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Abstract. Various conic relaxations of quadratic optimization problems in nonnega-
tive variables for combinatorial optimization problems, such as the binary integer quadratic
problem, quadratic assignment problem (QAP), and maximum stable set problem have
been proposed over the years. The binary and complementarity conditions of the combi-
natorial optimization problems can be expressed in several ways, each of which results in
different conic relaxations. For the completely positive, doubly nonnegative and semidefi-
nite relaxations of the combinatorial optimization problems, we prove the equivalences and
differences among the relaxations by investigating the feasible regions obtained from dif-
ferent representations of the combinatorial condition, a generalization of the binary and
complementarity condition. We also study theoretically the issue of the primal and dual
nondegeneracy, the existence of an interior solution and the size of the relaxations, as a
result of different representations of the combinatorial condition. These characteristics of
the conic relaxations affect the numerical efficiency and stability of the solver used to solve
them. We illustrate the theoretical results with numerical results on QAP instances solved
by SDPT3, SDPNAL+ and the bisection and projection method.
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1 Introduction

We consider a general nonconvex quadratic optimization problem (abbreviated as QOP)
with quadratic equality and/or inequality constraints. As the quadratic equalities can model
the binary and complementarity conditions, QOPs have been studied for formulating various
combinatorial optimization problems. More precisely, the binary condition xi ∈ {a, b} can
be represented as a quadratic equality (xi−a)(b−xi) = 0 and the complementarity condition,
which requires one of two variables xi and xj to be zero, can be written as xixj = 0. As
a result, various combinatorial optimization problems arising from important applications,
such as the binary integer quadratic problem (BIQP), maximum stable set problem, max-cut
problem, and quadratic assignment problem (QAP) have been dealt with in the framework
of QOPs.

The optimal value of the nonconvex QOP in general cannot be exactly found efficiently
by a computational method. Instead, it is approximated by a lower bound obtained from a
conic relaxation of the problem. A conic relaxation problem is a (linear) conic optimization
problem (COP) that minimizes a linear function in a symmetric matrix variable subject
to linear equalities and inequalities and a cone constraint. When the cone consists of the
positive semidefinite matrices, the doubly nonnegative matrices or the completely positive
matrices, the COP is called a semidefinite programming (SDP) problem, a doubly nonneg-
ative programming (DNN) problem or a completely positive programming (CPP) problem,
respectively.

Two fundamental approaches have been known for constructing a conic relaxation prob-
lem from a given QOP. Shor [25] derived an SDP relaxation problem from the Lagrangian
dual of a QOP. The other primal-based approach is called the lifting (procedure). Based
on these two approaches, Poljak, Rendl and Wolkowicz [19] presented a general method for
constructing an SDP relaxation problem from a given QOP. The lifting and the Lagrangian
dual may be regarded as the most fundamental principles in the conic relaxation.

Recent developments on CPP reformulations of QOPs, which have shown to attain the
exact optimal values of QOPs under rather mild assumptions, have given rise to extensive
studies of CPP reformulations of combinatorial problems. In particular, QOPs over the
standard simplex [7, 8], maximum stable set problems [10], graph partitioning problems [21],
and quadratic assignment problems [22] are equivalently expressed as CPPs. Burer’s CPP
reformulations [9] of a class of linearly constrained QOP in continuous and binary variables
generalizes the problems considered in [7, 8, 10, 21, 22]. However, these CPP reformulations
of QOPs are mainly of theoretical interest as CPPs are known to be numerically intractable
[18].

Numerically tractable DNN relaxations are preferred over SDP relaxations as the former
can generally provide a much higher lower bound. But the computational burden of solving
a DNN problem increases very rapidly with the matrix size. Numerical methods to mitigate
this difficulty have been proposed, for instance, the bisection and projection method [6, 15,
16] and SDPNAL+ [27]. They both reported numerical results on large-scale DNN problems
that could not be solved by primal-dual interior-point methods.

While many conic relaxations have been proposed for various QOP instances over the
years, their equivalences and differences are not clearly understood for most of the conic
relaxations. In theory, two conic relaxations are determined to be equivalent if they have
a common optimal value. This theoretical equivalence, however, never guarantees their
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computational equivalence. That is, when they are solved by a numerical method, one conic
relaxation problem may provide a better approximate optimal value in less execution time
than the other. This difference is often caused by the difference in the size of the problem,
the existence of primal/dual interior feasible solutions and the primal/dual nondegeneracy.
Thus two conic relaxations can be equivalent in some aspects but different in some others.

The purpose of this paper is, first, to present a theoretical basis that reveals the underly-
ing connections of various conic relaxations of QOPs arising from combinatorial optimization
problems, in particular, their equivalences and differences with respect to the optimal value,
the sizes of the conic relaxation problems, the existence of primal/dual interior feasible solu-
tions, and the primal/dual nondegeneracy. Second, to further investigate the simplification
technique by Burer [9] for reducing the size of matrix variable for numerical efficiency. We
show that the technique has the potential to reduce possible primal/dual degeneracy.

We briefly explain how various conic relaxations can be generated in a systematic manner
from a QOP with a combinatorial condition. Our QOP model is

ζ∗ = min
{
f0(x) : x ∈ Rn

+, fj(x) = 0 (1 ≤ j ≤ ℓ)
}
, (1)

where Rn denotes the n-dimensional Euclidean space, fj : Rn → R are defined as fj(x) =
xTQjx + 2cTj x − dj, Qj is a symmetric matrix, cj ∈ Rn, dj ∈ R (0 ≤ j ≤ ℓ). As a
combinatorial condition, we consider:

(G) Exactly one of xj (j ∈ Jp) is 1 and all others are 0 (1 ≤ p ≤ m),

where each Jp (1 ≤ p ≤ m) is a nonempty subset of {1, . . . , n}. Condition (G) can be
represented as quadratic equalities, thus, (G) can be embedded as the equalities fj(x) =
0 (j = 1, . . . , ℓ) of QOP (1). It is important to note that the representation is not unique.

Condition (G) is an extension of the 0-1 condition x ∈ {0, 1} with a slack variable:
x + u = 1 and x, u ∈ {0, 1}, which can be written as (x + u − 1)2 = 0, x(1 − x) = 0
and u(1− u) = 0. This is the well-known quadratic equality representation of 0-1 variable.
Alternatively, the first equality can be replaced by the two equalities (x + u)2 = 1 and
x + u = 1, and the last two by the complementarity condition x, u ≥ 0 and xu = 0.
Consequently, at least four different combinations of quadratic equality constraints can be
obtained in this simple example. The number of quadratic equality representations increases
in general cases. Thus, we consider (G) separately from the equalities as

ζ∗(G) = min
{
f0(x) : x ∈ Rn

+, fj(x) = 0 (1 ≤ j ≤ ℓ0), (G)
}
, (2)

where 0 ≤ ℓ0 ≤ ℓ and fj(x) = 0 (1 ≤ j ≤ ℓ0) are regarded as given (non-combinatorial)
quadratic equality constraints.

For constructing a conic relaxation of QOP (2), we apply the following two procedures
to (2):

(I) Replace Condition (G) with an equivalent set of quadratic equalities fj(x) = 0 (ℓ0+1 ≤
ℓ0 + ℓ1) for some ℓ1 to obtain a QOP of the form (1) with ℓ = ℓ0 + ℓ1.

(II) Apply the standard lifting to QOP (1) with a closed convex cone, chosen among the
SDP, DNN and CPP cones.
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As a result of Procedure (II) applied to QOP (1), we obtain a COP, which depends on
the choices of quadratic equalities to represent Condition (G) in (I) and the closed convex
cone in (II). Although some of the COPs with a common closed convex cone, say the DNN
cone, have an equivalent optimal value, they may be different in other issues related to the
numerical efficiency and stability.

This paper is organized as follows: In Section 2, we explain the lifting in Procedure (II)
for QOP (1), and describe the simplification technique to reduce the size of the matrix vari-
able based on Burer’s idea [9]. The main results of this paper are dealt with in Sections 3, 4
and 5. Specifically, Section 3 is devoted to Procedure (I) in detail. We also show fundamen-
tal relations among the liftings of quadratic equality constraints for representing Condition
(G), and how Burer’s simplification technique [9] can be applied to the lifted constraints.
In Section 4, we investigate the differences in the issues related to the numerical efficiency
and stability among the conic relaxation problems of QOP (2) generated in Section 3. Sec-
tion 5 discusses the effectiveness of Burer’s simplification to resolve the primal and dual
degeneracy in the conic relaxation. In Section 6, our main theoretical results in Section 3
are applied to two classes of QOP instances, the BIQP and the QAP. Relations among the
existing conic relaxations of these instances and the newly presented conic relaxations in
Section 3 are shown. In Section 7, numerical results on QAP instances are presented to
partially illustrate the theoretical results in Sections 3, 4 and 5.

2 Preliminaries

2.1 Notation and symbols

Let Rn denote the n-dimensional Euclidean space. We assume that each x ∈ Rn is a column
vector of element xi (1 ≤ i ≤ n), and xT denotes the transpose of x ∈ Rn. Let Rn

+ denote
the nonnegative orthant {x ∈ Rn : x ≥ 0} of Rn. Let Sm denote the linear space of m×m
real symmetric matrices. We introduce cones of matrices in Sm as follows:

Sm
+ =

{
A ∈ Sm : zTAz ≥ 0 for all z ∈ Rm

}
= the conic hull of

{
zzT : z ∈ Rm

}
(the positive semidefinite (SDP) cone),

Γm =
{
zzT : z ∈ Rm

+

}
,

Cm
PP =

{
B ∈ Sm :

B =
∑r

i=1 ziz
T
i , zi ∈ Rm

+ (1 ≤ i ≤ r)
for some positive integer r

}
= the conic hull of Γm (the completely positive (CPP) cone),

Nm = {A ∈ Sm : Aij ≥ 0 (1 ≤ i ≤ m, 1 ≤ j ≤ m)}
(the cone of nonnegative matrices),

Dm
NN = Sm

+ ∩ Nm (the doubly nonnegative (DNN) cone).

Note that Γm is a closed nonconvex cone in Sm if m ≥ 2 and that all others are closed
convex cones in Sm.

Given matrices A,B ∈ Sm, A•B stands for the inner product
∑m

i=1

∑m
j=1 AijBij. Given

Q ∈ Sm, we often write the quadratic form xTQx in a vector variable x ∈ Rm as Q •xxT ,
which is relaxed into a linear form Q • Y in the matrix variable Y ∈ Sm

+ by replacing
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xxT ∈ Sm
+ with Y ∈ Sm

+ . The notation diag(Y ) means the m-dimensional column vector
consisting of the diagonal elements Yii (1 ≤ i ≤ m) of Y ∈ Sm. With this notation, the 0-1
condition xi ∈ {0, 1} (1 ≤ i ≤ m) for x ∈ Rm can be written as x = diag(xxT ).

2.2 A general QOP and its conic relaxations

To derive various conic relaxations of QOP (1) in a systematic manner, we first introduce
constant and variable matrices. Let

H0 = the (1 + n)× (1 + n) matrix with 1 at the upper-left corner and 0 elsewhere,

Fj =

(
−dj cTj
cj Qj

)
∈ S1+n (0 ≤ j ≤ ℓ), Z =

(
x0 xT

x Y

)
∈ S1+n.

Each quadratic function fj is written as fj(x) = Fj •
(

1 xT

x xxT

)
, and the function fj in

x ∈ Rn is lifted to a linear function f̄j in Z ∈ S1+n as follows: f̄j(Z) = Fj •Z with H0•Z =
x0 = 1. If we compare fj(x) with f̄j(Z), we see that xxT is replaced by Y ∈ Sn.

We now introduce a general conic optimization problem (COP), denoted by P(K1+n, L):

ζp(K1+n, L) = min
Z

{
F0 •Z : Z ∈ K1+n, H0 •Z = 1, Z ∈ L

}
.

Here K1+n ⊆ S1+n is a closed (not necessarily convex) cone and L a linear subspace of S1+n.
Notice that three types of constraints exist in P(K1+n, L): a cone constraint Z ∈ K1+n, a
single inhomogeneous linear equality H0 • Z = 1, and a linear space constraint Z ∈ L. In
the subsequent discussion, we frequently represent a QOP and its conic relaxations in terms
of P(K1+n, L) with some closed cone K1+n ⊃ Γ1+n and some linear subspace L. The linear
space L is usually described as a finite number of linear equalities.

We take L = {Z ∈ S1+n : Fj • Z = 0 (1 ≤ j ≤ ℓ)}. Since Z ∈ Γ1+n and H0 • Z = 1
if and only if x ∈ Rn

+ and Y = xxT , P(Γ1+n, L) coincides with QOP (1). By letting
K1+n = S1+n

+ , D1+n
NN and C1+n

PP , we get the SDP, DNN, and CPP relaxations of QOP (1),
respectively. Since S1+n

+ ⊃ D1+n
NN ⊃ C1+n

PP (the conic hull of Γ1+n) ⊃ Γ1+n, it follows that
ζp(S1+n

+ , L) ≤ ζp(D1+n
NN , L) ≤ ζp(C1+n

PP , L) ≤ ζp(Γ
1+n, L) = ζ∗. It is known that some

CPP relaxations attain the exact optimal value, i.e., ζp(C1+n
PP , L) = ζ∗, for certain classes of

QOPs [3, 5, 9, 10, 20, 22]. Among such QOPs, we are particularly interested in BIQPs and
QAPs, which are considered in Section 6.1 and Section 6.2, respectively.

2.3 Eliminating x from the conic relaxation problem P(K1+n, L)

Burer [9] presented a simplification technique to eliminate the variable x of a QOP in
binary and nonnegative variables from its CPP reformulation under the assumption of the
existence of a special valid constraint, i.e., an equality hTx = 1 with h ≥ 0 satisfied by
every feasible solution of the QOP. The same technique can be applied to P(K1+n, L) with
K1+n ∈ {S1+n

+ ,D1+n
NN ,C1+n

PP }. Suppose that h ≥ 0 and that hTx = 1 is valid for every
feasible solution x of QOP (1). Then the equalities x = xxTh and hTxxTh = 1 are valid
constraints for QOP (1). As a result, their lifted equalities x = Y h and hTY h = 1 can be
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added to the constraints of P(K1+n, L) or L can be replaced with L ∩ LS, where

LS =

{
Z =

(
x0 xT

x Y

)
: hTY h = x0, x = Y h

}
. (3)

Let Kk denote Sk
+, Dk

NN, or Ck
PP (k ∈ {n, 1+n}). For simplicity of notation, we introduce

linear maps Φ : Sn → S1+n, Ψ : S1+n → Sn and Π : S1+n → Sn such that

Φ(Y ) =

(
hT

I

)
Y
(
h I

)
=

(
hTY h hTY
Y h Y

)
∈ S1+n for every Y ∈ Sn,

Ψ(Z) =
(
h I

)
Z

(
hT

I

)
∈ Sn for every Z ∈ S1+n,

Π(Z) = Y ∈ Sn for every Z =

(
x0 xT

x Y

)
∈ S1+n,

where I is the n × n identity matrix. Then LS can be rewritten as LS = Φ(Sn). Some
properties of these mappings are listed as follows:

A •Φ(B) = Ψ(A) •B for every A ∈ S1+n and B ∈ Sn,

Φ−1 (Z) = Π(Z) = Y for every Z =

(
x0 xT

x Y

)
∈ Φ(Sn), (4)

Ψ(Z) = Π(Z) = Y for every Z =

(
0 0T

0 Y

)
∈ S1+n, (5)

Φ (Kn) ⊂ K1+n, Ψ
(
K1+n

)
= Kn and Π

(
K1+n

)
= Kn. (6)

The first three identities are straightforward. For the last property, recallKk ∈ {Ck
PP,Dk

NN,Sk
+}

(k ∈ {n, 1 + n}). The identity (4) means that Π is an extension of Φ−1 : Φ(Sn) → Sn to
the entire space S1+n.

Under the assumption that K1+n ∩ L ⊂ LS, we show that P(K1+n, L) is equivalent to a
simplified COP, denoted as P′(Kn, L′):

ζ ′p(Kn, L′) = min
Y

{
F ′

0 • Y : Y ∈ Kn, hhT • Y = 1, Y ∈ L′ } ,
where L′ = Φ−1(L) = {Y ∈ Sn : Φ(Y ) ∈ L} and F ′

0 = Ψ(F0). Throughout the paper, we
use the prime symbol ′ for functions, linear subspaces of Sn, feasible regions of COPs, ma-
trices in Sn, and the conditions induced from the original ones in S1+n by the simplification.

Lemma 2.1. Assume that K1+n ∩ L ⊂ LS.

(i) Suppose that Z =

(
x0 xT

x Y

)
is a feasible solution of P(K1+n, L). Then, Y = Π(Z)

is a feasible of P′(Kn, L′) and F ′
0 • Y = F0 •Z.

(ii) Suppose that Y is a feasible solution of P ′(Kn, L′). Then Z = Φ(Y ) is a feasible
solution of P(K1+n, L) and F0 •Z = F ′

0 • Y .
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Proof. (i) By the assumption, we know that 1 = H0 •Z = x0 = hTY h = hhT • Y and

K1+n ∩ L ∋ Z =

(
x0 xT

x Y

)
=

(
hTY h (Y h)T

Y h Y

)
= Φ(Y ).

By (6) and the definition of L′, Y is a feasible solution of P′(Kn, L′). By the definition of
F ′

0, we also see that F0 •Z = F0 •Φ(Y ) = Ψ(F0) • Y = F ′
0 • Y .

(ii) By (6), Z = Φ(Y ) ∈ K1+n. By Y ∈ L′ and the definition of L′, we see that Z ∈ L.
Furthermore, 1 = hhT • Y = Ψ(H0) • Y = H0 • Φ(Y ) = H0 • Z holds. Hence Z is a
feasible solution of P(K1+n, L). Similarly, the equality F0 •Z = F ′

0 •Y follows as in (i).

When L is represented in homogeneous linear equations Fj •Z = 0 (1 ≤ j ≤ ℓ) as in the
previous section, L′ = {Y ∈ Sn : F ′

j • Y = 0 (1 ≤ j ≤ ℓ)}, where F ′
j = Ψ(Fj) (1 ≤ j ≤ ℓ).

3 Lifted constraints of equivalent quadratic constraints

In this section, we discuss Procedure (I) in detail to derive QOP (1) from QOP (2) by rep-
resenting Condition (G) in QOP (2) with a set of quadratic equalities. Many combinatorial
optimization problems, such as BIQPs, QAPs, and maximum stable set problems, include
the condition (G) as constraints. Notice that the equality

∑
i∈Jp xi = 1 holds if the condition

is satisfied. In particular, when Jp consists of two distinct i and j, xj serves a slack variable
to xi and vice versa. This special case will be further studied in Section 6.1. A more general
case where Jp includes more than two elements is applied to QAPs in Section 6.2.

Let eJp ∈ Rn be a 0-1 vector whose ith element is 1 if i ∈ Jp and 0 otherwise. Define

EJp = eJpe
T
Jp and E+

Jp
=

(
1 −eT

Jp

−eJp EJp

)
(1 ≤ p ≤ m).

Condition (G) can be interpreted as two different set of constraints. First, linear equalities
and 0-1 conditions:

eT
Jpx− 1 = 0 and x2

j − xj = 0 (j ∈ Jp) (1 ≤ p ≤ m). (7)

Second, linear equalities and complementarity conditions:

eT
Jpx− 1 = 0 and xixj = 0 (i, j ∈ Jp, i ̸= j) (1 ≤ p ≤ m). (8)

Moreover, several reformulations of the linear equality constraint eT
Jp
x − 1 = 0 as

quadratic equalities can be induced. This motivates us to examine the differences and
equivalences among them. In Section 3.1, we first state three equivalent reformulations of
the linear constraints in quadratic equalities, and show the equivalence between their lifted
constraints. Then the differences of the lifted constraints of the 0-1 and complementar-
ity conditions are discussed in Section 3.2. In Section 3.3, we describe a general COP. In
Section 3.4, we apply Lemma 2.1 to the lifted constraints and reduce their sizes.
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3.1 Linear constraint

We present three different representations of linear constraints in quadratic equalities and
their lifted equalities. First, eT

Jp
x−1 = 0 is simply squared to obtain the quadratic equality

(eT
Jp
x − 1)2 = 0, which can be written as E+

Jp
•
(
x0 xT

x xxT

)
= 0 and x0 = H0 • Z = 1.

Thus, its lifted constraint is as follows:

(E1) Z ∈ LE1 ≡
{
Z ∈ S1+n : E+

Jp
•Z = 0 (1 ≤ p ≤ m)

}
and H0 •Z = 1.

In [3], a CPP reformulation of a class of QOPs using (E1) is proposed by Arima, Kim, and
Kojima; See also [5].

Second, consider a pair of the linear constraint eT
Jp
x = 1 and the redundant quadratic

constraint x = xxTeJp , which are lifted to the following constraints:

(E2) Z ∈ LE2 ≡
{
Z ∈ S1+n : eT

Jp
x = x0 and x = Y eJp (1 ≤ p ≤ m)

}
and H0 •Z = 1.

Condition (E2) was used in [23] for SDP and DNN relaxations of QAPs (denoted by QAPR0 ,
QAPR2 and QAPR3). These relaxations are presented in detail in Section 6.2.1.

Finally, by lifting the linear constraint eT
Jp
x = 1 and the redundant quadratic constraint

(eT
Jp
x)2 = 1, we obtain the following condition:

(E3) Z ∈ LE3 ≡
{
Z ∈ S1+n : eT

Jp
x = x0 and eT

Jp
Y eJp = x0 (1 ≤ p ≤ m)

}
and H0•Z = 1.

As we know that x0 = H0 • Z = 1 in Conditions (E1), (E2) and (E3), the equality

H0 • Z = 1 could be eliminated by replacing Z with Z =

(
1 xT

x Y

)
and x0 with 1. This

elimination, however, would render LE1, LE2 and LE3 to be affine spaces instead of linear
subspaces. For convenience, the equality and linear subspaces will remain as they are.

The following lemma shows that (E1), (E2), and (E3) are equivalent under the semi-

definite constraints Z =

(
x0 xT

x Y

)
∈ S1+n

+ , but the equivalence does not hold in general.

Lemma 3.1.

(i) LE2 ⊂ LE3 ⊂ LE1.

(ii) LE2 ∩ S1+n
+ = LE3 ∩ S1+n

+ = LE1 ∩ S1+n
+ .

Proof. (i) Let Z ∈ LE2. Then eT
Jp
x = x0 and x = Y eJp (1 ≤ p ≤ m). By multiplying eT

Jp

to x = Y eJp (1 ≤ p ≤ m), we obtain eT
Jp
Y eJp = x0 (1 ≤ p ≤ m). Thus, Z ∈ LE3. To show

LE3 ⊂ LE1, we rewrite the two equalities (with each p) characterizing LE3 as(
2 −eT

Jp

−eJp O

)
•
(
x0 xT

x Y

)
= 0 and

(
−1 0T

0 eJpe
T
Jp

)
•
(
x0 xT

x Y

)
= 0,

respectively. Then, we obtainEJP •Z = 0 by adding these equalities. As a result, LE3 ⊂ LE1.
(ii) In view of (i), it suffices to show that LE1 ∩ S1+n

+ ⊂ LE2 ∩ S1+n
+ . The equality (for

each p) characterizing LE1 is equivalent to
(
1 −eT

Jp

)(x0 xT

x Y

)(
1

−eJp

)
= 0, which implies(

x0 xT

x Y

)(
1

−eJp

)
= 0 if

(
x0 xT

x Y

)
∈ S1+n

+ .
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Remark 3.1. The discussions in this section are valid for the lifting of any system of linear
equalities bp − aT

px = 0 (1 ≤ p ≤ m) with a slight modification, where bp ∈ R and ap ∈ Rn

(1 ≤ p ≤ m). In this general case, Conditions (E1), (E2) and (E3) turn out to be

(Ē1) Z ∈ L̄E1 ≡
{
Z ∈ S1+n :

(
b2p −bpa

T
p

−apbp apap

)
•Z = 0 (1 ≤ p ≤ m)

}
and H0 •Z = 1.

(Ē2) Z ∈ L̄E2 ≡
{
Z ∈ S1+n : aT

px = bpx0, bpx = Y ap (1 ≤ p ≤ m)
}
and H0 •Z = 1.

(Ē3) Z ∈ L̄E3 ≡
{
Z ∈ S1+n : aT

px = bpx0, b2px0 = aT
pY ap (1 ≤ p ≤ m)

}
and H0 •Z = 1.

Lemma 3.1 remains valid with this modification. Burer [9] employed Condition (Ē3) to
derive a CPP reformulation of a class of linearly constrained QOPs in binary and continuous
variables.

3.2 Representing a combinatorial constraint with 0-1 or comple-
mentarity condition

Condition (G) has been expressed by using linear and 0-1 constraints as in (7). Alternatively,
it has been expressed by using the linear and complementarity constraints as in (8). We
now focus on the liftings of the 0-1 and the complementarity constraints to S1+n, which are
stated as Conditions (Z) and (C) respectively as follows:

(Z) Z ∈ LZ ≡ {Z ∈ S1+n : xj = Yjj (j ∈ Jp, 1 ≤ p ≤ m)}.

(C) Z ∈ LC ≡ {Z ∈ S1+n : Yij = 0 (i, j ∈ Jp, i ̸= j, 1 ≤ p ≤ m)}.

The following lemma shows the relation of (Z) and (C).

Lemma 3.2.

(i) LC ∩ LE2 ⊂ LZ ∩ LE2.

(ii) LC ∩ LE2 ∩ N1+n = LZ ∩ LE2 ∩ N1+n.

(iii) If Jp consists of two elements i and j, then the three conditions xi = Yii, xj = Yjj

and Yij = 0 are equivalent (i, j ∈ Jp, i ̸= j). Hence LC ∩LE2 = LZ ∩LE2 in this case.

(iv) LC ∩ LE1 ∩ D1+n
NN = LC ∩ LE2 ∩ D1+n

NN = LC ∩ LE3 ∩ D1+n
NN = LZ ∩ LE1 ∩ D1+n

NN =
LZ ∩ LE2 ∩ D1+n

NN = LZ ∩ LE3 ∩ D1+n
NN .

(v) If Jp consists of two elements i and j, then LC ∩ LE1 ∩ S1+n
+ = LC ∩ LE2 ∩ S1+n

+ =
LC ∩ LE3 ∩ S1+n

+ = LZ ∩ LE1 ∩ S1+n
+ = LZ ∩ LE2 ∩ S1+n

+ = LZ ∩ LE3 ∩ S1+n
+ .

Proof. To prove assertion (i), (ii) and (iii), assume thatZ ∈ LE2. Then, Yjj+
∑

k∈Jp\{j} Yjk =

xj (j ∈ Jp, 1 ≤ p ≤ m). If, in addition, Z ∈ LC, then
∑

k∈Jp\{j} Yjk = 0 (j ∈ Jp, 1 ≤ p ≤ m).

Thus, (i) follows. Now if Z ∈ N1+n, then Z ∈ LC iff
∑

k∈Jp\{j} Yjk = 0 (j ∈ Jp, 1 ≤ p ≤ m).

Hence (ii) holds. Next, if Jp consists of two elements i and j, then we have the identities
Yii + Yij = xi and Yjj + Yji = xj (i, j ∈ Jp, i ̸= j, 1 ≤ p ≤ m). Since Yij = Yji

(1 ≤ i < j ≤ n), (iii) follows. Assertion (iv) follows from (ii) and Lemma 3.1, and (v) from
(iii) and Lemma 3.1.
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3.3 Representation of COP

The linear subspace L in P(K1+n, L) is expressed as L0∩La∩Lb using each La ∈ {LE1, LE2, LE3},
each Lb ∈ {LC, LZ} and the set constructed by the remaining homogeneous linear equalities:

L0 =
{
Z ∈ S1+n : Fj •Z = 0 (1 ≤ j ≤ ℓ0)

}
.

P(K1+n, L0 ∩ La ∩ Lb) is rewritten as

ζp(K1+n, L0 ∩ La ∩ Lb) = min
{
F0 •Z : Z ∈ Feas(K1+n, La, Lb)

}
,

where Feas(K1+n, La, Lb) =
{
Z ∈ K1+n : H0 •Z = 1, Z ∈ L0 ∩ La ∩ Lb

}
. Since Z ∈

Γ1+n and H0 • Z = 1 iff x ∈ Rn
+ and Y = xxT , for any La ∈ {LE1, LE2, LE3}, Z ∈

La ∩ LZ ∩ Γ1+n iff (7) holds, and Z ∈ La ∩ LC ∩ Γ1+n iff (8) holds. Therefore, for any
La ∈ {LE1, LE2, LE3} and any Lb ∈ {LC, LZ}, P(Γ1+n, L0∩La∩Lb) is equivalent to QOP (2).
By letting K1+n = S1+n

+ , D1+n
NN and C1+n

PP , SDP, DNN and CPP relaxations of QOP (2) are ob-
tained, respectively. The following theorem, obtained as a corollary of Lemmas 3.1 and 3.2,
shows their relations.

Theorem 3.1. For any La ∈ {LE1, LE2, LE3}, we have

Feas(S1+n
+ , La, LZ) ⊃ Feas(S1+n

+ , La, LC)

⊃ Feas(D1+n
NN , La, LZ) = Feas(D1+n

NN , La, LC)

⊃ Feas(C1+n
PP , La, LZ) = Feas(C1+n

PP , La, LC).

Moreover, if |Jp| = 2 (1 ≤ p ≤ m), then Feas(S1+n
+ , La, LZ) = Feas(S1+n

+ , La, LC).

3.4 Eliminating x from P(K1+n, L0 ∩ La ∩ Lb)

The elimination is based on [9]. We assume that K1+n ∈
{
S1+n
+ ,D1+n

NN ,C1+n
PP

}
throughout

this section. Let h be an arbitrary convex combination of eJp (1 ≤ p ≤ m), i.e., h =∑m
p=1 λpeJp , 1 =

∑m
p=1 λp and λi ≥ 0 (1 ≤ p ≤ m). Then, x = xxTh and hTxxTh = 1 are

valid constraints for QOP (2), and its lifted equalities x = Y h and hTY h = 1 can be added
to the constraints of P(K1+n, L0∩La∩Lb) for each La ∈ {LE1, LE2, LE3} and Lb ∈ {LC, LZ}.
Define LS by (3). The following lemma shows that adding the lifted equalities is redundant.

Lemma 3.3.

(i) LE2 ⊂ LS.

(ii) LS ∩ La ∩ S1+n
+ = La ∩ S1+n

+ for any La ∈ {LE1, LE2, LE3}.

Proof. Let Z ∈ LE2. Then, hTx =
(∑m

p=1 λpeJp

)T
x =

∑m
p=1 λpe

T
Jp
x = x0 and x =∑m

p=1 λpx =
∑m

p=1 λpY eJp = Y h. As a result, hTY h = hTx = x0. Thus we have shown
Assertion (i). Assertion (ii) follows from (i) and (ii) of Lemma 3.1.
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By Lemma 3.3, the simplification technique described in Section 2.3 can be applied
to P(K1+n, L0 ∩ La ∩ Lb) without adding the lifted equalities x = Y h and hTY h = x0.
Note that each of (E1), (E2), (E3), (Z) and (C) consists of Z ∈ M and H0 • Z = 1 for
some linear subspace M of S1+n. By Lemma 2.1, the corresponding simplified condition is
obtained by replacing them with M ′ = Φ−1(M) = {Y ∈ Sn : Φ(Y ) ∈ M} and hhT •Y = 1.
If M is represented as M = {Z ∈ S1+n : Hp •Z = 0 (1 ≤ p ≤ k)} for some k and Hp ∈ Sn

(1 ≤ p ≤ k), then M ′ turns out to be {Y ∈ Sn : Ψ(Hp) • Y = 0 (1 ≤ p ≤ k)}. M ′ is also
obtained by substituting x = Y h and x0 = hTY h into the homogeneous linear equalities
in Z ∈ S1+n describing M . As a result, (E1), (E2), (E3), (Z) and (C) are simplified as
follows:

(E1)’ Y ∈ L′
E1 ≡

{
Y ∈ Kn : Ψ(E+

Jp
) • Y = 0 (1 ≤ p ≤ m)

}
and hhT • Y = 1 .

(E2)’ Y ∈ L′
E2 ≡

{
Y ∈ Kn :

hTY eJp = hTY h,
Y h = Y eJp (1 ≤ p ≤ m)

}
and hhT • Y = 1 .

(E3)’ Y ∈ L′
E3 ≡

{
Y ∈ Kn :

hTY eJp = hTY h,
eT
Jp
Y eJp = hTY h (1 ≤ p ≤ m)

}
and hhT • Y = 1 .

(Z)’ Y ∈ L′
Z ≡ {Y ∈ Kn : [Y h]j = Yjj (j ∈ Jp, 1 ≤ p ≤ m)}.

(C)’ Y ∈ L′
C ≡ {Y ∈ Kn : Yij = 0 (i, j ∈ Jp, i ̸= j, 1 ≤ p ≤ m)}.

Define

L′
0 = Φ−1(L0) =

{
Y ∈ Sn : F ′

j • Y = 0 (1 ≤ j ≤ ℓ0)
}
,

where F ′
j = Ψ(Fj) (1 ≤ j ≤ ℓ0). Then, for every L′

a ∈ {L′
E1, L

′
E2, L

′
E1} and every L′

b ∈
{L′

Z, L
′
C}, we obtain the following COP, denoted as P′(Kn, L′

0 ∩ L′
a ∩ L′

b), for the simplified
reformulation of P(K1+n, L0 ∩ La ∩ Lb):

ζ ′p(Kn, L′
0 ∩ L′

a ∩ L′
b) = min {F ′

0 • Y : Y ∈ Feas′(Kn, L′
a, L

′
b)} ,

where Feas′(Kn, L′
a, L

′
b) =

{
Y ∈ Kn : hhT • Y = 1, Y ∈ L′

0 ∩ L′
a ∩ L′

b

}
.

Lemma 3.1, Lemma 3.2 and Theorem 3.1 still remain valid when changing LE1 through
LC to L′

E1 through L′
C, P(K1+n, L0 ∩ La ∩ Lb) to P′(Kn, L′

0 ∩ L′
a ∩ L′

b), and Feas and ζp to
Feas′ and ζ ′p. The key difference is that these changes reduce the cones of the dimension
1 + n to n. The details are omitted.

In the remainder of this section, we impose an additional restriction that h is the barycen-
ter of eJp (1 ≤ p ≤ m), i.e., h = 1

m

∑m
p=1 eJp , and further simplify (E3)’ to

(E3)” Y ∈ L′′
E3 ≡

{
Y ∈ Kn : eT

Jp
Y eJp = hTY h (1 ≤ p ≤ m)

}
and hhT • Y = 1 .

We need the following lemmas to show the equivalence between (E3)’ and (E3)”.

Lemma 3.4. [22, Lemma 2] Let A ∈ Sm
+ and

∑m
p=1

∑m
q=1 Apq =

(∑m
p=1

√
App

)2
. Then,

Apq =
√

AppAqq (1 ≤ p, q ≤ m).
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Lemma 3.5. Suppose that Y ∈ Sn
+ and eT

Jp
Y eJp = 1 (1 ≤ p ≤ m). Then, hTY h = 1 if

and only if eT
Jp
Y eJq = 1 (1 ≤ p, q ≤ m).

Proof. Since we know that

hTY h =
(

1
m

∑m
p=1eJp

)T
Y
(

1
m

∑m
q=1eJp

)
= 1

m2

∑m
p=1

∑m
q=1e

T
JpY eJq , (9)

the ‘if part’ follows. Assume that hTY h = 1 holds. Consider the m×m matrix

A =

 eT
J1
Y eJ1 . . . eT

J1
Y eJm

. . . . . . . . .
eT
Jm

Y eJ1 . . . eT
Jm

Y eJm

 =

 eT
J1
...

eT
Jm

Y
(
eJ1 . . . eJm

)
∈ Sm

+ .

By the assumption, App = eT
Jp
Y eJp = 1 (1 ≤ p ≤ m). Thus, we see from (9) that∑m

p=1

∑m
q=1Apq =

∑m
p=1

∑m
q=1 e

T
Jp
Y eJq = m2 =

(∑m
p=1

√
App

)2
. Therefore, by Lemma 3.4,

eT
Jp
Y eJq = Apq =

√
AppAqq = 1 (1 ≤ p, q ≤ m).

Theorem 3.2. Suppose that Y ∈ Sn
+. Then, (E3)’ and (E3)” are equivalent.

Proof. Since L′
E3 ⊂ L′′

E3, (E3)’ implies (E3)”. Now assume that (E3)” holds. By Lemma 3.5,
we see that eT

Jp
Y eJq = Apq = 1 (1 ≤ p, q ≤ m). Thus,

hTY eJp =
(

1
m

∑m
q=1eJq

)T
Y eJp =

1
m

∑m
q=1 e

T
JqY eJp = 1 (1 ≤ p ≤ m).

Therefore, (E3)’ holds.

4 Issues on computational efficiency and stability

DNN relaxations have been studied as an effective computational method for obtaining
good lower bounds for the QOP (2). They are considered as a good compromise between
the numerically intractable CPP relaxations and the less effective SDP relaxations. When
we consider DNN relaxations for computation, we realize that various DNN relaxations are
available. For instance, P(D1+n

NN , L0 ∩ La ∩ Lb) with each La ∈ {LE1, LE2, LE3} and each
Lb ∈ {LZ, LC} as well as P′(Dn

NN, L
′
0 ∩ L′

a ∩ L′
b) with each L′

a ∈ {L′
E1, L

′
E2, L

′
E3} and each

L′
b ∈ {L′

Z, L
′
C}, which are equivalent to each other from the theoretical point of view.

The size of conic relaxations, the existence of primal/dual interior feasible solutions and
the primal/dual nondegeneracy are three most important factors for efficient and stable
implementation of conic relaxations. The size of a conic relaxation means the dimension
of the variable matrix and the number of linear equality constraints. The size (1 + n) of
the variable matrix Z has been reduced to n by the simplification technique in Section 3.4.
In Section 4.1, we compare the numbers of linear equalities involved in LE1 through LC,
and discuss how to reduce the number of linear equalities in P(D1+n

NN , L0 ∩ LE1 ∩ LC). The
technique to reduce the number of linear equalities can also be applied to L′

E1 through L′
C.

The existence of interior feasible solutions in the conic relaxations of QOP (2) is crucial
to the successful computation of a primal-dual interior-point method and SDPNAL+, which
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were designed by assuming the existence of primal and dual interior feasible solutions. When
the assumption is not satisfied, they may give inaccurate approximate optimal solutions
and/or converge very slowly.

The primal and dual nondegeneracy, which plays an important role in the local con-
vergence analysis of primal-dual interior-point methods and SDPNAL+, is discussed in
Section 4.3.

4.1 The number of linear equalities

Consider the DNN relaxation P(D1+n
NN , L0 ∩ La ∩ Lb) with some La ∈ {LE1, LE2, LE3} and

some Lb ∈ {LZ, LC} for computing a lower bound for QOP (2). As LE1, LE2 and LE3

involve m, m +mn and 2m linear equalities, respectively, LE2 may not be the best choice
for computational efficiency. From the positive semidefiniteness of the coefficient matrix
E+

Jp
of each linear equality in LE1 (1 ≤ p ≤ m), we see that E+

Jp
•Z ≥ 0 for every Z ∈ S1+n

+ .
Thus, by defining

LE1sum ≡
{
Z ∈ S1+n :

(∑m
p=1E

+
Jp

)
•Z = 0

}
, (10)

we obtain LE1∩S1+n
+ = LE1sum∩S1+n

+ . We note that LE1sum contains only one linear equality.
This can be regarded as a clear advantage of Condition (E1).

Now, we compare Conditions (Z) and (C). As LZ involves
∑m

p=1 |Jp| linear equalities and
LC involves

∑m
p=1(|Jp| − 1)|Jp|/2 linear equalities (Yij = Yji (1 ≤ i, j ≤ n) for Y ∈ Sn), (Z)

may seem more efficient than (C). Since Yij ≥ 0 (1 ≤ i, j ≤ n) for every Z ∈ N1+n, however,
we see that LC ∩ N1+n = LCsum ∩ N1+n, where

LCsum =

Z ∈ S1+n :
m∑
p=1

∑
i∈Jp

∑
j∈Jp,j>i

Yij = 0

 .

As LCsum involves only one equality, it is more efficient to employ LCsum than LZ or LC for
the DNN relaxation.

We note that the constraints Z ∈ LZ ∩N1+n and Z ∈ LC ∩N1+n can be treated as cone
constraints. In fact, both LZ ∩N1+n and LC ∩N1+n form closed convex cones of S1+n. The
metric projection of Z ∈ S1+n onto LZ∩N1+n was presented for the bisection and projection
algorithm in [15]. Computing the metric projection of Z ∈ S1+n onto LC∩N1+n is trivial as
the elements Yij are replaced by 0 if i ∈ Jp, j ∈ Jp, i ̸= j and 1 ≤ p ≤ m, and max{0, Yij}
otherwise. Both computation have been used for the bisection and projection algorithm
[16], and they can also be incorporated in SDPNAL+ [27].

4.2 The existence of interior feasible solutions of COP and its
dual

Let K1+n be a closed convex cone. The dual of P(K1+n, L) is written as D(K1+n, L):

ζd(K1+n, L) = max
{
y0 : F0 −H0y0 −W = S ∈ (K1+n)∗, W ∈ L⊥} .

Suppose that two distinct linear subspaces L = L1 and L = L2 ⊂ L1 provide an
equivalent feasible region for P(K1+n, L). Obviously, Z is an interior feasible solution of

13



P(K1+n, L1) iff it is an interior feasible solution of P(K1+n, L2). However, this is not true in
their dual problems D(K1+n, L1) and D(K1+n, L2), since the feasible region of D(K1+n, L1)
can be a proper subset of the feasible region of D(K1+n, L2). Consequently, D(K1+n, L1)
may not have an interior feasible solution even when D(K1+n, L2) has one. As the dimension
of the subspace L becomes smaller, the possibility of the existence of a dual interior-feasible
solution increases. From the relation LE2 ⊂ LE3 ⊂ LE1 and LE2 ∩ LC ⊂ LE2 ∩ LZ shown
in Lemmas 3.1, 3.2 and their proofs, the pair (LE2,LC) seems to be the best choice for the
numerical stability of computational methods that assumes the existence of interior feasible
solution of D(K1+n, L). The pair (LE1,LC) or the pair (LE1,LZ) seems to be the worst choice
for the numerical stability of such methods. Interestingly, the pair (LE1,LZ) has been the
best choice with respect to the number of linear equality constraints as discussed in the
previous section.

4.3 Nondegeneracy

The numerical stability and the local convergence of many numerical methods, for instance,
primal-dual interior-point methods and SDPNAL+ [27] for COPs, are affected by the primal
and dual nondegeneracy of the optimal solutions of the problem being solved. For SDPs, the
primal and dual nondegeneracy was studied in [1]. (See [17] for the local convergence of the
primal-dual interior point method under the nondegeneracy assumption.) The definition in
[1] can be extended to the primal-dual pair, P(K1+n, L) and D(K1+n, L), in a straightforward
manner.

Let J be a closed convex cone in Sk. For every U ∈ J, let FU (J) denote the minimal face
of J containing U , and TU (J) the subspace of Sk spanned by FU (J) (the tangent subspace
of J at U ∈ J). Let L̄ = {Z ∈ L : H0 •Z = 0} . Then a feasible (or optimal) solution Z
of P(K1+n, L) is called (primal) nondegenerate if S1+n = L̄ + TZ(K1+n), and a feasible (or
optimal) solution (y0,W ,S) of D(K1+n, L) (dual) nondegenerate if S1+n = L̄⊥+TS((K1+n)∗).
This definition may be regarded as a special case of the nondegeneracy for a feasible solution
of a general nonlinear optimization problem in [24].

For solving a DNN problem, P(D1+n
NN , L), a primal-dual interior-point method and SDP-

NAL+ would in fact solve the following SDP:

min
{
F0 •Z : (Z,U) ∈ S1+n

+ × N1+n, H0 •Z = 1, (Z,U) ∈ M
}
, (11)

which is equivalent P(D1+n
NN , L). Here M = {(Z,U) ∈ S1+n×S1+n : Z ∈ L, Z−U = O}. Z

is a feasible (or optimal) solution of P(D1+n
NN , L) iff (Z,Z) is a feasible (or optimal) solution

of SDP (11). The definition of the primal and dual nondegeneracy can be applied to SDP
(11). More precisely, a feasible solution (Z,Z) of SDP (11) is (primal) nondegenerate if
S1+n × S1+n = M̄ + TZ(S1+n

+ ) × TZ(N1+n), where M̄ = {(Z,U) ∈ M : H0 • Z = 0} =
{(Z,Z) : Z ∈ L,H0 •Z = 0}. It can be proved that if (Z,Z) is a nondegenerate feasible
solution of SDP (11) then Z is a nondegenerate feasible solution of P(D1+n

NN , L). The dual
problem of (11) can be shown to be given by:

max
{
y0 : (F0,O)− (H0,O)y0 − (V ,W ) = (S,T ) ∈ S1+n

+ × N1+n, (V ,W ) ∈ M⊥} (12)

= max
{
y0 : F0 −H0y0 − S − T ∈ L⊥, (S,T ) ∈ S1+n

+ × N1+n
}
,
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where we used the fact that M⊥ = {(V ,W ) ∈ S1+n × S1+n : V + W ∈ L⊥}. A feasible
solution (S,T ) is said to (dual) nondegenerate for the dual problem (12) if S1+n × S1+n =
M̄⊥ + TS(S1+n

+ )× TT (N1+n). It can be shown that the above condition is equivalent to

S1+n = L̄⊥ + TS(S1+n
+ ) + TT (N1+n). (13)

With larger (or smaller) L, the possibility of the primal nondegeneracy (or the dual non-
degeneracy) can be expected to increase by both definitions of nondegeneracy for P(K1+n, L)
and SDP (11).

5 Nondegeneracy of the simplified COP

It is suggested by Burer in [9] that the simplification technique can increase the possibility
of the existence of interior feasible solutions. His discussion can be applied to the simplified
COP, P′(Kn, L′), derived from P(K1+n, L). Recall that the simplification depends on a
nonzero h ∈ Rn

+ satisfying x = Y h and hTY h = 1 for every feasible solution Z =(
x0 xT

x Y

)
of P(K1+n, L0∩La∩Lb). For further simplification of (E3)’ to (E3)” in Section 3.4,

h =
(∑m

p=1 eJp

)
/m is used. We use this h and assume that Kk ∈ {Sk

+,Dk
NN,Ck

PP} (k ∈
{n, 1 + n}) throughout this section.

The primal and dual nondegeneracy of the simplified COP is discussed in Sections 5.1
and 5.3, respectively. Specifically, we show that the simplification is effective for increasing
the possibility of the nondegeneracy. In Section 5.2, the dual of P′(Kn, L′

0 ∩ L′
a ∩ L′

b) is
derived, and its relations to the dual of the original P(K1+n, L0 ∩La ∩Lb) are investigated.
We prove that the possibility of the existence of interior feasible solutions becomes greater.
In particular, if the union of Jp (1 ≤ p ≤ m) coincides with {1, . . . , n} or h > 0, then the
simplified dual COP always has an interior feasible solution which can be easily computed
for any choice of L′

a ∈ {L′
E1, L

′
E2, L

′
E3, L

′′
E3} and L′

b ∈ {L′
Z, L

′
C}. The BIQP and the QAP in

Sections 6.1 and 6.2 are such cases.
Throughout this section, we consider P(K1+n, L) with

L = LS ∩ L0 ∩ La ∩ Lb = Φ(Sn) ∩ L0 ∩ La ∩ Lb

=

{
Z =

(
x0 xT

x Y

)
∈ S1+n : hTY h = x0, x = Y h, Z ∈ L0 ∩ La ∩ Lb

}
⊂ Φ(Sn)

for a fixed (La, Lb) ∈ {LE1, LE2, LE3} × {LZ, LC}. We recall that the linear maps Φ : Sn →
S1+n, Ψ : S1+n → Sn and Π : S1+n → Sn have been defined in Section 2.3, and that the
linear subspace LS has been given in (3). If La = LE2, then L = L0 ∩ La ∩ Lb by (i) of
Lemma 3.3. In other cases, L ⊂ L0 ∩La ∩Lb but ζ(K1+n, L) = ζ(K1+n, L0 ∩La ∩Lb) holds
by (ii) of Lemma 3.3. We should note that the existence of an interior feasible solution of
the dual of P(K1+n, L) and the primal and dual nondegeneracy depend on specific choices
of La and Lb. In the following discussions, however, all assertions are valid for any choices
of La and Lb. Thus, we omit describing the dependency.
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5.1 The primal nondegeneracy in the simplified COP P′(Kn, L′)

By Lemma 2.1, the simplified COP of P(K1+n, L) is described as P′(Kn, L′), where

L′ = Φ−1(L) = Π(L) =

{
Y : Z =

(
x0 xT

x Y

)
∈ L

}
.

(To see the identity Φ−1(L) = Π(L), we recall that L ⊂ Φ(Sn) and (4).)

Let Z̄ =

(
1 x̄T

x̄ Ȳ

)
be a feasible solution of P(K1+n, L). By Lemma 2.1, Ȳ = Π(Z̄) is

a feasible solution of P′(Kn, L′). Let L̄ = {Z ∈ L : H0 •Z = 0}, and

L̄′ = {Y ∈ L′ : hhT • Y = 0} = Φ−1(L̄) = Π(L̄). (14)

By definition, Z̄ is nondegenerate in P(K1+n, L) if S1+n = L̄+ TZ̄(K1+n), and Ȳ nondegen-
erate in P′(Kn, L′) if Sn = L̄′ + TȲ (Kn).

Theorem 5.1. Assume that Z̄ is nondegenerate. Then Ȳ = Π(Z̄) is nondegenerate.

Proof. It suffices to prove that Sn ⊂ L̄′ + TȲ (Kn) because the converse inclusion is obvious.
In the following we will show that Sn ⊂ L̄′+Π(TZ̄(K1+n)) in (i), andΠ(TZ̄(K1+n)) ⊂ TȲ (Kn)
in (iii).

(i) Take an arbitrary Y ∈ Sn. Let Z =

(
0 0T

0 Y

)
∈ S1+n. By the nondegeneracy

assumption on the Z̄, there exist Z1 ∈ L̄ and Z2 ∈ TZ̄(K1+n) such that Z = Z1 + Z2.
Since Π : S1+n → Sn is linear, we see that Y = Π(Z) = Π(Z1) + Π(Z2). Thus Sn ⊂
Π(L̄) +Π(TZ̄(K1+n)). Using Π(L̄) = L̄′ by (14), we obtain that Sn ⊂ L̄′ +Π(TZ̄(K1+n)).

(ii) Next we show that Π(FZ̄(K1+n)) ⊂ FȲ (Kn). Obviously, FȲ (Kn) ∋ Ȳ . Let

Π(FZ̄(K1+n)) ∋ Y ̸= Ȳ . Then, there is a Z ∈ FZ̄(K1+n) such that Z =

(
x0 xT

x Y

)
̸= Z̄.

Since Z̄ lies in the relative interior of FZ̄(K1+n), Z̄ can be represented as a convex com-
bination of Z and some U ∈ FZ̄(K1+n) such that U ̸= Z̄; Z̄ = λZ + (1 − λ)U for some
λ ∈ (0, 1). It follows that FȲ (Kn) ∋ Ȳ = Π(Z̄) = λY + (1− λ)Π(U), Ȳ ̸= Y ∈ Kn and
Π(U) ∈ Kn. Since FȲ (Kn) is a face of Kn, we obtain that Y ∈ FȲ (Kn). Thus, we have
shown Π(FZ̄(K1+n)) ⊂ FȲ (Kn).

(iii) Let Z1, . . . ,Zq be a basis of TZ̄(K1+n). They can be taken from FZ̄(K1+n). Then
we know by (ii) that Π(Z1), . . . ,Π(Zq) ∈ FȲ (Kn). Therefore we see that

Π(TZ̄(K1+n)) = Π
(
lin{Z1, . . . ,Zq}

)
= lin{Π(Z1), . . . ,Π(Zq)} ⊂ TȲ (Kn),

where lin(A) denotes the smallest linear subspace of Sk that contains A ⊂ Sk. Consequently,
we have shown that Π(TZ̄(K1+n)) ⊂ TȲ (Kn).

5.2 The dual of P′(Kn, L′)

The dual of P(K1+n, L) can be written as D(K1+n, L). We consider the dual of the simplified
P′(Kn, L′), denoted by D′(Kn, L′):

ζ ′d(Kn, L′) = max
{
y0 : F

′
0 − hhTy0 −W ′ = S′ ∈ (Kn)∗, W ′ ∈ (L′)⊥

}
.
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Lemma 5.1.

(i) (L′)⊥ = Ψ(L⊥).

(ii) Ψ((K1+n)∗) ⊂ (Kn)∗ and Ψ(int((K1+n)∗)) ⊂ int((Kn)∗). Here int((Kk)∗) denotes the
interior of (Kk)∗ (k ∈ {n, 1 + n}).

Proof. To prove Assertion (i), we observe that

Y ∈ L′ iff Φ(Y ) ∈ L

iff 0 = Φ(Y ) •W = Y •Ψ(W ) for all W ∈ L⊥

iff Y ∈ Ψ(L⊥)⊥.

Hence W ′ ∈ (L′)⊥ iff W ′ ∈ Ψ(L⊥), which implies (i). For Assertion (ii), suppose that
S ∈ (K1+n)∗ and S′ = Ψ(S). We note that S′ ∈ (Kn)∗ iff S′ • Y ≥ 0 for every nonzero
Y ∈ Kn and that S′ ∈ int((Kn)∗) iff S′ • Y > 0 for every nonzero Y ∈ Kn. Choose a
nonzero Y ∈ Kn arbitrarily. Then O ̸= Φ(Y ) ∈ K1+n by the definition of Φ and (6).
Hence S′ • Y = Ψ(S) • Y = S • Φ(Y ) ≥ 0. If S ∈ int((K1+n)∗), then the inequality is
strict. Thus we have shown (ii).

Theorem 5.2. Assume that (y0,W ,S) ∈ R×S1+n×S1+n is a feasible solution of D(K1+n, L).
Let W ′ = Ψ(W ) and S′ = Ψ(S). Then (y0,W

′,S′) is a feasible solution of D′(Kn, L′). If
S lies in the interior of (K1+n)∗, then S′ lies in the interior of (Kn)∗.

Proof. From the assumption,

F0 −H0y0 −W = S, W ∈ L⊥, S ∈ (K1+n)∗.

By applying the linear map Ψ : S1+n → Sn to these relations, we obtain

F ′
0 − hhTy0 −W ′ = S′, W ′ ∈ Ψ(L⊥), S′ ∈ Ψ((K1+n)∗).

By Lemma 5.1, we know that W ′ ∈ (L′)⊥ and S′ ∈ (Kn)∗. Hence (y0,W
′,S′) is a feasible

solution of D′(Kn, L′). The second assertion also follows from Lemma 5.1.

By the weak duality, ζd(K1+n, L) ≤ ζp(K1+n, L) and ζ ′d(Kn, L′) ≤ ζ ′p(Kn, L′). Theorem
5.2 ensures that ζd(K1+n, L) ≤ ζ ′d(Kn, L′). By Lemma 2.1, we know that ζp(K1+n, L) =
ζ ′p(Kn, L′). Therefore, if the strong duality relation ζd(K1+n, L) = ζp(K1+n, L) holds between
P(K1+n, L) and D(K1+n, L), then it also holds between P′(Kn, L′) and D′(Kn, L′), and all
the optimal values ζd, ζp, ζ

′
d and ζ ′p coincide with each other.

Theorem 5.3. Assume that Kk ∈ {Dk
NN,Ck

PP} (k ∈ {n, 1 + n}) and that h > 0. Let W ′ ∈
(Kn)∗ (for example, let W ′ = O). Choose y0 ∈ R such that S′ = F ′

0 − hhTy0 −W ′ > O
(such a choice of y0 is possible since hhT > O). Then (y0,W

′,S′) is an interior feasible
solution of D′(Kn, L′).

Proof. By construction, (y0,W
′,S′) satisfies the equality constraint of D′(Kn, L′) and W ′ ∈

(Kn)∗, and S′ > O lies in the interior of Nn. Since Nn ⊂ (Kn)∗, S′ lies in the interior of
(Kn)∗. Therefore (y0,W

′,S′) is an interior feasible solution of D′(Kn, L′).

Note that if the union of Jp (1 ≤ p ≤ m) coincides with {1, . . . , n}, the choice h =
1
m

∑m
p=1 eJp taken in Section 3.4 satisfies h > 0 and hence the simplified dual COP has an

interior feasible solution.
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5.3 The dual nondegeneracy in the simplified COP

Suppose that (ȳ0, W̄ , S̄) is a feasible solution of D(K1+n, L). Let W̄ ′ = Ψ(W̄ ) and S̄′ =
Ψ(S). By Theorem 5.2, (ȳ0, W̄ ′, S̄′) is a feasible solution of D′(Kn, L′). By definition,
(ȳ0, W̄ , S̄) is nondegenerate in D(K1+n, L) if S1+n = L̄⊥ + TS̄((K1+n)∗), and (ȳ0, W̄ ′, S̄′)

nondegenerate in D′(Kn, L′) if Sn = L̄′⊥ + TS̄′((Kn)∗). We can prove the following theorem
similarly to Theorem 5.1, and the proof is omitted.

Theorem 5.4. Assume that (ȳ0, W̄ , S̄) is nondegenerate. Then (ȳ0, W̄ ′, S̄′) is nondegen-
erate.

6 Applications

We consider two well-known combinatorial QOPs, the simple BIQP in Section 6.1, and
the QAP, which is widely known as one of the most difficult combinatorial QOPs, in Sec-
tion 6.2. For their importance in applications, many conic relaxations of both QOPs have
been extensively studied. We investigate some of them in terms of P(K1+n, La ∩ Lb) with
La ∈ {LE1, LE2, LE3} and Lb ∈ {LC, LZ}, and P′(Kn, L′

a∩L′
b) with L′

a ∈ {L′
E1, L

′
E2, L

′
E3, L

′′
E3}

and L′
b ∈ {L′

C, L
′
Z}.

6.1 The binary integer quadratic problem

Let Q ∈ Sr. The binary quadratic optimization problem (BIQP) is given by

ζ∗BIQP = min
{
Q • uuT : uj ∈ {0, 1} (1 ≤ j ≤ r)

}
= min

{
Q • uuT : u = diag(uuT )

}
. (15)

By the definition of Γ1+r, U = uuT with u ∈ Rr
+ iff

(
1 uT

u U

)
∈ Γ1+r. Hence we can

rewrite BIQP (15) as

η(K1+r) = min

{
Q •U :

(
1 uT

u U

)
∈ K1+r, u = diag(U )

}
(16)

with K1+r = Γ1+r. Then, the standard SDP, DNN and CPP relaxations are obtained if
K1+r = Γ1+r is replaced by S1+r

+ , D1+r
NN and C1+r

PP , respectively. Since S1+r
+ ⊃ D1+r

NN ⊃ C1+r
PP ⊃

Γ1+r, it follows that η(S1+r
+ ) ≤ η(D1+r

NN ) ≤ η(C1+r
PP ) ≤ η(Γ1+r) = ζ∗BIQP.

To strengthen the DNN relaxation and derive the CPP reformulation [4, 9] of BIQP
(15), we transform BIQP (15) to the following problem by introducing slack variables vj =
1− uj ≥ 0 (1 ≤ i ≤ r).

ζ∗BIQP = min
x=[u;v]∈R2r

{f0(x) : 1 = uj + vj, xj ∈ {0, 1} (1 ≤ j ≤ r)} , (17)

where f0(x) = Q • uuT for every n-dimensional column vector x = [u;v] formed by
concatenating u and v vertically. Let n = 2r, m = r and Jp = {p, p + r} (1 ≤ p ≤ m).
Then, the constraint of the problem (17) is stated as (G), and (17) is written as ζ∗BIQP =
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minx∈Rn{f0(x) : (G)}, which is a special case of QOP (2) with ℓ0 = 0. Therefore, the
discussions in Section 3 can be applied for deriving various conic relaxations of BIQP (17)
as special cases of P(K1+n, La ∩Lb) and P′(Kn, L′

a ∩L′
b). Note that L0 = S1+n and L′

0 = Sn

since ℓ0 = 0. In particular, each Jp consists of two elements (1 ≤ p ≤ m). Applying (iii) of
Lemma 3.2, we may replace Condition (Z) with

(Zu) Z ∈ LZu ≡ {Z ∈ S1+n : xi = Yii (1 ≤ i ≤ r)}.

We note that (Zu) is different from (Z) in that xi = Yii (r + 1 ≤ i ≤ n) are not imposed in
(Zu).

If Burer’s CPP reformulation [9] of a class of linearly constrained QOPs in binary and
continuous variables is applied to BIQP (17), then P(C1+n

PP , LE3 ∩ LZu) is obtained. On the
other hand, the application of the CPP reformulation proposed by Arima, Kim and Kojima
in [3] (see also [5, 16]) for a class of quadratically constrained QOPs to BIQP (17) would
result in P(C1+n

PP , LE1∩LC). The 0-1 condition (Zu) is utilized in Burer’s reformulation while
the complementarity condition (C) is employed in the reformulation of Arima, Kim and Ko-
jima. As both of them are equivalent to (17), the equivalence of their reformulations follows.
Lemmas 3.1 and 3.2 ensure not only their equivalence but also the equivalence of their DNN
and SDP relaxations, i.e., ζp(D1+n

NN , LE3 ∩LZu) = ζp(D1+n
NN , LE1 ∩LC), ζp(S1+n

+ , LE3 ∩LZu) =
ζp(S1+n

+ , LE1 ∩ LC).
The DNN relaxation (with optimal value η(D1+r

NN )) of BIQP (15) and the DNN relaxation
P(D1+2r

NN , LE1∩LC) (with the optimal value ζp(D1+2r
NN , LE1∩LC)) of BIQP (17) were compared

in detail in [15, Section 6] by Kim, Kojima and Toh. They showed that the second relaxation
is at least as effective as the first, i.e., η(D1+r

NN ) ≤ ζp(D1+2r
NN , LE1∩LC) in theory, and provided

randomly generated numerical instances for which strict inequalities hold. Moreover, Kim
and Kojima [14] presented a numerical instance of BIQP (15) with r = 3 such that its DNN
relaxation (16) with K1+r = D1+3

NN attained only a strict lower bound ζ̂ for the optimal value
ζ∗BIQP. Since it is known in [11] that Dn

NN = Cn
PP if n ≤ 4, we also have η(C1+3

PP ) = η(D1+3
NN ) =

ζ̂ < ζ∗BIQP in that instance. In other words, the CPP relaxation (16) with K1+r = C1+3
PP

attains only the strict lower bound ζ̂ < ζ∗BIQP. In that instance, they also illustrated

that ζp(D1+6
NN , LE1 ∩ LC) = ζ̂ < ζ∗BIQP. In theory, however, ζp(C1+6

PP , LE1 ∩ LC) = ζ∗BIQP is
guaranteed.

6.2 The quadratic assignment problem

Based on the results of Section 3, we investigate the relations among several existing conic
relaxations [2, 9, 22, 28, 23] of the QAP, which are summarized in Table 1. In addition to
the existing conic relaxations in Table 1, there can be other conic relaxations of the QAP,
which are obtained by combining the conditions in the rows and columns of Table 1.

Let A and B be given r × r matrices. Then the QAP is described as

ζ∗QAP = min
{
X • (AXBT ) : X is a permutation matrix

}
. (18)

QAP can be regarded as a QOP in an r × r matrix variable X subject to the following
combinatorial conditions:

(GC) All elements of each pth column of X are 0 except one with the value 1.
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Table 1: A sketch of the correspondence of some existing relaxations of the QAP to
P(K1+n, La∩Lb) withK1+n = S1+n

+ , D1+n
NN or C1+n

PP , and P′(Kn, L′
a∩L′

b) withKn = Sn
+, Dn

NN or
Cn

PP. AKKT means the conic relaxation presented in [3, 5], QAPR0 , QAPR2 and QAPR3 the
ones in [23], and Burer the one in [9]. QAP−

R2
and QAP−

R3
mean conic relaxations obtained

from QAPR2 and QAPR3 by eliminating the redundant constraint (Z), respectively. sBurer
corresponds to Burer’s simplified conic relaxation applied to the QAP. QAPCP, QAPK0∗

n
,

QAPAW+ and QAPZKRW1 are from [22], but their correspondence to P′(Kn, L′′
E3 ∩ L′

C) is
not exact. More precisely, their optimal values are the same, but the descriptions of the
feasible regions are different. The details are shown in Theorem 6.1. No existing conic re-
laxations, to the authors’ best knowledge, correspond to other COPs. Detailed explanations
are included in Sections 6.2.1 and 6.2.2.

Lb

LZ LC LZ ∩ LC

LE1 AKKT
La LE2 QAPR0 QAP−

R2
, QAP−

R3
QAPR2 , QAPR3

LE3 Burer
↓ via the simplification in [9]

L′
b

L′
Z L′

C L′
Z ∩ L′

C

L′
E1

L′
a L′

E2

L′
E3 sBurer

L′′
E3 QAPCP, QAPK0∗

n
, QAPAW+, QAPZKRW1

(GR) All elements of each ith row of X are 0 except one with the value 1.

To derive the conic relaxation using the systematic method presented in Section 3, we
need to transform the problem (18) in the matrix variable X ∈ Rr×r to a QOP in an n-
dimensional column vector variable x, where n = r2. For every X = (x1, . . . ,xr) ∈ Rr×r,
where xp denotes the p-th column vector of X, we consider the n-dimensional vector x =
[x1; . . . ;xr] by arranging xp (1 ≤ p ≤ r) vertically. Then the objective function can be
rewritten as X • (AXBT ) = xT (B ⊗A)x. The conditions (GC) and (GR) on X can also
be restated as the condition (G) on x with m = 2r and

Jp = {(p− 1)r + 1, (p− 1)r + 2, . . . , (p− 1) + r} (1 ≤ p ≤ r),

Jr+i = {i, i+ r, . . . , i+ (r − 1)r} (1 ≤ i ≤ r),

where Jp and Jr+i correspond to (GC) and (GR), respectively. Hence, QAP (18) is equiva-
lently formulated as follows:

ζ∗QAP = min
{
xT (B ⊗A)x : (G)

}
, (19)

which is a special case of QOP (2) with ℓ0 = 0. Thus, various conic relaxations of QAP
(19) can be derived from P(K1+n, La ∩Lb) and P′(Kn, L′

a ∩L′
b) as stated in Section 3. Note

that L0 = S1+n and L′
0 = Sn since ℓ0 = 0.
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Let

Y pq = the (p, q)th r × r block submatrix of Y corresponding to xp(xq)T ,

Cp = Jp (1 ≤ p ≤ r), Ri = Jr+i (1 ≤ i ≤ r), EJ = eJe
T
J ∈ Γn.

We note that both {Cp : 1 ≤ p ≤ r} and {Ri : 1 ≤ i ≤ r} form partitions of the index
set {1, . . . , n}. This is an important feature of QOP (19) derived from QAP (18), which is
utilized in Section 6.2.2. Some of Conditions (E1) through (C), which are mainly considered
in Section 6.2.2, are rewritten as follows:

(E3) Z ∈ LE3 =

Z ∈ S1+n :

eT
Cp
x = x0, ECp • Y = x0,

eT
Rp
x = x0, ERp • Y = x0

(1 ≤ p ≤ r)

 and H0 •Z = 1.

(C) Z ∈ LC =
{
Z ∈ S1+n : Y pp

ij = 0 (i ̸= j, 1 ≤ p ≤ r), Y pq
ii = 0 (p ̸= q, 1 ≤ i ≤ r)

}
.

Other conditions appear in Sections 6.2.1 and 6.2.2 but their precise forms are not relevant
to the discussions there.

6.2.1 Conic relaxations in the space S1+n

We now compare the CPP, DNN, and SDP relaxations of QAP (19) in S1+n. The CPP
reformulation of Arima-Kim-Kojima-Toh [3, 5] applied to QAP (19) is P(C1+n

PP , LE1 ∩ LC),
while Burer’s CPP reformulation [9] applied to QAP (19) is P(C1+n

PP , LE3 ∩ LZ). Replacing
the CPP cone C1+n

PP with the DNN cone D1+n
NN , DNN relaxations P(D1+n

NN , LE1 ∩ LC) and
P(D1+n

NN , LE3 ∩ LZ) are obtained respectively, and they are equivalent by Theorem 3.1. Re-
placing D1+n

NN with S1+n
+ leads to SDP relaxations P(S1+n

+ , LE1 ∩ LC) and P(S1+n
+ , LE3 ∩ LZ),

respectively. By Theorem 3.1, the lower bound ζp(S1+n
+ , LE3 ∩ LZ) obtained by the second

SDP relaxation for the optimal value of QAP (19) can not exceed the one ζp(S1+n
+ , LE1∩LC)

provided by the first SDP relaxation.
P(K1+n, LE2 ∩ LC) with K1+n = D1+n

NN and K1+n = S1+n
+ also provides DNN and SDP

relaxations of QAP (19). These two relaxations coincide with the relaxations QAPR3 and
QAPR2 presented in [23] except that for the latter two relaxations, the 0-1 condition (Z)
is imposed in addition to the complementarity condition (C). But (Z) is redundant by
Lemma 3.2. On the other hand, P(S1+n

+ , LE2 ∩ LZ) coincides with the relaxations QAPR0

presented in [23]. See also Section 4 of [22].
In general, all CPP relaxations P(C1+n

PP , La ∩ Lb) with La ∈ {LE1, LE2, LE3} and Lb ∈
{LZ, LC} are equivalent by Theorem 3.1. Thus, they all provide CPP reformulations of QAP
(19). By Theorem 3.1, all DNN relaxations P(D1+n

NN , La∩Lb) with La ∈ {LE1, LE2, LE3} and
Lb ∈ {LZ, LC} are equivalent. But only the inequality ζp(S1+n

+ , La∩LZ) ≤ ζp(S1+n
+ , La∩LC)

is guaranteed for any choice of La ∈ {LE1, LE2, LE3}.

6.2.2 Conic relaxations in the space Sn

We examine and compare the CPP, DNN and SDP relaxations proposed by [2, 22, 28, 23]

in view of the discussion in Sections 3.2 and 3.3. Let h =
(∑2r

p=1 eJp

)
/2r. As both

{Cp : 1 ≤ p ≤ r} and {Ri : 1 ≤ i ≤ r} form partitions of the index set {1, . . . , n}, we see
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that h =
(∑r

p=1 eCp

)
/r = (

∑r
i=1 eRi

) /r = e/r. Thus, hhT = E/r2, where E denotes the

n × n matrix of 1’s. Let Kn ∈
{
Sn
+,Dn

NN,Cn
PP

}
. Then, P′(Kn, L′

a ∩ L′
b) with each pair of

L′
a ∈ {L′

E1, L
′
E2, L

′
E3, L

′′
E3} and L′

b ∈ {L′
Z, L

′
C} entails an SDP, DNN or CPP relaxation of

QAP (19) in the space Sn, respectively. Our main focus is on P′(Kn, L′′
E3 ∩ L′

C) among the
relaxations, which will be related to some existing conic relaxations [2, 22, 28, 23] of QAPs.
First, we rewrite Conditions (E3)” and (C)’ as follows:

(E3)” Y ∈ L′′
E3 ≡

{
Y ∈ Sn :

ECp • Y = (E/r2) • Y (1 ≤ p ≤ r),
ERi

• Y = (E/r2) • Y (1 ≤ i ≤ r)

}
and E • Y = r2.

(C)’ Y ∈ L′
C ≡

{
Y ∈ Sn : Y pp

ij = 0 (i ̸= j, 1 ≤ p ≤ r), Y pq
ii = 0 (p ̸= q, 1 ≤ i ≤ r)

}
.

The permutation matrix X is characterized by the conditions X ≥ O and XTX = I.
Based on this characterization, Povh and Rendl [22] reformulated QAP (18) by adding the

redundant constraints XXT = I and
(∑r

i=1

∑r
p=1Xip

)2
= r2 as follows:

ζ∗QAP = min
X

{
X • (AXBT ) : X ≥ O, XTX = I, XXT = I,

(
r∑

i=1

r∑
p=1

Xip

)2

= r2

}
,

and derived its conic relaxations:

ζPR(Kn) = min

{
(B ⊗A) • Y :

Y ∈ Kn, I • Y pq = δpq (1 ≤ p, q ≤ r),∑r
p=1Y

pp = I, E • Y = r2

}
. (20)

Here Kn = Cn
PP, Dn

NN or Sn
+ with n = r2, δpq denotes the Kronecker delta such that δpq = 1

if p = q and δpq = 0 otherwise. We note that I •Y pq = δpq (1 ≤ p, q ≤ r) and
∑r

p=1 Y
pp = I

are the liftings of the equalities XTX = I and XXT = I in the variable matrix X ∈
Rr×r to the equalities in the variable matrix Y ∈ Sn×n, respectively. The CPP relaxation
QAPCP, DNN relaxation QAPK0∗

n
and SDP relaxation QAPAW+, which are all from Povh

and Rendl [22], are obtained by setting Kn = Cn
PP, Dn

NN and Sn
+, respectively. In particular,

Povh and Rendl showed that QAPCP provided a CPP reformulation of QAP (18), i.e.,
ζPR(Cn

PP) = ζ∗QAP. The SDP relaxation QAPAW+ corresponds to a slight variation of the
Anstreicher-Wolkowicz relaxation [2].

As a stronger SDP relaxation than QAPAW+, Povh and Rendl in [22] also presented the
SDP relaxation QAPZRKW1, which was shown to be equivalent to the ‘gangster-model’ from
[28]. The SDP relaxation QAPZRKW1 is naturally extended to a general conic relaxation of
QAP by replacing the SDP cone Sn

+ with a closed convex cone Kn ⊃ Γn.

ζZRKW1(Kn) = min
Y

(B ⊗A) • Y :

Y ∈ Kn, I • Y pp = 1 (1 ≤ p ≤ n),∑r
q=1Y

qq
ii = 1 (1 ≤ i ≤ n),

Y ∈ L′
C, E • Y = r2

 (21)

We will relate QAPCP, QAPK0∗
n
, QAPAW+ and COP (21) to P′(Kn, L′′

E3 ∩ L′
C).
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Lemma 6.1. Let Kn ⊂ Sn
+. Suppose that Y ∈ L′

C holds. Then

r∑
i=1

∑
j ̸=i

Y pp
ij = 0 (1 ≤ p ≤ r),

r∑
p=1

∑
q ̸=p

Y pq
ii = 0 (1 ≤ i ≤ r),

ECp • Y = I • Y pp (1 ≤ p ≤ r), ERi
• Y =

∑r
p=1Y

pp
ii (1 ≤ i ≤ r). (22)

Proof. Z ∈ L′
C implies the first two equalities. The last two equalities follow from them.

Lemma 6.2. Let Y ∈ Nn. Suppose that I • Y pq = δpq (1 ≤ p, q ≤ r) and
∑r

p=1 Y
pp = I.

Then Y ∈ L′
C holds.

Proof. Let p ̸= q. Then
∑r

i=1 Y
pq
ii = I • Y pq = 0. From

∑r
p=1 Y

pp = I, we see that∑r
p=1 Y

pp
ij = 0 (i ̸= j). Since Y ∈ Nn, these identities imply Z ∈ L′

C.

Theorem 6.1. Let Kn ⊂ Sn
+.

(i) Y ∈ Kn is a feasible solution of COP (21) iff it satisfies (E3)” and (C)’.

(ii) If Y ∈ Kn satisfies (E3)” and (C)’, then it is a feasible solution of COP (20).

(iii) Assume that Kn ⊂ Dn
NN. Then Y ∈ Kn is a feasible solution of COP (20) iff it

satisfies (E3)” and (C)’.

Proof. (i) By Lemma 6.1, (22) holds under (C)’ which is assumed both in the ‘if’ and ‘only
if’ parts. Hence assertion (i) follows.

(ii) Assume that Y ∈ Kn satisfies (E3)” and (C)’. Then E • Y = r2. By Lemma 6.1
and (C)’, we see that

I • Y pq =

{
ECp • Y = 1 if p = q,∑r

i=1Y
pq
ii = 0 otherwise,

i.e., I • Y pq = δpq (1 ≤ p, q ≤ r),

∑r
p=1Y

pp
ij =

{
ERi

• Y = 1 if i = j,∑r
p=1Y

pp
ij = 0 otherwise

i.e.,
∑r

p=1Y
pp = I.

Therefore, Y ∈ Kn is a feasible solution of COP (20).
(iii) Since the ‘if’ part is proved in (ii), it suffices to show the ‘only if’ part. Assume

that Y ∈ Kn is a feasible solution of COP (20) with Kn ⊂ Dn
NN. By Lemma 6.2, (C)’

holds. Hence, (22) holds by Lemma 6.1. The equality E •Y = r2 follows directly from the
assumption.

Corollary 6.1. Suppose that Γn ⊂ Kn ⊂ Sn
+. Then

ζPR(Kn) ≤ ζZRKW1(Kn) = ζ ′(Kn, L′′
E3, L

′
C) ≤ ζ∗QAP.

If, in addition, Kn ⊂ Dn
NN, then ζPR(Kn) = ζZRKW1(Kn) holds. If Kn = Cn

PP, then ζPR(Kn) =
ζ∗QAP; hence ζPR(Kn) = ζZRKW1(Kn) = ζ ′(Kn, L′′

E3, L
′
C) = ζ∗QAP.

Proof. The first and second assertions follow from Theorem 6.1, and the last from [22,
Corollary 4].
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7 Numerical results on SDP and DNN relaxations of

QAP

In Section 6.2, the QAP has been discussed as a special case of QOP (2), and some of existing
conic relaxations have been related to P(K1+n, La ∩ Lb) with (La, Lb) ∈ {LE1, LE2, LE3}
×{LC, LZ} and P′(K1+n, L′

a ∩L′
b) with (L′

a, L
′
b) ∈ {L′

E1, L
′
E2, L

′′
E3}× {L′

C, L
′
Z}. The purpose

of the numerical experiments here is to compare the numerical results obtained by solving
those COPs with SDPT3 [26], SDPNAL+ [27] and the bisection and projection method
(BP) [6, 16, 15]. Specifically, we want to see whether the numerical results are in line with
the theoretical results on the following issues:

(a) For every La ∈ {LE1sum, LE1, LE2, LE3} and L′
a ∈ {L′

E1sum, L
′
E1, L

′
E2, L

′′
E3}, the equalities

and the inequalities

ζp(S1+n
+ , La ∩ LZ) = ζp(Sn

+, L
′
a ∩ L′

Z) ≤ ζp(S1+n
+ , La ∩ LC) = ζp(Sn

+, L
′
a ∩ L′

C),

≤ ζp(D1+n
NN , La ∩ LZ) = ζp(Dn

NN, L
′
a ∩ L′

Z)

= ζp(D1+n
NN , La ∩ LC) = ζp(Dn

NN, L
′
a ∩ L′

C)

hold. (Theorem 3.1 and the discussions in Section 3.3). Recall that LE1sum has been
defined by (10), and that its simplification L′

E1sum is given by Φ−1(LE1sum).

(b) P(D1+n
NN , LE2 ∩Lb) with Lb ∈ {LC, LZ} and P′(Dn

NN, L
′
E2 ∩L′

b) with L′
b ∈ {L′

C, L
′
Z} are

more time-consuming than the other COPs. (Section 4.1).

(c) The efficiency and effectiveness of solving a COP depend on numerical methods.

For (c), we experimented with SDPNAL+ and BP. The solver SDPNAL+ can be applied
to solve all COPs in (a), although its fast local convergence and stable execution are con-
siderably affected by the existence of interior feasible solutions and nondegeneracy. The
BP method, on the other hand, is a first-order method which is designed to be robust for
ill-conditioned problems having empty primal or dual interior feasible regions. However, it
works on only P(K1+n, LE1sum∩Lb) (Lb ∈ {LC, LZ}) and P′(Kn, L′

E1sum∩L′
C) (see [6, 16, 15]

for more details). We should note that DNN relaxations of the tested QAP instances are
too large for SDPT3 to solve within reasonable CPU time.

QAP instances for the experiments are obtained from QAPLIB [12]. The default pa-
rameters were used for SDPT3. For SDPNAL+, the parameter ‘tol’ was set to 10−6 and
‘stopoptions’ to 2 so that the solver continues to run even if it encounters some stagna-
tions. For BP, the stopping criterion for the length of the target search interval was set
to δ = 0.1. SDPNAL+ and BP were terminated in 10000 seconds or 20000 iterations even
if their stopping criteria were not satisfied. Linearly dependent equality constraints were
removed from each COP before SDPT3 and SDPNAL+ were applied. All the computations
were performed in Matlab on a Mac Pro with Intel Xeon E5 CPU (2.7 GHZ) and 64 GB
memory.

Table 2 shows the numerical results on two small-sized QAP instances from QAPLIB
[12]. Note that we used the procedure in [6] to modify all computed bounds to be valid lower
bounds. It is clear that the results in Table 2 are consistent with the inequalities in (a).
For the equalities in (a), we observe that the lower bounds obtained from DNN relaxations
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Table 2: Approximate optimal values of P(K1+n, La∩Lb) and P′(Kn, L′
a∩L′

b) for small size
QAP instances, tai10 and chr12a.

tai10a
SDP solved by SDPT3 DNN solved by SDPNAL+

K1+n = S1+n
+ Lb K1+n = D1+n

NN Lb

La LZ LC La LZ LC

LE1sum 32224.7 128738.6 LE1sum 135027.9 134972.8
LE1 32224.8 128701.6 LE1 135022.7 134955.1
LE2 32227.4 128739.9 LE2 135028.0 135024.8
LE3 32225.1 128734.5 LE3 135028.0 135028.0

Kn = Sn
+ L′

b Kn = Dn
NN L′

b

L′
a L′

Z L′
C L′

a L′
Z L′

C

L′
E1sum 32226.4 128739.3 L′

E1sum 135028.0 134996.0
L′
E1 32227.1 128738.9 L′

E1 135027.7 134994.0
L′
E2 32227.5 128739.9 L′

E2 135023.4 135022.9
L′′
E3 32226.8 128722.4 L′′

E3 135028.0 135024.1
chr12a

K1+n = S1+n
+ Lb K1+n = D1+n

NN Lb

La LZ LC La LZ LC

LE1sum -103846.8 -4840.5 LE1sum 9551.4 9544.5
LE1 -103849.2 -4842.2 LE1 9551.6 9542.9
LE2 -103846.8 -4840.6 LE2 9552.0 9552.0
LE3 -103847.9 -4840.6 LE3 9552.0 9550.4

Kn = Sn
+ L′

b Kn = Dn
NN L′

b

L′
a L′

Z L′
C L′

a L′
Z L′

C

L′
E1sum -103846.7 -4840.6 L′

E1sum 9552.0 9546.7
L′
E1 -103846.9 -4840.9 L′

E1 9548.6 9542.3
L′
E2 -103846.7 -4840.5 L′

E2 9552.0 9552.0
L′′
E3 -103846.9 -4840.6 L′′

E3 9552.0 9548.5

with (La, Lb) ∈ {LE1sum, LE1}×{LC} are smaller than the ones from DNN relaxations with
other (La, Lb), which suggests that the first pair of DNN relaxations do not work well with
SDPNAL+ as they are ill-conditioned in the sense that we shall explain next. By Lemma 3.1,
we know that L⊥

E1sum ⊂ L⊥
E1 ⊂ L⊥

E3 ⊂ L⊥
E2. In particular, dim(L⊥

E1sum) = 1. Recall that
n = r2. The small value of dim

(
(LE1sum∩LC)

⊥), which is at most 1+r2(r−1), relative to the
dimension (r2+1)r2/2 of the linear space S1+n implies that the dual nondegeneracy condition
(13) is very likely to fail. In addition, the dual problems are also likely not to have interior
feasible solutions due to the small dimension of (LE1sum∩LC)

⊥.We also know that the primal
problems have no interior feasible solutions (see [16, Lemma 4]). All the issues just discussed
has a negative impact on the numerical performance of SDPNAL+. The same observation
can be made on the simplified DNN relaxations with (L′

a, L
′
b) ∈ {L′

E1sum, L
′
E1} × {L′

C}.
Table 2 displays the optimal values of 16 different DNN relaxations by SDPNAL+ for

tai10 and chr12a. Although we solved the same set of 16 DNN relaxations for many small
and large-scale QAP instances, detailed results on each DNN relaxation are omitted here
to save space. We refer the reader to [13] for the results in detail. For a summary of the
results, we introduce the following symbols and notation. Let ζ̂(La ∩ Lb) and ζ̂ ′(L′

a ∩ L′
b)

denote the approximate optimal values of P(Dn+1
NN , La ∩Lb) and P′(Dn

NN, L
′
a ∩L′

b) solved by
SDPNAL+ and BP, and let τ(La∩Lb) and τ ′(L′

a∩L′
b) be the corresponding execution time

of SDPNAL+ and BP. These values are converted to differences in relative lower bounds
with respect to the maximum lower bound, and the ratio of the execution time to the
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minimum execution time. More precisely, we computed

ζ̂max ≡ max
La,Lb,L′

a,L
′
b,SDPNAL+,BP

{ζ̂(La ∩ Lb), ζ̂ ′(L′
a ∩ L′

b)} (the maximum lower bound),

τmin ≡ min
La,Lb,L′

a,L
′
b,SDPNAL+,BP

{τ(La ∩ Lb), τ ′(L′
a ∩ L′

b)} (the minimum execution time),

η(La ∩ Lb) ≡ (ζ̂max − ζ̂(La ∩ Lb))/ζ̂max, η′(L′
a ∩ L′

b) ≡ (ζ̂max − ζ̂ ′(L′
a ∩ L′

b))/ζ̂max,

σ(La ∩ Lb) ≡ τ(La ∩ Lb)/τmin, σ′(L′
a∩, L′

b) ≡ τ ′(L′
a ∩ L′

b)/τmin.

Then, the computed means are denoted by

ηm(La ∩ Lb), η′m(L
′
a ∩ L′

b), σm(La ∩ Lb), σ′
m(L

′
a ∩ L′

b),

and the worst-case values by

ηw(La ∩ Lb), η′w(L
′
a ∩ L′

b), σw(La ∩ Lb), σ′
w(L

′
a ∩ L′

b)

over the numerical results from a set of QAP instances for each La, Lb, L
′
a, L

′
b. We also

compute their means and worst-case values over all of La, Lb, L
′
a, and L′

b, respectively (the
rows with ‘all La’ and ‘all L′

a’, the columns with ‘all Lb’ and ‘all L′
b’ in Table 3.)

Table 3 shows a summary of the numerical results on three sets of QAP instances. More
precisely, QAP instances of small to large size from QAPLIB [12] are categorized into Set 1
through Set 3. Set 1, for instance, includes QAPs such as had12, nug12, rou12, scr12, chr12a,
chr12b, chr12c, tai10a, and tai10b. The mean and the worst-case value were computed over
the numerical results of each set of QAPs obtained by SDPNAL+ and BP.

First, we focus on the numerical results by SDPNAL+. For Set 1 of small-sized QAPs,
the values of ηm and ηw are smaller as shown in the rows LE2 and L′

E2, which means that
lower bounds of higher quality are obtained for these particular cases in the rows LE2 and
L′
E2. The large number m+mn (which equals to dim(L⊥

E2)) of linear equalities in LE2 may
have contributed to the positive result as dual interior feasible solutions are likely to exist
and dual nondegeneracy is more likely to hold as discussed in Section 4. But σm(σw) in
the rows LE2 and L′

E2 are much larger than the ones in the other rows, which indicates
that solving DNN relaxations with La = LE2 and Lb = L′

E2 by SDPNAL+ are much more
expensive than the other cases as mentioned in (b). We omit these two time-consuming
cases for the sets of larger QAPs.

The DNN relaxations with La ∈ {LE1sum, LE1} for Sets 1, 2 and 3 of QAPs, which have
only 1 or m linear equalities, on the other hands, are inferior to the others with regard to
lower bounds and execution time. The performance could have been affected by the lack
of dual interior feasible solutions and/or the failure of dual nondegeneracy as a result of
the small dimension of L⊥

a . The DNN relaxations with La = LE3, which have intermediate
numbers of linear equalities, show relatively good results for Sets 1, 2 and 3 of QAPs as far
as lower bounds and execution time are concerned. The similar observation can be made
for L′

a ∈ {L′
E1sum, L

′
E1} and L′

a = L′
E3 cases.

When the DNN relaxation with Lb = LC and L′
b = L′

C were solved by SDPNAL+, the
mean and worst lower bounds (ηm and ηw) obtained were significantly inferior to the other
cases of Lb = LZ and L′

b = L′
Z, especially when they are combined with La ∈ {LE1sum, LE1}

and L′
a ∈ {L′

E1sum, L
′
E1}. This shows that SDPNAL+ works more effectively and stably on

the DNN relaxations with Lb = LZ and L′
b = L′

Z.
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In contrast to SDPNAL+, BP was able to stably solve the DNN relaxations with Lb = LC

and L′
b = L′

C. In particular, BP has superior performance in solving the DNN relaxations
with L′

b = L′
C in each set of QAP instances. This demonstrates the robustness of BP

for solving degenerate DNN problems, and the effectiveness of the simplification technique
when it is combined with BP. However, BP solved the COPs with Lb = LZ less efficiently.
Since the stability of BP depends on the stability of the numerical algorithm used to check
the dual feasibility of a given matrix, simple Condition (C) which imposes constraints on
each element independently would be numerically more preferable than Condition (Z).

In all cases, the simplification technique did not shorten the execution time much as
expected in Section 3.3. This is because the simplification with h = e/r destroyed the
sparsity of the original DNN relaxations. We note that all the coefficient matrices involved
in Conditions (E1) through (E3) are sparse while many of those in the simplified Conditions
(E1)’ through (E3)” (including hhT ) are fully dense. With regard to the issue (c) mentioned
at the beginning of this section, we can conclude from the numerical results in Tables 2
and 3 that the DNN relaxation with (La, Lb) = (LE3, LZ) and the one (L′

a, L
′
b) = (L′

E3, L
′
Z)

give better results when solved by SDPNAL+, while the DNN relaxation with (L′
a, L

′
b) =

(L′
E1sum, L

′
C) is better solved with BP.

8 Concluding remarks

Many conic relaxations proposed for a combinatorial optimization problem are equivalent
in the quality of the optimal values they provide. However, they differ in the size of the
matrix variable, the number of linear equality and inequality constraints, the existence of
an interior feasible solution, and the primal/dual degeneracy, which are crucial issues for
the performance of a numerical method. We have proved the equivalences and differences in
the SDP, DNN, and CPP relaxations of combinatorial optimization problems by examining
several ways of representing the combinatorial condition. This approach has revealed the
connections among the existing relaxations, and also provided new conic relaxations for the
QAP as shown in Table 1. We have tested the theoretical results with QAP instances and
obtained consistent numerical results using SDPT3, SDPNAL+ and BP.

For the combinatorial optimization problems that are not dealt with in this paper, for
instance, the quadratic multiple knapsack problem, maximum stable set problem and graph
partitioning problem, the same approach presented in this paper can be applied to show
the equivalence and difference in their conic relaxations.
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Table 3: The mean and worst-case values of relative lower bound differences η and ratios of
the execution time σ. The subscript ‘m’ stands for the mean and ‘w’ worst-case values.

Set 1 of small size QAP instances (had12, nug12, rou12, scr12, chr12a, chr12b, chr12c, tai10a, tai10b)
LZ LC all Lb

ηm(ηw) σm(σw) ηm(ηw) σm(σw) ηm(ηw) σm(σw)

BP LE1sum 3.99e-3 (1.37e-2) 3.33e0 (5.30e0) 3.50e-5 (1.34e-4) 2.06e0 (3.82e0) 2.01e-3 (1.37e-2) 2.70e0 (5.30e0)

SDPNAL+

LE1sum 4.72e-5 (2.30e-4) 5.75e0 (1.17e1) 6.04e-4 (1.16e-3) 1.17e1 (2.09e1) 3.26e-4 (1.16e-3) 8.73e0 (2.09e1)
LE1 6.46e-5 (2.17e-4) 4.89e0 (8.43e0) 6.99e-4 (1.01e-3) 1.27e1 (2.62e1) 3.82e-4 (1.01e-3) 8.80e0 (2.62e1)
LE2 2.11e-5 (1.36e-4) 1.16e2 (2.30e2) 7.64e-5 (3.48e-4) 8.45e1 (1.72e2) 4.87e-5 (3.48e-4) 1.00e2 (2.30e2)
LE3 3.37e-5 (1.31e-4) 3.70e0 (7.02e0) 6.16e-5 (3.13e-4) 2.89e0 (7.06e0) 4.77e-5 (3.13e-4) 3.30e0 (7.06e0)
all La 4.17e-5 (2.30e-4) 3.25e1 (2.30e2) 3.60e-4 (1.16e-3) 2.80e1 (1.72e2) 2.01e-4 (1.16e-3) 3.02e1 (2.30e2)

L′
Z L′

C all L′
b

η′m(η
′
w) σ′

m(σ
′
w) η′m(η

′
w) σ′

m(σ
′
w) η′m(η

′
w) σ′

m(σ
′
w)

BP LE1sum N/A N/A 3.61e-5 (1.33e-4) 1.31e0 (3.08e0) N/A N/A

SDPNAL+

LE1sum 2.78e-5 (1.25e-4) 4.44e0 (7.78e0) 2.93e-4 (6.62e-4) 7.46e0 (1.48e1) 1.60e-4 (6.62e-4) 5.95e0 (1.48e1)
L′
E1 1.07e-4 (3.58e-4) 4.90e0 (1.04e1) 3.86e-4 (1.01e-3) 8.16e0 (1.66e1) 2.47e-4 (1.01e-3) 6.53e0 (1.66e1)

L′
E2 2.10e-5 (1.31e-4) 1.35e2 (2.22e2) 1.08e-4 (3.36e-4) 1.63e2 (2.97e2) 6.46e-5 (3.36e-4) 1.49e2 (2.97e2)

L′′
E3 3.50e-5 (1.58e-4) 5.77e0 (1.22e1) 1.43e-4 (3.68e-4) 4.67e0 (1.12e1) 8.92e-5 (3.68e-4) 5.22e0 (1.22e1)

all L′
a 4.78e-5 (3.58e-4) 3.75e1 (2.22e2) 2.33e-4 (1.01e-3) 4.59e1 (2.97e2) 1.40e-4 (1.01e-3) 4.17e1 (2.97e2)

Set 2 of medium size QAP instances (chr20a, chr20b, chr20c, had20, lipa20a, lipa20b, nug20, rou20, scr20, tai20a, tai20b)
LZ LC all Lb

ηm(ηw) σm(σw) ηm(ηw) σm(σw) ηm(ηw) σm(σw)

BP LE1sum 8.71e-3 (4.54e-2) 2.44e0 (3.82e0) 7.87e-5 (4.58e-4) 2.21e0 (5.37e0) 4.40e-3 (4.54e-2) 2.33e0 (5.37e0)

SDPNAL+

LE1sum 1.42e-4 (6.64e-4) 6.04e0 (2.04e1) 9.67e-4 (3.97e-3) 1.90e1 (7.80e1) 5.54e-4 (3.97e-3) 1.25e1 (7.80e1)
LE1 1.12e-4 (4.67e-4) 4.47e0 (1.52e1) 8.08e-4 (1.24e-3) 1.46e1 (6.15e1) 4.60e-4 (1.24e-3) 9.55e0 (6.15e1)
LE3 1.06e-4 (4.05e-4) 3.28e0 (1.17e1) 2.21e-4 (7.87e-4) 3.39e0 (8.85e0) 1.63e-4 (7.87e-4) 3.34e0 (1.17e1)
all La 1.20e-4 (6.64e-4) 4.60e0 (2.04e1) 6.65e-4 (3.97e-3) 1.23e1 (7.80e1) 3.93e-4 (3.97e-3) 8.46e0 (7.80e1)

L′
Z L′

C all L′
b

η′m(η
′
w) σ′

m(σ
′
w) η′m(η

′
w) σ′

m(σ
′
w) η′m(η

′
w) σ′

m(σ
′
w)

BP LE1sum N/A N/A 6.83e-5 (4.56e-4) 1.73e0 (3.86e0) N/A N/A

SDPNAL+

L′
E1sum 1.28e-4 (7.02e-4) 6.48e0 (1.68e1) 2.94e-4 (1.24e-3) 9.45e0 (4.27e1) 2.11e-4 (1.24e-3) 7.97e0 (4.27e1)
L′
E1 1.76e-4 (8.68e-4) 8.10e0 (2.20e1) 3.68e-4 (9.50e-4) 1.08e1 (3.30e1) 2.72e-4 (9.50e-4) 9.47e0 (3.30e1)

L′′
E3 1.13e-4 (6.89e-4) 7.63e0 (2.40e1) 1.54e-4 (7.31e-4) 7.92e0 (1.98e1) 1.34e-4 (7.31e-4) 7.77e0 (2.40e1)

all L′
a 1.39e-4 (8.68e-4) 7.40e0 (2.40e1) 2.72e-4 (1.24e-3) 9.41e0 (4.27e1) 2.06e-4 (1.24e-3) 8.40e0 (4.27e1)

Set 3 of medium size QAP instances (bur26a, bur26b, bur26c, bur26d, bur26e, bur26f, bur26g, bur26h, nug25, chr25a)
LZ LC all Lb

ηm(ηw) σm(σw) ηm(ηw) σm(σw) ηm(ηw) σm(σw)

BP LE1sum 5.15e-3 (3.88e-2) 1.81e0 (4.13e0) 1.31e-4 (1.78e-4) 1.51e0 (2.56e0) 2.64e-3 (3.88e-2) 1.66e0 (4.13e0)

SDPNAL+

LE1sum 1.30e-5 (5.30e-5) 4.88e0 (1.07e1) 4.15e-4 (1.04e-3) 4.59e0 (1.06e1) 2.14e-4 (1.04e-3) 4.74e0 (1.07e1)
LE1 5.26e-5 (1.01e-4) 5.61e0 (1.18e1) 4.44e-4 (1.38e-3) 5.34e0 (1.29e1) 2.48e-4 (1.38e-3) 5.48e0 (1.29e1)
LE3 4.97e-5 (9.98e-5) 3.57e0 (5.65e0) 1.31e-4 (7.46e-4) 2.37e0 (3.58e0) 9.02e-5 (7.46e-4) 2.97e0 (5.65e0)
all La 3.84e-5 (1.01e-4) 4.69e0 (1.18e1) 3.30e-4 (1.38e-3) 4.10e0 (1.29e1) 1.84e-4 (1.38e-3) 4.40e0 (1.29e1)
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