
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

Sums of Squares Representation of Polynomials

by Alternating Directional Augmented

Lagrangian Methods with Fast Convergence

Hikaru Komeiji, Sunyoung Kim, Makoto

Yamashita

March 2018, B–488

Sums of Squares Representation of Polynomials by

Alternating Directional Augmented Lagrangian Methods

with Fast Convergence

Hikaru Komeiji∗, Sunyoung Kim†, Makoto Yamashita‡

March, 2018

Abstract

We study expressing a polynomial as sums of squares (SOS) of polynomials of lower
degree by formulating the problem as semidefinite programs (SDPs). To efficiently
solve the SDPs whose size grows very rapidly with the degree and number of vari-
ables of the polynomial, the alternative direction augmented Lagrangian (ADAL)
method is investigated. We present conditions for the ADAL method to converge
to an optimal solution in a few iterations and prove its convergence under the con-
ditions. In addition, for the problem of representing a univariate trigonometric
polynomial as an SOS, we also provide similar conditions for the fast convergence of
the ADAL method to an optimal solution. Numerical results demonstrate the fast
convergence of the method if the conditions are satisfied and the strictly feasible
region is not very small. Test instances include SDPs with 11,476 variables and
22,533,126 constraints.

Key words. Sums of squares of polynomials, Sums of squares of univariate trigonomet-
ric polynomials, Semidefinite programs, Alternating directional augmented Lagrangian
methods, Conditions for fast convergence.

AMS Classification. 90C22, 90C25, 90C26.

1 Introduction

We consider a problem of representing polynomials as sums of squares (SOS) of polynomi-
als of lower degree using alternating direction augmented Lagrangian methods [16]. The

∗Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1 Oh-
Okayama, Meguro-ku, Tokyo 152-8552, Japan (tenryoki@gmail.com).
†Department of Mathematics, Ewha W. University, 52 Ewhayeodae-gil, Sudaemoon-gu, Seoul 03760,

Korea (skim@ewha.ac.kr). The research was supported by NRF 2017-R1A2B2005119.
‡Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1 Oh-

Okayama, Meguro-ku, Tokyo 152-8552, Japan (makoto.yamashita@c.titech.ac.jp). This research
was partially supported by JSPS KAKENHI (Grant number: 15K00032).

1

problem arises from determining the nonnegativity of a polynomial p(x) for all x ∈ Rn,
which is known to be NP-hard for n ≥ 4. As SOS polynomials are clearly nonnegative,
representing a polynomial as SOS polynomials can be considered for the problem of testing
the nonnegativity of a polynomial. Moreover, for a given nonnegative polynomial, finding
an SOS representation of the polynomial is a central problem with many applications
[2, 3, 11]. Thus, it is important to provide fast convergent algorithms for the problem.

The problem of representing a polynomial as an SOS can be formulated as a semidef-
inite program (SDP) [10]. For a polynomial p(x) with degree d and n variables, the size
of the resulting SDP becomes

(
n+d
n

)
. As n and d increase, the size of SDP grows very

rapidly. SDPs are usually solved by SDP solvers such as SeDuMi [13], SDPA [17, 18],
SDPT3 [14], and SDPNAL+ [19]. SDP solvers based on primal-dual interior-point algo-
rithms, SeDuMi, SDPA and SDPT3, cannot efficiently solve SDP relaxations where the
size of the variable matrix is more than several thousands if the structure and sparsity
of polynomials are not exploited. SDPNAL+ [19] that employs a majorized semismooth
Newton-CG augmented Lagrangian method and the second order information was shown
to handle some large-scale SDPs.

The alternating direction augmented Lagrangian (ADAL) method, a first-order method,
was proposed in [16] with the convergence result to efficiently solve SDPs. The ADAL
method applies the alternating direction method to the dual augmented Lagrangian func-
tion. At each iteration, the dual augmented Lagrangian function is minimized with respect
to three different variables in sequence: first the Lagrangian multipliers to the linear con-
straints, second the dual variables, and finally the primal variables. The ADAL method
is different from other alternating direction methods where the variables are partitioned
into several blocks and the augmented Lagrangian function is minimized over each block.

The main purpose of this paper is two folds: First, we present conditions for the ADAL
method to converge in a few iterations to an optimal solution for the SOS representation
problem of general polynomials. The proof for the fast convergence utilizes the sequen-
tial updating scheme of the variables in the ADAL method. Second, we also provide
conditions for the fast convergence of the ADAL method to solve the SOS problem of
univariate trigonometric polynomials, which have applications in filter design [5, 12]. In
particular, we prove that a univariate trigonometric polynomial can be adjusted to satisfy
the conditions by adding a positive number to the polynomial.

For the SOS representation problem of general polynomials, we show numerically
that the conditions are more likely to be satisfied if a positive number is added to the
polynomials. It is also numerically illustrated that the size of the strictly feasible region
of the problem is closely related to whether a given problem satisfies the condition for
the fast convergence of the ADAL method to an optimal solution. More precisely, the
condition for the fast convergence presented in this paper is more likely to be satisfied
by enlarging the strictly feasible region of the problem. We present numerical results in
Section 5 that are consistent with the theoretical convergence results. The performance of
the ADAL method is compared to that of SeDuMi [13]. The largest SDP instance includes
11,476 variables and 22,533,126 constraints. The number of constraints in this instance is
two times larger than the largest problem solved by SDPNAL+ in [19]. We demonstrate
that accurate optimal solutions are obtained much faster than SeDuMi, especially when
the strictly feasible region is not very small and the conditions are satisfied. Moreover,

2

the ADAL method can solve much larger problems while SeDuMi terminates with out-of-
memory error.

This paper is organized as follows: we briefly describe SDPs and the ADAL method
in Section 2. In Section 3, we show the conditions for the fast convergence of the ADAL
method and prove the fast convergence under the assumption that all the coefficient
matrices of the SDP are linearly independent. Section 4 discusses the conditions for the
SOS representation problem of trigonometric polynomials and prove the fast convergence
of the ADAL method. In Section 5, numerical results are presented on sparse polynomials
from [7], a dense polynomial and an illustrative example. Finally, we conclude in Section
6.

2 Preliminaries

2.1 Semidefinite programs

Let e be the vector of all ones and I the identity matrix in appropriate dimension. Let Rm

denote m-dimensional Euclidian space and Sn the space of n-dimensional real symmetric
matrices. The inner product of two symmetric matrices is defined as X •Y :=

∑
i,j XijYij,

||X||F :=
√
X •X, and X � O means that X is positive semidefinite. We denote the

space of n-dimensional positive semidefinite matrices by Sn+. The set of natural numbers
and the set of integers are denoted by N and Z, respectively.

The standard equality form of semidefinite programs (SDPs) can be expressed as

(Primal) min C • X
s.t. A(X) = b (1)

Sn 3 X � O.

The dual is written as

(Dual) min −bTy
s.t. A∗(y) + S = C (2)

Sn 3 S � O,

where C,A1, . . . , Am ∈ Sn are data matrices.

The operator A : Sn → Rm is defined as A(X) := (A1 • X,A2 • X, . . . , Am • X) and
its adjoint operator A∗ : Rm → Sn is defined as A∗(y) :=

∑m
i=1Aiyi.

2.2 Alternating direction augmented Lagrangian methods

We describe that the ADAL method [16] for the primal-dual pair of SDP (1) and (2). For
the primal SDP (1), the following assumption is necessary to ensure the convergence of
the ADAL method.

Assumption 2.1. The coefficient matrices {Ai}mi=1 are linearly independent and there is
an interior solution X̄ � O for A(X) = b.

3

Consider the augmented Lagrangian function defined with the penalty parameter µ >
0:

Lµ(X, y, S) := −bTy +X • (A∗(y) + S − C) +
1

2µ
||A∗(y) + S − C||2F .

The basic idea of the ADAL method is to minimize the augmented Lagrange function
for the dual SDP (2) alternatively with respect to one of three types of variables: the
Lagrangian multipliers y for the linear constraints, the dual variables S and the primal
variables X:

yk+1 := argmin
y∈Rm

Lµ(Xk, y, Sk)

Sk+1 := argmin
S∈Sn

Lµ(Xk, y
k+1, S)

Xk+1 := Xk +
1

µ
(A∗(yk+1) + Sk+1 − C).

These computations are included in the main steps of the ADAL algorithm described
below:

Step 1. Initialize X0, S0 � O, µ > 0.

Step 2. At iteration k + 1, (k = 0, 1, ...)

yk+1 = −(AA∗)−1{µ(A(Xk)− b) +A(Sk − C)}, (3)

Wk+1 = C −A∗(yk+1)− µXk, (4)

Sk+1 = ΠSn+(Wk+1), (5)

Xk+1 =
1

µ
(Sk+1 −Wk+1). (6)

Here, ΠSn+(Wk+1) is the orthogonal projection of Wk+1 onto Sn+.

For a termination criterion in the ADAL algorithm, we use the following:

p inf :=
||A(X)− b||2

1 + ||b||2
, d inf :=

||A∗(y) + S − C||F
1 + ||C||F

, gap :=
||bTy − C •X||

1 + ||bTy||+ ||C •X||
. (7)

With a threshold value “tol”, the ADAL algorithm is terminated if

max{p inf, d inf, gap} ≤ tol. (8)

The following lemma is included for the theoretical convergence analysis of the ADAL
method.

Lemma 2.2. If Assumption 2.1 is satisfied, there exist points that satisfy the KKT con-
dition.

A(X) = b, A∗(y) + S = C, SX = 0, X � O, S � O.

By using the theory of the fixed points, it is shown that the ADAL method converges
from an arbitrary initial point to the KKT point in Lemma 2.2. See Section 2.2 in [16]
for details.

4

2.3 Sums of squares representations

We discuss representing nonnegative polynomials as sums-of-squares of polynomials. Let
R[x] be a n variable polynomial ring where x := (x1, x2, . . . , xn). We also let Z+ denote
the set of nonnegative integers. For the support verctor α := (α1, α2, . . . , αn) ∈ Zn+, a
monomial is denoted by xα := xα1

1 x
α2
2 ...x

αn
n , a coefficient of xα in p(x) ∈ R[x] by cα,p ∈ R,

and the set of supports of monomials with nonzero coefficients by Fp := {α ∈ Zn+|cα,p 6=
0}. Then p(x) ∈ R[x] is expressed as p(x) =

∑
α∈Fp cα,px

α. We denote the degree of p

by deg(p) := max{
∑n

i=1 αi|α ∈ Fp}.
A polynomial p(x) ∈ R[x] is an SOS if

∃ qi(x) ∈ R[x] (i = 1, 2, . . . ,m) such that p(x) =
m∑
i=1

q2i (x).

Let Pn = {p(x) ∈ R[x] | p(x) ≥ 0 (∀x ∈ Rn)} denote the set of nonnegative polynomials
and Σn = {p(x) ∈ R[x] | p(x) is SOS} the set of SOS polynomials. Using the following
lemma, representing a polynomial as an SOS can be formulated as an SDP.

Lemma 2.3. [10] A polynomial p(x) ∈ R[x] is in Σn if and only if there exists X ∈
SN such that p(x) = ud(x)TXud(x), and X � O, where ud(x) = (1, x1, . . . , xn, x

2
1,

x1x2, . . . , x
d
n), d ≥ ddeg(p)/2e and N =

(
n+d
n

)
.

To represent p(x) as an SOS, we consider the following problem called the SOS feasi-
bility problem:

Find X such that p(x) = ud(x)TXud(x), X � O. (9)

2.4 Formulating SOS feasibility problems as SDPs

The SOS feasibility problem (9) can be formulated as the equality standard form SDP (1)
in two different ways using the coefficients of the functions [4] and the function values [9].

First, we describe the SDP formulation by equating the coefficients of the functions.
Let G2d := {α ∈ Zn+|

∑n
i=1 ai ≤ 2d} denote the set of supports of terms whose degree

is not greater than 2d. We denote Eα as a constant matrix whose elements for xα in
ud(x)ud(x)T are 1’s and zeros elsewhere. Then, the constraint of the SOS feasibility
problem (9) can be equivalently expressed as∑

α∈Fp

cα,px
α = ud(x)TXud(x), X � O ⇔

∑
α∈G2d

cα,px
α = X • ud(x)ud(x)T , X � O,

⇔
∑
α∈G2d

cα,px
α = X •

∑
α∈G2d

Eαx
α =

∑
α∈G2d

X • Eαx
α, X � O.

Thus, the following constraints are obtained:

cα,p = X • Eα (α ∈ G2d).

5

The SOS feasibility problem (9) is formulated as an SDP with an appropriately chosen
objective function:

(Primal) min Diag(1, O) •Diag(x̂, X)
s.t. Diag(0, Eα) •Diag(x̂, X) = cα,p (α ∈ G2d),

x̂ ≥ 0, Q � O.
(Dual) min −

∑
α∈G2d cα,pỹα

s.t.
∑

α∈G2d Diag(0, Eα)ỹα + Diag(ŝ, S) = Diag(1, O),

ŝ ≥ 0, S � O,

(10)

where N =
(
n+d
n

)
, X,S ∈ SN and Diag(x̂, X) ∈ SN+1 means the block-diagonal matrix

whose upper leftmost element is x̂ and N × N lower-right submatrix is X. The size of
the vector [ỹα] (α ∈ G2d) is

(
n+2d
n

)
. As a result, it becomes very hard to solve the SDP

problem as n and d increase.

Problem (10) can be expressed in the form of SDP (1) and (2). We use the following
definition:

Aα := Eα, Ãα := Diag(0, Eα), b̃α := cα,p, C̃ := Diag(1, O),

and X̃ := Diag(x̂, X), S̃ := Diag(ŝ, S).
(11)

If A, b, C,X, y, S are replaced with Ã, b̃, C̃, X̃, ỹ, S̃, then the SDP (10) can be written in
the form of (1) and (2). We note that the resulting SDP has the following structure.

Remark 2.4. (The structure of the SDP constructed by equating coefficients)

(i) Ã(C̃) = 0.

(ii) All coefficient matrices are block diagonal.

Next, we formulate the SOS feasibility problem as the standard equality form SDP (1)
by deriving constraints based on the function values [9]. In particular, we focus on the
univariate trigonometric polynomial. SOS representations of trigonometric polynomials
have been widely used in filter design [5, 12]. We discuss the SOS feasibility problem of
trigonometric polynomials in Section 4.

Definition 2.5. The univariate trigonometric polynomial of degree N is defined as

pN(t) = p0 +
N∑
k=1

(pk cos(kt) + p−k sin(kt)).

As pN(t) has 2N + 1 coefficients (p−N , p−N+1, . . . , p−1, p0, p1, . . . , pN−1, pN), we take
2n+1 sampling points t1, t2, . . . , t2N+1 and derive an SDP by equating the function values
at the sample points. More specifically, we use the following lemma to construct an SDP
to represent pN as an SOS.

6

Lemma 2.6. ([9]) The univariate trigonometric polynomial pN(t) of degree N is nonneg-
ative if and only if there exists a matrix X ∈ SN+1

+ such that pN(t) = v(t)TXv(t). Here,
the vector v(t) is defined by

v(t) :=

(
cos

(
t

2

)
, sin

(
t

2

)
, . . . , cos

(
k +

1

2

)
t, sin

(
k +

1

2

)
t

)T
for N = 2k + 1 (k ∈ N), and

v(t) := (1, cos(t), sin(t), . . . , cos(kt), sin(kt))T

for N = 2k (k ∈ N).

By Lemma 2.6, the SOS feasibility problem can be written as

Find X such that X � O, pN(ti) = v(ti)
TXv(ti) (i = 1, 2, . . . , 2N + 1). (12)

With an appropriate objective function, we obtain the following SDP:

(Primal) min Diag(1, O) •Diag(x̂, X)
s.t. Diag(0, v(ti)v(ti)

T) •Diag(x̂, X) = pN(ti) (i = 1, 2, . . . , 2N + 1),
x̂ ≥ 0, SN+1 3 X � O.

(Dual) min −
∑2N+1

i=1 pN(ti)ỹi
s.t.

∑2N+1
i=1 Diag(0, v(ti)v(ti)

T)ỹi + Diag(ŝ, S) = Diag(1, O),
ŝ ≥ 0, SN+1 3 S � O.

(13)

Problem (13) can also be written as the equality standard form SDP (1) and (2) by letting

Ai := v(ti)v(ti)
T , Ãi := Diag(0, v(ti)v(ti)

T), b̃i := pN(ti), C̃ := Diag(1, O),

and X̃ := Diag(x̂, X), S̃ := Diag(ŝ, S).
(14)

The resulting SDP also has the structure described in Remark 2.4. A difference from
(10) is that the rank of all the coefficient matrices is 1, which reduces the computational
complexity for the matrix-vector product. For this reason, SDP solver DSDP[1] can
compute search directions for the primal-dual interior point method more efficiently than
other solvers such as SeDuMi, SDPT3 and SDPA [13, 14, 17, 18].

We mention that it is difficult to choose sampling points in general. Good sampling
methods for multivariate polynomials are not known. It is indicated in [9] that the best
sample points for the univariate trigonometric polynomials in Definition 2.5 are taken in
[−π, π] as

ti = −π +
i− 1

2N + 1
2π (i = 1, 2, ..., 2N + 1). (15)

3 Fast convergence

In this section, we discuss our fast convergence theorem for the ADAL method to solve the
SOS feasibility problems (10) and (13). If the ADAL method satisfies some conditions

7

during the iteration, then it converges to an optimal solution that satisfies the KKT
conditions in Lemma 2.2. In fact, the convergence to an optimal solution is guaranteed
within a few iterations after satisfying the conditions. We call the convergence as the
fast convergence as opposed to the tail convergence that is generally found in first-order
methods.

When the ADAL method is used to solve the SOS feasible problems (10) and (13),
the update in (4) corresponds to

W̃k+1 = C̃ − Ã∗(ỹk+1)− µX̃k.

Let W̃k+1 = Diag(wk+1,Wk+1) be the block-diagonal expression of W̃k+1. The following
theorem provides the conditions for the fast convergence.

Theorem 3.1. (Conditions for the fast convergence)
If W̃k+1 satisfies the following conditions, an exact optimal solution is obtained at iteration
k + 3:

wk+1 ≥ 0, Wk+1 � O, and Wk+1 � A∗
(
(AA∗)−1A(Sk)

)
.

Proof. From (11), (14) and Remark 2.4, we have

ÃÃ∗ = AA∗, Ã(C̃) = 0, Ã(X̃) = A(X), and Ã(S̃) = A(S).

Thus, ỹ is updated by (3) as

ỹk+1 = −(ÃÃ∗)−1
{
µ(Ã(X̃k)− b̃) + Ã(S̃k − C̃)

}
= −(AA∗)−1

{
µ(A(Xk)− b̃) +A(Sk)

}
. (16)

In (4), W̃ is computed by W̃k+1 = C̃ − Ã∗(yk+1)− µX̃k, thus each block can be obtained
using the structure of Ãi and C̃ in Remark 2.4 as

wk+1 = 1− µx̂k
Wk+1 = −A∗(ỹk+1)− µXk. (17)

From the assumptions wk+1 ≥ 0 and Wk+1 � O, the matrix variables X̃ and S̃ are updated
by (5) and (6) as follows:

x̂k+1 = 0, Xk+1 = − 1

µ
Wk+1 and ŝk+1 = 1− µx̂k, Sk+1 = O.

From (3), (16) and (17), we further obtain

ỹk+2 = −(ÃÃ∗)−1
{
µ(Ã(X̃k+1)− b̃) + Ã(S̃k+1 − C̃)

}
= −(AA∗)−1

{
µ(A(Xk+1)− b̃) +A(Sk+1)

}
= −(AA∗)−1

{
µ(A(−Wk+1/µ)− b̃)

}
= −(AA∗)−1

{
µ(A(Xk) +AA∗(ỹk+1)/µ− b̃)

}
= −ỹk+1 − (AA∗)−1

{
µ(A(Xk)− b̃) +A(Sk)−A(Sk)

}
= (AA∗)−1A(Sk), (18)

wk+2 = 1− µx̂k+1 = 1,

Wk+2 = −A∗
(
(AA∗)−1A(Sk)

)
− µXk+1

= −A∗
(
(AA∗)−1A(Sk)

)
+Wk+1. (19)

8

From the assumption Wk+1 � A∗(AA∗)−1A(Sk), we have Wk+2 � O. Hence, we obtain

x̂k+2 = 0, Xk+2 = − 1

µ
Wk+2 and ŝk+2 = 1, Sk+2 = O.

At iteration k + 3,

ỹk+3 = (AA∗)−1A(Sk+1) = 0, (20)

wk+3 = wk+2 = 1,

Wk+3 = Wk+2 � O.

Finally, we obtain

x̂k+3 = 0, Xk+3 = − 1

µ
Wk+3 = − 1

µ
Wk+2 and ŝk+3 = 1, Sk+3 = O. (21)

Next, we show that the solution (X̃k+3, ỹ
k+3, S̃k+3) satisfies the KKT condition in

Lemma 2.2. Using (19), (17) and (16),

Xk+3 = − 1

µ
Wk+2 = − 1

µ
Wk+1 +

1

µ
A∗
(
(AA∗)−1A(Sk)

)
= Xk +

1

µ
A∗(ỹk+1) +

1

µ
A∗
(
(AA∗)−1A(Sk)

)
= Xk −A∗

(
(AA∗)−1(A(Xk)− b̃)

)
.

Thus, the primal constraint is

Ã(X̃k+3) = A(Xk+3) = A
(
Xk −A∗

(
(AA∗)−1(A(Xk)− b̃)

))
= b̃,

and the dual constraint is also satisfied by (20) and (21):

Ã∗(ỹk+3) + S̃k+3 = Diag(0 + 1,A∗(0) +O) = Diag(1, O).

For the duality gap,

X̃k+3 · S̃k+3 = 0× 1 +Xk+3 ·O = 0.

Consequently, we have confirmed that an optimal solution satisfying Lemma 2.2 is ob-
tained.

Using Theorem 3.1, we show that an optimal solution can be obtained in two iterations
under some condition.

Corollary 3.2. (Convergence in two iterations) Take the initial points x̂0 ≤ 1
µ
, S̃0 =

Diag(ŝ0, O), ŝ0 ∈ R. If, for some X0,

X0 −A∗
(
(AA∗)−1(A(X0)− b̃)

)
� O

holds, then an exact solution satisfying the KKT condition of Lemma 2.2 is obtained in
two iterations.

9

Proof. At the first iteration, from (16) and (17), we have

ỹ1 = −(AA∗)−1
{
µ(A(X0)− b̃)

}
,

w1 = 1− µx̂0 ≥ 0,

W1 = −A∗(ỹ1)− µX0 = −µ
{
X0 −A∗

(
(AA∗)−1(A(X0)− b̃)

)}
� O.

Hence, we have

x̂1 = 0, X1 = − 1

µ
W1, and ŝ1 = 1− µx̂0, S1 = O.

For the second iteration, by (18),

ỹ2 = (AA∗)−1A(S1) = 0,

w2 = 1,

W2 = −A∗(ỹ2)− µX1 = W1.

Thus, we obtain

x̂2 = 0, X2 = − 1

µ
W2 = − 1

µ
W1 = X0 −A∗

(
(AA∗)−1(A(X0)− b̃)

)
, and ŝ2 = 1, S2 = O.

Similarly to the proof for Theorem 3.1, we can show that this solution satisfies the KKT
condition.

4 Sums of squares of trigonometric polynomials

In this section, we are concerned with the trigonometric polynomial. We prove that the
fast convergence can be obtained as the minimum value of the trigonometric polynomial
pN becomes larger than 0. We also show that the strictly feasible region is large in such
SOS feasibility problems. In addition, we describe the range where the conditions for
convergence in two iterations hold with the same initial point.

4.1 Dirichlet kernel

For SOS representations of trigonometric polynomials, we introduce the Dirichlet kernel
KN(t).

Definition 4.1. (The Dirichlet kernel) The Dirichlet kernel for N ∈ N is defined by

KN(t) =
1

N

sin Nt
2

sin N
2

.

For the odd and even cases, the kernel is equivalent to{
KN(t) = 1

N

∑m
k=−m cos kt (N = 2m+ 1,m ∈ N)

KN(t) = 2
N

∑m
k=0 cos(k + 1

2
)t (N = 2m+ 2,m ∈ N).

10

It is known that the following holds for the Dirichlet kernel:

N−1∑
k=0

K2
N(t− kw) = 1 (w := 2π/N). (22)

We use the following lemma to represent the univariate nonnegative trigonometric poly-
nomial of degree N as an SOS.

Lemma 4.2. ([9]) If the univariate trigonometric polynomial of degree N is nonnegative,
there exists X ∈ SN+1

+ such that pN(t) = v(t)TXv(t) where v(t) :=
(
KN+1(t), KN+1(t −

τ), . . . , KN+1(t−Nτ)
)T

with τ = 2π
N+1

.

The sampling points t1, t2, . . . , t2N+1 are equally spaced nodes in [−π, π] and the num-
ber of points is determined by the number of the coefficients of pN(t) as (15).

4.2 Conditions for fast convergence

We consider the conditions for fast convergence discussed in Section 3 for SOS repre-
sentations of trigonometric polynomials with the Dirichlet kernel. We first discuss an
important property for the SOS feasibility problem of trigonometric polynomials (13).

Lemma 4.3. When representing a univariate trigonometric polynomial as an SOS using
the Dirichlet kernel, (13) satisfies

A∗
(
(AA∗)−1e

)
= I and A∗

(
(AA∗)−1A(I)

)
= I.

Proof. See Appendix A.

Using Lemma 4.3, we have the following condition for fast convergence.

Corollary 4.4. Let the initial points be X̃0 = Diag(x̂0, βI) (x̂0 ≤ 1
µ
, β ∈ R), S̃0 =

Diag(0, O), the condition for convergence in two iterations for (13) is

A∗
(
(AA∗)−1b̃

)
� O.

Proof. The condition for convergence in two iterations from Corollary 3.2 is

X0 −A∗
(
(AA∗)−1(A(X0)− b̃)

)
� O.

From Lemma 4.3, A∗
(
(AA∗)−1A(X0)

)
= βI. Thus, with the initial points X̃0 = Diag(x̂0, βI)

(x̂0 ≤ 1
µ
, β ∈ R), S̃0 = Diag(0, O), the desired result follows.

11

4.3 Convergence conditions for minimizing pN(t)

We discuss how to adjust a given pN(t) to satisfy the condition for convergence in two
iterations in Corollary 4.4. First, define pN,γ(t) := pN(t) + γ (γ ∈ R) and consider
minimizing pN,γ(t) in the form of SDP (13) by taking the coefficient matrices as (14) and
replacing b̃i by b̃i + γ := pN,γ(ti). Thus, the condition for convergence in two iterations in
Corollary 3.2 for pN,γ(t) becomes

X0 −A∗
(
(AA∗)−1(A(X0)− b̃− γe)

)
� O,

or X0 −A∗
(
(AA∗)−1(A(X0)− b̃)

)
+ γI � O (using Lemma 4.3). (23)

As γ becomes large, pN,γ is more likely to satisfy the convergence condition described
above in view of Corollary 3.2. In other words, the condition for convergence is more
likely satisfied for pN when the minimum value of pN is larger than 0.

We now discuss on the value of γ in pN,γ to satisfy the condition for convergence in

two iterations. Let X̆ = X0 − A∗
(
(AA∗)−1(A(X0) − b̃)

)
and λmin(X̆) be the minimum

eigenvalue of X̆. Then, (23) can be written as

X̆ + γI � O.

For the SOS feasibility problem (13) of pN , the condition for convergence in two iteration
is X̆ � O. If X̆ ≺ O, then X̆ + γI � O holds when γ ≥ −λmin(X̆). Thus, the condition
for convergence in two iterations for pN,γ is satisfied if γ ≥ −λmin(X̆).

Lemma 4.5. For the SOS feasibility problem (13) of pN , assume that the initial points
X̃0 = Diag(x̂0, X0), x̂0 ≤ 1

µ
, S̃0 and Corollary 3.2 holds. Then, if γ ≥ −λmin(X̆), the

condition for convergence in two iterations is satisfied for pN,γ.

4.4 The size of the strictly feasible region of the SOS feasibility
problem of trigonometric polynomials

We show that finding the minimum value of a nonnegative trigonometric polynomial
is equivalent to computing the size of the strictly feasible region of the SOS feasibility
problem (24) using the Dirichlet kernel.

The size of the strictly feasible region of the SOS feasibility problems (10) and (13)
can be measured by solving an SDP. More precisely, we show that the following SDP is
solved for the size of the strictly feasible region:

max
δ∈R

δ subject to Ã(δĨ + X̃) = b̃, X̃ � O, δ ≥ 0, (24)

where Ĩ is an identity matrix of the same size as X̃. If δ is equal to 0, it means that
no interior solution exists, thus Assumption 2.1 does not hold. If it is positive, interior
solutions exist and the optimal value δ represents the size of the strictly feasible region of
(10) and (13).

12

Using (22), we know Ai • I = v(ti)v(ti)
T • I = v(ti)

Tv(ti) = 1 (i = 1, 2, . . . , 2N + 1).
From Ã(X̃) = A(X), (24) can be expressed as

max
δ∈R

δ subject to δe+A(X) = b̃, X � O, δ ≥ 0. (25)

With b̃i = pN(ti)(i = 1, 2, ..., 2N + 1), (25) can be equivalently written as

max
δ∈R

δ subject to pN(ti)− δ = v(ti)
TXv(ti) (i = 1, 2, . . . , 2N + 1), X � O, δ ≥ 0. (26)

From (12), (26) is equivalent to a minimization problem for nonnegative pN . As a result,
the strictly feasible region of the trigonometric polynomial that satisfies the condition for
convergence in two iterations is obtained by maximizing δ. Note that (26) does not have
the structure mentioned in Remark 2.4 (i).

5 Numerical experiments

We present numerical results on the ADAL algorithm. The purposes of our experiments
are

• to verify the fast convergence for the SOS feasibility problems of general and trigonometic
polynomials.

• to demonstrate that the ADAL method performs better than SeDuMi which is based
on the primal-dual interior point method.

• to compare the size of the strictly feasible region of the polynomials that converge
rapidly with that of polynomials with slow convergence for the SOS feasibility prob-
lem.

• to show that the performance of the ADAL can be different depending on the
formulations of the SOS feasibility problem for a given problem.

Our numerical experiments were conducted on a Mac with 2.7 GHz Intel Core i5, 16 GB
memory space. The ADAL algorithm was implemented in MATLAB R2017b.

All test SOS feasibility problems are formulated as (10) or (13). SparsePOP [15] was
used to generate SDPs of the test problems and then the ADAL method or SeDuMi was
applied to the SDPs to compare the performance. The variable y in the ADAL method (3)
was updated by applying the Cholesky factorization to AA∗, which was executed only
once in the entire execution of the ADAL method. The primal variable X in (10) was
initialized with the identity matrix I and the dual variable S in (13) with O. We also
initialize µ = 1, x̂ = 1 and ŝ = 0.

5.1 General polynomials

Numerical results on sparse polynomials, dense polynomials and a small illustrative ex-
ample are discussed.

13

Sparse polynomials

If sparsity of the polynomial is exploited, the size of the positive semidefinite cones in
SDPs becomes small. As a result, the computation of the search direction of the primal-
dual interior point method and updating the matrix variable by (5) and (6) in the ADAL
algorithm can be more efficient for sparse polynomials. We refer to [6, 15, 8] for details
on sparsity of polynomials.

We experimented on test problems from Globallib [7], which were also used in Sparse-
POP [15]. Each test problem is a relaxation problem of the following polynomial opti-
mization problem:

min p(x) subject to x ∈ Bn, (27)

where Bn denotes the basic semialgebraic set {x ∈ Rn | pi(x) ≥ 0 (i = 1, 2, ...,m)}. Note
that the objective function of (27) has no constant term. Let p∗ be the optimal value of
the relaxation problem of POP (27). Then p∗ is the lower bound of p(x) over Bn. The
function p(x)− q (x ∈ Bn) is nonnegative if and only if q ≤ p∗.

Using the vector ud(x) in Lemma 2.3, the following problem is considered with γ ≥ 0:

Find X s.t. p(x)− p∗ + γ = ud(x)TXud(x), X � O, x ∈ Bn.

The value of threshold “tol” for (8) in the ADAL algorithm was set to 10−4, and the
maximum number of iterations was set to 10,000.

Table 1 shows the results for two values of γ, 0 and 1012δ0. In the case of γ = 0, the
size of the strictly feasible region δ0 in Table 1 is the primal optimal value of SDP (24)
obtained by SeDuMi. For γ = 1012δ0, the corresponding size is shown in the column of
δ12. The number of iterations marked with ∗ in the column of ADAL indicates that the
condition for the fast convergence in Theorem 3.1 or the condition for convergence in two
iterations in Corollary 3.2 is satisfied. For the problem p(x) with γ = 0, we see that
the ADAL algorithm did not converge rapidly, taking many iterations. Extremely small
strictly feasible region δ0 and numerical difficulty caused by violating Assumption 2.1 may
have caused the slow convergence. However, we observe in the column for p(x) + 1012δ0
that the sizes of the strictly feasible regions, δ12, are larger than those in the column under
δ0, and the fast converge conditions are satisfied in many cases marked with ∗. As the
minimum value of p(x) is larger than 0, the strictly feasible region becomes larger, and
the fast convergence is more likely to occur. This is the same results as in the case of
trigonometric polynomials.

The ADAL method performs better than SeDuMi in terms of computational time and
obtaining accurate solutions for the problems with large δ12, say, greater than 1e-01, in
the column of γ = 1012δ0. From the numbers of iterations required by SeDuMi in the
column of γ = 0 and γ = 1012δ0, we see that SeDuMi took less iterations for the problems
of γ = 1012δ0, but the differences in the iteration numbers between the problems with
γ = 0 and γ = 1012δ0 are greater for the ADAL method.

14

Table 1: Numerical results on sparse polynomials. “Itr” means the number of iterations
and “Time(s)” CPU time in seconds. “> 10000” denotes that it takes more than 10000
iterations.
Problem γ = 0 γ = −1012δ0

SeDuMi ADAL SeDuMi ADAL
δ0 Itr Time(s) Itr Time(s) δ12 Itr Time(s) Itr Time(s)

Bex2 1 1 1.36e-11 19 2.17e+00 >10000 4.09e+01 1.48e-01 7 6.10e-01 30 2.26e-01
Bex2 1 2 1.37e-12 15 7.40e-01 1187 1.40e+00 5.64e-02 7 1.20e-01 40* 1.38e-01
Bex2 1 3 4.44e-12 14 1.25e+00 210 7.88e-01 6.56e-02 6 3.20e-01 34* 1.15e-01
Bex2 1 4 7.58e-13 12 5.80e-01 266 4.38e-01 2.19e-02 6 7.00e-02 85 1.88e-01
Bex2 1 5 2.85e-13 18 1.80e+00 1305 5.19e+00 1.40e-03 10 9.60e-01 3216* 1.04e+01
Bex2 1 8 2.86e-13 34 1.71e+01 2258 3.10e+01 2.95e-03 12 7.75e+00 2660 4.77e+01
Bex3 1 1 2.15e-12 19 1.85e+00 3871 2.58e+01 2.35e-02 7 4.50e-01 114 4.92e-01
Bex3 1 2 1.92e-12 17 7.90e-01 310 6.27e-01 5.62e-02 6 2.20e-01 44 1.24e-01
Bex3 1 4 1.23e-10 16 1.27e+00 3430 1.10e+01 2.23e+00 6 5.40e-01 10* 8.86e-02
Bex5 2 2 case1 9.69e-11 20 1.42e+00 >10000 2.82e+01 1.58e+00 6 4.90e-01 11* 9.62e-02
Bex5 2 2 case2 2.66e-11 20 1.80e+00 >10000 2.83e+01 4.39e-01 6 4.90e-01 17* 1.04e-01
Bex5 2 2 case3 3.41e-12 16 1.01e+00 >10000 2.61e+01 5.28e-02 7 5.10e-01 86 3.20e-01
Bex5 3 2 5.19e-09 30 1.03e+01 >10000 7.70e+01 4.17e+01 8 2.24e+00 9* 1.82e-01
Bex9 1 1 3.43e-13 20 1.74e+00 6009 1.33e+01 1.41e-02 8 4.50e-01 293 7.89e-01
Bex9 1 2 1.00e-09 34 5.34e+00 >10000 4.28e+01 1.31e+01 8 9.00e-01 11* 1.22e-01
Bex9 1 4 2.21e-09 18 1.10e+00 547 1.07e+00 3.87e+01 6 2.10e-01 7* 4.05e-02
Bex9 1 5 2.68e-14 20 1.21e+00 5823 9.51e+00 6.61e-04 10 3.50e-01 2617 4.50e+00
Bex9 1 8 1.45e-11 13 8.60e-01 901 1.78e+00 3.45e-01 6 2.10e-01 12* 5.24e-02
Bex9 2 1 7.54e-12 19 1.16e+00 1247 2.91e+00 1.91e-01 6 3.30e-01 26* 1.31e-01
Bex9 2 2 2.69e-09 23 1.56e+00 4857 5.23e+00 8.20e+01 5 1.30e-01 8* 2.64e-02
Bex9 2 3 2.67e-12 16 1.13e+00 2520 6.73e+00 6.67e-04 11 5.50e-01 4974 1.27e+01
Bex9 2 4 7.67e-14 18 7.70e-01 2472 3.89e+00 2.14e-03 9 3.00e-01 891* 1.37e+00
Bex9 2 5 1.94e-12 18 5.40e-01 1079 1.33e+00 7.60e-02 6 1.20e-01 40* 8.77e-02
Bex9 2 6 7.08e-13 21 2.57e+00 6516 2.47e+01 1.09e-02 8 7.90e-01 531 2.26e+00
Bex9 2 7 4.74e-10 18 1.46e+00 1445 3.59e+00 1.19e+01 6 3.50e-01 7* 4.20e-02
Bex9 2 8 1.81e-12 12 2.70e-01 322 2.23e-01 3.62e-01 4 8.00e-02 10* 1.66e-02
Balkyl 2.86e-14 24 4.52e+00 >10000 6.55e+01 1.74e-04 12 2.03e+00 >10000 6.51e+01
Bst bpaf1a 1.31e-12 23 9.50e-01 4017 8.86e+00 2.85e-02 7 3.90e-01 95* 3.70e-01
Bst bpaf1b 7.83e-13 18 8.70e-01 5352 1.13e+01 1.84e-02 7 3.30e-01 151 4.09e-01
Bst e05 4.72e-12 16 5.90e-01 4966 3.36e+00 2.46e-01 5 1.20e-01 12* 2.97e-02
Bst e07 1.12e-12 19 9.70e-01 3955 6.97e+00 1.81e-02 7 2.90e-01 137 3.33e-01
Bst jcbpaf2 6.76e-13 18 1.67e+00 4497 1.45e+01 1.29e-02 8 7.70e-01 338 1.22e+00
Bhaverly 1.65e-11 23 1.29e+00 >10000 2.33e+01 2.64e-01 6 2.80e-01 20* 9.89e-02
alkylation 1.74e-13 16 1.88e+00 >10000 4.70e+01 1.29e-03 11 1.16e+00 3331 1.62e+01
Bst robot 2.99e-11 15 7.60e-01 705 1.44e+00 5.15e-01 7 2.70e-01 17* 6.46e-02
st cqpjk2 5.90e-11 12 3.00e-01 125 1.02e-01 2.96e+00 5 6.00e-02 2* 1.18e-02
st e01 9.15e-11 18 4.60e-01 2167 8.32e-01 1.38e+01 6 1.10e-01 6* 1.36e-02
st e09 1.05e-10 10 2.10e-01 1776 9.01e-01 1.08e+01 5 1.30e-01 7* 1.76e-02
st e10 1.40e-09 11 1.40e-01 355 2.36e-01 2.76e+02 6 1.20e-01 6* 7.76e-03
st e23 9.58e-12 12 2.10e-01 1528 6.33e-01 2.71e+00 4 8.00e-02 2* 5.86e-03
st e34 1.28e-13 18 5.50e-01 771 1.29e+00 6.24e-03 8 1.90e-01 384* 6.51e-01
st fp5 2.85e-13 18 1.76e+00 1305 4.31e+00 1.40e-03 10 9.20e-01 3216* 9.63e+00

15

Dense polynomials

We tested the SOS feasibility problem for the following dense polynomial:

pγ(x) =
n∑
i=1

x4i + 2
∑

1≤i,j≤n

x2ix
2
j + γ, x ∈ Rn, γ ≥ 0. (28)

The numerical results are displayed in Table 2. The experiments were conducted with
parameters from n = 5 to 100, and γ = 0 and 1. The symbol ’OOM’ indicates that
SeDuMi failed to solve the problem due to out of memory. The value of threshold “tol”
for (8) was set to 10−8. The numbers marked with ∗ indicate the fast convergence of the
ADAL algorithm. We observe that the problems with γ = 1 were solved very fast by the
ADAL method, resulting in the fast convergence.

Table 2: Numerical results on the dense polynomial (28).
(
n+2
2

)
denotes the size of positive

semidefinite matrix and
(
n+4
4

)
the number of constraints.

(n, γ)
(
n+2
2

) (
n+4
4

)
SeDuMi ADAL

Itr Time(s) Itr Time(s)

(5,0)
21 126

22 1.3 41 0.4
(5,1) 5 0.2 9* 0.03
(10,0)

66 1,001
23 7.8 44 0.8

(10,1) 4 1.5 9* 0.03
(15,0)

136 3,876
24 317.6 65 2.7

(15,1) 4 46.2 10* 0.1
(20,0)

231 10,626
25 9736.7 73 9.5

(20,1) 4 1561.3 10* 0.4
(50,0)

1326 316,251
- OOM 122 841.4

(50,1) - OOM 12* 45.9
(100,0)

5151 4,598,126
- OOM 134 34656.0

(100,1) - OOM 14* 1510.3
(150,0)

11476 22,533,126
- OOM 168 793100.0

(150,1) - OOM 16* 44476.4

The size of the SOS feasibility problem for (28) increases very rapidly since the size
of positive semidefinite cone is

(
n+2
2

)
and the number of constraints is

(
n+4
4

)
. The compu-

tational complexity of the primal-dual interior point method is known to be O(
(
n+2
2

)6
) =

O(n12) and that of the ADAL method O(
(
n+2
2

)3
) = O(n6). Thus, it takes a great deal

of computation time for SeDuMi to solve the problems as n increases. For the ADAL
method, the SOS feasibility problem of (28) is unconstrained and ÃÃ∗ is a diagonal
matrix. As a result, the ADAL algorithm can update y without solving the linear equa-
tion. Consequently, the ADAL method can solve the problems much faster than SeDuMi,
particularly in the case n = 20 and γ = 1.

For the largest instance (n = 150), we used a linux server with Opteron Processor
4386 (3.1 GHz) and 128 GB memory space. SeDuMi could not solve the problem with

16

n ≥ 50 due to out of memory; for n = 40, SeDuMi required at least 130 GB memoy space.
In contrast, the ADAL method consumed only 34 GB for the instance with n = 150 and
γ = 0. In particular, the number of constraints, m = 22, 533, 126, in the SDP for n = 150
is twice larger than the largest problem solved by SDPNAL+ in [19]. For the instance
with n = 150 and γ = 1, the ADAL method converged fast and an optimal solution with
the desired accuracy could be obtained.

An illustrative example

We discuss that the convergence may differ depending on the formulations, in particular,
between the primal and the dual in (10). Consider

p(x) = x4 − 2x3 + 2x2 − 2x+ 1.

To represent as p(x) = u(x)TXu(x) with u(x) = [1, x, x2], we have the following con-
straints by equating the coefficients of p(x) and u(x)TXu(x).

X1,1 = 1, X1,2 +X2,1 = −2, X1,3 +X2,2 +X3,1 = 2, X2,3 +X3,2 = −2, X3,3 = 1.

Let y1 be a free variable for X1,3 = X3,1 and an appropriate objective function be −y2.
Then the problem in dual form is

min −
(

0 1
)(y1

y2

)
s.t.

 0 0 −1
0 2 0
−1 0 0

 y1 + Iy2 + S =

 1 −1 0
−1 2 −1

0 −1 1

 ,

S � O.

(29)

We note that the structure mentioned in Remark 2.4 cannot be found in this SDP.

Table 3 and Figures 1 and 2 illustrate the numerical results on (29). The horizontal
axes in the two figures mean the number of iterations, and the vertical axes denote p inf
and d inf (7) in Figures 1 and 2, respectively. The red lines are for (29) and the blue
lines are for (10). The blue line in Figure 1 is not shown as p inf = 0 was obtained
throughout the iterations. The threshold “tol” in the termination condition (8) for the
ADAL algorithm was set to 10−15. We see that the convergence speed differs greatly
between (29) and (10). For the formulation (29), the ADAL method gradually converged,
requiring a large number of iterations. This is called the tail convergence. However, the
ADAL method for (10) converged rapidly to a highly accurate solution and satisfied the
condition for the convergence in Cororally 3.2.

5.2 Trigonometic polynomial

For the numerical tests on the SOS feasibility problem (13) for the univariate trigonometric
polynomial pN(t) with the Dirichlet kernel, we used the sampling method described in
(15). Then, a nonnegative polynomial pN(t) was generated by choosing the coefficients
pk, p−k (k = 1, 2, ..., N) from a uniform distribution (−1, 1) and letting p0 =

∑N
k=1(|pk|+

17

Table 3: Numerical results on (29). “Itr” means the number of iterations, “Time(s)” CPU
time in seconds, “p inf” and “d inf” as defined in (7).

SDP(10) SDP(29)

Itr 2 158
Time(s) 0.1076 0.2300
p inf 0 9.8210e-16
d inf 5.5511e-17 1.1689e-16

Figure 1: Primal infeasibility. — for (29).
Figure 2: Dual infeasibility. — for (10) and
— for (29).

|p−k|). Let p∗N be the minimum of pN(t) obtained by SparsePOP with SeDuMi. From
Lemma 2.6, p∗N can be obtained exactly by solving the SOS feasibility problem. The
values of p∗N were 46.9, 82.8, 164.4 for N = 50, 100, 200, respectively. When we initialized
X0 with I, we obtained 19.9, 35.7, 84.0 for the values of λmin(X̆) where N = 50, 100, 200,
respectively.

The relationship between γ and the number of iterations is examined by solving the
SOS feasibility problem for pN(t) + γ (γ ≤ 0) with the ADAL method. We tested with
N = 50, 100, 200. The value of γ is gradually decreased from 0 to −p∗N by 0.1 for N = 50,
by 0.2 for N = 100, and by 1 for N = 200. The threshold “tol” in (8) was set to 10−8. The
experiment results are illustrated in Figures 3, 4, and 5. The horizontal axis represents γ,
while the vertical axis indicates the number of iterations executed in the ADAL method.

In Figures 3, 4, and 5, we see that the ADAL method converges in two iterations for
the values of γ ∈ [−λmin(X̆), 0], which confirms the result in Corollary 4.5. If γ becomes
smaller than −λmin(X̆), it takes more iterations than 2 iterations in Figure 5 where γ
ranges from −80 to −150. In these cases, we observe that the condition for the fast
convergence was still satisfied. We see that the number of iterations increases sharply
when γ approaches −p∗N . This is because the strictly feasible region of the SOS feasibility
problem becomes very small as mentioned in Section 4.4. Hence, it is difficult to satisfy
Assumption 2.1 numerically.

18

Figure 3: N=50 (p∗N = 46.9, λmin(X̆) =
19.9)

Figure 4: N=100 (p∗N = 82.8, λmin(X̆) =
35.7)

Figure 5: N=200 (p∗N = 164.4,
λmin(X̆) = 84.0)

19

6 Concluding remarks

For the SOS feasibility problem of representing a (trigonometric) polynomial as an SOS,
conditions for convergence of the ADAL method to an optimal solution in a few iterations
have been proposed. The fast convergence of the ADAL method for the problem has been
proved under the conditions. For trigonometric polynomials, we have proved that a given
trigonometric polynomial can be adjusted to meet the conditions for the fast convergence
of the ADAL method. The relation between the conditions and the size of the strictly
feasible region of the SOS feasibility problem has been investigated.

The numerical results have been presented in Section 5 to numerically verify the fast
convergence under the conditions. By enlarging the strictly feasible region of the SOS
feasibility problem of general polynomials, we have demonstrated numerically that the
conditions can be satisfied and the fast convergence of the ADAL method can be achieved.
The theoretical results on the trigonometric polynomials have been also confirmed with
the numerical experiments in Section 5.2.

The efficiency of the ADAL method over the primal-dual interior-point method as
SeDuMi can be shown more clearly by testing on large-scale problems with an advanced
computer with large memory than the machine used for the results in Section 5.

For many first-order methods, an initial value for X affects the overall convergence.
In our experiments, the identity matrix I, a rough initialization, was used to initialize X.
If the SOS feasibility problem of a polynomial cannot be solved fast, the ADAL method
can be applied repeatedly by initializing X with the solution obtained in the previous
application of the ADAL method. More precisely, we first add a positive number γ to
the polynomial p(x) and solve the SOS feasibility problem of p(x) + γ which is likely
to satisfy the conditions for the fast convergence. Then use the obtained solution to
initialize X for the next application of the ADAL method to the SOS feasibility problem
of p(x) + γ′ (γ′ < γ). We plan to work on this repeated application of the ADAL method
in the future.

References

[1] S. J. Benson and Y. Ye. Algorithm 875: DSDP5 – software for semidefinite programming.
ACM Trans. on Math. Softw., 34(3):16, 2008.

[2] G. Blekherman. There are significantly more nonnegative polynomials than sums of squares.
Israel J. Math., 153:355–380, 2006.

[3] L. Chua, D. Plaumann, R. Sinn, and C. Vinzant. Gram spectrahedra. arXiv:1608.00234v2,
2016.

[4] D. Cifuentes and P. A. Parrilo. Sampling algebraic varieties for sum of squares programs.
SIAM J. Optim., 27(4):2381–2404, 2017.

[5] B. Dumitrescu. Trigonometric polynomials positive on frequency domains and applications
to 2-d fir filter design. IEEE Trans. Singnal Processing, 54(11):4282–4292, 2006.

20

[6] M. Fukuda, M. Kojima, K. Murota, and K. Nakata. Exploiting sparsity in semidefinite
programming via matrix completion. I: General framework. SIAM J. Optim., 11:647–674,
2000.

[7] GLOBAL Lib. GLOBAL library. http://www.gamsworld.org/global/globallib.htm.
[Online; accessed 28-March-2018].

[8] S. Kim, M. Kojima, M. Mevissen, and M. Yamashita. Exploiting sparsity in linear and
nonlinear matrix inequalities via positive semidefinite matrix completion. Math. Program.,
129:33–68, 2011.

[9] J. Löfberg and P. A. Parrilo. From coefficients to samples: a new approach to sos optimiza-
tion. In The 43rd IEEE Conference on Decision and Control, volume 3, pages 3154–3159.
IEEE, 2004.

[10] P. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Math. Pro-
gram., 96(2):293–320, 2003.

[11] H. Peyrl and P. A. Parrilo. Computing sum of squares decompositions with rational coef-
ficients. Theo. Comput. Sci., 409:269–281, 2008.

[12] T. Roh, B. Dumitrescu, and L. Vandenberghe. Multidimensional fir filter design via trigono-
metric sum-of-squares optimization. IEEE Journal of Selected Topics in Signal Processing,
1(4):641–650, 2007.

[13] J. F. Sturm. SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optim. Methods and Softw., 11&12:625–653, 1999.

[14] R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear programs
using SDPT3. Math. Program., 95:189–217, 2003.

[15] H. Waki, S. Kim, M. Kojima, and M. Muramatsu. Sums of squares and semidefinite
programming relaxations for polynomial optimization problems with structured sparsity.
SIAM J. Optim., 17:218–242, 2006.

[16] Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented lagrangian methods
for semidefinite programming. Math. Prog. Comp., 2(3):203–230, 2010.

[17] M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi, K. Nakata, and M. Nakata. Latest
developments in the SDPA family for solving large-scale SDPs. In Handbook on semidefinite,
conic and polynomial optimization, pages 687–713. Springer, 2012.

[18] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of SDPA
6.0 (semidefinite programming algorithm 6.0). Optim. Methods and Softw., 18(4):491–505,
2003.

[19] L. Q. Yang, D. F. Sun, and K. C. Toh. SDPNAL+: a majorized semismooth Newton-CG
augmented Lagrangian method for semidefinite programming with nonnegative constraints.
Math. Prog. Comp., 7:331–366, 2015.

21

http://www.gamsworld.org/global/globallib.htm

Appendix A: Proof for Lemma 4.3

Proof. Let Ai = v(ti)v(ti)
T . From (22), it holds that

A(I) = (A1 • I, A2 • I, . . . , A2N+1 • I)T = (||v(t1)||2, ||v(t2)||2, . . . , ||v(t2N+1)||2)T = e.(30)

We show that A∗(e) = 2N+1
N+1 I.

(A∗(e))pq =
2N+1∑
i=1

(viv
T
i)pq

=
2N+1∑
i=1

KN+1(ti − (p− 1)τ)KN+1(ti − (q − 1)τ)

For N , we consider two cases (i) N + 1 = 2m + 1 (m ∈ N) and (ii) N + 1 = 2m + 2 (m ∈ N).
(i) N + 1 = 2m+ 1 (m ∈ N):
Let r = p− 1 and s = q − 1. Then,

(A∗(e))pq =
1

(N + 1)2

2N+1∑
i=1

m∑
k1=−m

m∑
k2=−m

cos k1(ti − (p− 1)τ) cos k2(ti − (q − 1)τ)

=
1

2(N + 1)2

m∑
k1=−m

m∑
k2=−m

2N+1∑
i=1

{
cos

(
−(k1 + k2)π +

(k1 + k2)(i− 1)2π

2N + 1
− (rk1 + sk2)τ

)
+ cos

(
−(k1 − k2)π +

(k1 − k2)(i− 1)2π

2N + 1
− (rk1 − sk2)τ

)}
=

1

2(N + 1)2

m∑
k1=−m

m∑
k2=−m

(−1)k1+k2
2N+1∑
i=1

{
cos

(
(k1 + k2)(i− 1)2π

2N + 1
− (rk1 + sk2)τ

)
+ cos

(
(k1 − k2)(i− 1)2π

2N + 1
− (rk1 − sk2)τ

)}
.

Let θi = (k1+k2)(i−1)2π
2N+1 and φi = (k1−k2)(i−1)2π

2N+1 .

Let Z be the set of integers. Using Euler’s formula, we have

2N+1∑
i=1

{
cos(θi − (rk1 + sk2)τ) +

√
−1 sin(θi − (rk1 + sk2)τ)

}
(31)

= e−
√
−1(rk1+sk2)τ

2N+1∑
i=1

e
√
−1θi

=

{
(2N + 1)e−

√
−1(p−q)k1τ if k1 = −k2

0 if k1 6= −k2

since the value of θi is 0 if k1 = −k2. If k1 6= −k2, then −2N ≤ 2(k1 + k2) ≤ 2N, 2(k1+k2)2N+1 /∈ Z
and e

√
−1kπ = 1 (∀k ∈ 2N),

2N+1∑
i=1

e
√
−1θi =

1− (e
√
−1 2(k1+k2)π

2N+1)2N+1

1− e
√
−1 2(k1+k2)

2N+1
π

= 0.

22

Similarly,

2N+1∑
i=1

{
cos(φi − (rk1 − sk2)τ) +

√
−1 sin(φi − (rk1 − sk2)τ)

}
(32)

= e−
√
−1(rk1−sk2)τ

2N+1∑
i=1

e
√
−1φi

=

{
(2N + 1)e−

√
−1(p−q)k1τ if k1 = −k2

0 if k1 6= −k2

since φ = 0 if k1 = k2. If k1 6= −k2, then −2N ≤ 2(k1 − k2) ≤ 2N, 2(k1−k2)2N+1 /∈ Z. As a result,

2N+1∑
i=1

e
√
−1φi =

1− (e
√
−1 2(k1−k2)π

2N+1)2N+1

1− e
√
−1 2(k1−k2)

2N+1
π

= 0.

We see that

2N+1∑
i=1

cos(θi − (rk1 + sk2)τ) =

{
(2N + 1) cos(p− q)k1τ if k1 = −k2

0 if k1 6= −k2
2N+1∑
i=1

cos(φi − (rk1 − sk2)τ) =

{
(2N + 1) cos (p− q)k1τ if k1 = k2

0 if k1 6= k2.

Consequently,

(A∗(e))pq =
2N + 1

2(N + 1)2

m∑
k1=−m

cos(p− q)k1τ

=
2N + 1

N + 1
KN+1

(
p− q
N + 1

2π

)
=

{
2N+1
N+1 if p = q

0 if p 6= q.

(ii) N + 1 = 2m+ 2 (m ∈ N) :

23

Similarly,

(A∗(e))pq =

(
2

N + 1

)2 m∑
k1=0

m∑
k2=0

2N+1∑
i=1

cos
{(
k1 +

1

2

)
(ti − (p− 1)τ)

}
cos
{(
k2 +

1

2

)
(ti − (q − 1)τ)

}
=

(
2

N + 1

)2 m∑
k1=0

m∑
k2=0

2N+1∑
i=1

cos
{(
k1 +

1

2

)
(ti − rτ)

}
cos
{(
k2 +

1

2

)
(ti − sτ)

}
=

2

(N + 1)2

m∑
k1=0

m∑
k2=0

2N+1∑
i=1{

cos

(
(k1 + k2 + 1)π +

(k1 + k2 + 1)(i− 1)2π

2N + 1
−
(
k1 +

1

2

)
r −

(
k2 +

1

2

)
s

)
+ cos

(
(k1 − k2)π +

(k1 − k2)(i− 1)2π

2N + 1
−
(
k1 +

1

2

)
r +

(
k2 +

1

2

)
s

)}
=

2

(N + 1)2

m∑
k1=0

m∑
k2=0

2N+1∑
i=1{

(−1)k1+k2+1 cos

(
(k1 + k2 + 1)(i− 1)2π

2N + 1
−
(
k1 +

1

2

)
r −

(
k2 +

1

2

)
s

)
+(−1)k1−k2 cos

(
(k1 − k2)(i− 1)2π

2N + 1
−
(
k1 +

1

2

)
r +

(
k2 +

1

2

)
s

)}
.

As in the case of N + 1 = 2m+ 1,

2N∑
i=0

e
√
−1 k1+k2+1

2N+1
2πi = 0,

2N∑
i=0

e
√
−1 k1−k2

2N+1
2πi =

{
2N + 1 if k1 = k2

0 if k1 6= k2
.

From the definition of Dirichlet kernel,

(A∗(e))pq =
2

(N + 1)2

m∑
k1=0

(2N + 1) cos
{

(k1 +
1

2
)(r − s)τ

}
=

2N + 1

N + 1
KN+1

(
(r − s)τ

)
=

2N + 1

N + 1
KN+1

(
(p− q)τ

)
=

{
2N+1
N+1 if p = q

0 if p 6= q.

We now obtained A∗(e) = 2N+1
N+1 I. Thus, by (30), we obtain

(AA∗)−1(e) =

(
2N + 1

N + 1

)−1
e and A∗

(
(AA∗)−1(e)

)
= I.

Substituting (30), we derive A∗
(
(AA∗)−1A(I)

)
= I.

24

	Introduction
	Preliminaries
	Semidefinite programs
	Alternating direction augmented Lagrangian methods
	Sums of squares representations
	Formulating SOS feasibility problems as SDPs

	Fast convergence
	Sums of squares of trigonometric polynomials
	Dirichlet kernel
	Conditions for fast convergence
	Convergence conditions for minimizing pN(t)
	The size of the strictly feasible region of the SOS feasibility problem of trigonometric polynomials

	Numerical experiments
	General polynomials
	Trigonometic polynomial

	Concluding remarks

