
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

Nearly optimal first-order methods for convex

optimization under gradient norm measure:

An adaptive regularization approach

Masaru Ito and Mituhiro Fukuda

February 2020, B–492

Nearly optimal first-order methods for convex optimization under

gradient norm measure: An adaptive regularization approach

Masaru Ito∗ Mituhiro Fukuda†

February 2020

Abstract

In the development of first-order methods for smooth (resp., composite) convex optimization
problems minimizing L-smooth functions, the gradient (resp., gradient mapping) norm is a funda-
mental optimality measure for which the best known iteration complexity to obtain an ε-solution
is O(

√
LD/ε log(1/ε)) for the distance D from the initial point to the optimal solution set. In this

paper, we report an adaptive regularization approach attaining this iteration complexity without
the prior knowledge of D which was required to be known in the existing regularization approach.
To obtain further faster convergence adaptively, we secondly apply this approach to construct a
first-order method that is adaptive to the Hölderian error bound condition (or equivalently, the
 Lojasiewicz gradient property) which covers moderately wide class of applications. The proposed
method attains nearly optimal iteration complexity with respect to the gradient mapping norm.

Keywords: smooth/composite convex optimization; accelerated proximal gradient methods; Hölderian
error bound; adaptive methods

Mathematical Subject Classification (2010): 90C25; 68Q25; 49M37

1 Introduction

The class of proximal gradient methods is a fundamental tool for solving the composite convex opti-
mization problem

φ∗ = min
x

[φ(x) ≡ f(x) + Ψ(x)], (1)

where f is an L-smooth convex function defined on a Euclidean space, i.e., f is a continuously differen-
tiable convex function with L-Lipschitz continuous gradient, and Ψ is a proper, lower-semicontinuous
convex function. Accelerated first-order methods for this class of problems have been well-studied
as they provide optimal iteration complexity to obtain an ε-approximate solution under the measure
φ(·)− φ∗ for various classes of problems [2, 14, 17, 18, 20, 22].

A major interest focused on this paper is to consider the iteration complexity to obtain an ε-
approximate solution with respect to the gradient mapping norm. The gradient mapping gL(x) is
defined by

gL(x) = L(x− proxΨ/L(x− L−1∇f(x))), where proxΨ/L(y) = argmin
x

[
Ψ(x) +

L

2
∥x− y∥2

]
,

∗Department of Mathematics, College of Science and Technology, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda,
Tokyo 101-8308, Japan (ito.m@math.cst.nihon-u.ac.jp).

†Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1-W8-41 Oh-okayama,
Meguro, Tokyo 152-8552, Japan (mituhiro@is.titech.ac.jp).

1

and gL(x) = 0 holds if and only if x is optimal to (1). The norm ∥gL(x)∥ of the gradient mapping is a
useful optimality measure as it is computable at each iteration (if proxΨ is computable) in contrast to
the measure φ(·)−φ∗ that is not verifiable if we do not know φ∗. Note that, for the smooth problems
(i.e., the case Ψ ≡ 0), the gradient mapping gL(x) coincides with the gradient ∇f(x).

To find an approximate solution x such that ∥gL(x)∥ ≤ ε, the best known iteration complexity of
first-order methods for the problem (1) is

O

(√
LD

ε
log

LD

ε

)
, (2)

where D := dist(x0, X
∗) for an initial point x0 and the optimal solution set X∗. This complexity is

attained by a regularization technique [16] but it requires D to be known in advance. Without the
prior knowledge of D, accelerated gradient methods achieving the iteration complexity O((LD/ε)2/3)
seems to be the best known ones [6, 16, 23]. One aim of this paper is to report an adaptive algorithm
(Algorithm 3) for the regularization technique that attains the iteration complexity (2) without the
requirement of D, as shown in Corollary 4.3.

Another motivation is the development of an adaptive first-order method under the Hölderian
Error Bound (HEB) condition, that is, given an initial point x0, we assume that

φ(x)− φ∗ ≥ κdist(x,X∗)ρ, ∀x such that φ(x) ≤ φ(x0), (3)

for some κ > 0 and ρ ≥ 1. This condition is also related to the concept called the Lojasiewicz gradient
inequality [10, 11] which is a useful tool for the development and the analysis of algorithms as well as
first-order methods [1, 4]. These concepts are known to be satisfied under moderately mild assumptions
such as when φ is coercive and subanalytic (in particular, semi-algebraic) [3]. The coefficient κ and the
exponent ρ are critical parameters to determine the convergence rate but they are difficult to estimate
in general, so that the development of adaptive algorithms is an important issue.

For the problem (1) under the Hölderian error bound condition, we propose Algorithm 4, a restart
scheme of the previous mentioned adaptive regularization algorithm. Our method is inspired by Liu-
Yang’s method [8] as we employ an (approximated) proximal-point approach, where the main difference
is the adaption parameter: Liu-Yang’s method adaptively estimate the coefficient κ while our method
adaptively determine the regularization parameter σ to define the regularized auxiliary problem

min
x

[
φ(x) +

σ

2
∥x− x0∥2

]
.

As a result, without knowing the coefficient κ and the exponent ρ, the proposed method adapts both
the parameters κ and ρ. To find an approximate solution x such that ∥gL(x)∥ ≤ ε, we prove the
following iteration complexity result (Corollary 4.5):

• Case ρ = 1. The algorithm finds an optimal solution with a finite iteration complexity, i.e., the
iteration complexity is independent of ε (if ε is sufficiently small).

• Case ρ ∈ (1, 2). The iteration complexity is O(log log ε−1) (superlinear convergence).

• Case ρ = 2. The iteration complexity is O(log ε−1) (linear convergence).

• Case ρ > 2. The iteration complexity is O(ε
− ρ−2

2(ρ−1) log ε−1) (sublinear convergence).

The finite and the superlinear convergences in ρ = 1 and ρ ∈ (1, 2), respectively, are due to accurate
convergence analysis, which were not shown in the existing adaptive methods [8, 20]. Moreover, for

2

the smooth problems (i.e., the case Ψ ≡ 0), we show that the proposed method attains the nearly
optimal iteration complexity with respect to the gradient norm. We can also immediately deduce the
nearly optimal iteration complexity result with respect to the measure φ(·)− φ∗.

Table 1 shows the relation to existing adaptive first-order methods. All the algorithms in this
table attain the nearly optimal iteration complexity with respect to the employed measure. The
recent first-order methods [20, 22] are applicable to our problem (for specific Ψ) and they adapt both
κ and ρ ensuring the nearly optimal iteration complexity with respect to the measure φ(·)− φ∗. One
advantage of our method compared with these methods is the (nearly optimal) convergence guarantee;
the method of Roulet and d’Aspremont (see [22, Proposition 3.4]) is a fixed step algorithm (remark
that, if we know φ∗, [22, Algorithm 3] gives nearly optimal convergence), and Renegar-Grimmer’s
method [20] fixes the target tolerance ε. Although the other algorithms, i.e., this work and the first
four algorithms [5, 7, 8, 17] in Table 1, terminate if an ε-solution is found, they provide the nearly
optimal convergence letting ε = 0 as we discuss later.

Table 1: Adaptive first-order methods. The column ‘Parameters’ indicates the parameters that the algorithm
can adapt. The column ‘Optimality measures’ is the optimality measure for which the nearly optimal iteration
complexity was proved. The column ‘Convergence’ shows whether the algorithm ensures the convergence of the
optimality measure to zero (at the nearly optimal rate).

Algorithm Problem class Parameters Optimality measures Convergence

Nesterov [17] µ-strongly convex φ µ gradient mapping norm yes
Lin and Xiao [7]

Fercoq and Qu [5] HEB (3) with ρ = 2 κ gradient mapping norm yes

Liu and Yang [8] HEB (3) with known ρ κ gradient mapping norm yes

Roulet and d’Aspremont HEB (3) κ and ρ φ(·)− φ∗ no (fixed iteration)
[22, Proposition 3.4]

Reneger and Grimmer HEB (3) κ and ρ φ(·)− φ∗ no (fixed tolerance)
[20]

This work (Algorithm 4) HEB (3) κ and ρ gradient mapping norm yes
(and φ(·)− φ∗)

This paper is organized as follows. Section 2 collects preliminary facts on the gradient mapping
and the Hölderian error bound condition. In particular, in Section 2.2, we deduce a lower iteration
complexity bound with respect to the gradient norm for the class of smooth convex functions satisfying
the Hölderian error bound condition. We review in Section 3 the regularization technique [16] preparing
auxiliary results. In Section 4, we propose adaptive first-order methods and show their iteration
complexity results. We show an adaptive regularization algorithm in Section 4.1 and prove the iteration
complexity (2). A restart scheme of this algorithm is given in Section 4.2 and we show that it adaptively
attains the nearly optimal iteration complexity under the Hölderian error bound condition. Concluding
remarks are given in Section 5.

2 Preliminaries

Throughout this paper, let E be a finite dimensional real Hilbert space endowed with an inner product
⟨·, ·⟩. We denote by ∥x∥ = ⟨x, x⟩1/2 the induced norm on E.

A convex function f : E → R is called L-smooth for L > 0 if f is continuously differentiable and
its gradient is L-Lipschitz continuous on E:

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , ∀x, y ∈ E.

3

The following inequality is a fundamental property of L-smooth functions (e.g., see [15]):

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+
L

2
∥x− y∥2 , ∀x, y ∈ E. (4)

We focus on the the convex composite optimization problem

φ∗ = min
x

[φ(x) ≡ f(x) + Ψ(x)] (5)

for an Lf -smooth convex function f : E → R and a proper lower-semicontinuous convex function
Ψ : E→ R ∪ {+∞}. We denote by X∗ the set of optimal solutions of minx∈E φ(x):

X∗ = Argmin
x∈E

φ(x).

The subdifferential of φ at x is denoted by ∂φ(x) = {g ∈ E | φ(y) ≥ φ(x) + ⟨g, y − x⟩ , ∀y ∈ E}.
For the objective function φ(x) = f(x) + Ψ(x), we define

mL(y;x) := f(y) + ⟨∇f(y), x− y⟩+
L

2
∥x− y∥2 + Ψ(x),

TL(y) := argmin
x∈E

mL(y;x) (= proxΨ/L(y − L−1∇f(y))),

where the minimizer TL(y) is well-defined since mL(y; ·) is strongly convex. It is assumed that Ψ(·) has
a “simple” structure, namely, TL(·) is moderately computable (see [19] for examples). The gradient
mapping of φ is defined by

gL(y) := L(y − TL(y)), y ∈ E, L > 0.

For instance, if Ψ ≡ 0, we see that TL(y) = y −∇f(y)/L and gL(y) = ∇f(y) hold.
Remark that the norm of gL(y) is given by

∥gL(y)∥ = L ∥y − TL(y)∥ ,

from which the quantity ∥gL(y)∥ can be used as a computable optimality measure at y (see Lemma 2.1
(ii) below).

The following lemma collects basic properties on TL(x) and gL(x) which can be found in [2, 15, 17].

Lemma 2.1. Let φ = f+Ψ be the sum of a continuously differentiable convex function f : E→ R and
a proper lower-semicontinuous convex function Ψ : E → R ∪ {+∞}. Then, the following assertions
hold.

(i) For all y ∈ E, the map L 7→ ∥gL(y)∥ is increasing.

(ii) x∗ ∈ X∗ holds if and only if gL(x∗) = 0.

(iii) ∇f(TL(y))−∇f(y) + gL(y) ∈ ∂φ(TL(y)) for all y ∈ E. Moreover, if f is Lf -smooth, then

∥∇f(TL(y))−∇f(y) + gL(y)∥ ≤
(
Lf

L
+ 1

)
∥gL(y)∥ .

(iv) If y ∈ E and L > 0 satisfy φ(TL(y)) ≤ mL(y;TL(y)), then we have

1

2L
∥gL(y)∥2 ≤ φ(y)− φ(TL(y)) ≤ φ(y)− φ∗,

1

2L
∥gL(y)∥ ≤ dist(y,X∗).

4

(v) If f is Lf -smooth, then φ(TL(y)) ≤ mL(y;TL(y)) holds for all y ∈ E and L ≥ Lf .

Proof. (i) is proved in [17, Lemma 2].
(ii) The optimality condition of the problem minx∈EmL(y;x) is given as follows:

z = TL(y) ⇐⇒ 0 ∈ ∇f(y) + L(z − y) + ∂Ψ(z). (6)

On the other hand, the optimality of the original problem minx φ(x) is characterized by

z ∈ Argmin
x∈E

φ(x) ⇐⇒ 0 ∈ ∇f(z) + ∂Ψ(z).

(Remark that ∂φ = ∇f + ∂Ψ holds [21, Theorem 23.8]). Plugging y = z = x∗, we see that the
equivalence x∗ ∈ Argminx∈E φ(x) ⇐⇒ x∗ = TL(x∗) (⇐⇒ gL(x∗) = 0) follows.

(iii) By the optimality condition (6), we have

0 ∈ ∇f(y) + L(TL(y)− y) + ∂Ψ(TL(y)) = ∇f(y)− gL(y) + ∂Ψ(TL(y)). (7)

Hence,
∇f(TL(y))−∇f(y) + gL(y) ∈ ∇f(TL(y)) + ∂Ψ(TL(y)) = ∂φ(TL(y)).

Now if f is Lf -smooth, we have

∥∇f(TL(y))−∇f(y)∥ ≤ Lf ∥TL(y)− y∥ =
Lf

L
∥gL(y)∥ ,

which yields the latter assertion of (iii).
(iv) It is shown in [2, Lemma 2.3] that, if φ(TL(y)) ≤ mL(y;TL(y)) holds, then we have

φ(x)− φ(TL(y)) ≥ 1

2L
∥gL(y)∥2 + ⟨gL(y), x− y⟩ , ∀x ∈ E.

Letting x := y shows the first assertion. On the other hand, since φ(TL(y)) ≥ φ∗, letting x := x∗ ∈ X∗

gives

1

2L
∥gL(y)∥2 ≤ ⟨gL(y), y − x∗⟩ ≤ ∥gL(y)∥ ∥y − x∗∥ , ∀x∗ ∈ X∗.

Thus, we obtain 1
2L ∥gL(y)∥ ≤ dist(y,X∗).

(v) Since f is L-smooth for any L ≥ Lf , the inequality (4) implies φ(x) ≤ mL(y;x) for all x, y ∈ E
and L ≥ Lf .

2.1 Hölderian error bound

Here we introduce the Hölderian error bound condition which is also discussed in the context of
 Lojasiewicz inequality [3, 9, 11].

Definition 2.2. Fix x0 ∈ E. We say that φ satisfies the Hölderian error bound condition with
coefficient κ > 0 and exponent ρ ≥ 1 if

φ(x)− φ∗ ≥ κdist(x,X∗)ρ, ∀x ∈ levφ(φ(x0)), (8)

where levφ(γ) = {x ∈ E | φ(x) ≤ γ} and dist(x,X∗) = infx∗∈X∗ ∥x− x∗∥.

5

According to [3, Theorem 3.3], the Hölderian error bound condition is satisfied for some κ and ρ
if φ(x) is a proper, lower-semicontinuous, convex, coercive and subanalytic function. As subanalytic
functions contain semi-algebraic ones, this condition appears in many applications including popular
problems in machine learning; see, e.g., [4, 8] for related studies.

A noteworthy concept related to the Hölderian error bound condition is the Lojasiewicz gradient
inequality [10, 11], which is of the form

dist(0, ∂φ(x)) ≥ λ(φ(x)− φ∗)θ, ∀x ∈ levφ(φ(x0)) \X∗ (9)

for λ > 0 and θ ∈ [0, 1). In fact, these concepts (8) and (9) are equivalent for convex functions (see
Remark 2.4). The Lojasiewicz gradient inequality is a powerful tool for analyzing the convergence of
first-order methods as it covers wide class of applications and algorithms [1, 4].

Lemma 2.3. Let φ : E→ R ∪ {+∞} be a proper lower-semicontinuous convex function. For x0 ∈ E,
suppose that φ satisfies the Hölderian error bound condition (8) with coefficient κ > 0 and exponent
ρ ≥ 1. Then, for every x ∈ levφ(φ(x0)) \X∗, we have

κdist(x,X∗)ρ−1 ≤ inf{∥g∥ : g ∈ ∂φ(x)},

κ
1
ρ (φ(x)− φ∗)

ρ−1
ρ ≤ inf{∥g∥ : g ∈ ∂φ(x)}. (10)

Proof. Let x∗ be the projection of x onto X∗, so that ∥x− x∗∥ = dist(x,X∗). For every g ∈ ∂φ(x),
we have

κdist(x,X∗)ρ ≤ φ(x)− φ∗ ≤ −⟨g, x∗ − x⟩ ≤ ∥g∥ dist(x,X∗) ≤ ∥g∥ 1

κ1/ρ
(φ(x)− φ∗)1/ρ.

In particular, we obtain two inequalities

κdist(x,X∗)ρ ≤ ∥g∥dist(x,X∗),

φ(x)− φ∗ ≤ ∥g∥ 1

κ1/ρ
(φ(x)− φ∗)1/ρ.

Then, since x ̸∈ X∗, the assertion follows.

Remark 2.4. The condition (10) is the Lojasiewicz gradient inequality (9) with the correspondence
λ = κ1/ρ and θ = (ρ − 1)/ρ ∈ [0, 1). It is shown in [4] that the Lojasiewicz gradient inequality
is essentially equivalent to the Hölderian error bound condition: If (9) holds with λ = ρκ1/ρ and
θ = (ρ− 1)/ρ, then (8) holds (In [4, Theorem 5 (i)] set (κ−1/ρs1/ρ, φ(x0)) in place of (φ(s), r0) and let
the radius ρ of B(x̄, ρ) to +∞).

2.2 Lower complexity bounds

Let us discuss lower bounds on the iteration complexity under the Hölderian error bound condition
with respect to the optimality measure ∥gL(x)∥. The lower bound is derived in the case Ψ ≡ 0 so that
φ = f is a smooth function and we have gL(x) = ∇φ(x).

Given a class F of objective functions and an optimality measure δ : F × E → R ∪ {+∞},
the iteration complexity of a first-order method M applied to φ ∈ F for an accuracy ε > 0, say
C(M, φ, δ; ε), is defined as the minimal number of evaluations of a first-order oracle (φ(·),∇φ(·)) in
the method M required to find a point x ∈ E satisfying δ(φ, x) ≤ ε. Then we define the iteration
complexity of first-order methods associated with the class F with respect to the measure δ by

C(F , δ; ε) := inf
M

sup
φ∈F

C(M, φ, δ; ε),

6

where M runs all first-order methods for the class F starting from some fixed initial point x0 ∈ E.
We are interested in the iteration complexity under the following classes and measures:

• F(x0, R, L) denotes the class of L-smooth convex functions φ with X∗ ̸= ∅ and dist(x0, X
∗) ≤ R,

where X∗ = Argminx∈E φ(x).

• Class F(x0, R, L, κ, ρ): For R,L, κ > 0, ρ ≥ 2, and x0 ∈ E, we say that φ belongs to the class
F(x0, R, L, κ, ρ) if φ ∈ F(x0, R, L) and it satisfies the Hölderian error bound condition

φ(x)− φ∗ ≥ κdist(x,X∗)ρ, ∀x ∈ levφ(φ(x0)),

where X∗ = Argminx∈E φ(x).

Remark that we do not consider the case ρ ∈ [1, 2) because any L-smooth convex function cannot
admit the Hölderian error bound condition with exponent ρ ∈ [1, 2).1

• We consider the optimality measures

δ∗(φ, x) := φ(x)− inf φ,

δ(φ, x) := ∥∇φ(x)∥ .

For the class F(x0, R, L), the following lower bound on the iteration complexity holds (by [12,
Section 2.3B] applied to the class of L-smooth convex quadratic minimization):

C(F(x0, R, L), δ; ε) = Ω

(
min

{
dimE,

√
LR

ε

})
. (11)

Let us observe a lower bound on the iteration complexity for the class F(x0, R, L, κ, ρ).

Proposition 2.5. For the class F = F(x0, R, L, κ, ρ), we have

C(F , δ; ε) ≥ C(F , δ∗; ε∗), where ε∗ :=

(
1

κ

) 1
ρ−1

ε
ρ

ρ−1 .

Proof. If a first-order method M applied to φ ∈ F finds an approximate solution x ∈ E satisfying
δ(φ, x) ≤ ε, then Lemma 2.3 implies

δ∗(φ, x) = φ(x)− φ∗ ≤
(

1

κ

) 1
ρ−1

∥∇φ(x)∥
ρ

ρ−1 =

(
1

κ

) 1
ρ−1

δ(φ, x)
ρ

ρ−1 ≤
(

1

κ

) 1
ρ−1

ε
ρ

ρ−1 = ε∗.

Therefore, it follows that
C(M, φ, δ; ε) ≥ C(M, φ, δ∗; ε∗),

and we obtain the assertion.

1 Suppose that φ is an L-smooth convex function satisfying (8) for some exponent ρ ∈ [1, 2). For ρ = 1, Lemma 2.3
implies ∥∇φ(x)∥ ≥ κ for x ̸∈ Argminφ. If ρ ∈ (0, 2), on the other hand, Lemmas 2.1 and 2.3 imply 1

2L
∥∇φ(x)∥2 ≤

φ(x) − φ∗ ≤ κ−1/(ρ−1) ∥∇φ(x)∥
ρ

ρ−1 for all x, which yields ∥∇φ(x)∥ ≥ const. for all x ̸∈ Argminφ. This contradicts to
the continuity of ∇φ at points in Argminφ.

7

Under the measure δ∗, the following lower bound is known [13]:

C(F(x0, R, L, κ, ρ), δ∗; ε) =


Ω

(
min

{
dimE,

√
L

κ
2
ρ ε

ρ−2
ρ

})
: ρ > 2,

Ω

(
min

{
dimE,

√
L

κ
log

κR2

ε

})
: ρ = 2.

(12)

Consequently, by Proposition 2.5, we obtain lower bounds under the gradient norm measure δ:

C(F(x0, R, L, κ, ρ), δ; ε) =


Ω

(
min

{
dimE,

√
L

κ
1

ρ−1 ε
ρ−2
ρ−1

})
: ρ > 2,

Ω

(
min

{
dimE,

√
L

κ
log

κR

ε

})
: ρ = 2.

(13)

3 Accelerated proximal gradient method applied to regularized prob-
lems

This section is devoted to review the regularization strategy [8, 16], from which we construct adaptive
methods in the next section. We consider to apply an accelerated proximal gradient method to the
regularized problem

min
x∈E

[
φσ(x) := φ(x) +

σ

2
∥x− x0∥2

]
,

where x0 ∈ E is a fixed initial point and σ > 0 is a regularization parameter. Since φσ is strongly
convex, it has a unique minimizer. Let

x∗σ := argmin
x∈E

φσ(x), φ∗
σ := min

x∈E
φσ(x).

We define the gradient mapping gσL(x) for the regularized function φσ in the following manner:

fσ(x) := f(x) +
σ

2
∥x− x0∥2 ,

mσ
L(y;x) := fσ(y) + ⟨∇fσ(y), x− y⟩+

L

2
∥x− y∥2 + Ψ(x),

T σ
L (y) := argmin

x∈E
mσ

L(y;x),

gσL(y) := L(y − T σ
L (y)).

The following relations between φσ(x) and φ(x) are useful.

Lemma 3.1. (i) φσ(x) ≤ φσ(x0) implies φ(x) ≤ φ(x0).

(ii) ∥x0 − x∗σ∥ ≤ dist(x0, X
∗).

(iii) We have ∥gL(y)− gσL(y)∥ ≤ σ ∥y − x0∥ for any y ∈ E.

Proof. (i) is immediate by φ(x) ≤ φσ(x) and φσ(x0) = φ(x0).
(ii) For any x∗ ∈ X∗, the strong convexity of φσ implies φσ(x∗) ≥ φ∗

σ + σ
2 ∥x

∗ − x∗σ∥
2 , which can be

rewritten as
φ(x∗)− φ(x∗σ) ≥ σ

2
(−∥x∗ − x0∥2 + ∥x∗σ − x0∥

2 + ∥x∗ − x∗σ∥
2).

8

As φ(x∗)−φ(x∗σ) ≤ 0, we conclude ∥x∗ − x0∥2 ≥ ∥x∗σ − x0∥
2 +∥x∗ − x∗σ∥

2 ≥ ∥x∗σ − x0∥
2, which proves

the assertion.
(iii) In general, if h is a lower-semicontinuous and µ-strongly convex function, we have for any a, b ∈ E
that2

∥x∗a − x∗b∥ ≤
∥a− b∥
µ

, where x∗a = argmin
x∈E

{⟨a, x⟩+ h(x)}, x∗b = argmin
x∈E

{⟨b, x⟩+ h(x)}.

This fact implies

∥TL(y)− T σ
L (y)∥ ≤ ∥∇f(y)−∇fσ(y)∥

L
=
σ ∥y − x0∥

L
.

Therefore, we conclude (iii) because of ∥gL(y)− gσL(y)∥ = L ∥TL(y)− T σ
L (y)∥.

3.1 Accelerated proximal gradient method

We employ Nesterov’s accelerated proximal gradient method [17] for solving minx∈E φσ(x), by regard-
ing the objective function as

φσ(x) = f(x) + Ψσ(x), Ψσ(x) := Ψ(x) +
σ

2
∥x− x0∥2 . (14)

The analogy of the definition of TL(·) for this regularization is

T̃L(y) = argmin
x∈E

[
f(y) + ⟨∇f(y), x− y⟩+

L

2
∥x− y∥2 + Ψσ(x)

]
.

Observe that T̃L(y) = T σ
L+σ(y) holds (because of the identity mσ

L+σ(y;x) = f(y) + ⟨∇f(y), x− y⟩ +
L
2 ∥x− y∥

2 + Ψσ(x)). Therefore, the accelerated method A(x0, L0, σ) given in [17, Algorithm (4.9)]

applied to the regularized function (14) can be described as follows: Let x0 ∈ E, ψ0(x) = 1
2 ∥x− x0∥

2,
A0 = 0, L0 ≥ Lmin. Generate the sequence {xk, ψk,Mk, Lk, Ak} by the iteration

{xk+1, ψk+1,Mk, Lk+1, Ak+1} ← APGIterσ(xk, ψk, Lk, Ak)

for each k ≥ 0. The scheme APGIter at each iteration is shown in Algorithm 1. Nesterov’s method
involves the backtracking line-search procedure to adapt the Lipschitz constant Lf with the estimate
Mk (and Lk+1) which is controlled by the parameters γinc > 1 and γdec ≥ 1.

Remark 3.2. In one execution of the loop (Lines 3–10) in APGIter, we have three evaluations of φ(x)
(at x ∈ {z, TL(z), T σ

L+σ(z)}), two evaluations of ∇f(x) (at x ∈ {y, z}), and three proximal operations
T σ
L+σ(y), T σ

L+σ(z), TL(z). There is one proximal operation to compute vk outside the loop at Line 1.
Remark that v0 = x0 holds and, by the recurrence formula for ψk at Line 13, vk for k ≥ 1 can be
computed as

vk = proxγkΨ
(wk), where γk =

Ak

1 + σAk
, wk = x0 −

1

1 + σAk

k∑
i=1

ai∇f(xi). (16)

2 By the strong convexity of ⟨a, x⟩+ h(x) and ⟨b, x⟩+ h(x), we have

µ

2
∥x∗

a − x∗
b∥

2 ≤ [⟨a, x∗
b⟩+ h(x∗

b)]− [⟨a, x∗
a⟩+ h(x∗

a)],

µ

2
∥x∗

a − x∗
b∥

2 ≤ [⟨b, x∗
a⟩+ h(x∗

a)]− [⟨b, x∗
b⟩+ h(x∗

b)],

respectively. Adding them implies µ ∥x∗
a − x∗

b∥2 ≤ ⟨a− b, x∗
b − x∗

a⟩ ≤ ∥a− b∥ ∥x∗
b − x∗

a∥ .

9

Algorithm 1: Accelerated Proximal Gradient Iteration
{xk+1, ψk+1,Mk, Lk+1, Ak+1} ← APGIterσ(xk, ψk, Lk, Ak)

Parameters: γinc > 1, γdec ≥ 1, Lmin ∈ (0, Lf].
Input: σ > 0, xk ∈ E, ψk : E→ R ∪ {+∞}, Lk > 0, Ak > 0.

1: Compute vk := argminx∈E ψk(x) (cf. (16)).
2: Set L := Lk/γinc.
3: repeat
4: Set L := Lγinc.
5: Find the largest root a > 0 of the equation a2

Ak+a = 21+σAk
L .

6: Set y = Akxk+avk
Ak+a .

7: Compute z = T σ
L+σ(y) = argminx[f(y) + ⟨∇f(y), x− y⟩+ L

2 ∥x− y∥
2 + Ψσ(x)].

8: Compute TL(z) and T σ
L+σ(z) .

9: Test the conditions⟨
∇f(y)−∇f(T σ

L+σ(y)), y − T σ
L+σ(y)

⟩
≥ 1

L

∥∥∇f(y)−∇f(T σ
L+σ(y))

∥∥2 , (15a)

φσ(T σ
L+σ(z)) ≤ mσ

L+σ(z;T σ
L+σ(z)), (15b)

[Optional] φ(TL(z)) ≤ φ(z). (15c)

10: until the conditions in (15) hold.
11: Define yk := y, Mk := L, xk+1 := z = T σ

Mk+σ(yk),
12: ak+1 := a, Ak+1 := Ak + ak+1, Lk+1 := max{Lmin,Mk/γdec},
13: ψk+1(x) := ψk(x) + ak+1[f(xk+1) + ⟨∇f(xk+1), x− xk+1⟩+ Ψσ(x)].
14: Output {xk+1, ψk+1,Mk, Lk+1, Ak+1}.

Remark 3.3. Compared with the original Nesterov’s method, there are small modifications for our
development. The update Lk+1 := max{Lmin,Mk/γdec} at Line 12 is slightly different from the original
one Lk+1 := Mk/γdec in [17], which affects Lemma 3.5. Moreover, we have additional computations
TL(z) and T σ

L+σ(z) at Line 8 in order to test the conditions (15b) and (15c). Remark that, when
L = Lf is known, the computation of T σ

L+σ(z) at Line 8 can be omitted as it is only used to check
the second condition (15b). We let the third criterion (15c) optional; it is independent of the analysis
of Algorithm 3 while we need it in Algorihtm 4. The first condition (15a) is equivalent to the one in
Nesterov’s method (see the proof of Lemma 5 in [17]). It will be verified in Lemmas 3.4 and 3.5 that
our modification does not affect the original complexity analysis.

Lemma 3.4. The condition (15) of APGIter holds whenever L ≥ Lf .

Proof. The first condition (15a) is satisfied since f is L-smooth (e.g., see [15, Theorem 2.1.5]). Since
fσ is (Lf + σ)-smooth, the second one (15b) holds if L ≥ Lf by Lemma 2.1 (v). The third one (15c)
can be verified again by Lemma 2.1 (v): If L ≥ Lf , we have

φ(TL(z)) ≤ mL(z;TL(z)) ≤ φ(z),

where the second inequality follows from

mL(z;TL(z)) = min
x∈E

{
f(z) + ⟨∇f(z), x− z⟩+ Ψ(x) +

L

2
∥x− z∥2

}
x=z
≤ f(z) + Ψ(z) = φ(z). (17)

10

The following lemma is given in [17, Lemma 6] while we rewrite its proof due to the difference in
the update of Lk+1.

Lemma 3.5. Suppose that Lk ≤ γincLf holds. Then, APGIter ensures Mk ≤ γincLf and Lk+1 ≤
max{Lmin,

γinc
γdec

Lf} ≤ γincLf . The number of the executions of the loop (Lines 3–10) is bounded by

1 +
log γdec
log γinc

+
1

log γinc
log

Lk+1

Lk
.

Proof. Let nk ≥ 1 be the number of inner loops so that Mk = Lkγ
nk−1
inc . If nk = 1, then Mk = Lk ≤

γincLf . If nk > 1, then Mk ≤ γincLf must hold because otherwise Lkγ
nk−2
inc = Mk/γinc > Lf and

the nk-th loop cannot occur (by Lemma 3.4). Hence, we conclude Mk ≤ γincLf and also Lk+1 =
max{Lmin,Mk/γdec} ≤ max{Lmin,

γinc
γdec

Lf}.
Now, the relation Mk = Lkγ

nk−1
inc implies

Lk+1 = max{Lmin,Mk/γdec} ≥
1

γdec
Lkγ

nk−1
inc .

Then, we have (nk − 1) log γinc ≤ log
γdecLk+1

Lk
= log γdec + log

Lk+1

Lk
and therefore

nk ≤ 1 +
log γdec
log γinc

+
1

log γinc
log

Lk+1

Lk
.

The complexity estimate of Nesterov’s method is given as follows.

Proposition 3.6. Let {xk, ψk,Mk, Lk, Ak} be generated by the accelerated proximal gradient method
applied to the regularized objective function (14), that is,

{xk+1, ψk+1,Mk, Lk+1, Ak+1} ← APGIterσ(xk, ψk, Lk, Ak), k = 0, 1, 2, . . . ,

with the initialization x0 ∈ E, ψ0(x) = 1
2 ∥x− x0∥

2, A0 = 0, L0 > 0.

(i) If L0 ∈ [Lmin, γincLf], then we have Lmin ≤ Lk ≤ Mk ≤ γincLf for all k ≥ 0. The total number
of the executions of the loop (Lines 3–10) until the k-th iteration is bounded by[

1 +
log γdec
log γinc

]
(k + 1) +

1

log γinc
log

Lk+1

L0
.

(ii) For each k ≥ 1, we have

Ak ≥
2

γincLf

[
1 +

√
σ

2γincLf

]2(k−1)

.

(iii) φσ(xk)− φ∗
σ ≤

∥x0−x∗
σ∥

2

2Ak
holds for all k ≥ 1.

(iv) φ(xk) ≤ φ(x0) holds for all k ≥ 1.

(v) For every k ≥ 1, we have

∥xk − x0∥ ≤
(

1 +
1√
σAk

)
dist(x0, X

∗),

∥∥gMk−1
(xk)

∥∥ ≤ ∥∥∥gσMk−1+σ(xk)
∥∥∥+ σ ∥xk − x0∥ ≤

(
2

√
Mk−1 + σ

Ak
+ σ

)
dist(x0, X

∗).

11

Proof. (i) Lmin ≤ Lk ≤ Mk is clear by the construction. Mk ≤ γincLf is obtained by applying
Lemma 3.5 inductively.

Since Ψσ is σ-strongly convex, (ii) follows by [17, Lemma 8] applied to the objective function
φσ = f + Ψσ.

According to [17, Lemma 7], the following relations hold for all k ≥ 0:{
Akφσ(xk) ≤ minx∈E ψk(x),

ψk(x) ≤ Akφσ(x) + 1
2 ∥x− x0∥

2 , ∀x ∈ E.

Combining them, we obtain

Akφσ(xk) ≤ min
x∈E

{
Akφσ(x) +

1

2
∥x− x0∥

}
, ∀k ≥ 0.

Taking x = x∗σ on the right hand side, we obtain (iii). On the other hand, taking x = x0 yields
φσ(xk) ≤ φσ(x0). Then Lemma 3.1 (i) gives the assertion φ(xk) ≤ φ(x0).

(v) By the σ-strong convexity of φσ and using (iii), we have

σ

2
∥xk − x∗σ∥

2 ≤ φσ(xk)− φ∗
σ ≤
∥x0 − x∗σ∥

2

2Ak
=⇒ ∥xk − x∗σ∥ ≤

1√
σAk

∥x0 − x∗σ∥ .

This shows the former inequality of (v):

∥xk − x0∥ ≤ ∥xk − x∗σ∥+ ∥x0 − x∗σ∥ ≤
(

1 +
1√
σAk

)
∥x0 − x∗σ∥ ≤

(
1 +

1√
σAk

)
dist(x0, X

∗).

where the last inequality follows by Lemma 3.1 (ii).
Since φσ(T σ

Mk−1+σ(xk)) ≤ mσ
Mk−1+σ(xk;T σ

Mk−1+σ(xk)) holds by (15b), Lemma 2.1 (iv) yields

1

2(Mk−1 + σ)

∥∥∥gσMk−1+σ(xk)
∥∥∥2 ≤ φσ(xk)− φ∗

σ ≤
∥x0 − x∗σ∥

2

2Ak
≤ dist(x0, X

∗)

2Ak
.

Thus,
∥∥∥gσMk−1+σ(xk)

∥∥∥ ≤√Mk−1+σ
Ak

dist(x0, X
∗) holds. Consequently, using Lemma 2.1 (i) and Lemma 3.1

(iii), we obtain∥∥gMk−1
(xk)

∥∥ ≤ ∥∥gMk−1+σ(xk)
∥∥ ≤ ∥∥∥gσMk−1+σ(xk)

∥∥∥+ σ ∥xk − x0∥

≤
√
Mk−1 + σ

Ak
dist(x0, X

∗) + σ

(
1 +

1√
σAk

)
dist(x0, X

∗)

≤

(
2

√
Mk−1 + σ

Ak
+ σ

)
dist(x0, X

∗).

3.2 Proximal gradient method

We end this section by presenting Algorithm 2, a basic proximal gradient descent with a backtracking
strategy to estimate Lf [17, Algorithm (3.3)], which will be used in the initialization of our method.
The method consists of evaluations of φ(x) at x ∈ {xk, TL(xk)} (which can be omitted if Lf is known),
one gradient evaluation ∇f(xk), and proximal operations TL(xk), for each guess L of the Lipschitz
constant.

12

Algorithm 2: Proximal Gradient Iteration
{TMk

(xk),Mk, Lk+1} ← PGIter(xk, Lk)

Parameters: γinc > 1, γdec ≥ 1, Lmin ∈ (0, Lf].
Input: xk ∈ E, Lk > 0.

1: Set L := Lk/γinc.
2: repeat
3: Set L := γincL.
4: Compute TL(xk).
5: until the following condition holds:

φ(TL(xk)) ≤ mL(xk;TL(xk)). (18)

6: Define Mk := L, Lk+1 := max{Lmin,Mk/γdec}.
7: Output {TMk

(xk),Mk, Lk+1}.

Lemma 3.7. Let {TMk
(xk),Mk, Lk+1} be given by PGIter(xk, Lk). Then the following assertions

hold.

(i) φ(TMk
(xk)) ≤ φ(xk) holds.

(ii) If Lk ≤ γincLf , then we have Mk ≤ γincLf and Lk+1 ≤ max{Lmin,
γinc
γdec

Lf} ≤ γincLf . Moreover,
the number of the executions of the loop (Lines 2–5) is bounded by

1 +
log γdec
log γinc

+
1

log γinc
log

Lk+1

Lk
.

Proof. (i) The condition (18) ensures φ(TMk
(xk)) ≤ mMk

(xk;TMk
(xk)) ≤ φ(xk) (recall (17) for the

second inequality).
(ii) can be verified in the same way as Lemma 3.5.

4 Adaptive proximal gradient methods

In this section, we propose an adaptive proximal gradient method (Algorithm 3) and its restart
scheme (Algorithm 4). We show that these two are nearly optimal for the classes F(x0, R, L) and
F(x0, R, L, κ, ρ), respectively.

4.1 Adaptive determination of the regularization parameter

For solving (5) under the measure ∥gL(x)∥, we propose the adaptive accelerated proximal gradient
method AdaAPG shown in Algorithm 3, which can be seen as a simple extension of the regularization
technique [16] introducing a guess-and-check procedure to adapt the regularization parameter σ. The
j-th outer loop of AdaAPG corresponds to applying Nesterov’s accelerated proximal gradient method to
the regularized problem minx∈E φσj (x) where σj = σ0/γ

j
reg (γreg > 1). We stop Nesterov’s method if it

successfully finds an ε-solution or it iterates excessively as detected by the growth condition of Ak+1 at
Line 10. The growth of Ak+1 is used as the criterion that the current guess of σj is not desirable and
then we restart Nesterov’s method reallocating the regularization parameter as σj+1 := σj/γreg. The
proposed method involves the parameter β ∈ (0, 1] which controls the accuracy of solving minx φσj (x)
by Nesterov’s method (recall Proposition 3.6 (iii)).

The next lemma shows what happens if an outer loop fails to terminate the algorithm.

13

Algorithm 3: Adaptive Accelerated Proximal Gradient Method
AdaAPG(x0, L−1, σ0, ε)

Parameters: γinc > 1, γdec ≥ 1, Lmin ∈ (0, Lf], γreg > 1, β ∈ (0, 1].
Input: x0 ∈ E, L−1 ∈ [Lmin, γincLf], σ0 > 0, ε > 0.

1: L0 := L−1.
2: for j = 0, 1, 2, . . . do
3: σj := σ0/γ

j
reg.

4: ψ0(x) := 1
2 ∥x− x0∥

2, A0 := 0.
5: repeat for k = 0, 1, 2, . . .
6: {xk+1, ψk+1,Mk, Lk+1, Ak+1} ← APGIterσj (xk, ψk, Lk, Ak).
7: if ∥gMk

(xk+1)∥ ≤ ε then
8: output {σj , xk+1, TMk

(xk+1),Mk, Lk+1} and terminate the algorithm.
9: end if

10: until Ak+1 ≥
2(Mk+1+σj)

β2σ2
j

.

11: L0 := Lk+1.
12: end for

Lemma 4.1. In AdaAPG, suppose that a j-th outer loop finished with the criterion Ak+1 ≥
2(Mk+σj)

β2σ2
j

for some k ≥ 0. Then we have

∥xk+1 − x0∥ ≤
(

1 +
β√
2

)
dist(x0, X

∗),

∥gMk
(xk+1)∥ ≤ (1 +

√
2β)σj dist(x0, X

∗).

Moreover, the number of inner iterations is bounded as follows.

k + 1 ≤ 2 +

(√
2γincLf

σj
+ 1

)
log

γincLf + σj
βσj

.

Proof. The bounds on ∥xk+1 − x0∥ and ∥gMk
(xk+1)∥ can be obtained by Proposition 3.6 (v) applying

the assumption Ak+1 ≥
2(Mk+σj)

β2σ2
j

. To show the bound on k + 1, suppose k ≥ 1 (the result is clear

when k = 0). By the assumption on k and Proposition 3.6 (i), we have

Ak <
2(Mk−1 + σj)

β2σ2j
≤

2(γincLf + σj)

β2σ2j
.

On the other hand, Proposition 3.6 (ii) implies

Ak ≥
2

γincLf

[
1 +

√
σj

2γincLf

]2(k−1)

≥ 2

γincLf
exp

2(k − 1)
1√

2γincLf

σj
+ 1

 ,

14

where the second inequality is due to the fact3 1 + x ≥ exp x
1+x (∀x > −1). Therefore,

2

γincLf
exp

2(k − 1)
1√

2γincLf

σj
+ 1

 ≤ 2(γincLf + σj)

β2σ2j

=⇒ k + 1 ≤ 2 +
1

2

(√
2γincLf

σj
+ 1

)
log

γincLf (γincLf + σj)

β2σ2j
.

The assertion follows by relaxing γincLf ≤ γincLf + σj .

In view of Proposition 3.6 (i) and Remark 3.2, the total number of the executions of APGIter, say
N , determines the iteration complexity of AdaAPG. For instance, the total number of the evaluations
of ∇f(·) in AdaAPG is bounded by

2

[
1 +

log γdec
log γinc

]
N +

2

log γinc
log

γincLf

L−1
.

Theorem 4.2. In AdaAPG, let N be the total number of the executions of APGIter. Then the following
assertions hold.

(i) The algorithm terminates at the j-th outer loop whenever σj ≤ σ(x0, ε), where

σ(x0, ε) :=
ε

(1 +
√

2β) dist(x0, X∗)
(19)

(We let σ(x0, ε) := +∞ when x0 ∈ X∗). Moreover, we have

σj ≥ σ(x0, ε)/γreg, ∀j > 0. (20)

(ii) Suppose that the algorithm terminates at j = ℓ for some ℓ ≥ 0. Then N is at most√
2γincLf
√
γreg − 1

[
√
γreg

√
1

σℓ
−
√

1

σ0

]
log

γincLf + σℓ
βσℓ

+

(
1 + logγreg

σ0
σℓ

)(
2 + log

γincLf + σℓ
βσℓ

)
.

(iii) If σ0 ≤ σ(x0, ε), then

N ≤ 2 +

(√
2γincLf

σ0
+ 1

)
log

γincLf + σ0
βσ0

.

(iv) If σ0 ≥ σ(x0, ε), then N is at most√
2γincLf
√
γreg − 1

[
γreg

√
1

σ(x0, ε)
−
√

1

σ0

]
log

(
γregγincLf

βσ(x0, ε)
+

1

β

)
+

(
2 + logγreg

σ0
σ(x0, ε)

)[
2 + log

(
γregγincLf

βσ(x0, ε)
+

1

β

)]
= O

(√
Lf dist(x0, X∗)

ε
log

Lf dist(x0, X
∗)

ε
+ log

σ0 dist(x0, X
∗)

ε
log

Lf dist(x0, X
∗)

ε

)
. (21)

3 In fact, since the derivative log(1 + x) of the function h(x) := (1 + x) log(1 + x) − x is increasing and vanishes at
x = 0, we have minx>−1 h(x) = h(0) = 0.

15

Proof. (i) By Lemma 4.1, the algorithm must terminate at the j-th loop whenever

(1 +
√

2β)σj dist(x0, X
∗) ≤ ε, i.e., σj ≤

ε

(1 +
√

2β) dist(x0, X∗)
= σ(x0, ε).

To see the latter assertion, assume that σj < σ(x0, ε)/γreg holds for some j > 0. Then the previous
(j − 1)-th loop satisfies σj−1 < σ(x0, ε) so that the j-th loop is not executed by the former assertion.
This verifies the assertion (20).

(ii) Since σℓ = σ0/γ
ℓ
reg, we have ℓ = logγreg σ0/σℓ. Using Lemma 4.1, N is bounded as follows.

N ≤
ℓ∑

j=0

[
2 +

(√
2γincLf

σj
+ 1

)
log

γincLf + σj
βσj

]

≤ 2(ℓ+ 1) +
√

2γincLf log
γincLf + σℓ

βσℓ

ℓ∑
j=0

√
1

σj
+ (ℓ+ 1) log

γincLf + σℓ
βσℓ

,

where the second inequality is due to σj ≥ σℓ (∀j ≤ ℓ). Note that

ℓ∑
j=0

√
1

σj
=

ℓ∑
j=0

√
1

σ0/γ
j
reg

=

√
1

σ0

ℓ∑
j=0

√
γreg

j =

√
1

σ0

√
γreg

ℓ+1 − 1
√
γreg − 1

=

√
1

σ0

√
γreg

√
σ0/σℓ − 1

√
γreg − 1

=
1

√
γreg − 1

[
√
γreg

√
1

σℓ
−
√

1

σ0

]
Therefore, we see that

N ≤ (ℓ+ 1)

(
2 + log

γincLf + σℓ
βσℓ

)
+

√
2γincLf
√
γreg − 1

[
√
γreg

√
1

σℓ
−
√

1

σ0

]
log

γincLf + σℓ
βσℓ

.

The assertion follows by substituting ℓ = logγreg σ0/σℓ.
In view of (i), the assertions (iii) and (iv) follow by applying (ii) with σℓ = σ0 and σℓ ≥ σ(x0, ε)/γreg,

respectively. The big-O expression (21) is obtained by substituting the definition of σ(x0, ε).

If σ0 is chosen appropriately, then the complexity estimates in Theorem 4.2 (iii) and (vi) match
the lower complexity bound (11) for the class F(x0, R, L), up to a logarithmic factor. Nesterov’s
regularization technique [16] essentially corresponds to the ideal choice σ0 = σ(x0, ε), which requires
dist(x0, X

∗) to be known. Here we show a simple example to choose σ0 so that AdaAPG attains the
near optimality without knowing dist(x0, X

∗).

Corollary 4.3. Given x0 ∈ E and L−1 ∈ [Lmin, γincLf], apply {TM (x0),M,L} ← PGIter(x0, L−1).
For any ε > 0 such that ∥gM (x0)∥ ≥ ε, choose σ0 from the interval

σ0 ∈
[

2εM

(1 +
√

2β) ∥gM (x0)∥
,

2M

1 +
√

2β

]
. (22)

Then we have

σ(x0, ε) ≤ σ0 ≤
2γincLf

1 +
√

2β
. (23)

Consequently, AdaAPG(x0, L−1, σ0, ε) finds xk ∈ E and Mk > 0 satisfying ∥gMk
(xk)∥ ≤ ε with the

iteration complexity at most

O

(√
Lf dist(x0, X∗)

ε
log

Lf dist(x0, X
∗)

ε

)
. (24)

16

Proof. Since φ(TM (x0)) ≤ mM (x0;TM (x0)) holds by the condition (18) in PGIter, Lemma 2.1 (iv)
implies

dist(x0, X
∗) ≥ 1

2M
∥gM (x0)∥ ≥

1

2M
ε ≥ 1

2γincLf
ε,

where the last inequality follows from Lemma 3.7 (ii). This can be rewritten as

σ(x0, ε) ≡
ε

(1 +
√

2β) dist(x0, X∗)
≤ 2εM

(1 +
√

2β) ∥gM (x0)∥
≤ 2M

1 +
√

2β
≤

2γincLf

1 +
√

2β
.

Therefore, (22) implies (23). In particular, we can apply Theorem 4.2 (iv) to obtain the complexity
bound (21) whose second term is dominated by the first one due to the upper bound (23) of σ0.

Finally, we make an observation on the convergence of the proposed method. Let us consider the
execution of AdaAPG with ε = 0 which is possibly an infinite step algorithm. Then the choice

σ0 := 2M/(1 + 2
√
β)

given in Corollary 4.3 ensures the nearly optimal complexity bound (24) for every ε ∈ (0, ∥gM (x0)∥∗).
This means that, with this choice of σ0, the algorithm AdaAPG with ε = 0 yields a nearly optimal
convergence with respect to ∥gL(x)∥.

4.2 Adaptive restart algorithm under the Hölderian error bound condition

In this section, given an initial point x(0) ∈ E, we assume that the objective function φ admits the
Hölderian error bound condition

φ(x)− φ∗ ≥ κdist(x,X∗)ρ, ∀x ∈ levφ(φ(x(0))), (25)

for some κ > 0 and ρ ≥ 1. For this case, we propose the restart scheme rAdaAPG described in

Algorithm 4. Namely, given a current solution x(t), we apply a proximal gradient iteration x
(t)
+ :=

TM(t)(x(t)) from which we start AdaAPG to find the next x(t+1) reducing the gradient mapping norm
at the ratio θ ∈ (0, 1): ∥∥∥gM(t+1)(x(t+1))

∥∥∥ ≤ θ ∥∥∥gM(t)(x(t))
∥∥∥ .

Remarkably, the regularization parameter σ(t) is input to AdaAPG which adaptively finds the next
σ(t+1). Therefore, the next x(t+1) can be seen as an approximate solution to the regularized problem

min
x∈E

[
φ(x) +

σ(t+1)

2

∥∥∥x− x(t)+

∥∥∥2]
computed by an accelerated proximal gradient method. Finally, we note that the initial regularization
parameter σ(0) may be determined depending on the result of Line 1, as observed in Corollary 4.5.

4.2.1 Iteration complexity results and near optimality

To show the iteration complexity result, observe that the total number N of the executions of APGIter
determines the complexity of rAdaAPG. For instance, the total number of the evaluations of ∇f(·) in
rAdaAPG can be bounded by (recall Proposition 3.6 (i), Lemma 3.7 (ii), and Remark 3.2)[

1 +
log γdec
log γinc

]
(2N + 1) +

2

log γinc
log

γincLf

L(−1)
.

17

Algorithm 4: Restart Scheme for Adaptive Accelerated Proximal Gradient Method
rAdaAPG(x(0), L(−1), σ(0), ε)

Parameters:
γinc > 1, γdec ≥ 1, Lmin ∈ (0, Lf] (for backtracking line-search);
γreg > 1 (the ratio to reallocate the regularization parameter);
β ∈ (0, 1] (controls the accuracy applying accelerated proximal gradient method);
θ ∈ (0, 1) (the ratio reducing the residue per iteration).
Input: x(0) ∈ E, L(−1) ∈ [Lmin, γincLf], σ(0) > 0, ε > 0.

1: Compute {x(0)+ ,M (0), L(0)} ← PGIter(x(0), L(−1)) .
2: for t = 0, 1, 2, . . . do

3: if
∥∥gM(t)(x(t))

∥∥ ≤ ε then output {x(t),M (t), x
(t)
+ } and terminate the algorithm.

4: ε(t) := θ
∥∥gM(t)(x(t))

∥∥.

5: {σ(t+1), x(t+1), x
(t+1)
+ ,M (t+1), L(t+1)} ← AdaAPG(x

(t)
+ , L(t), σ(t), ε(t))

6: (with testing the optional condition (15c) of APGIter).
7: end for

We focus on the bound on N in the remaining of this section.
To describe the iteration complexity bounds, we define N(ε, σ∗, C) and σ̄ as follows. Given

ε, σ∗, C > 0, let N(ε, σ∗, C) := 0 if
∥∥gM(0)(x(0))

∥∥ ≤ ε and otherwise

N(ε, σ∗, C) :=

(
1 + log1/θ

∥∥gM(0)(x(0))
∥∥

ε
+ logγreg

σ(0)

σ∗

)(
2 + log

γincLf + σ∗
βσ∗

)

+

√
2γincLf
√
γreg − 1

[√
1

σ∗
−
√

1

σ(0)

]
log

γincLf + σ∗
βσ∗

+ C
√

2γincLf log
γincLf + σ∗

βσ∗
. (26)

Moreover, we define

σ̄ =


θ

1 +
√

2β
κ

1
ρ−1

(
Lf

Lmin
+ 1

)− 1
ρ−1

ε
ρ−2
ρ−1 (if ρ ≥ 2),

θ

1 +
√

2β
κ

2
ρ

(
Lf

Lmin
+ 1

)−1

(φ(x(0))− φ∗)
− 2−ρ

ρ (if 1 ≤ ρ < 2).

(27)

The next theorem provides the descriptions of iteration complexity bounds which have complicated
expressions to explicit their dependence on parameters. A simplified form is presented in Corollary 4.5.
Their proofs are given in Section 4.2.2.

Theorem 4.4. Assume that the Hölderian error bound condition (25) holds. In rAdaAPG, let N be
the total number of the executions of APGIter. Denote

σ∗ :=

{
σ(0) (if σ(0) ≤ σ̄),
σ̄/γreg (otherwise),

(28)

for σ̄ defined in (27). Also, let N(·, ·, ·) be defined by (26). Then the following assertions hold.

(i) If ρ = 2, then N ≤ N(ε, σ∗, C) holds with

C =

√
1

σ∗

(
1 + log1/θ

∥∥gM(0)(x(0))
∥∥

ε

)
.

18

(ii) Suppose ρ > 2. If σ(0) ≥ σ̄, then N ≤ N(ε, σ∗, C) holds with

C =

√
1

σ(0)

(
1 +

ρ− 1

ρ− 2
log1/θ

σ
(0)
∗

min(σ
(0)
∗ , σ(0))

)
+

√
γreg

1−
√
θ

ρ−2
ρ−1

(√
1

σ̄
−
√
θ

ρ−2
ρ−1

√
1

σ(0)

)
,

where σ
(0)
∗ := θ

1+
√
2β
· κ

1
ρ−1

(
Lf

Lmin
+ 1
)− 1

ρ−1 ∥gM(0)(x(0))∥
ρ−2
ρ−1
∗ . Otherwise, it follows σ(t) = σ(0)

(∀t ≥ 0) and N ≤ N(ε, σ(0), C) holds with

C =

√
1

σ(0)

(
1 + log1/θ

∥∥gM(0)(x(0))
∥∥

ε

)
.

(iii) Suppose ρ ∈ (1, 2). Then we have

N ≤ 1 +N(max(ε, ε∗), σ∗, C) +

(
log

1

ρ− 1

)−1
(

log log
ε∗

θ
ρ−1
2−ρ min(ε, ε∗)

− log log
1

θ
ρ−1
2−ρ

)
, (29)

where

ε∗ =
[
(1 +

√
2)θ−1(γincLf + σ(0))

]− ρ−1
2−ρ

κ
1

2−ρ

(
Lf

Lmin
+ 1

)− 1
2−ρ

, (30)

C =

√
1

σ∗

(
1 + log1/θ

∥∥gM(0)(x(0))
∥∥

max(ε, ε∗)

)
.

(iv) If ρ = 1, then we have
N ≤ 1 +N(max(ε, ε∗), σ∗, C),

where

ε∗ = κ

(
Lf

Lmin
+ 1

)−1

, C =

√
1

σ∗

(
1 + log1/θ

∥∥gM(0)(x(0))
∥∥

max(ε, ε∗)

)
.

Moreover, if ε < ε∗, then x
(t)
+ in the output of the algorithm must be an optimal solution to the

original problem (5).

Corollary 4.5. Let x(0) ∈ E and L(−1) ∈ [Lmin, γincLf]. Assume that the Hölderian error bound
condition (25) holds. After the initialization step (Line 1) in rAdaAPG, determine σ(0) by

σ(0) :=
2ε(0)M

(1 +
√

2β)
∥∥∥gM (x

(0)
+)
∥∥∥ , where {TM (x

(0)
+),M,L} ← PGIter(x

(0)
+ , L(0)). (31)

Then, rAdaAPG(x(0), L(−1), σ(0), ε) finds x(t) ∈ E and M (t) > 0 such that
∥∥gM(t)(x(t))

∥∥ ≤ ε with
iteration complexity at most the following quantities, where we denote

g0 := gM(0)(x(0)), ∆0 := φ(x(0))− φ∗,

19

ε∗ is defined by (30), and we regard θ, γinc, γreg, β,
Lf

Lmin
as constants.

O

([
log ∥g0∥

ε +

√
Lf

κ
1

ρ−1 ε
ρ−2
ρ−1

]
log

Lf

ε
ρ−2
ρ−1

)
(ρ > 2),

O

(√
Lf

κ log
Lf

κ log ∥g0∥
ε

)
(ρ = 2),

O

√Lf∆
2−ρ
ρ

0

κ
2
ρ

log
Lf∆

2−ρ
ρ

0

κ
2
ρ

log
∥g0∥L

ρ−1
2−ρ
f

κ
1

2−ρ
+ (log 1

ρ−1)−1 log log κ
1

2−ρ

L
ρ−1
2−ρ
f ε

 (ρ ∈ (1, 2), ε ≤ ε∗),

O

√Lf∆
2−ρ
ρ

0

κ
2
ρ

log
Lf∆

2−ρ
ρ

0

κ
2
ρ

log ∥g0∥
ε

 (ρ ∈ (1, 2), ε ≥ ε∗),

O

(√
Lf∆0

κ2 log
Lf∆0

κ2 log ∥g0∥
max(κ,ε)

)
(ρ = 1).

(32)

Let us observe the consequences of Corollary 4.5. Notice that the iteration complexity bounds
(32) in the cases ρ = 2 and ρ > 2 match the lower bounds (13) up to a logarithmic factor. Therefore,
rAdaAPG achieves the near optimality for the class F(x0, R, L, κ, ρ).

Note that σ(0) defined in (31) is independent of ε. Therefore, if we consider rAdaAPG with ε = 0,
the algorithm ensures the above iteration complexity for every ε so that we obtain a convergence
result.

The algorithm rAdaAPG with ε = 0 can also provide an iteration complexity result with respect to
the measure φ(·)− φ∗. As we prove the inequality (35), the following relation holds if ρ ̸= 1.

φ(x
(t)
+)− φ∗ ≤ 1

κ
1

ρ−1

(
Lf

Lmin
+ 1

) ρ
ρ−1
∥∥∥gM(t)(x(t))

∥∥∥ ρ
ρ−1

. (33)

This means that, given δ > 0, we have the following implication:∥∥∥gM(t)(x(t))
∥∥∥ ≤ ε := κ

1
ρ

(
Lf

Lmin
+ 1

)−1

δ
ρ−1
ρ =⇒ φ(x

(t)
+)− φ∗ ≤ δ.

Substituting this ε to our complexity bound (32), we also obtain an iteration complexity bound under
the measure φ(·)−φ∗ which is nearly optimal in view of the lower complexity bound (12). Although it
enjoys an adaptive and nearly optimal convergence, the proposed method does not provide a stopping
criterion for the measure φ(·)−φ∗ since the right hand side of (33) is not verifiable unless we know κ
and ρ.

4.2.2 Proof of the main results

Here we complete the proofs of Theorem 4.4 and Corollary 4.5. We prepare some lemmas below.

Lemma 4.6. Assume that the Hölderian error bound condition (25) holds. In the execution of
rAdaAPG, the following assertions hold.

(i) L(t),M (t) ∈ [Lmin, γincLf] for all t ≥ 0.

(ii) φ(x
(t+1)
+) ≤ φ(x

(t)
+) ≤ · · · ≤ φ(x

(0)
+) ≤ φ(x(0)) for all t ≥ 0.

(iii) t ≤ log1/θ

∥∥gM(0)(x(0))
∥∥∥∥gM(t)(x(t))
∥∥ for each t ≥ 0.

20

(iv) Whenever x
(t)
+ ̸∈ X∗, we have

dist(x
(t)
+ , X∗)ρ−1 ≤ 1

κ

(
Lf

Lmin
+ 1

)∥∥∥gM(t)(x(t))
∥∥∥ , (34)

(φ(x
(t)
+)− φ∗)ρ−1 ≤ 1

κ

(
Lf

Lmin
+ 1

)ρ ∥∥∥gM(t)(x(t))
∥∥∥ρ . (35)

Proof. (i) Since L(−1) ∈ [Lmin, γincLf], it follows L(0),M (0) ∈ [Lmin, γincLf] by Lemma 3.7 (ii). Then,
using Proposition 3.6 (i) inductively, we obtain (i).

(ii) For t = 0, we have φ(x
(0)
+) = φ(TM(0)(x(0))) ≤ φ(x(0)) by Lemma 3.7 (i). Moreover, according

to the criterion (15c) and Proposition 3.6 (iv) applied to the subroutine AdaAPG in rAdaAPG satisfies

φ(x
(t+1)
+) ≤ φ(x(t+1)) and φ(x(t+1)) ≤ φ(x

(t)
+),

respectively. This shows φ(x
(t+1)
+) ≤ φ(x

(t)
+).

(iii) Since the recurrence ε(t)/θ =
∥∥gM(t)(x(t))

∥∥ ≤ ε(t−1) holds for t ≥ 1, we have ε(0) ≥ ε(t)/θt for
each t ≥ 0. Therefore,

t ≤ log1/θ
ε(0)

ε(t)
= log1/θ

∥∥gM(0)(x(0))
∥∥∥∥gM(t)(x(t))
∥∥ .

(iv) Since x
(t)
+ = TM(t)(x(t)), Lemma 2.1 (iii) implies that gt := ∇f(x

(t)
+) − ∇f(x(t)) + gM(t)(x(t))

belongs to ∂φ(x
(t)
+). Then, Lemma 2.3 shows (note that x

(t)
+ belongs to levφ(φ(x(0))) \X∗ by (ii))

κdist(x
(t)
+ , X∗)ρ−1 ≤ ∥gt∥ ≤

(
Lf

M (t)
+ 1

)∥∥∥gM(t)(x(t))
∥∥∥ ≤ (Lf

Lmin
+ 1

)∥∥∥gM(t)(x(t))
∥∥∥ ,

where the second inequality is due to Lemma 2.1 (iii) and the last follows by (i). This shows the
assertion (34). Similarly, (35) can be obtained using (10).

The following lemma plays an essential role to derive our iteration complexity results.

Lemma 4.7. Let N (t) be the number of the executions of APGIter at the t-th outer loop of rAdaAPG.
Assume that, for some T∗ ≥ 0, σ∗ > 0, and ε∗ > 0, we have

σ(t+1) ≥ σ∗ (t = 0, . . . , T∗) and
∥∥∥gM(T∗)(x

(T∗))
∥∥∥ ≥ ε∗.

Then, under the definition (26) of N(·, ·, ·), the following inequality holds.

T∗∑
t=0

N (t) ≤ N(ε∗, σ∗, C) ≤ N(ε∗, σ∗, C∗),

where

C :=

T∗∑
t=0

√
1

σ(t+1)
≤ C∗ :=

√
1

σ∗

(
1 + log1/θ

∥∥gM(0)(x(0))
∥∥

ε∗

)
.

21

Proof. Since σ(t+1) ≥ σ∗ for each t = 0, . . . , T∗, Theorem 4.2 (ii) gives the following bound for t =
0, . . . , T∗:

N (t) ≤

(
1 + logγreg

σ(t)

σ(t+1)

)(
2 + log

γincLf + σ(t+1)

βσ(t+1)

)

+

√
2γincLf
√
γreg − 1

[
√
γreg

√
1

σ(t+1)
−
√

1

σ(t)

]
log

γincLf + σ(t+1)

βσ(t+1)

≤

(
1 + logγreg

σ(t)

σ(t+1)

)(
2 + log

γincLf + σ∗
βσ∗

)

+

√
2γincLf
√
γreg − 1

[
√
γreg

√
1

σ(t+1)
−
√

1

σ(t)

]
log

γincLf + σ∗
βσ∗

.

By Lemma 4.6 (iii), T∗ is bounded by

T∗ ≤ log1/θ

∥∥gM(0)(x(0))
∥∥∥∥gM(T∗)(x(T∗))
∥∥ ≤ log1/θ

∥∥gM(0)(x(0))
∥∥

ε∗
.

To estimate the sum
∑T∗

t=0N
(t), note that

T∗∑
t=0

(
1 + logγreg

σ(t)

σ(t+1)

)
= 1 + T∗ + logγreg

σ(0)

σ(T∗+1)
≤ 1 + log1/θ

∥∥gM(0)(x(0))
∥∥

ε∗
+ logγreg

σ(0)

σ∗
,

and

T∗∑
t=0

[
√
γreg

√
1

σ(t+1)
−
√

1

σ(t)

]
= (
√
γreg − 1)

T∗∑
t=0

√
1

σ(t+1)
+

T∗∑
t=0

[√
1

σ(t+1)
−
√

1

σ(t)

]

= (
√
γreg − 1)

T∗∑
t=0

√
1

σ(t+1)
+

√
1

σ(T∗+1)
−
√

1

σ(0)
.

Therefore,
∑T∗

t=0N
(t) is bounded by

T∗∑
t=0

N (t) ≤

(
1 + log1/θ

∥∥gM(0)(x(0))
∥∥

ε∗
+ logγreg

σ(0)

σ∗

)(
2 + log

γincLf + σ∗
βσ∗

)

+

√
2γincLf
√
γreg − 1

[√
1

σ∗
−
√

1

σ(0)

]
log

γincLf + σ∗
βσ∗

+
√

2γincLf

T∗∑
t=0

√
1

σ(t+1)
log

γincLf + σ∗
βσ∗

= N(ε∗, σ∗, C).

Finally, C has the following bound:

C =

T∗∑
t=0

√
1

σ(t+1)
≤
√

1

σ∗
(1 + T∗) ≤

√
1

σ∗

(
1 + log1/θ

∥∥gM(0)(x(0))
∥∥

ε∗

)
= C∗,

which also concludes N(ε∗, σ∗, C) ≤ N(ε∗, σ∗, C∗).

22

In view of this lemma, the complexity analysis boils down to analyze lower bounds of σ(t) as we
discuss next.

Lemma 4.8. Assume that the Hölderian error bound condition (25) holds. Suppose that rAdaAPG

terminated with the stopping criterion at the (T + 1)-th outer loop for some T ≥ 0. Let σ̄ be defined
by (27).

(i) For each t = 0, . . . , T , we have

σ(t+1)

{
= σ(t) (σ(t) ≤ σ(x

(t)
+ , ε(t))),

≥ σ(x
(t)
+ , ε(t))/γreg (otherwise),

where σ(·, ·) is defined by (19).

(ii) It follows that

σ(x
(t)
+ , ε(t)) ≥ σ̄, t = 0, . . . , T. (36)

When ρ ≥ 2, we further obtain

σ(x
(t)
+ , ε(t)) ≥ θ

1
ρ−1

1 +
√

2β
· κ

1
ρ−1

(
Lf

Lmin
+ 1

)− 1
ρ−1

(ε(t))
ρ−2
ρ−1 ≥ σ̄ (37)

for each t = 0, . . . , T .

(iii) For each t = 0, . . . , T + 1, we obtain

σ(t)
{

= σ(0) (σ(0) ≤ σ̄),
≥ σ̄/γreg (otherwise).

Proof. (i) In the case σ(t) ≤ σ(x
(t)
+ , ε(t)), Theorem 4.2 (i) implies that the subroutine AdaAPG at the

t-th outer loop must terminate at the first loop j = 0 so that σ(t+1) is defined by σ(t+1) = σ(t). On

the other hand, consider the case σ(t) > σ(x
(t)
+ , ε(t)). When the subroutine AdaAPG at the t-th outer

loop terminates at the first loop j = 0, then it is clear that

σ(t+1) = σ(t) > σ(x
(t)
+ , ε(t)) ≥ σ(x

(t)
+ , ε(t))/γreg.

In the another case, (20) implies σ(t+1) ≥ σ(x
(t)
+ , ε(t))/γreg.

(ii) We may assume x
(t)
+ ̸∈ X∗ which allows us to apply Lemma 4.6 (iv) (Note that the assertion

is clear if x
(t)
+ ∈ X∗ since then σ(x

(t)
+ , ε(t)) = +∞). In the case ρ ≥ 2, using (34) implies

σ(x
(t)
+ , ε(t)) =

θ
∥∥gM(t)(x(t))

∥∥
(1 +

√
2β) dist(x

(t)
+ , X∗)

≥ θ

1 +
√

2β
· κ

1
ρ−1

(
Lf

Lmin
+ 1

)− 1
ρ−1
∥∥∥gM(t)(x(t))

∥∥∥ ρ−2
ρ−1

.

Since ε(t) ≡ θ∥gM(t)(x(t))∥∗ and ∥gM(t)(x(t))∥∗ ≥ ε (by the definition of T), we obtain (37).

If ρ ∈ [1, 2), on the other hand, since φ(x
(t)
+) ≤ φ(x(0)) by Lemma 4.6 (ii), the inequalities (25) and

(35) imply (remark that 2−ρ
ρ > 0)

dist(x
(t)
+ , X∗) ≤ 1

κ
1
ρ

(φ(x
(t)
+)− φ∗)

1
ρ =

1

κ
1
ρ

(φ(x
(t)
+)− φ∗)

ρ−1
ρ (φ(x

(t)
+)− φ∗)

2−ρ
ρ

≤ 1

κ
2
ρ

(
Lf

Lmin
+ 1

)∥∥∥gM(t)(x(t))
∥∥∥ (φ(x

(t)
+)− φ∗)

2−ρ
ρ

≤ 1

κ
2
ρ

(
Lf

Lmin
+ 1

)∥∥∥gM(t)(x(t))
∥∥∥ (φ(x(0))− φ∗)

2−ρ
ρ .

23

Therefore, we conclude that

σ(x
(t)
+ , ε(t)) =

θ
∥∥gM(t)(x(t))

∥∥
(1 +

√
2β) dist(x

(t)
+ , X∗)

≥ θ

1 +
√

2β
κ

2
ρ

(
Lf

Lmin
+ 1

)−1

(φ(x(0))− φ∗)
− 2−ρ

ρ = σ̄.

This proves (36).

(iii) In the case σ(0) ≤ σ̄, (ii) implies σ(0) ≤ ε(x
(0)
+ , ε(0)). Then, using (i), we have σ(1) = σ(0) and

also σ(1) ≤ σ̄. Continuing this argument inductively, we conclude that σ(t) = σ(t−1) = · · · = σ(0) for
all t.

In the case σ(0) ≥ σ̄, on the other hand, let us show σ(t) ≥ σ̄/γreg (t = 0, . . . , T + 1) by induction.
The assertion for t = 0 is clear since σ(0) ≥ σ̄ ≥ σ̄/γreg. Assume that σ(t) ≥ σ̄/γreg holds for some
t ≥ 0. By (i) and (ii), we have

σ(t+1) ≥ min{σ(t), ε(x(t)+ , ε(t))/γreg} ≥ min{σ̄/γreg, σ̄/γreg} = σ̄/γreg.

This completes the proof of (iii).

In order to provide more accurate complexity analysis, we prove bounds of σ(t) specialized to the
case ρ > 2.

Lemma 4.9. Assume that the Hölderian error bound condition (25) holds with ρ > 2. Suppose that
rAdaAPG terminated with the stopping criterion at the (T+1)-th outer loop for some T ≥ 0. If σ(0) ≥ σ̄
holds for σ̄ defined by (27), then there exists t0 ∈ {0, . . . , T + 1} such that the following conditions

hold, where σ
(0)
∗ := θ

1+
√
2β
· κ

1
ρ−1

(
Lf

Lmin
+ 1
)− 1

ρ−1 ∥gM(0)(x(0))∥
ρ−2
ρ−1
∗ .

(i) σ(0) = · · · = σ(t0). (38)

(ii) σ(t+1) ≥ θ−
ρ−2
ρ−1

(T−t)
σ̄/γreg, t = t0, . . . , T. (39)

(iii) t0 ≤ 1 +
ρ− 1

ρ− 2
log1/θ

σ
(0)
∗

min(σ(0), σ
(0)
∗)

. (40)

(iv) θ
ρ−2
ρ−1

(T−t0) ≥ σ̄/σ(0). (41)

Proof. Define

σ
(t)
∗ :=

θ
1

ρ−1

1 +
√

2β
· κ

1
ρ−1

(
Lf

Lmin
+ 1

)− 1
ρ−1

(ε(t))
ρ−2
ρ−1 , t ≥ 0.

Then Lemma 4.8 (ii) can be written as

σ(x
(t)
+ , ε(t)) ≥ σ(t)∗ ≥ σ̄, t = 0, . . . , T. (42)

For simplicity, denote

ω :=
ρ− 2

ρ− 1
∈ (0, 1), c :=

θ
1

ρ−1

1 +
√

2β
· κ

1
ρ−1

(
Lf

Lmin
+ 1

)− 1
ρ−1

so that we have
σ̄ = c(θε)ω, σ

(t)
∗ = c(ε(t))ω, t ≥ 0.

24

Note that {σ(t)∗ } is non-increasing; in fact, the relation ε(t+1) ≤ θε(t) implies

σ
(t+1)
∗ = c(ε(t+1))ω ≤ cθω(ε(t))ω = θωσ

(t)
∗ ≤ σ(t)∗ . (43)

Let t0 be the smallest integer in {0, . . . , T + 1} such that σ(0) ≥ σ
(t0)
∗ . Remark that, by the

definition of T , we have ε(T+1) = θ∥gM(T+1)(x(T+1))∥∗ ≤ θε. This implies that

σ(0) ≥ σ̄ = c(θε)ω ≥ c(ε(T+1))ω = σ
(T+1)
∗ .

Therefore, t0 is well-defined.
(i) By the definition of t0 and (42), we have

σ(0) < σ
(t)
∗ ≤ σ(x

(t)
+ , ε(t)), 0 ≤ ∀t < t0.

Therefore, by induction, we obtain σ(0) = σ(1) = · · · = σ(t0) due to Lemma 4.8 (i).

(ii) Let us show σ(t+1) ≥ σ
(t)
∗ /γreg (t0 ≤ t ≤ T). To prove this, we verity σ(t) ≥ σ

(t)
∗ /γreg for

t = t0, . . . , T + 1 by induction. Note that σ(t0) = σ(0) ≥ σ
(t0)
∗ > σ

(t0)
∗ /γreg holds by (i) and the

definition of t0. Now under the hypothesis σ(t) ≥ σ
(t)
∗ /γreg for t with t0 ≤ t ≤ T , Lemma 4.8 (i) and

(42) imply

σ(t+1) ≥ min{σ(t), σ(x
(t)
+ , ε(t))/γreg} ≥ min{σ(t)∗ /γreg, σ

(t)
∗ /γreg} = σ

(t)
∗ /γreg ≥ σ(t+1)

∗ /γreg.

Therefore, this completes the induction; in addition, the above inequality proves the desired inequality

σ(t+1) ≥ σ(t)∗ /γreg (t0 ≤ t ≤ T). This yields (ii) combined with (42) and (43):

σ(t+1) ≥ σ(t)∗ /γreg ≥ θ−ω(T−t)σ
(T)
∗ /γreg ≥ θ−ω(T−t)σ̄/γreg, t = t0, . . . , T.

(iii) If t0 = 0, then (iii) is trivial since σ(0) ≥ σ
(t0)
∗ = σ

(0)
∗ . If t0 > 0, then the definition of t0 and

using (43) imply

σ(0) < σ
(t0−1)
∗ ≤ θω(t0−1)σ

(0)
∗ ,

which yields t0 ≤ 1 + 1
ω log1/θ

σ
(0)
∗

σ(0) .
(iv) By (42), (43), and the definition of t0, remark that

σ̄ ≤ σ(T)
∗ ≤ θω(T−t0)σ

(t0)
∗ ≤ θω(T−t0)σ(0).

Hence, θω(T−t0) ≥ σ̄/σ(0) holds.

Finally, we present the proofs of Theorem 4.4 and Corollary 4.5.

Proof of Theorem 4.4. We may assume that
∥∥gM(0)(x(0))

∥∥ > ε since N = 0 on the other case. Suppose
that rAdaAPG terminated with the stopping criterion at the (T + 1)-th outer loop for some T ≥ 0.
Denote by N (t) the number of the executions of APGIter at the t-th outer loop so that N =

∑T
t=0N

(t).
Let σ̄ be defined by (27).

By the definition of T , we have∥∥∥gM(t)(x(t))
∥∥∥ > ε, t = 0, . . . , T. (44)

Moreover, by the definition of σ∗ in (28), using Lemma 4.8 (iii) implies

σ(t) ≥ σ∗, t = 0, . . . , T + 1.

25

Therefore, applying Lemma 4.7 with T∗ = T , we obtain the assertion

N ≤ N(ε, σ∗, C) with C =

√
1

σ∗

(
1 + log1/θ

∥∥gM(0)(x(0))
∥∥

ε

)
. (45)

For the case ρ = 2, (45) proves the assertion (i). We discuss the other cases to improve (45).

(ii) Case ρ > 2. If σ(0) < σ̄, then σ∗ is defined as σ∗ = σ(0). Therefore, the latter bound of (ii) is

obtained by (45).
Now consider the case σ(0) ≥ σ̄. Then, there exists t0 ∈ {0, . . . , T + 1} satisfying the conditions in

Lemma 4.9. By (41), remark that

T∑
t=t0

√
θ

ρ−2
ρ−1

(T−t)
=

T−t0∑
i=0

√
θ

ρ−2
ρ−1

i

=
1−

√
θ

ρ−2
ρ−1

T−t0+1

1−
√
θ

ρ−2
ρ−1

≤
1−

√
θ

ρ−2
ρ−1 · σ̄

σ(0)

1−
√
θ

ρ−2
ρ−1

. (46)

Therefore, we conclude that

T∑
t=0

√
1

σ(t+1)
=

t0−1∑
t=0

√
1

σ(t+1)
+

T∑
t=t0

√
1

σ(t+1)

≤ t0
√

1

σ(0)
+

√
γreg
σ̄

T∑
t=t0

√
θ

ρ−2
ρ−1

(T−t)
(by (38) and (39))

≤
√

1

σ(0)

(
1 +

ρ− 1

ρ− 2
log1/θ

σ
(0)
∗

min(σ
(0)
∗ , σ(0))

)

+

√
γreg

1−
√
θ

ρ−2
ρ−1

(√
1

σ̄
−
√
θ

ρ−2
ρ−1

√
1

σ(0)

)
(by (40) and (46))

=: C.

With this definition of C, Lemma 4.7 gives N ≤ N(ε, σ∗, C).

(iii) Case ρ ∈ (1, 2). If ε ≥ ε∗, then (45) gives our assertion because the second term of (29)

vanishes. Suppose, on the other hand, that ε < ε∗. Denote

ξt :=
∥∥∥gM(t)(x(t))

∥∥∥ ,
and let T∗ ≥ 0 be the smallest integer such that ξT∗ ≤ ε∗. Then, since ξT∗−1 > ε∗ holds, Lemma 4.7
shows that

T∗−1∑
t=0

N (t) ≤ N(ε∗, σ∗, C) with C =

√
1

σ∗

(
1 + log1/θ

∥∥gM(0)(x(0))
∥∥

ε∗

)
.

Note that, under the convention
∑−1

t=0(·) = 0, this inequality also holds if T∗ = 0 since then ξ0 ≤ ε∗
and N(ε∗, σ∗, C) = 0.

It remains to observe
∑T

t=T∗
N (t). Take t ∈ {T∗, . . . , T}. We shall prove N (t) = 1. In the t-th outer

loop, consider the first iteration of the subroutine AdaAPG(x
(t)
+ , L(t), σ(t), ε(t)), which executes

{x1, ψ1,M0, L1, A1} ← APGIterσ(t)(x
(t)
+ , ψ0, L

(t), A0),

26

where ψ0(x) = 1
2∥x− x

(t)
+ ∥2 and A0 = 0. Then Proposition 3.6 (v) implies

∥gM0(x1)∥ ≤

2

√
M0 + σ(t)

A1
+ σ(t)

 dist(x
(t)
+ , X∗).

Moreover, according to the equation at Line 5 in Algorithm 1, A1 can be calculated as A1 = 2/M0.
Now remark that, using M0 ≤ γincLf (Proposition 3.6 (i)), we have

2

√
M0 + σ(t)

A1
+ σ(t) = 2

√
M0(M0 + σ(t))

2
+ σ(t) ≤ 2

√
(M0 + σ(t))2

2
+ (M0 + σ(t))

= (1 +
√

2)(M0 + σ(t)) ≤ (1 +
√

2)(γincLf + σ(t)).

Combining them and using (34)4, we conclude that

∥gM0(x1)∥ ≤ (1 +
√

2)(γincLf + σ(0)) dist(x
(t)
+ , X∗)

≤ (1 +
√

2)(γincLf + σ(0))

(
1

κ

) 1
ρ−1
(
Lf

Lmin
+ 1

) 1
ρ−1

ξ
1

ρ−1

t

= θε
ρ−2
ρ−1
∗ ξ

1
ρ−1

t (47)

≤ θξ
ρ−2
ρ−1

t ξ
1

ρ−1

t = θξt = ε(t),

where the last inequality is due to ξt ≤ ε∗ for t ≥ T∗ (and remark ρ−2
ρ−1 < 0). This shows N (t) = 1 and

(47) yields the recurrence

ξt+1 ≤ θε
ρ−2
ρ−1
∗ ξ

1
ρ−1

t , t = T∗, . . . , T.

Since 1
ρ−1 > 1, it reduces ξt superlinearly. In particular, solving this recurrence implies

log
ε∗

θ
ρ−1
2−ρ ξT

≥
(

1

ρ− 1

)T−T∗

log
ε∗

θ
ρ−1
2−ρ ξT∗

.

Since ξT > ε and ξT∗ ≤ ε∗, we obtain

T∑
t=T∗

N (t) = T − T∗ + 1 ≤ 1 +

(
log

1

ρ− 1

)−1
(

log log
ε∗

θ
ρ−1
2−ρ ε

− log log
1

θ
ρ−1
2−ρ

)
.

Consequently, N is bounded as follows.

N =

T∗−1∑
t=0

N (t) +

T∑
t=T∗

N (t) ≤ N(ε∗, σ∗, C) + 1 +

(
log

1

ρ− 1

)−1
(

log log
ε∗

θ
ρ−1
2−ρ ε

− log log
1

θ
ρ−1
2−ρ

)
.

(iv) Case ρ = 1. We have σ(t) ≥ σ∗ for each t = 0, . . . , T + 1, by Lemma 4.8 (iii). Moreover,

Lemma 4.6 (vi) shows that, if x
(t)
+ ̸∈ X∗, then we have

1 ≤ 1

κ

(
Lf

Lmin
+ 1

)∥∥∥gM(t)(x(t))
∥∥∥ , i.e.,

∥∥∥gM(t)(x(t))
∥∥∥ ≥ ε∗ := κ

(
Lf

Lmin
+ 1

)−1

.

4Although (34) is asserted in the case x
(t)
+ ̸∈ X∗, it trivially holds if x

(t)
+ ∈ X∗ unless ρ = 1.

27

In other words, the condition
∥∥gM(t)(x(t))

∥∥ < ε∗ must imply x
(t)
+ ∈ X∗ which also yields N (t) = 1 and

x(t+1) = x
(t)
+ ∈ X∗ by Proposition 3.6 (v) (then the algorithm terminates at the (t+ 1)-th outer loop).

Therefore, we have ∥∥∥gM(t)(x(t))
∥∥∥ ≥ ε∗, 0 ≤ t ≤ T − 1. (48)

Now we consider two cases. If
∥∥gM(T)(x(T))

∥∥ ≥ ε∗ holds, then combining with (44) yields
∥∥gM(T)(x(T))

∥∥ ≥
max(ε, ε∗), from which Lemma 4.7 with T∗ = T concludes

N ≤ N(max(ε, ε∗), σ∗, C) with C =

√
1

σ∗

(
1 + log1/θ

∥∥gM(0)(x(0))
∥∥

max(ε, ε∗)

)
.

On the other case
∥∥gM(T)(x(T))

∥∥ < ε∗, we haveN (T) = 1. Since (44) and (48) implies
∥∥gM(T−1)(x(T−1))

∥∥ ≥
max(ε, ε∗), Lemma 4.7 with T∗ = T − 1 shows

∑T−1
t=0 N

(t) ≤ N(max(ε, ε∗), σ∗, C). Hence,

N = N (T) +

T−1∑
t=0

N (t) ≤ 1 +N(max(ε, ε∗), σ∗, C).

This proves the desired bound on N . To show the latter assertion of (iv), suppose ε < ε∗. Then

the output {x(T+1),M (T+1), x
(T+1)
+ } satisfies

∥∥gM(T+1)(x(T+1))
∥∥ ≤ ε < ε∗. Therefore, x

(T+1)
+ must be

optimal.
The proof of Theorem 4.4 is completed.

Proof of Corollary 4.5. The function N(·, ·, ·) defined in (26) has the following expression.

N(ε, σ∗, C) = O

(
log

Lf + σ∗
σ∗

[
log
∥g0∥
ε

+ log
σ(0)

σ∗
+

√
Lf

σ∗
+ C

√
Lf

])
.

By the choice (31) of σ(0), we can apply Corollary 4.3 and then the bound (23) becomes

ε(x
(0)
+ , ε(0)) ≤ σ(0) ≤

2γincLf

1 +
√

2β
. (49)

Then, we have σ(0) ≥ σ̄ since ε(x
(0)
+ , ε(0)) ≥ σ̄ holds by Lemma 4.8 (ii). Therefore, σ∗ in (28) becomes

σ∗ = Θ(σ̄), which also implies σ∗ = O(σ(0)) = O(Lf) combined with (49). Applying the bounds
σ(0) = O(Lf), σ∗ = O(Lf), and σ∗ = Ω(σ̄), we obtain

N(ε, σ∗, C) = O

(
log

Lf

σ̄

[
log
∥g0∥
ε

+

√
Lf

σ̄
+ C

√
Lf

])
. (50)

If ρ = 2, Theorem 4.4 (i) implies N ≤ N(ε, σ∗, C) with C = O
(√

1
σ̄ log ∥g0∥

ε

)
. In particular, (50)

yields

N(ε, σ∗, C) = O

(√
Lf

σ̄
log

Lf

σ̄
log
∥g0∥
ε

)
. (51)

Since σ̄ = Θ(κ) by (27), we conclude the bound (32) in the case ρ = 2.
In the case ρ = 1, using Theorem 4.4 (iv), the same argument as the case ρ = 2 can be applied to

obtain (51) replacing ε by max(ε, ε∗), where ε∗ = κ(Lf/Lmin + 1)−1 = O(κ). Since σ̄ = Ω(κ2/∆0) by
(27), we obtain the bound (32) in the case ρ = 1.

28

In the case ρ ∈ (1, 2), we apply Theorem 4.4 (iii) and the argument is similar to the previous
cases. Therefore, the bound (32) in this case can be obtained based on the estimate (51) replacing ε

by max(ε, ε∗) and applying σ̄ = Ω(κ
2
ρ ∆

− 2−ρ
ρ

0), ε∗ = O(κ
1

2−ρL
− ρ−1

2−ρ

f).

Finally, consider the case ρ > 2. By Lemma 4.8 (ii) and (49), remark that σ(0) ≥ σ
(0)
∗ ≥ σ̄ holds.

Then, Theorem 4.4 (ii) implies N ≤ N(ε, σ∗, C) with C = O
(√

1
σ(0) +

√
1
σ̄

)
= O

(√
1
σ̄

)
. Therefore,

(50) applying σ̄ = Ω(κ
1

ρ−1 ε
ρ−2
ρ−1) concludes the bound (32) in the case ρ > 2.

5 Concluding remarks

In this paper, we proposed two adaptive proximal gradient methods, Algorithms 3 and 4. The former
algorithm is nearly optimal for the class of problems where f is L-smooth. If we additionally assume
the Hölderian error bound condition, the latter algorithm ensures near optimality. It is unclear whether
the latter algorithm also provides the near optimality without the Hölderian error bound.

A remarkable fact of the proposed method (Algorithm 4) is the near optimal complexity with
respect to the gradient norm under the Hölderian error bound condition, thanks to the lower complexity
bound (13). Remark that the optimal complexity of the first-order methods for L-smooth convex
functions under the gradient norm is unknown [16], namely, it is open whether we can reduce the
logarithmic factor of the complexity bound (24). Similarly, it is an important question whether we
can improve the complexity (32) to attain the lower bounds (13).

The key idea of this work is the adaptive determination of the regularization parameter σ used
to define the regularization φσ(x). As proved in Theorem 4.2, our method (Algorithm 3) adapts the
unknown desired regularization parameter σ(x0, ε) = ε

(1+
√
2β) dist(x0,X∗)

. This feature is also critical

for the development of the restart scheme (Algorithm 4) to adapt the Hölderian error bound con-
dition. Basically, this adaption is obtained thanks to the relation between σ(x0, ε) (in other words,
dist(x0, X

∗)) and the “problem structure” denoted as σ̄ (cf. Lemma 4.8 (ii)). This might suggest
the possibility of dealing with this adaptive regularization approach under other kinds of problem
structures.

Acknowledgements

This work was partially supported by the Grant-in-Aid for Young Scientists (B) (17K12645) and the Grant-in-

Aid for Scientific Research (C) (18K11178) from Japan Society for the Promotion of Science.

References

[1] H. Attouch, J. Bolte, and B. F. Svaiter, Convergence of descent methods for semi-algebraic and
tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel
methods, Mathematical Programming, 137(1–2), pp. 91–129, 2013.

[2] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems, SIAM Journal on Imaging Sciences, 2(1), pp. 183–202, 2009.

[3] J. Bolte, A. Daniilidis, and A. Lewis, The Lojasiewicz inequality for nonsmooth subanalytic func-
tions with applications to subgradient dynamical systems, SIAM Journal on Optimization, 17(4),
pp. 1205-1223, 2007.

29

[4] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter, From error bounds to the complexity of
first-order descent methods for convex functions, Mathematical Programming, 165(2), pp. 471–507,
2017.

[5] O. Fercoq and Z. Qu, Adaptive restart of accelerated gradient methods under local quadratic
growth condition, ArXiv preprint, arXiv:1709.02300v1, 2017.

[6] D. Kim and J. Fessler, Generalizing the optimized gradient method for smooth convex minimiza-
tion, SIAM Journal on Optimization, 28(2), pp. 1920–1950, 2018.

[7] Q. Lin and L. Xiao, An adaptive accelerated proximal gradient method and its homotopy contin-
uation for sparse optimization, Computational Optimization and Applications, 60(3), pp. 633–674,
2015.

[8] M. Liu and T. Yang, Adaptive accelerated gradient converging methods under Hölderian error
bound condition, Advances in Neural Information Processing Systems 30, 2017.

[9] S. Lojasiewicz, Sur le problème de la division, Studia Mathematica, 18, pp. 87–136, 1959.

[10] S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in Les Équations
aux Dérivées Partielles (Éditions du Centre National de la Recherche Scientifique, Paris, 1963),
pp. 87–89.

[11] S. Lojasiewicz, Ensembles semi-analytiques, preprint, Institut des Hautes Études Scientifiques,
1965.

[12] A. Nemirovsky, Information-based complexity of linear operator equations, Journal of Complexity,
8, pp. 153–175, 1992.

[13] A. Nemirovsky and Y. Nesterov, Optimal methods for smooth convex minimization, USSR Com-
putational Mathematics and Mathematical Physics, 25(2), pp. 21–30, 1985.

[14] Y. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2),
Soviet Mathematics Doklady, 27(2), pp. 372–376, 1983.

[15] Y. Nesterov, Introductory lectures on convex optimization: A basic course, Kluwer Academic
Publishers, Norwell, 2004.

[16] Y. Nesterov, How to make the gradients small, Optima, 88, pp. 10–11, 2012.

[17] Y. Nesterov, Gradient methods for minimizing composite functions, Mathematical Programming,
140(1), pp. 125–161, 2013.

[18] Y. Nesterov, Universal gradient methods for convex optimization problems, Mathematical Pro-
gramming, 152(1–2), pp. 381–404, 2015.

[19] N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends in Optimization, 1(3),
pp. 123–231, 2014.

[20] J. Renegar and B. Grimmer, A simple nearly-optimal restart scheme for speeding-up first order
methods, ArXiv preprint, arXiv:1803.00151v1, 2018.

[21] R. T. Rockafellar, Convex analysis, Princeton University Press, New Jersey, 1970.

30

[22] V. Roulet and A. d’Aspremont, Sharpness, restart and acceleration, Advances in Neural Infor-
mation Processing Systems 30, 2017.

[23] A. B. Taylor, J. M. Hendrickx, and F. Glineur, Smooth strongly convex interpolation and exact
worst-case performance of first-order methods, Mathematical Programming, 161(1–2), pp. 307–345,
2017.

31

