 generated by the CGM with λk := 1 and βk := L/σ satisfies

∀k ≥ 0, f(x̂k) − f(x∗) ≤ 1
k + 1

k∑
i=0

f(xi+1) − f(x∗) ≤ Lld(zk;x∗)
σ(k + 1)

+ δ (42)

and

∀k ≥ −1, zk, xk+1, x̂k ∈
{
x ∈ Q : ‖x− x∗‖2 ≤ 2d(x∗)

σ
+

2δ
L

(k + 1)
}
. (43)

(b) Any sequence {(zk−1, xk, x̂k)}k≥0 generated by the FGM with λk := k+1
2 and βk := L/σ

satisfies

∀k ≥ 0, f(x̂k) − f(x∗) ≤ 4Lld(zk;x∗)
σ(k + 1)(k + 2)

+
k + 3

3
δ (44)

and

∀k ≥ −1, zk, xk+1, x̂k ∈
{
x ∈ Q : ‖x− x∗‖2 ≤ 2d(x∗)

σ
+

δ

6L
(k + 3)(k + 1)2

}
. (45)

Proof. The estimations (42) and (44) can be obtained by substituting the specified parameters to
Corollary 18. By a similar argument as the proof of Corollary 11, remarking xk ∈ conv{zi}k−1

i=−1

and x̂k ∈ conv{zi}k
i=0, we have (43) and (45).

Let us consider the case δ = 0 in Corollary 19. This includes the case of minimization of a convex
function with a Lipschitz continuous gradient. Then the FGM ensures the optimal convergence

rate f(x̂k) − f(x∗) ≤ O

(
LR2

k2

)
where R =

√
1
σd(x

∗) which is faster than the rate O
(
LR2

k

)
guaranteed by the CGM. Corollary 19 also ensures that the generated sequences {zk}, {xk}, and
{x̂k} are bounded when δ = 0.

In the case δ > 0, a comparison between the CGM and the FGM is not obvious; an immediate
fact is that the upper bound in (44) diverges while the one in (42) converges to δ. There is a
detailed discussion about different situations in [6, Section 6].
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5.3 Particular cases: The extended MD and the DA models

The unifying framework methods, the CGM and the FGM, yield some existing methods by adopting
particular choices for the auxiliary functions {ψk(x)}.

When we apply the extended MD model (11) and the DA model (12) to the CGM, it yields
the iteration updates

xk+1 := argmin
x∈Q

{
λklf (xk;x) + βkd(x) − βk−1ld(xk;x)

}
(46)

and

xk+1 := argmin
x∈Q

{
k∑

i=0

λilf (xi;x) + βkd(x)

}
, (47)

respectively.
In the composite structure (34), these updates with the choice of λk’s and βk’s as in Corollary

19 (a) yield the primal and dual gradient methods analyzed by Nesterov [13] with known Lipschitz
constants. In the Euclidean setting (i.e., E is a Euclidean space, the norm ‖ · ‖ is induced by
its inner product, and d(x) = 1

2‖x − x0‖2), the extended MD update (46) is also closely related
to the proximal point method proposed by Fukushima and Mine [7]. In fact, assuming the same
conditions in [7, Corollary at p.996], this method is equivalent to the CGM with λk := 1/ck and
βk := 1.

The above updates in the Euclidean setting also correspond to the primal and dual gradient
methods [6] for the inexact oracle model (35) by choosing λk := 1/L(xk), and βk := 1/σ. Since
ld(zk;x∗) ≤ d(x∗), Corollary 18 for this case provide estimates for the optimal values with smaller
upper bounds than those of [6, Section 4]; for the dual gradient method, in particular, our estimate
does not require the computation of the solution (yk in [6, Theorem 3]) of another auxiliary
subproblem.

The FGM, on the other hand, provides accelerated versions of the above ones derived from the
CGM. Using the extended MD model (11) for the FGM, it yields the following algorithm.

Method 20. Choose weight parameters {λk}k≥0 and scaling parameters {βk}k≥−1. Set x0 :=
argminx∈Q d(x) and x̂0 := z0 := argminx∈Q

{
λ0lf (x0;x) + β0d(x) − β−1ld(x0;x)

}
. Generate se-

quences {(zk, xk, x̂k)}k≥0 by setting

xk+1 :=
∑k

i=0 λizi + λk+1zk
Sk+1

,

zk+1 := argminx∈Q

{
λk+1lf (xk+1;x) + βk+1d(x) − βkld(zk;x)

}
,

x̂k+1 :=
1

Sk+1

k+1∑
i=0

λizi.

for k ≥ 0.

The DA model (12), on the other hand, yields the following algorithm.

Method 21. Choose weight parameters {λk}k≥0 and scaling parameters {βk}k≥−1. Set x0 :=
argminx∈Q d(x) and x̂0 := z0 := argminx∈Q {λ0lf (x0;x) + β0d(x)} . Generate sequences {(zk, xk, x̂k)}k≥0
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by setting

xk+1 :=
∑k

i=0 λizi + λk+1zk
Sk+1

,

zk+1 := argminx∈Q

{
k+1∑
i=0

λilf (xi;x) + βk+1d(x)

}
,

x̂k+1 :=
1

Sk+1

k+1∑
i=0

λizi.

for k ≥ 0.

Apparently, Method 21 seems to demand a computation proportional to k to solve the auxiliary
subproblems to obtain each zk+1 due to the weighted summation of lf (xi;x)’s. However, for all
cases considered in Example 14, excepting (36), the auxiliary subproblems can be simplified to the
form (32).

When {βk} is constant, L(·) ≡ L, and δ(·) ≡ 0, the above two methods are very similar to

Tseng’s methods [16, 17]. In particular, choosing βk := L/σ, λ0 := 1 and λk+1 := 1+
√

1+4λ2
k

2 in
Methods 20 and 21, they yield Tseng’s second and third APG methods (8) and (9), respectively.
We provide a unified way to analyze these methods while Tseng’s methods require slightly different
approaches for each case.

For the inexact oracle model, Methods 20 and 21 can be seen as accelerated versions of primal
and dual gradient methods in [6]. The fast gradient method in [6] corresponds to a hybrid of these
accelerations. Methods 20 and 21 solve only one subproblem at each iteration preserving the same
complexity as the fast gradient method.

6 Concluding remarks

We have proposed a new family of (sub)gradient-based methods for some classes of convex op-
timization problems, and also provided a unifying way of analyzing these methods which were
performed separately and independently in the past. We have identified a general relation (Prop-
erty 2) which the auxiliary functions of the mirror-descent and dual-averaging methods should
satisfy.

There are infinitely many ways of implementing our methods since Proposition 4 shows that
we can freely select from the extended MD model (11) or the DA model (12) the lf (xi;x)’s and
the scaled proximal function to construct each subproblem at each iteration. All of them achieve
the optimal complexity. These methods require a solution of only one subproblem per iteration.
From the viewpoint of the relation (16), which we call (Rk), the extended mirror-descent model
(11) has a “greedy” feature in the following sense; at each iteration, it attains the smallest upper
bound f(x̂k) ≤ ψk(zk)/Sk among those bounds for auxiliary functions satisfying Property 2 given
the previous ψk−1(x).

We list some further consideration to extend our approach as follows:

• In order to ensure optimal convergence, our methods require knowing the Lipschitz constant
of the gradient of the objective function for the structured case (Section 5). There are,
however, some approaches which remove this requirement as observed in [3, 9, 13, 15]. One
can expect to obtain similar result applying these techniques for the proposed methods.

• For the case of convex problems with composite structure considered in Beck and Teboulle
[4], it is possible to obtain a family of smoothing-based first order methods since our methods
correspond to the fast iterative method.
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