
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

Polyhedral-based Methods for Mixed-Integer

SOCP in Tree Breeding

Sena Safarina, Tim J. Mullin, Makoto

Yamashita

May 2018, B–489

Polyhedral-based Methods for Mixed-Integer SOCP in Tree

Breeding

Sena Safarina1, Tim J. Mullin2, and Makoto Yamashita1

1Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1-W8-29
Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

2 The Swedish Forestry Research Institute (Skogforsk), Box 3, Sävar 918 21, Sweden; and 224 rue du
Grand-Royal Est, QC, J2M 1R5, Canada.

May 7, 2018

Abstract

Optimal contribution selection (OCS) is a mathematical optimization problem that aims to
maximize the total benefit from selecting a group of individuals under a constraint on genetic
diversity. We are specifically focused on OCS as applied to forest tree breeding, when selected
individuals will contribute equally to the gene pool. Since the diversity constraint in OCS
can be described with a second-order cone, equal deployment in OCS can be mathematically
modeled as mixed-integer second-order cone programming (MI-SOCP). If we apply a general
solver for MI-SOCP, non-linearity embedded in OCS requires a heavy computation cost. To
address this problem, we propose an implementation of lifted polyhedral programming (LPP)
relaxation and a cone-decomposition method (CDM) to generate effective linear approxima-
tions for OCS. In particular, CDM successively solves OCS problems much faster than generic
approaches for MI-SOCP. The approach of CDM is not limited to OCS, so that we can also
apply the approach to other MI-SOCP problems.

Keywords: Second-order cone programming; Mixed-integer conic programming; Conic re-
laxation; Tree Breeding; Equal deployment problem; Geometric cut; Optimal selection

MCS2010 classification: 90C11 Mixed integer programming, 90C25 Convex programming,
90C59 Approximation methods and heuristics, 90C90 Applications of mathematical program-
ming, 92-08 Biology and other natural sciences (Computational methods).

1 Introduction

As in other types of breeding, forest tree improvement is based on recurrent cycles of selection,
mating and testing. In the selection phase, we should take genetic diversity into consideration so
that tree health and the potential for genetic gain in the future are conserved. A general objective
of optimal contribution selection (OCS) [1, 12, 14, 24] is to maximize the total economic benefit
under a genetic diversity constraint by determining the gene contribution to be made from each
candidate. Based on the type of contribution, OCS problems can be classified into unequal and
equal deployment problems. While an unequal deployment problem (UDP) does not require the

1

same contribution for selected candidates, an equal deployment (EDP) stipulates that a specified
number of selected individuals must contribute equally to the gene pool.

A mathematical optimization formulation for UDP is given by Meuwissen [11] as follows:

maximize : gTx
subject to : eTx = 1,

l ≤ x ≤ u,
xTAx ≤ 2θ.

(1)

The decision variable is x ∈ Rm that corresponds to the gene contributions of individual candi-
dates, where m is the total number of candidates. The objective is to maximize the total benefit
gTx where the vector g = {g1, g2, . . . , gm} contains the estimated breeding values (EBVs) [10]
representing the genetic value of candidates in x. In this paper, we assume that g is given. Using
a vector of ones e ∈ Rm, the constraint eTx = 1 requires that the total contribution of all candi-
dates be unity. The next constraint is composed by a lower bound l ∈ Rm and an upper bound
u ∈ Rm.

The crucial constraint in (1) is xTAx ≤ 2θ that requires the group coancestry xTAx
2 be under

an appropriate level θ ∈ R++, where R++ is the set of positive real numbers. The group coancestry
constraint xTAx ≤ 2θ was originally introduced by Cockerham [6], while the construction of the
numerical relationship matrix A ∈ Rm×m was proposed in Wright [21]. Shortly speaking, each
element Aij in the matrix A is the probability that genotypes i and j have a common ancestor.
Pong-Wong and Woolliams [16] observed that the matrix A is always positive definite, and they
formulated the UDP as a semi-definite programming (SDP) problem. Their SDP approach gave the
exact optimal value to the UDP for the first time, but Ahlinder [1] reported that the computation
cost of the SDP approach was very high, even when using a parallel SDP solver [22, 23]. To reduce
the heavy computation burden, Yamashita et al. [24] proposed an efficient numerical method that
exploits the sparsity in the inverse matrix A−1. Their method is based on second-order cone
programming (SOCP) [2].

The current research is mainly concerned with EDP of form:

maximize : gTx
subject to : eTx = 1,

xi ∈
{

0, 1
N

}
for i = 1, . . . ,m,

xTAx ≤ 2θ.

(2)

We should emphasize that the simple bound l ≤ x ≤ u in the UDP is replaced by another
constraint xi ∈

{
0, 1

N

}
to require an equal contribution from each selected candidate. Here, N is

the parameter to indicate the number of chosen candidates. In short, we have to choose exactly
N individuals from a list of m available candidates in the EDP. Through this paper, we assume
that (2) is feasible.

The OCS problem has been widely solved through a software package GENCONT developed by
Meuwissen [12].The numerical method implemented in GENCONT is based on Lagrange multipliers,
but it forcibly fixes variables that exceed lower or upper bounds

(
0 ≤ xi ≤ 1

N

)
at the corresponding

lower and upper bound. Thus, even though GENCONT generates a solution quickly, the solution is
often suboptimal. To resolve this difficulty in GENCONT, another tool dsOpt, incorporated in the
software package OPSEL [13], was proposed by Mullin and Belotti [14]. dsOpt is an implementation

2

of the branch-and-bound method combined with an outer approximation method [7]. This imple-
mentation was designed to acquire exact optimal solutions, but dsOpt generates a huge number of
subproblems in the framework of branch-and-bound, so that computing the solution takes a long
time. Hence, there has been a strong desire for a different approach to solve the EDP in a more
practical time.

In contrast to existing implementations [12, 14], this paper is focused on the fact that the
crucial quadratic constraint xTAx ≤ 2θ in (1) and (2) can be described as a second-order cone(√

2θN,Ux
)
∈ Km. The matrix U is the Cholesky factorization of A such that A = UTU .

Throughout this paper, we use Km to denote the (m+ 1)-dimensional second-order cone:

Km = {(v0,v) ∈ R+ × Rm : ||v||2 ≤ v0}.

Introducing a new variable y = Nx, we convert the OCS problem (2) into an MI-SOCP formula-
tion:

maximize :
gTy
N

subject to : eTy = N,(√
2θN,Uy

)
∈ Km,

yi ∈ {0, 1} for i = 1, . . . ,m.

(3)

The main difficulty in this MI-SOCP formulation is the non-linearity arising from the second-order
cone, and this leads to a heavy computation cost.

In this paper, we propose a lifted polyhedral programming relaxation with active constraint
selection method (LPP-ACSM) that removes the non-linearity, exploiting an extension of poly-
hedral programming relaxation for the second-order cone problem [3, 4, 18]. We also propose a
cone decomposition method (CDM) that is based on cutting-plane methods (geometric cut based
on projection [5]) and a Lagrangian multiplier method. In particular, we prove that the La-
grangian multiplier method gives the an analytical solution for orthogonal projection onto the
three-dimensional cones, therefore, the proposed CDM generates the linear cuts without relying
on iterative methods.

The remainder of this paper is organized as follows. In Section 2, we briefly review LPP,
then we propose its enhancement LPP-ACSM. Section 3 gives the details of CDM. The numerical
results will be presented in Section 4. Finally, in Section 5, we formulate some conclusions and
discuss for future studies.

2 Lifted Polyhedral Programming Relaxation

Lifted polyhedral programming (LPP) relaxation [4, 18] is an approach to solve MI-SOCP problems
by employing a polyhedral relaxation. Instead of a MI-SOCP problem that involves difficult non-
linear constraints, we solve a mixed-integer linear programming problem (MI-LP) as the resultant
problem.

Figure 1a illustrates a second-order cone Km with dimension m = 2. In LPP relaxation,
many hyper-planes are generated for constructing a polyhedron cone Pmε to approximate Km as
illustrated in Figure 1b. Here, ε > 0 is a parameter to control the tightness of LPP relaxation. Let
Kmε be an ε extension of Km defined by Kmε = {(v0,v) ∈ R+ × Rm : ||v||2 ≤ (1 + ε)v0}. Ben-Tal

3

and Nemirovski [3] showed that Pmε is wedged between Km and Kmε . More precisely, Pmε satisfies
Km (Pmε (Kmε .

(a) Second-Order Cone (b) Polyhedral Relaxation

Figure 1: Polyhedral Relaxation

Therefore, when we take smaller ε, the relaxation Pmε becomes tighter. However, in this case,
we require more hyper-planes to build Pmε , as will be seen below.

The definition of the polyhedral relaxation Pmε is given in Vielma et al. [18]. They first
decompose the m+ 1-dimensional second-order cone Km into multiple 2-dimensional second-order
cone K2:

Km :={(v0,v) ∈ R+ × Rm : ∃(δj)Jj=0 ∈ RT (m) such that

v0 = δJ1 ,

δ0i = vi for i ∈ {1, · · · ,m},(
δj2i−1, δ

j
2i, δ

j+1
i

)
∈ K2 for i ∈

{
1, · · · ,

⌊
tj
2

⌋}
, j ∈ {0, · · · , J − 1},

δjtj = δj+1
dtj/2e for j ∈ {0, · · · , J − 1} s.t. tj is odd}

(4)

with J = dlog2me, and {tj}Jj=0 is defined recursively as t0 = m and tj+1 =
⌈
tj
2

⌉
for j ∈ {0, . . . , J−

1} so that T (m) =
∑J

j=0 tj . For example, K4 is determined by a quadratic constraint v20 ≥
v21 + v22 + v23 + v24. This constraint is decomposed into three constraints v20 ≥ δ1 + δ2, δ1 ≥ v21 + v22
and δ2 ≥ v23 + v24, and each of the decomposed constraints can be described as K2.

Then, a replacement of K2 in (4) by Wj(ε) defined below generates Pmε :

Wj(ε) :=
{

(v0, v1, v2) ∈ R+ × R2 : ∃(α, β) ∈ R2sj(ε) s.t

v0 = αsj(ε) cos

(
π

2sj(ε)

)
+ βsj(ε) sin

(π
2s

)
, α1 = v1 cos(π) + v2 sin(π),

β1 ≥ |v2 cos(π)− v1 sin(π)|, αi+1 = αi cos
(π

2i

)
+ βi sin

(π
2i

)
,

βi+1 ≥
∣∣∣βi cos

(π
2i

)
− αi sin

(π
2i

)∣∣∣ , for i ∈ {1, . . . , sj(ε)− 1}}

(5)

4

where

sj(ε) =

⌈
j + 1

2

⌉
−
⌈

log4

(
16

9
π−2 log(1 + ε)

)⌉
for j ∈ {0, . . . , J − 1}.

Note that the number of linear constraints in Wj(ε) is 5 + 3(sj(ε)− 1), when we divide each linear
inequality that involves absolute values into two linear inequalities.

As a preliminary experiment, we tested this approach across of range of parameter values for
2θ and ε > 0. To solve the resultant MI-LP, we used the CPLEX package and set the duality gap
5% as the stopping criterion of CPLEX, so the accuracy of the obtained objective value is 5%.
We implemented this approach using Matlab R2017b on a 64-bit Windows 10 PC, Xeon CPU
E3-1231 (3.40 GHz) with 8GB memory space. Moreover, we set the number of chosen candidates
as N = 50.

Table 1 shows the numerical results of the LPP relaxation for moderately large problems
(m = 200, 1050 and 2045), changing (1+ ε)2θ. (The bottom part of Table 1 includes the numerical
results of LPP-ACSM, which will be explained later.) The first column in the table is the problem
size m, the second the parameter for the diversity constraint 2θ, and the third column a relaxation
value (1+ ε)2θ. The fourth column shows ε that corresponds to the third column. (More precisely,
we adjust ε in the fourth column so that we obtain the values in the third column as (1+ε)2θ.) The
fifth, sixth, and seventh columns show the computation time in seconds to build the mathematical
model including the construction of W j(ε), the computation time to solve the mathematical model
by CPLEX, and the total computation time, respectively. The last two columns show the test results:
the group coancestry xTAx and the objective value gTx. In the table, ”OOM” indicates that
CPLEX ran ”out of memory” and could not solve the MI-LP.

Through Table 1, we observe that the group coancestry xTAx is closer to the threshold 2θ
when we use smaller ε > 0. This confirms that smaller ε leads to a tighter relaxation on the
second-order cone. For m = 200, the problem with ε = 0.0060 is not optimal since the diversity
constraint xTAx ≤ 2θ is violated. Thus, we should use tighter ε, but the tighter ε requires
longer computation time due to the rapid increment in a number of linear constraints of the LPP
relaxation. In addition, for the larger problem m = 2045 with very tight (1 + ε)2θ, this approach
fails to obtain the solution due to out of memory. Therefore, we need an efficient scheme to reduce
the large number of linear constraints.

2.1 LPP relaxation with the active constraint selection method

We embed an active constraint selection method into the LPP approach to reduce the number of
linear inequalities.

Definition 2.1 (Active Constraint). Let aTi x ≤ bi (i = 1, . . . , p) be inequality constraints in an
optimal optimization problem P with ai ∈ Rq and bi ∈ R (i = 1, . . . , p), and let x∗ be an optimal
solution of the optimization problem P . The inequality constraint aTi x ≤ bi is said to be active at
x∗ if aTi x

∗ = bi. Otherwise, the constraint aTi x ≤ bi is called inactive at x∗.

Algorithm 2.2 (Active constraint selection method). Let P (ε) be an optimal solution that is
defined with a parameter ε and x∗(ε) be its optimal solution. Let S = {ε1, ε2, . . . , εl} be a parameter
set ε in preliminary experiments. If an inequality constraint aTi x ≤ bi in P (ε) is active at x∗(ε)
for any ε ∈ S, we replace aTi x ≤ bi with the equality constraint aTi x = bi.

5

Table 1: Numerical results of LPP and LPP-ACSM for gap= 5%

m 2θ (1 + ε)2θ ε
Time (sec) Group Objective

Builder Solver Total Coancestry Value

LPP

200 0.0334
0.03363 0.0070 3.86 10.74 14.59 0.03380 24.96
0.03380 0.0060 3.97 10.72 14.69 0.03380 24.96
0.03373 0.0050 6.98 19.83 26.81 0.03340 24.83

1050 0.0627
0.06358 0.0070 549.40 9.18 558.58 0.06311 24.91
0.06345 0.0060 549.89 11.84 561.74 0.06298 24.87
0.06333 0.0050 951.22 25.31 976.54 0.06129 24.54

2045 0.0711
0.07209 0.0070 4702.58 256.16 4958.74 0.07140 438.31
0.07196 0.0060 OOM
0.07181 0.0050 OOM

LPP-ACSM

200 0.0334
0.03387 0.0070 3.94 3.09 7.03 0.03360 24.94
0.03380 0.0060 4.09 2.72 6.82 0.03360 24.94
0.03373 0.0050 6.57 41.18 47.75 0.03340 24.84

1050 0.0627
0.06358 0.0070 568.67 34.27 602.94 0.06307 24.81
0.06345 0.0060 655.75 396.26 1052.01 0.06307 24.82
0.06333 0.0050 1012.67 217.33 1230.01 0.06215 24.72

2045 0.0711
0.07209 0.0070 4974.45 434.32 5408.78 0.06020 429.02
0.07196 0.0060 OOM
0.07181 0.0050 OOM

Using such method, we conducted preliminary experiments with the parameter set S = {0.04,
0.05, 0.08} (different from ε in Table 1) and found that the constraint

β1 ≥ −v2 cos(π) + v1 sin(π)

in (5) was always active at x∗(ε) for all ε ∈ S. Therefore, we replace the constraint β1 ≥ v2 cos(π)−
v1 sin(π) with the equality β1 = −v2 cos(π) + v1 sin(π). This replacement can reduce the number
of inequalities, and we could expect the reduction in computation time.

The latter half of Table 1 shows the computation time in the framework of LPP relaxation
combining with the active constraint selection method (LPP-ACSM). The same parameter as LPP
was set for LPP-ACSM. We observed that the group coancestry xTAx and the objective values
gTx are similar for LPP and LPP-ACSM, but contrary to our expectation, the computation time
for LPP-ACSM was longer.

Table 2 compares the number of rows, columns, and nonzero elements in MI-LP problems that
are solved by LPP and LPP-ACSM for ε = 0.007. We notice that LPP-ACSM generated more
number of rows, columns, and nonzero elements than did LPP. In LPP-ACSM, CPLEX tried to
remove β1 by substituting β1 with −v2 cos(π) + v1 sin(π) through its preprocessing phase, but this
sacrificed the sparsity in LPP. Thus, LPP-ACSM incurs more nonzero elements than LPP, and
this makes LPP-ACSM slow to obtain the result.

6

Table 2: The number of nonzero elements in MI-LP problems arising from LPP and LPP-ACSM

m
LPP LPP-ACSM

row # column # nonzeros # row # column # nonzeros

200 1572 1059 6725 1497 984 6575
1050 8303 5806 52611 60100 33476 355316
2045 16175 11364 71305 116896 65073 660721

The main disadvantage of LPP was the large number of linear constraints. This disadvantage
is more critical when the relaxation is tight, and cannot be completely removed by LPP-ACSM.
In the next section, therefore, we propose another approach for solving EDP (3).

3 Cone Decomposition Method

In this section, we propose a cone decomposition method (CDM) for EDP (3). The basic concept of
the cone decomposition method also draws on the properties of second-order cones. The above LPP
approach decomposes an m+ 1-dimensional second-order cone Km into multiple two-dimensional
second-order cones K2 in a recursive style as shown in (4). In constrast, the proposed CDM makes
use of different decomposition, based on the following theorem from [19].

Theorem 3.1. [19] Let

Ĥ
m

:=

(v0,v,w) ∈ R(2m+1) : v2j ≤ wjv0, ∀j ∈ {1, . . . ,m},
m∑
j=1

wj ≤ v0

 ,

then Km = Proj(v0,v)(Ĥ
d
), where Proj(v0,v) is the orthogonal projection onto the space of (v0,v)

variables.

Theorem 3.1 gives another decomposition of Km by using an auxiliary vector w ∈ Rm.

Corollary 3.2. A second-order cone Km can be also written as

Km :=

(v0,v) ∈ R(m+1) : ∃w ∈ Rm such that v2
j ≤ wjv0,∀j ∈ {1, . . . ,m},

m∑
j=1

wj ≤ v0

 .

The utilization of Corollary 3.2 leads to another reformulation of our OCS (3) as follows:

maximize :
gTy
N

subject to : eTy = N,

z = UTy for i = 1, . . . ,m
z2i ≤ wic0 for i = 1, . . . ,m,∑m

i=1wi ≤ c0,
yi ∈ {0, 1} for i = 1, . . . ,m

(6)

7

where zi is the ith element of z and c0 =
√

2θN2. In this new formulation, the decision variables
are y, z, and w.

The nonlinear constraint in (6) is only the quadratic constraint z2i ≤ wic0. In the proposed
CDM, we generate the cutting planes to these quadratic cones. The framework of the proposed
CDM is given as Algorithm 3.3.

Algorithm 3.3. A framework for the cone decomposition method.

Step 1 Set a threshold δ ≥ 0, for example δ = 10−8.

Step 2 Let P 0 be an MI-LP problem that is generated from an optimization problem (6) by omitting
the quadratic constraints z2i ≤ wic0 (i = 1, . . . ,m). Apply an MI-LP solver to P 0, and let
its optimal solution be

(
ŷ0, ẑ0, ŵ0

)
. Let k = 0.

Step 3 Let a set of generated cuts Ck = ∅.

Step 4 For each i = 1, . . . ,m, if (ẑki)2 ≤ ŵki c0 is violated, apply the following steps.

Step 4-1 Compute the orthogonal projection of (ẑki , ŵ
k
i) onto z2i ≤ wic0 by solving the following

subproblem with the Lagrangian multiplier method.

minimize : 1
2

(
z̄ − ẑki

)2
+ 1

2

(
w̄ − ŵki

)2
subject to : z̄2 ≤ w̄c0

Let (z̄ki , w̄
k
i) be the solution of this subproblem.

Step 4-2 Add to Ck the following linear constraint(
ẑki − z̄ki
ŵki − w̄ki

)T (
zi − z̄ki
wi − w̄ki

)
≤ 0.

Step 5 If Ck is empty, output ŷk as the solution and terminate.

Step 6 Build a new MI-LP P k+1 by adding Ck to P k. Let the optimal solution of P k+1 be(
ŷk+1, ẑk+1, ŵk+1

)
. If

||ẑk+1 − ẑk|| ≤ δ and ||ŵk+1 − ŵk|| ≤ δ, (7)

output ŷk as the solution and terminate.

Step 7 Return to Step 3 with k ← k + 1.

In Step 4-1 of Algorithm 3.3, we compute the orthogonal projection. It would be desirable
to compute the orthogonal projection on the original quadratic constraint xTAx ≤ 2θ, such
orthogonal projection does not have an analytic form. Kiseliov [9] proposed some numerical
method, but this is an iterative method. Another iterative method is also proposed by [8] to
solve different case of second-order cones. In contrast, the orthogonal projection in Step 4-1 is
onto the quadratic constraint z̄2 ≤ w̄c0. We can derive the analytical form, as proven in the next
theorem. Note that the decomposition in (6) enables us to derive this theorem.

8

Theorem 3.4. Assume that (ẑ, ŵ) ∈ R2 satisfies ẑ2 > ŵc0. Let (z̄, w̄) ∈ R2 be the orthogonal
projection of (ẑ, ŵ) onto z2 ≤ wc0. Then, (z̄, w̄) can be given by an analytical form.

In the proof of Theorem 3.4, we make use of Cardano’s Formula [20] to obtain a root of a cubic
function analytically.

Theorem 3.5. [Cardano’s Formula [20]] Let F (λ) be a cubic function F (λ) = aλ3 + bλ2 + cλ+ d
with a 6= 0. Then F (λ) = 0 has three solutions

λ1 = S + T − b
3a

λ2 = −S+T
2 − b

3a + i
√
3

2 (S − T)

λ3 = −S+T
2 − b

3a −
i
√
3

2 (S − T),

where

S =
3

√
R+

√
Q3 +R2, T =

3

√
R−

√
Q3 +R2, Q =

3ac− b2

9a2
, and R =

9abc− 27a2d− 2b3

54a3
.

Proof. (for Theorem 3.4)
The orthogonal projection (z̄, w̄) ∈ R2 is the optimal solution of the following subproblem.

minimize : 1
2 (z − ẑ)2 + 1

2 (w − ŵ)2

subject to : z2 ≤ wc0.
(8)

This problem has a convex closed feasible region and its objective function is strongly convex,
therefore, this problem has a unique solution. Since (ẑ, ŵ) is outside of the region z2 ≤ wc0, the
projection exists on the boundary of the region. We can replace z2 ≤ wc0 with z2 = wc0, and (8)
is equivalent to the following optimization problem:

minimize : 1
2 (z − ẑ)2 + 1

2 (w − ŵ)2

subject to : z2 = wc0
(9)

To apply a Lagrangian multiplier method, we prepare a Lagrangian function of (9) with a
Lagrangian multiplier λ ∈ R:

L(z, w, λ) =
1

2
(z − ẑ)2 +

1

2
(w − ŵ)2 − λ(wc0 − z2).

Setting ∇L = 0, we have

∇zL = z − ẑ + 2λc0 = 0, (10)

∇wL = w − ŵ − λc0 = 0, (11)

∇λL = −c0w + z2 = 0. (12)

Substituting (10) and (11) into (12) leads to a cubic function with respect to λ:

4c20λ
3 + (4c20 + 4c0ŵ)λ2 + (c20 + 4c0ŵ)λ+ (c0ŵ − (ẑ)2) = 0 (13)

Defining a = 4c20, b = 4c20 + 4z0ŵ, c = c20 + 4z0ŵ, and d = c0ŵ − ẑ2, we apply Theorem 3.5 to
obtain λ. In Theorem 3.5, we have three solutions λ1, λ2, λ3. Among three solutions, only λ1 can

9

generate the analytical solution since the other two are complex numbers. To prove that λ2 and
λ3 are complex numbers, it is enough to show S 6= T , and this is equivalent to show Q3 +R2 6= 0.
Computing

Q3 +R2 =

(
3ac− b2

9a2

)3

+

(
9abc− 27a2d− 2b3

54a3

)2

=
(3ac− b2)3

729a6
+

(−27a2d+ 9abc− 2b3)2

2916a6

=
27a2d2 − 18abcd+ 4ac3 + 4b3d− b2c2

108a4
,

we substitute a, b, c, d and (ẑ)2 ≤ (ŵ)2. Therefore, for c0 =
√

2θN2 6= 0 and ẑ, ŵ ∈ {R}\{0}, λ2
and λ3 are complex numbers.

Thus, we only have the analytical solution by λ1. After we obtain λ as λ1, it is easy to compute
z and w by (10) and (11). Therefore, the optimal solution (z̄, w̄) of (8) has a analtycial form.

The termination of the proposed method is guaranteed by the following theorem.

Theorem 3.6. Algorithm 3.3 terminates in a finite number of iterations.

Proof. The number of points we are interested for y is at most 2m, where m is the number of
candidate genotypes, due to the binary constraints yi ∈ {0, 1}. In k iterations, the generated cuts
in Ck remove ẑk, ŵk. Since ŷk is directly connected to ẑk by the constraint z = UTy and U is
invertible, ŷk is not feasible in P k+1. At least one solution will be infeasible in each iteration,
therefore, the number of iterations is also at most 2m.

Since any feasible point is not excluded by the generated cuts, we can find an optimal solution
if the stopping threshold is δ = 0.

4 Numerical Results

Numerical experiments were conducted to compare the performance of the proposed methods
(LPP-ACSM and CDM) with existing software (dsOpt as implemented in OPSEL) and GENCONT,
a general MI-SOCP solver CPLEX, and LPP itself. The proposed methods were implemented
using Matlab R2017b by setting CPLEX as the solver of MI-LP. All methods were executed on
a 64-bit Windows 10 PC with Xeon CPU E3-1231 (3.40 GHz) and 8 GB memory space. The
data were taken from https://doi.org/10.5061/dryad.9pn5m or generated by the simulation
POPSIM [15]. The sizes of the test instances are m=200, 1050, 2045, 5050, 10100, and 15222. We
set parameter N = 50, 100, and as a stopping criterion for CPLEX, we used gap = 1%, 5% . We
also chose δ = 10−8. The computation time was limited to 3 hours for all methods.

First, Table 3 shows the results from the OCS solver GENCONT. In this table, the columns “gTx”
and “xTAx” are the obtained objective values and group coancestry, respectively. We only show
the solution for m ≤ 5050, since the results with m = 10100, 15222 cannot be obtained due to out
of memory. From Table 3, we observe that the number of chosen candidates did not match the
given parameter N . This indicates that GENCONT failed to output feasible solutions.

10

https://doi.org/10.5061/dryad.9pn5m

Table 3: Numerical results on GENCONT

N = 50
m 2θ gTx xTAx time (sec) # selected N
200 0.0334 11.472 0.03340 3.54 64

1050 0.0627 25.91 0.06270 7.20 81
2045 0.0711 438.36 0.07109 111.52 71
5050 0.1081 43.44 0.10810 1561.43 78

N = 100
m 2θ gTx xTAx time (sec) # selected N
200 0.0258 8.89 0.02580 0.48 93

1050 0.0539 24.07 0.0539 4.77 94
2045 0.0628 432.75 0.06279 106.48 74
5050 0.0994 42.08 0.09940 1533.31 81

The results for the other methods where N = 50 are presented in Table 4. For the LPP
relaxation and its modification (LPP-ACSM), we fixed ε = 0.005 so that these two methods
output feasible solutions. In addition, since only LPP and LPP-ASCM require the parameter ε,
we show the value of ε for only two methods in the column (1 + ε)2θ. The other methods CPLEX,
dsOpt and CDM do not need the parameter ε, and this is indicated by “*” in the table. When the
computation could not finish the computation within the time limit of 3 hours, it is indicated as
’> 3 hours’ and the best objective values up to that point are shown in the table.

From Table 4, LPP and LPP-ACSM failed to obtain the solution due to OOM (out of memory)
for large problemsm ≥ 2045. To attain the feasibility, we set a relatively small ε, but this demanded
a huge number of linear constraints, as discussed in Section 2.

In contrast to LPP and LPP-ACSM, CPLEX shows its computation efficiency when gap = 5%.
However, for larger problems or smaller gaps, CPLEX consumes more time than other methods. For
example, we can see a large time difference for the smallest size m = 200. CPLEX for gap= 5% is
the most efficient method among the five methods, but it becomes the slowest method when we set
the gap as 1%. For such a tight gap, our proposed approach CDM can reduce computation time
to less than 10 seconds. In addition, for m = 15222, CPLEX could not finish its computation within
the time limit (3 hours), and the best objective value at 3 hours was much worse than CDM; while
CDM obtained gTx = 452.57, CPLEX only reached gTx = 118.33.

Table 5 shows the results for all methods, except GENCONT, for the case of N = 100. Similar
to the results in Table 4, LPP and LPP-ACSM failed to solve large problems due to insufficient
memory. From both tables, dsOpt actually gives similar performance to CPLEX. However, for
the largest problem (m = 15222), dsOpt failed with ”out of memory”. In contrast to the other
methods, CDM obtains feasible solutions without having a memory problem. Thus, CDM not only
reduces the computation time, but also the memory usage. Based on these observation, CDM is
the most effective method to solve OCS problem.

Finally, Table 6 presents additional evidence supporting the efficiency of the CDM. The column
“# iteration” is the number of main iterations to obtain the output in the CDM, and the column
“# constraint” shows the numbers of constraints of MI-LP problems in the first iteration and the
last iteration. For example, 76 and 2357 in the column “# constraint” indicate that the MI-LP
problems have 76 rows and 2357 rows in the first iteration and the last iteration, respectively. (See

11

Table 4: Numerical comparison for EDPs (N = 50)

Algorithm m 2θ (1 + ε)2θ
gap = 5% gap = 1%

gTx xTAx time (sec) gTx xTAx time (sec)
CPLEX

200 0.0334

* 24.99 0.03340 1.06 25.19 0.03340 8735.24
dsOpt * 25.12 0.03340 5.32 25.18 0.03340 606.94
LPP 0.03373 24.83 0.03340 26.81 25.11 0.03340 3691.26
LPP-ACSM 0.03373 24.84 0.03340 47.75 25.15 0.03340 2587.16
CDM * 25.02 0.03340 2.37 25.15 0.03340 9.89
CPLEX

1050 0.0627

* 24.97 0.06267 3.56 24.97 0.06267 6.64
dsOpt * 24.97 0.06169 5.19 24.85 0.06268 > 3 hours
LPP 0.06333 24.54 0.06129 976.54 24.89 0.06291 10063.39
LPP-ACSM 0.06333 24.72 0.06215 1230.01 24.89 0.06291 1634.58
CDM * 24.65 0.06118 8.67 24.96 0.06238 12.83
CPLEX

2045 0.0711

* 437.21 0.07100 3.95 437.21 0.07100 3.83
dsOpt * 432.94 0.06700 7.09 435.87 0.07020 14.42
LPP 0.07181 OOM OOM
LPP-ACSM 0.07181 OOM OOM
CDM * 434.26 0.06760 1.80 437.38 0.06960 2.61
CPLEX

5050 0.1081

* 41.90 0.10776 73.16 42.57 0.10781 > 3 hours
dsOpt * 41.57 0.10471 236.70 42.67 0.10807 > 3 hours
LPP 0.109184 OOM OOM
LPP-ACSM 0.109184 OOM OOM
CDM * 42.56 0.10742 171.85 42.56 0.10742 179.05
CPLEX

10100 0.0701

* 44.89 0.06931 > 3 hours 44.89 0.06931 > 3 hours
dsOpt * 46.00 0.07005 4509.83 46.21 0.06975 8787.37
LPP 0.070803 OOM OOM
LPP-ACSM 0.070803 OOM OOM
CDM * 45.27 0.06896 1131.14 46.43 0.07005 1431.12
CPLEX

15222 0.0388

* 118.33 0.03840 > 3 hours 107.56 0.03280 > 3 hours
dsOpt * OOM OOM
LPP 0.039189 OOM OOM
LPP-ACSM 0.039189 OOM OOM
CDM * 452.57 0.03880 493.85 461.83 0.03880 1111.49

the problem with N = 50 and m = 200). This implies that 2357−76 = 2281 constraints are added
during the CDM. Compared to the rows in LPP and LPP-ACSM of Table 2, the CDM requires
considerably fewer MI-LP problems, and this makes the CDM much faster. From the viewpoint
of memory consumption, when we applied the CDM to the problem with m = 15.222, N = 50,
and gap=5%, the first MI-LP required 5.4 GB memory space, but the last MI-LP consumed only
2.4 GB memory space. During the CDM iterations, we add linear constraints to MI-LP problems,
such that CPLEX can effectively exploit the solution obtained in the previous iteration to find the
next solution. Therefore, the first MI-LP requires the greatest memory space, but after the first
MI-LP, the CDM demands less memory.

12

Table 5: Numerical comparison for EDPs (N = 100)

Algorithm m 2θ (1 + ε)2θ
gap = 5% gap = 1%

gTx xTAx time (sec) gTx xTAx time (sec)
CPLEX

200 0.0258

* 23.19 0.02580 4.31 23.49 0.02580 13.14
dsOpt * 23.14 0.02575 1.30 23.54 0.02580 566.89
LPP 0.026059 23.38 0.02585 10.60 23.53 0.02585 2289.65
LPP-ACSM 0.026059 23.24 0.02580 11.35 23.58 0.02585 4003.32
CDM * 23.53 0.02580 1.63 23.55 0.02580 1.89
CPLEX

1050 0.0539

* 22.53 0.05389 6.68 22.53 0.05389 3.64
dsOpt * 21.79 0.05358 6.07 22.25 0.05382 193.08
LPP 0.054440 22.35 0.05401 1047.81 22.35 0.05401 1088.16
LPP-ACSM 0.054440 22.34 0.05392 1019.46 OOM
CDM * 22.49 0.05339 14.78 22.49 0.05339 14.51
CPLEX

2045 0.0628

* 420.04 0.06100 3.21 420.04 0.06100 3.08
dsOpt * 419.53 0.06155 7.93 419.53 0.06155 7.96
LPP 0.063429 OOM OOM
LPP-ACSM 0.063429 OOM OOM
CDM * 418.67 0.06010 2.54 418.67 0.06010 2.42
CPLEX

5050 0.0994

* 40.63 0.09932 58.37 40.63 0.09932 54.43
dsOpt * 40.13 0.09860 134.55 40.47 0.09936 367.29
LPP 0.100498 OOM OOM
LPP-ACSM 0.100498 OOM OOM
CDM * 40.28 0.09821 168.21 40.35 0.09742 183.25
CPLEX

10100 0.0610

* 43.79 0.06059 2720.18 44.34 0.06070 > 3 hours
dsOpt * 43.36 0.06018 584.77 44.44 0.06100 7538.99
LPP 0.061611 OOM OOM
LPP-ACSM 0.061611 OOM OOM
CDM * 43.86 0.06095 1003.68 44.53 0.06092 1269.18
CPLEX

15222 0.0300

* 436.92 0.02990 5084.69 436.92 0.02990 > 3 hours
dsOpt * OOM OOM
LPP 0.030301 OOM OOM
LPP-ACSM 0.030301 OOM OOM
CDM * 432.13 0.02865 654.64 439.88 0.02960 641.76

5 Conclusion and Future Work

In this paper, we proposed LPP with an active constraint selection method (LPP-ACSM) and
cone decomposition method (CDM) to achieve optimal contribution selection in the context of
tree breeding. We compared the efficiency of the proposed methods with those found in existing
breeding selection software (GENCONT and dsOpt), the optimization solver CPLEX, and LPP. From
the numerical results, we observed that LPP and LPP-ACSM failed to obtain solutions for problems
with large m due to insufficient memory. Since we used very tight ε, the number of constraints
was huge.

Our final proposed method, CDM, can efficiently obtain the optimal solution of EDP problems.
For the largest problem m = 15222, while CPLEX could not find satisfactory solutions in 3 hours,
the CDM can still efficiently obtain a feasible solution without having memory limitations. The

13

Table 6: The number of iterations and constraints in the CDM

N m
gap= 5% gap= 1%

iteration
constraint

iteration
constraint

First Iter last Iter First Iter Last Iter

50

200 15 76 2357 15 76 2384
1050 7 201 1802 8 201 2086
2045 7 53 789 8 53 925
5050 8 129 1855 8 129 1855

10100 9 189 3338 12 189 4671
15222 13 56 3108 38 56 11449

100

200 9 144 1654 10 144 1858
1050 10 255 3337 10 255 3337
2045 8 105 1696 8 105 1696
5050 6 200 1973 6 200 1972

10100 6 281 2672 8 281 3733
15222 9 106 2935 10 106 3300

use of CDM in solving MI-LP problems can reduce the heavy computation time and memory size
to generate the optimal solution.

In future studies, we consider a combination of CDM with heuristic methods, for example, the
method proposed in [17]. In particular, a feasible value obtained by the method of [17] would give
a good tentative value in the framework of branch-and-bound for solving MI-LP (P k). Another
direction is that the decomposition in CDM and the generation of linear cuts can be used not only
to solve the OCS problem in tree breeding, but also can be applied to other MI-SOCP problems.
We will also consider another problem of OCS that involves not only simple binary constraints
but also other types of integer constraints.

6 Acknowledgement

Our work was partially supported by funding from JSPS KAKENHI (Grant-in-Aid for Scientific
Research (C), 15K00032).

References

[1] J. Ahlinder, T. Mullin, and M. Yamashita. Using semidefinite programming to optimize
unequal deployment of genotypes to a clonal seed orchard. Tree genetics & genomes, 10(1):27–
34, 2014.

[2] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical programming,
95(1):3–51, 2003.

[3] A. Ben-Tal and A. Nemirovski. On polyhedral approximations of the second-order cone.
Mathematics of Operations Research, 26(2):193–205, 2001.

[4] D. P. Bertsekas. Nonlinear programming. Athena scientific, 1999.

14

[5] P. Bia loń. Some variants of projection methods for large nonlinear optimization problems.
Journal of Telecommunications and Information Technology, pages 43–49, 2003.

[6] C. C. Cockerham. Group inbreeding and coancestry. Genetics, 56(1):89, 1967.

[7] M. A. Duran and I. E. Grossmann. An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical programming, 36(3):307–339, 1986.

[8] O. Ferreira and S. Németh. How to project onto extended second order cones. Journal of
Global Optimization, 70(4):707–718, 2018.

[9] Y. N. Kiseliov. Algorithms of projection of a point onto an ellipsoid. Lithuanian Mathematical
Journal, 34(2):141–159, 1994.

[10] M. Lynch, B. Walsh, et al. Genetics and analysis of quantitative traits, volume 1. Sinauer
Sunderland, MA, 1998.

[11] T. H. Meuwissen. Maximizing the response of selection with a predefined rate of inbreeding.
Journal of animal science, 75(4):934–940, 1997.

[12] T. H. Meuwissen. Gencont: an operational tool for controlling inbreeding in selection and
conservation schemes. In Proceedings of the 7th Congress on Genetics Applied to Livestock
Production, pages 19–23, 2002.

[13] T. J. Mullin. Opsel 2.0: A computer program for optimal selection in tree breeding. Arbet-
srapport frn Skogforsk Nr 954-2017, Skogforsk, Uppsala, SE, 2017.

[14] T. J. Mullin and P. Belotti. Using branch-and-bound algorithms to optimize selection of
a fixed-size breeding population under a relatedness constraint. Tree genetics & genomes,
12(1):4, 2016.

[15] T. J. Mullin, J. Hallander, O. Rosvall, and B. Andersson. Using simulation to optimise tree
breeding programmes in Europe: an introduction to POPSIM. Arbetsrapport frn Skogforsk
Nr 711, Skogforsk, Uppsala, SE, 2010.

[16] R. Pong-Wong and J. A. Woolliams. Optimisation of contribution of candidate parents to
maximise genetic gain and restricting inbreeding using semidefinite programming (open access
publication). Genetics Selection Evolution, 39(1):3, 2007.

[17] S. Safarina, S. Moriguchi, T. J. Mullin, and M. Yamashita. Conic relaxation approaches for
equal deployment problems. arXiv preprint arXiv:1703.03155, 2017.

[18] J. P. Vielma, S. Ahmed, and G. L. Nemhauser. A lifted linear programming branch-and-bound
algorithm for mixed-integer conic quadratic programs. INFORMS Journal on Computing,
20(3):438–450, 2008.

[19] J. P. Vielma, I. Dunning, J. Huchette, and M. Lubin. Extended formulations in mixed integer
conic quadratic programming. Mathematical Programming Computation, 9(3):369–418, 2017.

[20] R. Witu la and D. S lota. Cardano’s formula, square roots, chebyshev polynomials and radicals.
Journal of Mathematical Analysis and Applications, 363(2):639–647, 2010.

15

[21] S. Wright. Coefficients of inbreeding and relationship. The American Naturalist, 56(645):330–
338, 1922.

[22] M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi, K. Nakata, and M. Nakata. Latest
developments in the SDPA family for solving large-scale SDPs. In M. F. Anjos and J. B.
Lasserre, editors, Handbook on Semidefinite, Cone and Polynomial Optimization: Theory,
Algorithms, Software and Applications, chapter 24, pages 687–714. Springer, NY, USA, 2012.

[23] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of SDPA6.0
(SemiDefinite Programming Algorithm 6.0). Optim. Methods Softw., 18(4):491–505, 2003.

[24] M. Yamashita, T. J. Mullin, and S. Safarina. An efficient second-order cone programming
approach for optimal selection in tree breeding. Optimization Letters, pages 1–15, 2017.

16

