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Abstract: An important problem in the breeding of livestock, crops, and forest trees is the
optimum of selection of genotypes that maximizes genetic gain. The key constraint in the optimal
selection is a convex quadratic constraint that ensures genetic diversity, therefore, the optimal
selection can be cast as a second-order cone programming (SOCP) problem. Yamashita et al.
(2015) exploits the structural sparsity of the quadratic constraints and reduces the computation
time drastically while attaining the same optimal solution.

This paper is concerned with the special case of equal deployment (ED), in which we solve
the optimal selection problem with the constraint that contribution of genotypes must either be a
fixed size or zero. This involves a nature of combinatorial optimization, and the ED problem can
be described as a mixed-integer SOCP problem.

In this paper, we discuss conic relaxation approaches for the ED problem based on LP (lin-
ear programming), SOCP, and SDP (semidefinite programming). We analyze theoretical bounds
derived from the SDP relaxation approaches using the work of Tseng (2003) and show that the
theoretical bounds are not quite sharp for tree breeding problems. We propose a steepest-ascent
method that combines the solution obtained from the conic relaxation problems with a concept
from discrete convex optimization in order to acquire an approximate solution for the ED problem
in a practical time. From numerical tests, we observed that among the LP, SOCP, and SDP relax-
ation problems, SOCP gave a suitable solution from the viewpoints of the optimal values and the
computation time. The steepest-ascent method starting from the SOCP solution provides high-
quality solutions much faster than an existing method that has been widely used for the optimal
selection problems and a branch-and-bound method.
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1 Introduction

Computational methods based on mathematical optimization have started gaining attention from
breeding researchers, since the optimization methods provide efficient approaches and give theoret-
ical aspects for the optimality of the obtained solutions. For example, optimal selection problems
that determine the contributions of genotypes are studied for clonal seed orchards and dairy cat-
tle [5, 13, 15, 19, 22, 24, etc].

A main objective in optimal selection problems is to attain the highest response from a genotype
selection. Lindgren et al. [19] proposed a linear deployment in which the genotype contributions
are basically proportional to their breeding values. This deployment was derived from a concept
that the genotypes with higher breeding values should appear more frequently than those with
lower values. An advantage of the linear deployment was the extremely low computation cost,
since it could be computed by a greedy algorithm. However, the linear deployment worked well
only when the pedigree situation was simple, that is, the candidate genotypes were unrelated.
If the selected genotypes do not embrace enough diversity, the response will critically diminish
through inbreeding depression [6, 40] due to accumulated kinship.

Meuwissen [22] introduced a quadratic constraint to control a group coancestry under an appro-
priate level. He developed the Lagrangian multiplier method to maximize the genetic response with
the quadratic constraints. This method was implemented in a software package GENCONT [22],
and it has been widely accepted among breeding researchers. A serious drawback of the La-
grangian multiplier method is that this method does not always generate optimal solutions. In
contrast, Pong-Wong et al. [31] employed an SDP approach. This approach is based on mathe-
matical optimization, and they demonstrated that this approach gave the optimal contributions
exactly. This approach was extended in [1], but their SDP approach required long computation
time even when they used parallel computing with the help of SDPA (a high-performance solver
for SDPs) [45, 46]. Recently, Yamashita et al. [47] proposed an SOCP (second-order cone program-
ming) approach and successfully reduced the computation time of the SDP approach attaining the
same optimal solution.

The problems solved by the SDP approach [31] and the SOCP approach [47] are unequal
deployment (UD) problems of form

max : gTx
subject to : xTAx ≤ 2θ,

eTx = 1,
l ≤ x ≤ u.

(1)

Throughout this paper, we use Z to denote the number of candidate genotypes. In the UD
problem, the variable is the vector x ∈ RZ , and xi indicates the contribution of the ith genotype.
We use a superscript T to denote the transpose of a vector or a matrix. The cost vector g ∈ RZ in
the objective function is the estimated breeding value (EBV) [21]. Since this vector is computed
separately, we regard g as a constant vector. The matrix A ∈ RZ×Z is the Wright numerator
matrix [43]. The elements of this matrix are given from the information of heredity diagram. We
should emphasize that the matrix A is always symmetric and positive definite. Hence, with a given
constant θ > 0, the constraint xTAx ≤ 2θ is a convex constraint, and this quadratic constraint

ensures that the group coancestry xTAx
2 in the selected group is kept under a permissible range

θ. We use e ∈ Rn to denote the vector of all ones, therefore, the constraint eTx = 1 indicates that
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the total contribution of all the candidates is unity. In addition, the vectors l ∈ RZ and u ∈ RZ

are the lower and upper bounds of the variable x, respectively.
The name an unequal deployment indicates that the contributions need not to be equal. Since

the variable x is a continuous variable and the constraints are linear or convex-quadratic, the UD
problem can be cast a type of SOCP problems, as pointed in [47]. Therefore, the UD problem can
be solved in a polynomial time algorithm, for example, interior-point methods for SOCP [2, 7, 38].

This paper is concerned with the special-case problem of equal deployment (ED) form

OPTED := max : gTx
subject to : xTAx ≤ 2θ,

eTx = 1,
l ≤ x ≤ u,
x1, . . . , xn ∈

{
0, 1

N

}
.

(2)

We use OPTED to denote the optimal value of this problem. The crucial difference from the
UD problem is that the ED problem has the binary constraints x1, . . . , xn ∈

{
0, 1

N

}
. We choose

exactly N genotypes from Z candidates, and the selected N genotypes must contribute their genes
equally. The ED problems fit breeding populations, where we consider the selected genotypes
should contribute with the same amount and therefore we require a fixed-size population.

Weng et al. [39] solved the ED problem only with the linear constraints and the binary con-
straints using the “Solver” tool in Microsoft Excel. Meuwisen extended GENCONT to the ED
problems incorporating some heuristic methods so that GENCONT generated approximate solu-
tions that satisfy the binary constraints. The heuristic methods implemented in GENCONT are
partially discussed in [42].

From the viewpoint of mathematical optimization, the most difficult constraint xTAx ≤ 2θ is
a quadratic convex constraint. An ED problem (2) can thus be viewed as a mixed-integer second-
order cone programing (MI-SOCP) problem. Many approaches have been explored to solve MI-
SOCP efficiently. Ben-tal and Nemirovski [3] proposed a polyhedral relaxation that approximates
a second-order cone with a polyhedron so that the resulting problem can be handled with software
packages for mixed-integer linear programming. Drewes applied an outer approximation method
and a branch-and-cut method [8]. For other approaches, a survey paper due to Benson and
Saglam [4] is a good reference.

Theoretically speaking, MI-SOCP is an SOCP problem with integer constraints, hence, we can
obtain an exact optimal solution if we rely on the branch-and-bound framework. However, we
suffer from a long computation time if we pursue the exact solution. For example, CPLEX can
directly handle MI-SOCP problems, but fails to complete the computation of a small case Z = 1050
and N = 50 (it tried to choose N = 50 genotypes from Z = 1050 candidates) in one week. Mullin
and Belotti [23] combined the outer approximation method and the branch-and-bound method
and reduced the computation time. However, it also requires half a day for the small case Z = 200
to attain the gap 0.5%, so it is still hard to say that this approach is practical for larger instances
Z ≥ 5000. To manage ED problems in a practical time, it is desirable that we find a high-quality
approximate solution instead of the exact solution.

In this paper, we propose an integration of conic relaxation approaches and a steep-ascent
method originally developed for discrete convex functions to derive a suitable solution for practical
usage in a reasonable computation time.
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An epoch-making paper on conic relaxation approach was the application of SDP problem to
the max-cut problems by Goemans and Williamson [11]. They converted a feasible set of the
max-cut problems into the space of positive semidefinite matrices with the rank-one constraint
on the matrix variable, and they derived an SDP problem by ignoring this rank-one constraint.
They showed that a solution generated with a randomized algorithm from an optimal solution
of the resulting SDP problem gave very good approximation to the original max-cut problem.
Following this achievement, the SDP relaxation approach has widely been applied to combinatorial
optimization problems, see [41] and the references therein. Theoretical evaluation of the quality of
the approximate solution were discussed in [14, 16, 29, 36, 49, etc]. Conic relaxation approaches
are the relaxation approaches that employs linear programming (LP), SOCP or SDP problems. A
remarkable points of the three conic programming problems (LP, SOCP, and SDP) is that they can
be analyzed in the framework of Euclidean Jordan algebras [9, 32]. Hence, the resulting relaxation
problems can be solved in polynomial time by interior-point methods [30] and many software
packages are available [33, 35, 45]. Kim and Kojima [17] reported a numerical evaluation on the
relaxation approaches using LP, SOCP, and SDP for some quadratic optimization problems.

On the other hand, discrete convex optimization has another abundant research direction. We
might consider that a convex function in continuous space is a discrete convex function if we
restrict the variable space to the integer points, although this naive intuition is not appropriate
because such a function does not always have useful properties of convex functions, and some
deep combinatorial or discrete-mathematical considerations are needed for discrete convexity. In
the theory of discrete convex analysis [26], two convexity concepts, called L-convexity and M-
convexity, play primary roles. L-convex functions and M-convex functions are convex functions
with additional combinatorial properties distinguished by ”L” and ”M”, which are conjugate to
each other through a discrete version of the Legendre-Fenchel transformation. If a function is an
M-convex function, a step-descent method proposed in [27] can find its global minimum.

In this paper, we first introduce conic relaxation problems for the ED problems, and discuss
the relations between the relaxation problems. We analyze the theoretical bounds of the ran-
domized algorithm starting from the solution of the SDP relaxation problem. However, when we
numerically evaluate these bounds using tree-breeding datasets, we learn that these bounds are
not so sharp. Instead of pursuing an exact solution by branch-and-bound frameworks that impose
heavy computation costs, our focus is to acquire a favorable solution that is available in a practical
computation time. To obtain such a solution, we develop a steep-ascent method that employs the
solution obtained from the conic relaxation problems as a starting point. The usual steep-descent
method [27] minimizes an objective function on a particular feasible set. Since the ED problem
is a maximization problem, we consider a steep-ascent method instead of a steep-descent method.
We embed the quadratic constraint xTAx ≤ 2θ into the objective function as a penalty term with
a weight computed from the Lagrange multiplier. This new objective function is not an M-concave
function, therefore, we cannot guarantee that the solution obtained by the steep-ascent method is
a global solution of the ED problem. However, through numerical experiments, we observe that
the steep-ascent method generates qualified solutions for the ED problem. In particular, the steep-
ascent method starting with the SOCP relaxation problem attains the best performance among
the LP, SOCP, and SDP relaxation problems. Actually, we verify from numerical experiments that
this approach performs better than existing methods like GENCONT in the viewpoints of both
solution quality and computation time.

The rest of this paper is organized as follows. In Section 2, we introduce LP, SOCP, and SDP
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relaxation problems for the ED problems, and we discuss the strength of these conic relaxations.
In Section 3, we analyze the approximation rate of the SDP relaxation based on the work of
Tseng [36]. Section 4 gives the details of the steep-ascent method specialized for the ED problems.
In Section 5, we present numerical results to compare the conic relaxations and to evaluate the
solution acquired by the steep-ascent method. We also compare this result with existing methods.
In Section 6, we will give a conclusion and discuss future directions.

1.1 Notation

We use |S| to denote the cardinality of a set S. The vector eS is the vector of all ones of the lengths
|S|. In contrast, we denote by ei the vector of all zeros except one in the ith position. The symbol
Sn is used to denote the space of n×n symmetric matrices, and X ⪰ O indicates that a symmetric
matrix X is positive semidefinite. The inner-product between A ∈ Sn and X ∈ Sn is defined by
A • X :=

∑n
i=1

∑n
j=1AijXij . The trace of a matrix A ∈ Sn is given by Trace(A) :=

∑n
i=1Aii.

For a vector x ∈ Rn, x ≥ 0 indicates the element-wise non-negativity of x, that is, x1, . . . , xn ≥ 0.

2 Conic relaxations for equally deployment problems

In this section, we first derive an SDP relaxation problem of an ED problem. Then, by a further
relaxation of the positive semidefinite condition using a relaxation technique proposed in [17], we
obtain an LP relaxation problem. Finally, we apply a continuous relaxation technique to the ED
problem to obtain an SOCP relaxation problem. The reason we employ a different relaxation
approach for only the SOCP relaxation is that we can exploit a structural sparsity in the Wright
numerator matrix A.

A standard form of SDP problems can be given as follow:

min : C •X
subject to : F i •X = bi (i = 1, . . . ,m),

X ⪰ O.
(3)

In this standard form, the variable matrix is X ∈ Sn. The input matrices in (3) are C,
F 1, . . . ,Fm ∈ Sn, while the vector b ∈ Rn is an input vector. Shortly speaking, a standard
SDP form minimizes a linear objective function over linear constraints and a positive semidefinite
condition on X.

As a first step to derive an SDP relaxation from the ED problem (2), we remove the variables
that can be fixed from the box constraints. More precisely, if li > 0, we fix xi =

1
N . Similarly, we

fix xi = 0 if ui <
1
N . We ignore the cases li >

1
N , ui < 0 or li > ui, since we can immediately

detect the infeasibility of the ED problem. Then, we define two sets F and V so that the two sets
separate the set {1, . . . , Z} disjointly and xi is fixed to ci ∈

{
0, 1

N

}
for i ∈ F while xi remains as

a decision variable for i ∈ V .
Without loss of generality, we assume that V = {1, 2, . . . , |V |}, F = {|V | + 1, |V | + 2, . . . , Z},

and g1 ≥ g2 ≥ . . . ≥ g|V |. Along with these V and F , we introduce the vectors xV and cF that

divide x ∈ RZ into the two parts x =

(
xV

cF

)
. We also divide the Wright numerator matrix

A into the four parts; A =

(
AV V AV F

AFV AFF

)
. The sizes of AV V , AFV (= AT

V F ), and AFF are
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|V | × |V |, |F | × |V |, and |F | × |F |, respectively. We further partition the vectors and the matrices
that appear in the ED problem into the corresponding parts;

OPTED = max : gT
V xV + gT

F cF
subject to : xT

V AV V xV + 2cTFAFV xV + cTFAFF cF ≤ 2θ,
eTV xV + eTF cF = 1,
xi ∈

{
0, 1

N

}
for i ∈ V.

(4)

Note that we also removed the box constraints l ≤ x ≤ u from the ED problem by fixing the
variables in xF to cF . We count the number of xi that is fixed to ci by p :=

∣∣{i ∈ F : xi =
1
N

}∣∣.
Therefore, we will choose N−p genotypes from |V | candidates in (4), while we choose N genotypes
from Z candidates in the original ED problem (2).

Remark 2.1. We can assume p ≤ N and |V | ≥ 2 without loss of generality. In the case p > N ,
we can detect the infeasibility of the problem (2). If |V | = 1, we have F = {2, . . . , Z}. Therefore,
x1 is also fixed with x1 = 1−

∑Z
i=2 ci, and all the variables can be fixed without solving (4).

We change the decision variables by yV := 2NxV − eV ∈ R|V | and we use yi to denote
the ith element of yV . Then, the binary constraints x1, . . . , x|V | ∈

{
0, 1

N

}
are mapped to

y1, . . . , y|V | ∈ {−1, 1}. Even without employing this variable change, we can also directly ap-
ply the SDP relaxation method in a similar way to [12]. The reason we employed this variable
change is for the later discussion in Section 4 so that most of the matrices Bk there will be diagonal
matrices.

We will denote the ith element of yV by yi. We define gmin := min{gi : i = 1, . . . , Z}, ḡV :=
1
4N (gV −gmineV ), ḡ := 1

2N (gV −gmineV )
TeV +(gF−gmineF )

TcF+gmin, c̄F := AV V eV +2NAV FcF ,
θ̄ := 2N2(2θ − cTFAFFcF ) − 1

2e
T
V AV V eV − 2NcTFAFV eV , and N̄ := 2N(1 − eTF cF ) − |V | =

2(N − p) − |V |. From these definitions, it is easy to check ḡV ≥ 0 and gTx = 2ḡT
V yV + ḡ using

eTx = 1. We now have another expression of the ED problem;

OPTED = max : 2ḡTV yV + ḡ
subject to : yT

V AV V yV + 2c̄TFyV ≤ 2θ̄,
eTV yV = N̄ ,
yi ∈ {−1, 1} for i ∈ V.

(5)

By introducing a variable matrix Y V V ∈ S|V |, we apply the lift-and-project method of Lovász
and Schrijver [20]. As a result, we obtain one more equivalent form;

OPTED = max :

(
0 ḡT

V

ḡV O

)
•
(

1 yT
V

yV Y V V

)
+ ḡ

subject to :

(
−2θ̄ c̄TF
c̄F AV V

)
•
(

1 yT
V

yV Y V V

)
≤ 0,(

−2N̄ eTV
eV O

)
•
(

1 yT
V

yV Y V V

)
= 0,(

−N̄2 0T

0 eV e
T
V

)
•
(

1 yT
V

yV Y V V

)
= 0,(

−1 0T

0 eie
T
i

)
•
(

1 yT
V

yV Y V V

)
= 0 for i ∈ V,(

1 yT
V

yV Y V V

)
⪰ O, rank

((
1 yT

V

yV Y V V

))
= 1.

(6)
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The key property for the equivalence between (5) and 6 is Y V V = yV y
T
V from the rank-1 con-

straint on the matrix

(
1 yT

V

yV Y V V

)
. We will denote the (i, j)th element of Y V V by Yij . The

equality Yii = y2i for i = 1, . . . , |V | should holds for feasible solution of (6), hence

(
−1 0T

0 eie
T
i

)
•(

1 yT
V

yV Y V V

)
= 0 leads to the binary constraint yi ∈ {−1, 1}. In (6), we introduced a redundant

constraint (eV e
T
V ) • Y V V = N̄2 that was derived from (eTV yV )

2 = N̄2 and Y V V = yV y
T
V . It is

known that redundant constraints of this type make the SDP relaxation tighter, and we can often
obtain better approximate solution. The hardest constraint in (6) is the rank-1 constraint. This
constraint embraces a nature of combinatorial optimization. By removing this hardest constraint,
we build an SDP relaxation problem and we denote its optimal value by OPTSDP .

OPTSDP := max :

(
0 ḡTV
ḡV O

)
•
(

1 yT
V

yV Y V V

)
+ ḡ

subject to :

(
−2θ̄ c̄TF
c̄F AV V

)
•
(

1 yT
V

yV Y V V

)
≤ 0,(

−2N̄ eTV
eV O

)
•
(

1 yT
V

yV Y V V

)
= 0,(

−N̄2 0T

0 eV e
T
V

)
•
(

1 yT
V

yV Y V V

)
= 0,(

−1 0T

0 eie
T
i

)
•
(

1 yT
V

yV Y V V

)
= 0 for i ∈ V,(

1 yT
V

yV Y V V

)
⪰ O.

(7)

When we further relax the positive semidefinite constraint

(
1 yT

V

yV Y V V

)
⪰ O, we can obtain

an LP relaxation problem. In general, a matrix X ∈ Sn is positive semidefinite if and only if
uTXu ≥ 0 for ∀u ∈ Rn. For the positive semidefinite constraint of (7), we choose a set of vectors
uij = ei−ej ∈ R1+|V | for i = 1, . . . , |V | and j = i+1, . . . , |V |+1 as a subset of R1+|V |. We use Ŵ
to denote the non-diagonal upper-triangular position of Y V V , that is Ŵ := {(i, j) ∈ V ×V : i < j}.
The key step to derive an LP relaxation problem is the following step:(

1 yT
V

yV Y V V

)
⪰ O

⇔ uT

(
1 yT

V

yV Y V V

)
u ≥ 0 for ∀u ∈ R1+|V |

(relaxation)
⇒ uT

ij

(
1 yT

V

yV Y V V

)
uij ≥ 0 for i = 1, . . . , |V | and j = i+ 1, . . . , |V |+ 1

⇔
{

Yii ≥ y2i for i ∈ V,

YiiYjj ≥ Y 2
ij for (i, j) ∈ Ŵ .

From the constraints Yii = 1 for i ∈ V in (7), the constraints Yii ≥ y2i and YiiYjj ≥ Y 2
ij are linear
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constraints in nature. Consequently, we reach an LP relaxation problem, whose optimal value is
denoted as OPTLP .

OPTLP = max :

(
0 ḡT

V

ḡV O

)
•
(

1 yT
V

yV Y V V

)
+ ḡ

subject to :

(
−2θ̄ c̄TF
c̄F AV V

)
•
(

1 yT
V

yV Y V V

)
≤ 0,(

−2N̄ eTV
eV O

)
•
(

1 yT
V

yV Y V V

)
= 0,(

−N̄2 0T

0 eV e
T
V

)
•
(

1 yT
V

yV Y V V

)
= 0,(

−1 0T

0 eie
T
i

)
•
(

1 yT
V

yV Y V V

)
= 0 for i ∈ V,

−1 ≤ yi ≤ 1 for i ∈ V,

−1 ≤ Yij ≤ 1 for (i, j) ∈ Ŵ ,

Y V V ∈ S|V |.

(8)

We now move our focus to an SOCP relaxation problem. In a similar way to the above step
that derives (8) from (7), it may be possible to apply an SOCP relaxation technique developed
in [17] to (7). In contrast, we utilize a continuous relaxation technique that converts the binary
constraint xi ∈

{
0, 1

N

}
into a continuous constraint 0 ≤ xi ≤ 1

N . The main reason of this
continuous relaxation is that we can keep the efficient SOCP formula of [47] that extensively
exploits a structural sparsity of the Wright numerator matrix A.

A second-order cone of dimension q is defined by Kq :=
{
x ∈ Rq : x1 ≥

√∑n
i=2 x

2
i

}
. A stan-

dard form of second-order cone programming (SOCP) problem in this paper is given as follows:

max : cTx
subject to : Fx = b,

h−Hx ∈ Kq.
(9)

The decision variable here is x ∈ Rn and the objective function is a linear function with a
constant vector c ∈ Rn. The linear constraints are encoded with a matrix F ∈ Rm×n and a
vector b ∈ Rm. The second-oder cone constraint is given with a vector h ∈ Rq and a matrix
H ∈ Rq×n. A more general SOCP formulation often includes a Cartesian product of second-order
cones. However, only one second-order cone is enough for the discussions in this paper.

Yamashita et al. [47] introduced a new vector z := Ax ∈ RZ , and converted the quadratic
constraint xTAx ≤ 2θ into ||Bz|| ≤

√
2θ with a matrix B ∈ RZ×Z that satisfies BTB = A−1.

Though the Wright numerator matrix A itself is not a sparse matrix, the matrices A−1 and B
possess favorable sparsity. The computation time reduction reported in [47] was mainly derived
from these sparsity. Using these new vector z and matrix B, we transformed the ED problem (2)
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into the following SOCP problem with integer constraints;

max : (A−1g)Tz
subject to : (A−1e)Tz = 1,( √

2θ
Bz

)
∈ K1+Z ,

[A−1z]i ∈
{
0, 1

N

}
for i ∈ V,

[A−1z]i = ci for i ∈ F.

Here, we use the notation [A−1z]i to denote the ith element of A−1z. It may seem that we would
remove xF from this formulation by fixing xF = cF and reduce the sizes the problem. However,
such elimination would strongly diminish the efficiency of the SOCP problem, since it completely
destroys the favorable sparsity that appear in A−1 and B.

By applying the continuous relaxation to the binary constraints, we obtain an SOCP relaxation
problem of the ED problem;

OPTSOCP := max : (A−1g)Tz
subject to : (A−1e)Tz = 1,( √

2θ
Bz

)
∈ K1+Z ,

0 ≤ [A−1z]i ≤ 1
N for i ∈ V,

[A−1z]i = ci for i ∈ F.

(10)

OPTED, OPTSDP , OPTLP and OPTSOCP , respectively. From the derivation of the LP re-
laxation problem (8), it is natural that the SDP relaxation problem (7) gives closer an optimal
value than the LP relaxation problem, that is, we know OPTSDP ≤ OPTLP . In contrast, the
relation of the SOCP relaxation (10) is not so explicit, since the SOCP relaxation was derived by
a continuous relaxation independently from the SDP or LP relaxation.

The strength of these relaxation problems can be summarized in Lemma 2.3. For the discussion
there, we prepare some notation and introduce an assumption. We use Sm(v) to denote the sum
of the m smallest elements of v ∈ Rn. More precisely, when v̂1 ≤ v̂2 ≤ . . . ≤ v̂n is the sorted vector
of v in the ascending order, the definition of Sm(v) is given by Sm(v) :=

∑m
i=1 v̂i. The symbol ÂŴ

indicates the set of the collection ofAV V with respect to Ŵ , that is, ÂŴ :=
{
Aij : (i, j) ∈ Ŵ

}
. We

define a vector ŷV ∈ R|V | by [ŷV ]i := 1 for i = 1, . . . , N−p and [ŷV ]i := −1 for i = N−p+1, . . . , |V |.
This vector satisfies eTV ŷV = N̄ . In the following this discussion, we make the following assumption
on the input data of the ED problem (2). From preliminary numerical tests, we verified that this
assumption holds for practical datasets of pine orchards and datasets generated by simulations.
The details of these dataset will be described in Section 5.

Assumption 2.2. The input data of (2) satisfies

SN̂ (ÂŴ ) ≤
2θ̄ − 2Trace(AV V ) + eTV AV V eV − 2c̄TF ŷ

4
,

where N̂ := N̄2+|V |2−2|V |
4 .
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We should ensure that N̂ is a positive integer, otherwise we need to manage a fractional number
in the definition of S. The positiveness is derived from N̄2 + |V |2 − 2|V | ≥ N̄2 + 1 ≥ 1 by |V | ≥ 2
of Remark 2.1, and N̂ is integer by

N̄2 + |V |2 − 2|V | =
{
2N(1− eTF cF )− |V |

}2
+ |V |2 − 2|V |

=
{
2N(1− p

N
)− |V |

}2
+ |V |2 − 2|V |

= 4

{
(N − p)2 − |V |(N − p) +

|V |(|V | − 1)

2

}
.

We are now prepared to examine the relation between the relaxation problems.

Lemma 2.3. It holds for the optimal values of the relaxation problems that

OPTED ≤ OPTSDP ≤ OPTSOCP .

Furthermore, if Assumption 2.2 holds, then

OPTED ≤ OPTSDP ≤ OPTSOCP ≤ OPTLP .

Proof: [OPTED ≤ OPTSDP ] When we derived (7), we ignored the rank-1 constraint in (6).
From this derivation, for any feasible solution x ∈ RZ of (2), the corresponding vector yV ∈ R|V |

through the connections x =

(
xV

cF

)
, then yV = 2NxV − eV is also a feasible solution of (7).

Furthermore, from these connections hold, it holds that gTx = ḡTyV + ḡ. The objective functions
of (6) and (7) are same and the feasible region of (7) is wider than that of (6) substantially, hence,
we have OPTED ≤ OPTSDP .

[OPTSDP ≤ OPTSOCP ] We take any feasible solution yV ∈ R|V | and Y V V ∈ S|V | of (7). It is

enough to check that z = A

( yV +eV

2N
cF

)
is a feasible solution of (10).

From

(
−2N̄ eTV
eV O

)
•
(

1 yT
V

yV Y V V

)
= 0, we obtain eTV yV = N̄ = 2N(1 − eTF cF ) − |V |,

hence,

(A−1e)Tz =

(
eV
eF

)T ( yV +eV

2N
cF

)
=

eTV yV + |V |
2N

+ eTFcF = 1.

By applying the Schur complement to the positive semidefinite condition

(
1 yT

V

yV Y V V

)
⪰ O, it

holds Y V V − yV y
T
V ⪰ O. Since A • X ≥ 0 holds for any two positive semidefinite matrices of

the same dimension A and X [34] and the Wright numerator matrix is always positive definite,
it holds AV V • (Y V V − yV y

T
V ) ≥ 0, therefore, AV V • Y V V ≥ yT

V AV V yV . Using the relation(
−2θ̄ c̄TF
c̄F AV V

)
•
(

1 yT
V

yV Y V V

)
≤ 0, we obtain yT

V AV V yV + 2c̄TFyV ≤ 2θ̄. From the defini-

tions of yV , c̄F , θ̄,B and z, we can derive zBTBz ≤ 2θ, therefore,

( √
2θ

Bz

)
∈ K1+Z . From

10



Y V V − yV y
T
V ⪰ O, we also have Yii ≥ y2i for i = 1, . . . , |V |. Furthermore, due to the con-

straint

(
−1 0T

0 eie
T
i

)
•
(

1 yT
V

yV Y V V

)
= 0, it holds Yii = 1 for i = 1, . . . , |V |, consequently

−eV ≤ yV ≤ eV . From A−1z =

( yV +eV

2N
cF

)
, it is now clear that 0 ≤ [A−1z]i ≤ 1

N for i ∈ V and

that [A−1z]i = ci for i ∈ F . Furthermore, the objective value of (7) at yV is same as that of (10)

at z if z = A

( yV +eV

2N
cF

)
. Hence, we obtain OPTSDP ≤ OPTSOCP .

[OPTSOCP ≤ OPTLP ] We first consider an LP problem

min : cTη
subject to :

∑n
i=1 ηi = K,

0 ≤ ηi ≤ 1 for i = 1, . . . , n,
(11)

where the decision variable is η ∈ Rn and the input vector is c ∈ Rn and K is a positive integer.
The optimal value of this LP problem is SK(c) and this value can be attained at η̂ ∈ Rn such that
η̂i = 1 for i = 1, . . . ,K and η̂i = 0 for i = K + 1, . . . , n.

If we ignore the quadratic constraint of (10) and we reverse the variable into x = A−1z, we
obtain an optimization problem of form

max : gTV xV + gT
FcF ,

subject to : eTV xV = 1− p
N ,

0 ≤ xi ≤ 1
N for i ∈ V.

(12)

Since g1 ≥ g2 ≥ . . . g|V |, the optimal value of (12) is given by−SN−p(−gV )
N +gTF cF in a similar way to

(11) and an optimal solution is x̂V :=
ŷV +eV

2N . Therefore, it holds that OPTSOCP ≤ gT
V x̂V +gT

FcF .
Next, we define ρLP to denote the optimal value of the following LP problem;

ρLP := min : AV V • Y V V

subject to : (eV e
T
V ) • Y V V = N̄2,

Yii = 1 for i ∈ V,

−1 ≤ Yij ≤ 1 for (i, j) ∈ Ŵ ,

Y V V ∈ S|V |.

(13)

We convert this problem introducing X̄ij :=
Yij+1

2 for (i, j) ∈ Ŵ . The following LP problem is
equivalent to (13), therefore, its optimal value must be ρLP .

ρLP = min : 4
∑

(i,j)∈Ŵ AijX̄ij − 2
∑

(i,j)∈Ŵ Aij +Trace(AV V )

subject to :
∑

(i,j)∈Ŵ X̄ij = N̂ ,

0 ≤ X̄ij ≤ 1 for (i, j) ∈ Ŵ .

(14)

The structure of this problem is same as (11), hence, it holds that ρLP = 4SN̂ (ÂN̂ )−eTV AV V eV +
2Trace(AV V ).

Let Ŷ V V be a part of an optimal solution of (13). From Assumption 2.2, it holds that

AV V • Ŷ V V + 2c̄TF ŷV = ρLP + 2c̄TF ŷV = 4SN̂ (ÂN̂ )− eTV AV V eV + 2Trace(A) + 2c̄TF ŷV ≤ 2θ̄.
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Furthermore, ŷV satisfies −1 ≤ ŷi ≤ 1 for i ∈ V and eTV ŷV = N̄ by its definition and Ŷ V V satisfies

all the constraints of (13). Consequently, the pair ŷV and Ŷ V V is a feasible solution of (8) and
this leads to the inequality we wanted to obtain.

OPTLP ≥
(

0 ḡT
V

ḡV O

)
•
(

1 ŷT
V

ŷV Ŷ V V

)
+ ḡ = 2ḡT

V ŷV + ḡ = gT
V x̂V + gTF cF ≥ OPTSOCP .

Remark 2.4. Since an optimal solution of a further relaxation problem of (8)

max : 2ḡT
V yV + ḡ

subject to : eTV yV = N̄ ,
−1 ≤ yi ≤ 1 for i ∈ V

is ŷV , its optimal value 2ḡT
V ŷV + ḡ must be an upper bound of OPTLP . On the other hand, from

the proof of Lemma 2.3, when Assumption 2.2 holds, there exists some Ŷ V V ∈ S|V | such that the
pair of ŷV and Ŷ V V is a feasible solution of (8) with the objective value 2ḡT

V ŷV + ḡ. Therefore,
ŷV is also an optimal solution of (8). This indicates that we can obtain the solution of (8) at the
computation cost for sorting gV instead of solving (8) as an LP problem, when Assumption 2.2
holds.

This remark implies that the LP relaxation (8) is not so tight against the original ED problem

(2). In contrast, we observed through preliminary numerical tests that the vector

(
x̂V

cF

)
defined

with an optimal solution x̂V of (12), is not always a feasible solution of (10) even if Assumption 2.2
holds. Therefore, the feasible region of the SOCP relaxation problem is strictly narrower than that
of the LP relaxation problem, and the SOCP relaxation gives a tighter approximation than the
LP relaxation in general, even though the relaxation were derived independently.

Remark 2.5. The SDP relaxation problem (7) has no interior-feasible point.

If a pair yV ∈ R|V | and Y V V ∈ S|V | satisfies all the constraint of (7), the pair is a feasible point.

When the matrix

(
1 yT

V

yV Y V V

)
is a positive definite matrix for some feasible point yV ∈ R|V |

and Y V V ∈ S|V |, we say that (7) has an interior-feasible point. We can show that

(
1 yT

V

yV Y V V

)
is not positive definite for any feasible point of (7). To show this, we take a feasible point yV ∈ R|V |

and Y V V ∈ S|V |. Then, we have eTV yV = N̄ and (eV e
T
V ) • Y V V = N̄2. If N̄ ̸= 0, it holds(

1
−eV /N̄

)T (
1 yT

V

yV Y V V

)(
1

−eV /N̄

)
= 1− 2eTV yV /N̄ + eTV Y V V eV /N̄

2 = 0.

In addition, for the case N̄ = 0, it holds(
0
eV

)T (
1 yT

V

yV Y V V

)(
0
N̄

)
= eTV Y V V eV = N̄2 = 0.

In either case, there exists a nonzero vector that makes the quadratic from zero, the matrix is not
positive definite, therefore, (7) has no interior-feasible point.
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3 Theoretical evaluation of the SDP relaxation problems with a
randomized algorithm

The solutions obtained from the conic relaxation problem (7), (8) and (10) are not always a feasi-
ble solution of the ED problem (2), since we ignored some constraints of the NP-hard problem to
derive the conic relaxation problems that are solvable in polynomial time. When SDP relaxation
approaches are used, examine randomized algorithms often follow to generate feasible solutions.
A randomized algorithm using the solutions obtained through SDP relaxation problems was first
introduced for max-cut problems in [11]. They showed that the expectation objective value ob-
tained by their randomized algorithm on average was at least 0.878 of that of an SDP relaxation
problem. Since the optimal value of a max cut problem exists between an objective value of any
feasible solution and the value obtained from the SDP relaxation problem, their algorithm have an
expected approximation factor of 0.878. Many researches followed [11] to extend its results to more
general quadratic-constraint problems using the framework of SDP relaxation methods. Among
them, Tseng [36] discussed one of the most general cases and gave its probabilistic analysis. Wu
et al. [44] also analyzed the expectation values using a different randomized algorithm.

In this section, we employ the result of [36] to give theoretical bounds on the expected ob-
jective value of a randomized algorithm. Tseng [36] applied the SDP relaxation methods to a
quadratically-constrained quadratic programming (QCQP) problem:

OPTQCQP := max : yTA0y + (b0)Ty + c0

subject to : yTAky + (bk)Ty + ck ≤ 0 for k = 1, . . . ,m.
(15)

Here, the variable is y ∈ Rn, while the input data are A0, . . . ,Am ∈ Sn, b0, . . . , bm ∈ Rn and
c0, c1 . . . , cm ∈ R. For simplicity, the constant in the objective function is fixed to c0 = 0. The
QCQP originally discussed in [36] is a minimization problem, but we consider a maximization
problem since the ED problem (2) is a maximization problem.

When we apply the lift-and-project method of Lovász and Schrijver [20] to (15), the resultant
SDP relaxation problem is given as follows:

OPTSDP := max : B0 • Y
subject to : Bk • Y ≤ 0 for k = 1, . . . ,m,

Bm+1 • Y = 1, Y ⪰ O

(16)

where Bk :=

(
ck (bk)T

bk Ak

)
for k = 0, . . . ,m and Bm+1 :=

(
1 0T

0 O

)
, and the decision variable

is Y ∈ S1+n. In the following discussions, we start the row or column index of Y from zero,
therefore, the elements of Y are denoted by Y00, Y01, . . . , Ynn. It is known that if we add the
rank-1 constraint rank(Y ) = 1 to (16), the two problems (15) and (16) are equivalent. In other
words, we ignored the rank-1 constraint from (15) to derive (16), hence, OPTQCQP ≤ OPTSDP .

The randomized algorithm of [36] can be summarized as follow. We assume that (15) and (16)
are feasible and that (16) has an optimal solution, denoted as Y ∗. This solution Y ∗ is factorzied
with a matrix V ∈ R(1+n)×(1+n) such that Y ∗ = V TV . Such V is available, for example, by the
Cholesky factorization or the eigenvalue decomposition. We use v0,v1, . . . ,vn ∈ R1+n to denote
the columns of V . Then, a vector v ∈ R1+n is chosen randomly from the unit sphere in R1+n
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based on uniform distribution. Finally, the randomized algorithm outputs a solution ỹ ∈ R1+n

defined by

ỹi :=
√

Y ∗
ii sign(v

Tv0)sign(vTvi) for i = 0, . . . , n

where sign(a) = 1 if a ≥ 0 and sign(a) = −1 if a < 0. We remark that from the definition of
Bm+1, it always holds that Y ∗

00 = 1, hence, ỹ0 =
√
1(sign(vTv0))2 = 1.

The set I is introduced to indicate diagonal-matrix constraints of (15);

I :=
{
k ∈ {1, 2, . . . ,m} : Ak is a diagonal matrix and bk = 0

}
.

To measure a shift in the objective function, ρ0SDP is defined as the optimal value of the following
SDP problem

ρ0SDP := min : B0 • Y
subject to : Bk • Y = Bk • Y ∗ for k ∈ I,

Bm+1 • Y = 1, Y ⪰ O.

(17)

Tseng [36] showed a relation between the expected objective value of the generated solution ỹ
and the optimal values of the SDP problems.

Theorem 3.1. [36, Theorem 2] If the SDP relaxation problem (16) has an optimal solution Y ∗

and a set
{
y ∈ Rn : yTAky + (bk)Ty + ck ≤ 0, k ∈ I

}
is bounded, then

E[ỹTA0ỹ + (b0)Ty] ≥ 2

π
OPTSDP +

(
1− 2

π

)
ρ0SDP .

Let us return to the ED problem (2). We analyze the performance of the output solution ỹV

that is generated by the above randomized algorithm using the optimal solution Y ∗ of the SDP
relaxation problem (7). From the form of (7), the objective value at ỹV is 2gT

V ỹ+ ḡ. The following
lemma provides a theoretical aspects on the expected value of this objective function.

Lemma 3.2. For the ED problem (2), the expected objective value obtained through the randomized
algorithm is bounded by

2

π
OPTSDP +

(
1− 2

π

)
(−2ḡT

V eV + ḡ) ≤ E[2ḡT
V ỹV + ḡ] ≤ αOPTSDP + (1− α)(2ḡT

V eV + ḡ),

where α := min
{

2
π

θ
1−cos θ : 0 ≤ θ ≤ π

}
≈ 0.878.

Proof:
First, we derive the lower bound of the objective function by use of Theorem 3.1. To em-

bed the SDP relaxation problem (7) arising from the ED problem into the framework devel-
oped in [36], we embed the variable vector yV and matrix Y V V into the matrix Y ∈ S1+|V | as

Y =

(
Y00 yT

V

yV Y V V

)
. In particular, we identify yi = Y0i = Yi0 for i = 1, . . . , |V |. For the input
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matrices B0, . . . ,B2|V |+5, we prepare

c0 = 0, b0 = ḡV , A0 = O,
c1 = −2θ̄, b1 = c̄F , A1 = AV V ,
c2 = −2N̄ , b2 = eV , A2 = O,
c3 = 2N̄ , b3 = −eV , A3 = O,

c4 = −N̄2, b4 = 0, A4 = eV e
T
V ,

c5 = N̄2, b5 = 0, A5 = −eV e
T
V ,

c5+i = −1, b5+i = 0, A5+i = eie
T
i for i ∈ V,

c5+|V |+i = 1, b5+|V |+i = 0, A5+|V |+i = −eie
T
i for i ∈ V.

The number of input matrices in the form of (16) is m = 2|V |+5. For example, B5+i •Y ≤ 0
andB5+|V |+i•Y ≤ 0 lead to Yii = 1 for i ∈ V . In addition, Y00 = 1 is guaranteed byBm+1•Y = 1.

The set of diagonal constraints is I = {5 + i : i ∈ V } ∪ {5 + |V | + i : i ∈ V }. From this I,
the feasible set of (17) is given by F :=

{
Y ∈ S1+|V | : Yii = 1 for i = 0, 1, . . . , |V | and Y ⪰ O

}
.

Hence, we obtain

ρ0SDP = min
{
B0 • Y : Y ∈ F

}
= min

{
2
∑
i∈V

ḡiY0,i : Y ∈ F

}
= −2ḡTV eV .

Here, a combination of the matrix-completion method [10, 28, 48] with a property ḡV ≥ 0 ensures

that an optimal solution of this minimization problem is given as Y =

(
1 −eTV

−eV eV e
T
V

)
.

We should note that the SDP relaxation problem (7) has a constant term ḡ in the objective
function, but we have to set c0 = 0 to employ Theorem 3.1. By taking the shift of ḡ into account,
Theorem 3.1 gives a lower bound;

E[2ḡT
V ỹV + ḡ] = E[2ḡT

V ỹV ] + ḡ

≥ 2

π
(OPTSDP )−

(
1− 2

π

)
2ḡT

V eV + ḡ

=
2

π
(OPTSDP − ḡ)−

(
1− 2

π

)
2ḡT

V eV + ḡ

=
2

π
OPTSDP +

(
1− 2

π

)
(−2ḡT

V eV + ḡ).

To consider an upper bound, we first evaluate E[ỹi] for i ∈ V . From Y ∗
ii = 1 for i ∈ {0} ∪ V

in (7) and the definition of ỹV , and it holds that ỹi = 1 if sign(vTv0) = sign(vTvi), and ỹi = −1
if sign(vTv0) = −sign(vTvi). The discussion in [11] indicates that the probability of the event
sign(vTv0) = sign(vTv0) is given as 1− 1

πarccos(Y
∗
0i). Therefore, we have

E[ỹi] = 1 ·
(
1− 1

π
arccos(Y ∗

0i)

)
+ (−1) ·

{
1−

(
1− 1

π
arccos(Y ∗

0i)

)}
= 1− 2

π
arccos(Y ∗

0i) ≤ α(Y ∗
0i − 1) + 1.

The last inequality was derived from the inequality arccos(y)
π ≥ α1−y

2 for −1 ≤ y ≤ 1 (Lemma 3.4
of [11]) and −1 ≤ Y ∗

0i ≤ 1 due to Y ∗ ⪰ O and Y ∗
00 = Y ∗

ii = 1.
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Table 1: Theoretical bounds on the expected values by the randomized algorithm
Z 2θ lower bound expected value upper bound OPTSDP

200 0.0334 16.161 25.812 30.340 25.386
1050 0.0627 5.075 32.305 112.600 24.938
2045 0.0711 279.259 446.089 2007.212 438.659
5050 0.1081 5.775 284.965 806.205 42.786

As a result, we obtain an inequality

E[2ḡT
V ỹV ] + ḡ = 2

∑
i∈V

ḡiE[ỹi] + ḡ

≤ 2α
∑
i∈V

ḡiY
∗
0i + 2(1− α)gT

V eV + ḡ

= 2αḡV y
∗
V + 2(1− α)gT

V eV + ḡ

= α(OPTSDP − ḡ) + 2(1− α)ḡT
V eV + ḡ

= αOPTSDP + (1− α)(2ḡT
V eV + ḡ).

From a theoretical viewpoint, Lemma 3.2 gives the bounds on the expected objective value
E[2ḡT

V ỹV + ḡ] of the randomized algorithm. When we executed preliminary experiments, we
observed that the interval between the lower and upper bounds are not so sharp. Table 1 presents
the lower and upper bounds and the expected objective value. The dataset we used here is a
subset of datasets in Section 5. The first column shows Z, the number of genotype candidates.
We fix the number of chosen candidates to N = 50. The third and fourth columns are the lower
and the upper bounds in Lemma 3.2, respectively. The expected objective value is shown in the
third column, and it is obtained by generating the random vector v thousand times and taking
the average of the thousand trials. The fifth column is the optimal value of the SDP relaxation
problem 7.

For the smallest size Z = 200, the gap between the lower and the upper bound was not so
large. However, when we tried the larger problems, the gap was getting worse. In particular, the
ratio of the upper bound to the expected objective value for the case Z = 5255 goes beyond 5.34.

Another aspect in the randomized algorithm is that the expected objective value is always
larger than OPTSDP . A reason of this unfavorable aspect is that the generated solution ỹV is not
guaranteed to satisfy the constraint yT

V AV V yV + 2c̄TFyV ≤ 2θ̄ that corresponds to xTAx ≤ 2θ
of (2). Though Theorem 4 of [36] estimates the number of randomly generated solutions required
for approximate feasible solutions with high probability, this cannot be applied to the discussion
in this paper, since the current discussion does not fully satisfy the assumption of the theorem.

Due to this weaker bounds reported in Table 1, we are determined to seek an optimization
method that can obtain a reasonable solution for practical use. This motivated us to develop a
local search method based on the steep-descent method for discrete convex functions.
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4 Steepest-ascent method

In contrast to mixed-integer linear programming problems for which many solvers have been devel-
oped, a principal difficulty in the ED problem (2) arises from the nonlinear constraint xTAx ≤ 2θ.
To obtain a sensible solution in a short time, we embed the violation against this constraint into
the objective function as a penalty term using a penalty weight λ ≥ 0 and focus the following
optimization problem

max : fλ(x) := gTx− λmax{xTAx− 2θ, 0}
subject to : x ∈ F̂ (18)

where F̂ :=
{
x ∈ RZ : eTx = 1, l ≤ x ≤ u, x1, . . . , xZ ∈

{
0, 1

N

}}
.

We give a validity of (18) by the next lemma which shows that if we take a large λ, this
optimization problem with a penalty term (18) is equivalent to the original problem (2) .

Lemma 4.1. Let x(λ) ∈ RZ be an optimal solution of (18). There exists a λ̂ > 0 such that x(λ)
is an optimal solution of (2) for ∀λ ≥ λ̂.

Proof: Let ϕ̂ be the optimal value of the following optimization problem;

ϕ̂ := min : max{xTAx− 2θ, 0}
subject to : x ∈ F̂ .

(19)

From this definition, ϕ can take either zero or a positive number.
If ϕ̂ = 0, the quadratic constraint xTAx ≤ 2θ holds for ∀x ∈ F̂ . Therefore, this constraint

vanishes from (2) and the penalty term in (18) has no effect. Hence, the two problems (2) and
(18) are equivalent for any λ ≥ 0.

For the case ϕ̂ > 0, since F̂ is composed of a finite number of points, the reciprocal number of
ϕ̂ is a finite number. Therefore, we can take λ̂ = max{gi:i=1,...,Z}−min{gi:i=1,...,Z}+1

ϕ̂
. To show this by

a contradiction, we assume that x(λ)TAx(λ) ≤ 2θ does not hold for λ ≥ λ̂. Then, we have

gTx(λ)− λ
(
x(λ)TAx(λ)− 2θ

)
≤ max{gi : i = 1, . . . , Z} − λ̂ϕ̂ < min{gi : i = 1, . . . , Z}.

Here, we used eTx(λ) = 1 and x(λ) ≥ 0 since x(λ) ∈ F̂ . On the contrary, from the assumption
that (2) has a feasible point, the objective value of (18) at this feasible point is at least min{gi : i =
1, . . . , Z}. This indicates that x(λ) can not be an optimal solution of (18) if x(λ)TAx(λ) > 2θ.
Therefore, we can restrict the feasible region of (18) to the set {x ∈ RZ : xTAx ≤ 2θ} ∩ F̂ , and
the objective function of (18) is reduced to gTx. Consequently, the optimal solution of (18) is also
optimal for (2).

Since the computation for ϕ̂ is almost as hard as the original ED problem, it is not practical
to compute ϕ̂. In addition, when we maximize fλ(x), extremely large λ makes the computation
numerically unstable. As an appropriate value for the penalty weight λ, we make the use of the
Lagrangian multiplier λ0 developed in Meuwissen [22];

λ0 :=

√
(gTA−1g)(eTA−1e)− (gTA−1e)2

8θ(eTA−1e)− 4
.
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This λ0 corresponds to the Lagrangian multiplier of the constraint xTAx = 2θ in the following
optimization problem.

max : gTx
subject to : xTAx = 2θ,

eTx = 1.
(20)

The approach of [22] first solves (20), then applies some heuristic method to obtain a solution of
(2). Therefore, a maximization of gTx−λ0(x

TAx−2θ) over eTx = 1 is a natural derivation when
we consider (20). For fλ(x), we often employ λ such that λ ≥ λ0, since we put a strong emphasis
on the violation with respect to max{xTAx− 2θ, 0}.

We now discuss (18) from the viewpoint of convex functions. The function −fλ(x) is a convex
function in the continuous space RZ , since A ⪰ O and λ ≥ 0. Hence, the problem (18) can be
cast as a minimization of a convex function over a discrete feasible set.

An M-convex function [26] is a discrete convex function defined on a set in which the sum of
the elements of a feasible point is constant. A steepest-descent method for M-convex functions
was developed in [27]. When an M-convex function fM (x) with a feasible set FM is given,
the steepest-descent method starts from an initial point x0 ∈ FM , and finds the next point x1

from a neighborhood N (x0) ⊂ FM that decreases the objective function fM (x) with the largest
margin. Here, N (x0) := {x + ei − ej ∈ FM : i, j = 1, . . . , n}. In other words, x1 is chosen so
that fM (x1) ≤ fM (x) for any x ∈ N (x0). The steepest-descent method continues the search
in neighbors, and it eventually can find a global minimizer since any local minimizer is a global
minimizer when the objective function fM is an M-convex function.

Though −fλ(x) is not an M-convex function since it can encompass multiple local minimizers
that are not always global minimizers, the optimization problem with the penalty term (18) has
resemblances to a minimization of an M-convex function. In particular, the feasible set F̂ satisfies∑Z

i=1 xi = 1 and the function −fλ(x) is a convex function in the continuous space RZ . Therefore,
we can expect that the steepest-descent method for M-convex functions will give good direction
to solve (18). Furthermore, we can exploit the solution obtained by the conic relaxation problems
in Section 3 to generate a starting point x0.

When we adjust the steepest-descent method implemented in the software package ODI-
CON 1 [37] to solve (18), we obtain Algorithm 4.2. Since (18) is a maximization problem, Algo-
rithm 4.2 is a steepest-ascent method.

Algorithm 4.2. A steep-ascent method with a conic relaxation problem for the optimization prob-
lem with the penalty term arising from the ED problem

Step 1: Solve a conic relaxation problem (7), (8) or (10). If (10) is solved, let x∗ be its optimal
solution. For (8) and (7), let y∗

V be its optimal solution and set x∗ by x∗
V := y∗

V and
x∗
F := cF .

Step 2: By sorting x∗, separate V into the two disjoint set V 1
N

and V0 such that x∗i ≥ x∗j for

i ∈ V 1
N
, j ∈ V0 and that |V 1

N
| = N − p (ties are broken arbitrary). Set the initial point

x0 ∈ RZ by x0i := 1
N for i ∈ V 1

N
, x0j := 0 for j ∈ V0, and x0

F := cF . Set the iteration

counter h := 0.

1http://ist.ksc.kwansei.ac.jp/~tutimura/odicon/index.en.html
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Step 3: Select the steepest swap ih ∈ V 1
N

and jh ∈ V0 such that

fλ(x
h − 1

N
eih +

1

N
ejh) ≥ fλ(x

h − 1

N
ei +

1

N
ej) for i ∈ V 1

N
, j ∈ V0.

Step 4: If there is no improvement, that is fλ(x
h− 1

N eih+
1
N ejh) ≤ fλ(x

h), output xh as a solution
and stop.

Step 5: Set xh+1 := xh − 1
N eih + 1

N ejh. Swap ih and jh by V 1
N

:= V 1
N

∪ {jh}\{ih} and V0 :=

V0 ∪ {ih}\{jh}. Set h := h+ 1 and return to Step 3.

In Step 2, the number of 1
N in x0 is exactly N . Due to Step 5, this property is kept through

the iterations in the algorithm, hence, the number of 1
N in xh is also exactly N for any h ≥ 1.

When no improvement can be found, the algorithm stops by Step 4.
Most computation cost of each iteration in Algorithm 4.2 is consumed at the evaluations of fλ

in Step 3. The number of the evaluations is determined by the size of neighbor around xh, that
is, |V 1

N
| × |V0| = (N − p)× (|V | − (N − p)). Therefore, the case N − p = |V |

2 requires the heaviest

computation cost. Furthermore, to reduce the computation cost, we focus the evaluation of (xh −
1
N eih + 1

N ejh)
TA(xh − 1

N eih + 1
N ejh). Since ODICON was designed to handle general functions,

it accessed all the elements of A for each ih and jh. By expanding the part as (xh)TA(xh) +
2
N

(
−eih + ejh

)T
(Axh) + 1

N2

(
Aihih +Ajhjh − 2Aihjh

)
, we evaluate (xh)TA(xh) and (Axh) only

once for each iteration of Algorithm 4.2. This saves 95% of the computation time for Step 3
compared to ODICON.

5 Numerical results

In this section, we report numerical results to verify the performance of the proposed algorithm,
Algorithm 4.2. We implemented Algorithm 4.2 with Matlab R2014b. We compared the proposed
algorithm with GENCONT [22], the branch-and-bound method implemented in OPSEL 2.0 [24,
23], and IBM CPLEX 12.62. We used an Windows PC with Core i7 3770K (3.5 GHz) and 32 GB
memory space for cases. Only when the 32 GB memory space was not enough, we used a Linux
server with Opteron 4386 (3.10 GHz) and 128 GB memory space. To solve the LP problem (8), the
SOCP problem (10), and the SDP problem (7), we employed CPLEX, ECOS [7], and SDPT-3 [35],
respectively. For the steepest-ascent method, we set λ = 2λ0 as the penalty weight in the function
fλ(x) of (18).

The data tested in the numerical experiments of this paper are practical datasets of pine or-
chards available at the Dryad Digital Repository2 and datasets generated by a simulation software
package [25].

Tables 2 and 3 present the comparison of the three conic relaxation approaches. The number N
of chosen genotype is set 50 and 150 in Table 2 and Table 3, respectively. The first column in the
tables shows the name of algorithms; for example, CR (LP) is the result of conic relaxation problem
(in this case, an LP problem) and SA (LP) is the result after the application of Algorithm 4.2
starting from the solution of CR (LP). The names for SOCP and SDP are indicated with the same
rule. For CR (LP)-s and SA (LP)-s, we applied Remark 2.4 to (8) and obtain its solution by sorting

2http://dx.doi.org/10.5061/dryad.9pn5m
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gV . The second column is Z, the number of genotype candidates, while the third column is 2θ.
The fourth and fifth columns are the objective value gTx and the value xTAx of each algorithm.
For the CR rows, these two values were evaluated at x∗, the solution at Step 1 of Algorithm 4.2,
and for the SA rows, they were computed with the output solution xh at Step 4. The sixth column
is the iteration number of Algorithm 4.2. The seventh column is the value of fλ(x

h), where h is
the iteration number indicated in the sixth column. For the CR row, note that x∗ must satisfy
the quadratic constraint xTAx ≤ 2θ, but x0 does not always satisfy it. In contrast, for the SA
rows, fλ(x

h) is given at the final solution of Step 4. The last column is the computation time in
seconds. Since SA (LP) uses the result of CR (LP), the computation time of SA (LP) is the sum
of the computation time of CR (LP) and the steep-ascent method. In a similar way, SA (SOCP)
and SA (SDP) are also the sums.

For the smallest case Z = 200 and N = 50, the SDP relaxation problem attains a remarkable
result. Since the solution in SA (SDP) satisfies the constraint xTAx ≤ 2θ, this solution is a
feasible solution of the original ED problem (2). In addition, it holds that OPTED ≤ OPTSDP

from Lemma 2.3. Therefore, we know 25.207 ≤ OPTED ≤ 25.386 and we obtain the optimal value
of the ED problem up to an error 0.710%. Since this error is much better than the theoretical
bounds discussed in Lemma 3.2, the combination of the SDP relaxation and the steepest-ascent
method performs very well in this case.

In addition, we can make sure that the objective values of CR (LP) and CR (LP)-s are same,
and this indicates that Assumption 2.2 holds in the numerical tests. As a result, we can obtain
the solution of the LP relaxation problem (8) without solving it as an LP problem, as noted in
Remark 2.4.

From Tables 2 and 3, we observe in the cases Z ≤ 5050 that OPTSDP ≤ OPTSOCP ≤ OPTLP

from the values of gTx in the CR (LP), CR (SOCP), and CR (SDP) rows. This result supports
the validity of Lemma 2.3. However, we also observe for large instances Z ≥ 10100 that gTx of
CR (SDP) is lower than that of CR (SOCP). A principal reason of this inconsistent phenomenon
is a premature termination of SDPT-3. These inaccurate values of CR (SDP) were mainly caused
by the lack of interior-feasible points in (7); see Remark 2.5. The SOCP relaxation problem (10)
provides highly numerical stability compared to the SDP relaxation problem (7). This can be
regarded as an advantage of the SOCP relaxation approach.

As a next viewpoints, the violations of the solution generated by the steep-ascent method
against xTAx ≤ 2θ are remarkably small. This is mainly because we set λ large enough based on
the Lagrangian multiplier λ0. Therefore, the maximization of the function with the penalty term
(18) can provide a suitable solution for the ED problem (2).

A comparison of the results of the steepest-ascent methods that starts from the three conic
relaxation indicates that if SDPT-3 obtained sensible solutions (Z ≤ 5050), the output objective
values gTx of SA (SDP) and SA (SOCP) were close to each other, but much higher than that
of SA (LP). This implies that the SOCP relaxation problem and the SDP relaxation problem
provided good starting points for the steepest-ascent method. This point is also indicated in
the iteration number of the steepest-ascent methods. The iteration numbers of SA (SDP) and
SA (SOCP) are much less than that of SA (LP). For example, when Z = 2045 and N = 100,
SA (SDP) and SA (SOCP) required only two and three iterations, respectively, while SA (LP)
required 65 iterations. Therefore, we can infer that the solutions of the SDP relaxation problem
and the SOCP relaxation problem are close to local maximizer of fλ(x).

When we move our focus from the solution quality to the computation time, the computation of
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Table 2: The comparison of the convex relaxation approaches (N = 50)
Algorithm Z 2θ gTx xTAx iter fλ(x) time (s)
CR (LP)

200 0.0334

28.068 0.0574 0 -133.895 0.07
SA (LP) 25.029 0.0334 21 25.029 0.10
CR (LP)-s 28.068 0.0574 0 -133.895 0.01
SA (LP)-s 25.029 0.0334 21 25.029 0.04
CR (SOCP) 26.156 0.0334 0 -41.484 0.02
SA (SOCP) 25.090 0.0334 13 25.090 0.06
CR (SDP) 25.386 0.0321 0 18.978 1.29
SA (SDP) 25.207 0.0334 4 25.207 1.30
CR (LP)

1050 0.0627

30.754 0.1362 0 -198.235 0.37
SA (LP) 22.707 0.0627 23 22.707 0.51
CR (LP)-s 30.754 0.1362 0 -198.235 0.01
SA (LP)-s 22.707 0.0627 23 22.707 0.15
CR (SOCP) 25.284 0.0627 0 19.621 0.08
SA (SOCP) 24.831 0.0627 2 24.831 0.09
CR (SDP) 24.938 0.0617 0 24.721 27.94
SA (SDP) 24.846 0.0627 2 24.846 27.96
CR (LP)

2045 0.0711

504.217 0.4566 0 -26197.137 1.16
SA (LP) 414.591 0.0710 32 414.591 1.47
CR (LP)-s 504.217 0.4566 0 -26197.137 0.01
SA (LP)-s 414.591 0.0710 32 414.591 0.32
CR (SOCP) 439.353 0.0711 0 293.122 0.06
SA (SOCP) 438.386 0.0710 2 438.386 0.09
CR (SDP) 438.659 0.0706 0 438.457 145.57
SA (SDP) 438.457 0.0710 1 438.457 145.59
CR (LP)

5050 0.1081

57.630 0.3672 0 -1185.866 10.17
SA (LP) 38.696 0.1080 23 38.696 11.17
CR (LP)-s 57.630 0.3672 0 -1185.866 0.01
SA (LP)-s 38.696 0.1080 23 38.696 0.98
CR (SOCP) 43.036 0.1081 0 42.456 0.21
SA (SOCP) 42.691 0.1080 3 42.691 0.37
CR (SDP) 42.786 0.0980 0 41.327 2221.22
SA (SDP) 42.431 0.1080 3 42.431 2221.40
CR (LP)

10100 0.0701

62.377 0.2368 0 -1305.4682 46.84
SA (LP) 41.284 0.0701 32 41.284 49.87
CR (LP)-s 62.377 0.2368 0 -1305.468 0.01
SA (LP)-s 41.284 0.0701 32 41.284 3.29
CR (SOCP) 47.445 0.0701 0 21.094 0.54
SA (SOCP) 46.568 0.0701 2 46.568 0.87
CR (SDP) 21.265 0.0545 0 13.369 5577.80†
SA (SDP) 44.662 0.0701 45 44.662 5582.46†
CR (LP)

15222 0.0388

603.783 0.4568 0 -67047.589 129.55
SA (LP) 438.791 0.0388 42 438.791 139.03
CR (LP)-s 603.783 0.4568 0 -67047.589 0.01
SA (LP)-s 438.791 0.0388 42 438.791 6.45
CR (SOCP) 468.367 0.0388 0 -1042.485 0.99
SA (SOCP) 460.769 0.0388 9 460.769 2.56
CR (SDP) 288.739 0.0195 0 314.493 17433.38†
SA (SDP) 460.409 0.0388 43 460.409 17441.93†

† indicates numerical instability
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Table 3: The comparison of the convex relaxation approaches (N = 100)
Algorithm Z 2θ gTx xTAx iter fλ(x) time (s)
CR (LP)

200 0.0258

24.654 0.0304 0 -22.392 0.01
SA (LP) 23.355 0.0258 18 23.355 0.07
CR (LP)-s 24.654 0.0304 0 -22.392 0.01
SA (LP)-s 23.355 0.0258 18 23.355 0.06
CR (SOCP) 24.015 0.0258 0 0.950 0.01
SA (SOCP) 23.412 0.0258 13 23.412 0.08
CR (SDP) 23.640 0.0255 0 21.783 0.82
SA (SDP) 23.521 0.0258 5 23.521 0.84
CR (LP)

1050 0.0539

27.637 0.1214 0 -208.680 0.39
SA (LP) 19.805 0.0539 42 19.805 0.98
CR (LP)-s 27.637 0.1214 0 -208.680 0.01
SA (LP)-s 19.805 0.0539 42 19.805 0.590
CR (SOCP) 22.432 0.0539 0 18.537 0.08
SA (SOCP) 22.321 0.0539 5 22.321 0.15
CR (SDP) 22.358 0.0537 0 22.242 30.49
SA (SDP) 22.324 0.0539 3 22.324 30.54
CR (LP)

2045 0.0628

478.114 0.4219 0 -26349.725 1.17
SA (LP) 406.348 0.0628 65 406.348 5.00
CR (LP)-s 478.114 0.4219 0 -26349.725 0.01
SA (LP)-s 406.348 0.0628 65 406.348 3.78
CR (SOCP) 421.696 0.0628 0 197.423 0.07
SA (SOCP) 421.113 0.0627 3 421.113 0.25
CR (SDP) 421.497 0.0627 0 364.014 165.33
SA (SDP) 421.425 0.0628 2 421.425 165.46
CR (LP)

5050 0.0994

54.903 0.3355 0 -1137.701 10.35
SA (LP) 36.509 0.0994 50 36.509 17.44
CR (LP)-s 54.903 0.3355 0 -1137.701 0.01
SA (LP)-s 36.509 0.0994 50 36.509 7.03
CR (SOCP) 40.769 0.0995 0 15.408 0.25
SA (SOCP) 40.629 0.0995 3 40.629 0.71
CR (SDP) 40.711 0.0992 0 31.447 2164.49
SA (SDP) 40.690 0.0994 2 40.690 2164.85
CR (LP)

10100 0.0610

60.347 0.2245 0 -1395.786 46.71
SA (LP) 39.911 0.0610 62 39.911 68.54
CR (LP)-s 60.347 0.2245 0 -1395.786 0.01
SA (LP)-s 39.911 0.0610 62 39.911 21.51
CR (SOCP) 44.819 0.0610 0 10.608 0.70
SA (SOCP) 44.522 0.0610 7 44.522 3.12
CR (SDP) 21.374 0.0532 0 18.463 6750.06†
SA (SDP) 42.810 0.0610 66 42.810 6773.05†
CR (LP)

15222 0.0300

575.227 0.4318 0 -74482.507 128.21
SA (LP) 408.725 0.0300 90 408.725 185.33
CR (LP)-s 575.227 0.4318 0 -74482.507 0.02
SA (LP)-s 408.725 0.0300 90 408.725 49.14
CR (SOCP) 444.730 0.0300 0 -11.0395 1.05
SA (SOCP) 441.438 0.0300 6 441.438 4.72
CR (SDP) 309.173 0.0228 0 -65291.694 19467.30†
SA (SDP) 406.266 0.0300 92 406.266 19525.52†

† indicates numerical instability
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Table 4: The comparison of GENCONT, OPSEL, CPLEX, and the proposed algorithm (N = 50)
Algorithm Z 2θ gTx xTAx fλ(x) #chosen time (s)
GENCONT

200 0.0334

25.290 0.0342 20.087 50 0.06
OPSEL 25.191 0.0334 25.191 50 1779.13
CPLEX 25.190 0.0334 25.190 50 4270.77
SA (SOCP) 25.090 0.0334 25.090 50 0.06
GENCONT

1050 0.0627

24.983 0.0627 24.983 48 7.91
OPSEL 24.858 0.0627 24.858 50 > 10800
CPLEX Cannot obtain a sensible solution in 3 hours > 10800
SA (SOCP) 24.831 0.0627 24.831 50 0.09
GENCONT

2045 0.0711

437.049 0.0694 437.049 50 88.46
OPSEL 435.826 0.0692 435.826 50 16.08
CPLEX 436.213 0.0680 436.212 50 0.37
SA (SOCP) 438.386 0.0710 438.386 50 0.09
GENCONT

5050 0.1081

42.780 0.1089 -306.701 50 1769.72
OPSEL 42.702 0.1081 42.702 50 > 10800
CPLEX 42.456 0.1066 42.456 50 2.02
SA (SOCP) 42.691 0.1080 42.691 50 0.37
GENCONT

10100 0.0701

Out of memory
OPSEL 46.252 0.0700 46.252 50 > 10800
CPLEX Cannot obtain a sensible solution in 3 hours > 10800
SA (SOCP) 46.568 0.0701 46.568 50 0.87
GENCONT

15222 0.0388

Out of memory
OPSEL 459.040 0.0388 459.040 50 > 10800
CPLEX 459.135 0.0386 459.135 50 39.20
SA (SOCP) 460.769 0.0388 460.769 50 2.56

SA (SOCP) is much shorter than SA (SDP). This was mainly because we can aggressively exploit
the structure of the Wright numerator matrix A through the SOCP approach discussed in [47].
Since the objective values gTx of SA (SOCP) and SA (SDP) are competitive, SA (SOCP) can be
considered as the most efficient approach among the three SA (LP), SA (SOCP), and SA (SDP).

Judging from these results, we chose the SOCP relaxation problem for generating the starting
point when we compare Algorithm 4.2 against the existing approaches, GENCONT, OPSEL, and
CPLEX. Since OPSEL and CPLEX utilized the brand-and-bound framework, we can expect their
solution are close to the real optimal solution of the ED problem (2).

Tables 4 and 5 present the comparison of Algorithm 4.2, GENCONT and OPSEL (Version
2.0), CPLEX (Version 12.62) for the numbers of selected genotypes N = 50 and N = 100. We
tried to execute GENCONT2, a new version of GENCONT, but its binary file did not work on our
computational environment. Therefore, we used GENCONT1 for the comparison. In the tables,
we evaluate fλ(x) in seventh column at the solution obtained from each algorithm and the eighth
column reports the number of chosen genotypes |{i : xi > 0}|. For OPSEL and CPLEX, we set
the time limit as three hours and the tolerance gap as 1%. When OPSEL and CPLEX reached
the time limit, we obtained a feasible solution from OPSEL, but we could not extract sensible
solutions from CPLEX. GENCONT could not solve large instances (Z = 10100 and Z = 15222)
due to out of memory.

From the numerical results in Tables 4 and 5, the objective values of SA (SOCP) are close to
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Table 5: The comparison of GENCONT, OPSEL, CPLEX, and the proposed algorithm (N = 100)
Algorithm Z 2θ gTx xTAx fλ(x) #chosen time (s)
GENCONT

200 0.0258

23.640 0.0261 21.253 100 0.07
OPSEL 23.551 0.0258 23.551 100 > 10800
CPLEX 23.508 0.0258 23.508 100 1.42
SA (SOCP) 23.412 0.0258 23.412 100 0.08
GENCONT

1050 0.0539

22.749 0.0539 22.749 91 9.63
OPSEL 22.275 0.0539 22.275 100 304.89
CPLEX Cannot obtain a sensible solution in 3 hours > 10800
SA (SOCP) 22.321 0.0539 22.321 100 0.15
GENCONT

2045 0.0628

421.005 0.0632 392.893 100 105.40
OPSEL 419.600 0.0613 419.600 100 6.85
CPLEX 420.748 0.0619 420.748 100 0.41
SA (SOCP) 421.113 0.0627 421.113 100 0.25
GENCONT

5050 0.0995

40.692 0.0997 40.692 100 1940.43
OPSEL 40.468 0.0994 40.468 100 50.46
CPLEX Cannot obtain a sensible solution in 3 hours > 10800
SA (SOCP) 40.629 0.0995 40.629 100 0.71
GENCONT

10100 0.0610

Out of memory
OPSEL 44.467 0.0696 44.467 100 > 10800
CPLEX Cannot obtain a sensible solution in 3 hours > 10800
SA (SOCP) 44.522 0.0610 44.522 100 3.12
GENCONT

15222 0.0300

Out of memory
OPSEL 441.770 0.0300 441.770 100 > 10800
CPLEX 440.996 0.0290 440.99640 100 7.45
SA (SOCP) 441.438 0.0300 441.438 100 4.72
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those of GENCONT, OPSEL, and CPLEX. Since the cost vector g in the objective function is
usually generated from a statistical procedure, the discrepancy in the objective values make a little
difference for practical use. However, GENCONT sometimes failed to satisfy the constraints; the
quadratic constraint xTAx ≤ 2θ was violated in the Z = 200 or Z = 5050 cases, and the number
of the chosen genotypes did not match the input N . Therefore, the quality of SA (SOCP) was
superior to that of GENCONT.

From the viewpoint of the computation time, of SA (SOCP) is much faster than GENCONT.
In particular, for the case Z = 5050, SA (SOCP) used less than one seconds, while GENCONT
required 1700 seconds. The computation times of the branch-and-bound framework were un-
predictable. In N = 50, OPSEL and CPLEX required longer computation for a small problem
Z = 200 than for a large problem Z = 2045. It is very difficult to estimate the computation time
required by OPSEL and CPLEX in advance due to a nature of the branch-and-bound framework.
In contrast, SA (SOCP) consumed longer computation time for larger problems and this property
is favorable for practical use.

6 Conclusion and Future Directions

In this paper, we introduced the conic relaxation approach based on LP, SOCP, and SDP for the
special-case ED selection problem that is commonly encountered in tree breeding. We discussed the
strength of the three conic relaxation problems, and gave the theoretical bounds of the randomized
algorithm that uses the SDP relaxation problem. The fact that the theoretical bounds are not
so sharp motivated us to implement the steep-ascent method so that we can acquire a suitable
solution for practical usage. From the numerical results, we found that the steep-ascent method
with the SOCP relaxation was the most effective among the three conic relaxation approaches,
and that this outperformed the existing methods, in particular, from the viewpoint of computation
time.

One of further directions is to find a better theoretical bounds for the conic relaxation problems.
In the discussions of this paper, we mainly relied on the positive semidefiniteness of and non-
negativity of the Wright numerator matrix A. Since the specific values of the elements in this
matrix strongly relate to the pedigree of the candidate pool, there is a possibility that we exploit
such structures to tighten the theoretical bounds discussed in Lemma 3.2. However, we also need to
reduce the computation time of the SDP relaxation problem to make the SDP approach effective.

Another research direction is to minimize inbreeding depression [18]. The objective function
there is of form (1 − (ID)xTAx)gTx, where ID is a constant that represents a regression slope.
Since the function is a cubic function with respect to the contribution x, this function is not even
a convex function. From the numerical results in this paper, we expect that a similar method to
the steep-ascent method may perform well for solving such a problem. The minimization of the
inbreeding depression will be an interesting problem to researchers in the optimization field.
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