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Foreword

Software evolution and adaptation is a research area, as also the name states, in
continuous evolution, that offers stimulating challenges for both academic and
industrial researchers. The evolution of software systems, to face unexpected
situations or just for improving their features, relies on software engineering
techniques and methodologies. Nowadays a similar approach is not applicable
in all situations e.g., for evolving nonstopping systems or systems whose code is
not available.

Reflection and aspect-oriented programming are young disciplines that are
steadily attracting attention within the community of object-oriented researchers
and practitioners. The properties of transparency, separation of concerns, and ex-
tensibility supported by reflection and aspect-oriented programming have largely
been accepted as useful for software development and design. Reflective fea-
tures have been included in successful software development technologies such
as the Java language and the .NET framework. Reflection has proved to be
useful in some of the most challenging areas of software engineering, including
Component-Based Software Development (CBSD), as demonstrated by exten-
sive use of the reflective concept of introspection in the Enterprise JavaBeans
component technology.

Features of reflection such as transparency, separation of concerns, and ex-
tensibility seem to be perfect tools to aid the dynamic evolution of running
systems. They provide the basic mechanisms for adapting (i.e., evolving) a sys-
tem without directly altering the existing system. Aspect-oriented programming
can simplify code instrumentation providing a few mechanisms, such as the join
point model, that permit of evincing some points (join points) in the code or in
the computation that can be modified by weaving new functionality (aspects)
on them in a second time. Meta-data represent the glue between the system to
be adapted and how this has to be adapted; the techniques that rely on meta-
data can be used to inspect the system and to dig out the necessary data for
designing the heuristic that the reflective and aspect-oriented mechanisms use
for managing the evolution.

It is our belief that current trends in ongoing research in reflection, aspect-
oriented programming and software evolution clearly indicate that an inter-
disciplinary approach would be of utmost relevance for both. Therefore, we felt
the necessity of investigating the benefits that the use of these techniques on the
evolution of object-oriented software systems could bring. In particular we were
and we continue to be interested in determining how these techniques can be
integrated together with more traditional approaches to evolve a system and in
discovering the benefits we get from their use.
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Software engineering may benefit from a cross-fertilization with reflection and
aspect-oriented programming in several ways. Reflective features such as trans-
parency, separation of concerns, and extensibility are likely to be of increasing
relevance in the modern software engineering scenario, where the trend is towards
systems that exhibit sophisticated functional and non-functional requirements;
that are built from independently developed and evolved COTS (commercial
off-the-shelf) components; that support plug-and-play, end-user directed recon-
figurability; that make extensive use of networking and internetworking; that
can be automatically upgraded through the Internet; that are open; and so
on. Several of these issues bring forth the need for a system to manage itself
to some extent, to inspect components’ interfaces dynamically, to augment its
application-specific functionality with additional properties, and so on. From a
pragmatic point of view, several reflective and aspect-oriented techniques and
technologies lend themselves to be employed in addressing these issues. On a
more conceptual level, several key reflective and aspect-oriented principles could
play an interesting role as general software design and evolution principles. Even
more fundamentally, reflection and aspect-oriented programming may provide a
cleaner conceptual framework than that underlying the rather ‘ad-hoc’ solutions
embedded in most commercial platforms and technologies, including CBSD tech-
nologies, system management technologies, and so on. The transparent nature
of reflection makes it well suited to address problems such as evolution of legacy
systems, customizable software, product families, and more. The scope of appli-
cation of reflective and aspect-oriented concepts in software evolution conceptu-
ally spans activities related to all the phases of software life-cycle, from analysis
and architectural design to development, reuse, maintenance, and, therefore also
evolution.

The overall goal of this workshop was that of supporting circulation of ideas
between these disciplines. Several interactions were expected to take place be-
tween reflection, aspect-oriented programming and meta-data for the software
evolution, some of which we cannot even foresee. Both the application of reflec-
tive or aspect-oriented techniques and concepts to software evolution are likely
to support improvement and deeper understanding of these areas. This workshop
has represented a good meeting-point for people working in the software evolu-
tion area, and an occasion to present reflective, aspect-oriented, and meta-data
based solutions to evolutionary problems, and new ideas straddling these areas,
to provide a discussion forum, and to allow new collaboration projects to be
established. The workshop is a full day meeting. One part of the workshop will
be devoted to presentation of papers, and another to panels and to the exchange
of ideas among participants.

This volume gathers together all the position papers accepted for presenta-
tion at the Workshop on Reflection, AOP and Meta-Data for Software Evolution
(RAM-SE’04), held in Oslo on the 15th of June, during the ECOOP’04 confer-
ence. We have received many interesting submission and due to time restrictions
and to quality insurance we had to choice few of them, the papers that, in our
opinion, are more or less evidently interrelated to feed up a more lively discus-
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sion during the workshop. Now, a month after the workshop, we can state that
we achieved our goal, presentations were interesting and the subsequent panels
grew up lively and rich of ideas and proposals. We are sure that in the next
months we will see many papers by the workshop attendees and fruit of such a
lively discussions.

The success of the workshop is mainly due to the people that have attended
it and to their effort to participate to the discussions. The following is the list
of the attendees in alphabetical order.

Paulo Borba Jordi Alvarez Canal Ruzanna Chitchyan
Yvonne Coady Peter Ebraert Ahmed Ghoneim
Phil Greenwood Günter Kniesel Hidehiko Masuhara
Nicolas Pessemier Sonia Pini Tobias Rho
Yoshiki Sato Lionel Seinturier Maximilian Störzer
Eric Tanter Emiliano Tramontana Naoyasu Ubayashi
Nesrine Yahiaoui Joseph W. Yoder Akinori Yonezawa

A special thank is for the four chairmen (Yvonne Coady, Joseph W. Yoder,
Günter Kniesel, and Hidehiko Masuhara) that governed the panels at the end of
each session.

We have also to thank the Department of Informatics and Communication
of the University of Milan, the Department of Mathematical and Computing
Sciences of the Tokyo institute of Technology and the Institute für Technische
und Betriebliche Informationssysteme, Otto-von-Guericke-Universität Magde-
burg for their various supports.

July 2004 W. Cazzola, S. Chiba, and G. Saake
RAM-SE’04 Organizers
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Abstract. Grid applications are fragile when changes to service imple-
mentations, non-functional properties or communication protocols take
place. Moreover, developing Grid applications with current toolkits re-
sult in a tangling of toolkit-specific and application-specific code that
makes maintenance and evolution difficult. This paper proposes solving
these problems by using reflection to open up Grid toolkits, and to allow
Grid applications to be developed as if they were centralised applica-
tions. This would allow changes to be handled dependably, and a clean
separation between toolkit-specific and application-specific code.

1 Introduction

Grid computing is concerned with “coordinated resource sharing and problem
solving in dynamic, multi-institutional virtual organisations” [Fos01]. Virtual
organisations (VOs) cover the spectrum from long-lived collaborations between
static sets of organisations to short-term collaborations between dynamic sets
of individuals. Grid applications are built out of heterogeneous resources offered
by VOs that use a range of communication technologies to interoperate.

Grid toolkits aim to simplify the task of developing Grid applications out of
Grid services. The toolkits automatically generate code for communication be-
tween clients and services but programmers must still add toolkit-specific code
to both client and service implementations, particularly if non-functional prop-
erties such as security are to be implemented. This tangling of toolkit-specific
code and application-specific code makes it difficult to maintain applications.
For example, porting existing applications to new toolkits may require manual
changes to client and service code.

As the resources comprising the VO may change while an application is run-
ning, Grid applications should be able to cope with dynamic changes such as
changes to communication protocols, service interfaces or the arrival or depar-
ture of services, Grid toolkits cannot do this transparently. There is no support
for switching communication protocols at runtime, and coping with the other
changes requires explicit programming by the application developer.



We argue that these shortcomings of existing toolkits could be addressed by
adopting work done on using reflection to treat distribution as a non-functional
concern and to open up the implementation of middleware.

2 Features of the Globus Toolkit

We use the Globus Toolkit version 3.0 (GT3) as an example of a state-of-the-art
Grid toolkit. GT3 is a next-generation implementation of the Globus Toolkit
based on Open Grid Service Architecture (OGSA) mechanisms [Fos01]. The
OGSA uses emerging web services to ease the task of building Grid programs.
The next two sections describe the limitations of GT3 with respect to distribu-
tion transparency, and transparent implement of non-functional concerns.

2.1 Distribution Transparency

The GT3 toolkit [Glo03] can automatically generate stub and skeleton imple-
mentations from a Web Services Description Language (WSDL) [CCMW01] de-
scription. This provides a degree of distribution transparency but additional
toolkit-specific code must be added to both the client and service implemen-
tation. At the client side, code must be written to explicitly bind an instance
of a stub class before using it to access the remote service. At the service side,
the service implementation must inherit from the skeleton class or provide some
additional methods to allow the skeleton to delegate operations to the service
implementation.

The current approach requires regeneration of the stub and skeleton code,
and manual changes to source code whenever the interface to services change or
what is a local resource is replaced by a service. Handling service arrival or de-
parture is supported by web service protocols but requires explicit programming
at the client side. Ideally these concerns should be transparently implemented.
This would ease maintenance and evolution as once concern could be changed
independently of the other.

2.2 Non-Functional Concerns

GT3 provides bindings that allow services to be hosted by a range of contain-
ers. These containers can transparently implement some non-functional concerns
such as security. Containers can usually either only implement a fixed set of non-
functional concerns or application-level concerns. Implementing non-functional
concerns at the infrastructure level, for example changing the underlying com-
munication protocol, cannot be done because new non-functional concerns are
implemented by intercepting application-level messages.

Ideally, the toolkit should allow new non-functional concerns to be imple-
mented at both the application and infrastructure-level. These should still be
able to be declaratively specified for a service thereby allowing a clean sepa-
ration between non-functional concerns and application code. This would aid
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maintainability and evolution. Additionally, providing a facility to install or re-
move non-functional concerns at runtime would allow changes without stopping
a running application.

Although non-functional concerns can be enforced transparently at the ser-
vice side, implementing the complementary concerns at the client side requires
the programmer to add toolkit-specific code to their program. For example,
when using GT3, providing the security non-functional concern at the service
side simply requires adding security configuration information to a deployment
descriptor for the servce. However, implementing the other half of the security
concern at the client side requires some code setting the appropriate properties
for the service’s remote proxy.

Ideally, there should be the same separation of concerns on the client side
as the service side. As for the service side, these concerns should be able to
be installed and removed dynamically. Furthermore, to remove the possibility
that clients and services get out of synchronisation, there should be support for
synchronously installing and removing concerns at both the client and service
side.

3 Proposed Approach

The proposed approach aims at supporting developers building object-oriented
applications without making applications tangled with distribution related con-
cerns and without requiring programmers to change applications when an adap-
tation is required to consider new technologies.

There are two aspects to this approach. (1) Programs are developed in a
centralised manner and transparently distributed. (2) An open implementation
of GT3 is used that allows dynamic changes at runtime.

3.1 Centralised Development

The Addistant [TSCI01] system provides distributed execution of “legacy” Java
bytecode. The definition of legacy is programs that were originally developed to
be executed on a single Java virtual machine (JVM). The users of Addistant
specify the host where instances of classes are allocated, and how remote ref-
erences are implemented. Addistant automatically transforms the bytecode at
load time and uses a special configuration file to separate the specification of
class location etc. from the actual program implementation.

In order to further automate distributing a centralised Java application so
as to choose the most appropriate host for each object, a reflective software
architecture has been proposed [DSPT02]. In such an architecture, at load time
a component analyses each application class and transforms it so that allocation
of instances will be performed on the basis of the calculated class parameters and
the run time conditions of hosts and network. The architecture facilitates the
integration of additional allocation policies to be easily inserted to consider other
specific needs of classes. For example, an allocation policy could be proposed to
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match the needs of a class, in terms of remote services used, with the known web
services, in order to find the most appropriate host for executing its instances.
Moreover, through interception we can potentially change method invocations
on the fly to enforce the syntax of the method allowing access to the web service.

Applying automatic bytecode transformation to the Grid environment would
allow programmers to develop centralised versions of their programs and then
transparently distribute them. This would avoid the need for inheritance or
the manual coding necessary to support the delegation approach. In addition,
should services change location then the change could be achieved by modify-
ing the specification rather than the code. Furthermore, to make an application
dynamically adaptable to changes of service location, an appropriate adaptation
component can be transparently inserted into the application when transforming
it into a distributed version. This component would dynamically check the loca-
tion of a requested service and find its new location when necessary (i.e. when
the service has migrated to a new host). Given that the Grid environment also
supports resource brokering as a first-class concept then it would make sense to
integrate this configuration with existing resource brokering technologies.

Because we are not primarily concerned with legacy code, i.e. where the
source code is unavailable, then source-based transformation could be used. This
could be useful, since the programmer could intervene to customise the code re-
sulting from the automatic transformation. However, operating transformations
on compiled code would support runtime dynamic adaptation. This would be
focus of further investigation.

Automatically transforming a centralised application into a distributed one
has two further benefits. Firstly, the selection of a primitive (i.e. socket, RMI,
GridRPC [NMS+02], etc.) that makes distributed objects communicate can be
chosen only when transforming the application, so as to fit the environment
where the application is going to be deployed. This approach makes the origi-
nal application free of remote communication primitives, thus an application is
easier to develop and evolve. Moreover, when a new mechanism is available for
a different distributed environment, only an adaptation of the transformation
tool has to be performed. Secondly, additional features can be added at trans-
formation time to consider the needs of the specific target environment. Thus,
components that make the communication reliable or that perform resource al-
location could be added both at the client and server side along with the support
for communication.

3.2 Reflective Middleware

Ideally, the declarative approach supported by existing toolkits should be re-
tained but it should be possible to easily extend toolkits to integrate new ca-
pabilities and support dynamic changes to non-functional properties. Here, we
intend to draw upon the exisiting literature on reflective middleware. Reflective
middleware can be defined as “a middleware system that provides inspection
and adaptation of its behaviour through an appropriate causally connected rep-
resentation” [Cou]. Proponents of this idea suggest that this middleware will
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be able to be adapted to its environment and be able to cope with change.
For example, an application deployed on a mobile device could use middleware
that dynamically detected that the device was no longer plugged into an office
network and could switch to using GSM for communications. This would hap-
pen transparently with no requirement for changing the application itself, what
happens is that the implementation of the middleware itself is changed so the
appropriate type of communications is used. Examples of reflective middleware
are the DynamicTao [KRL+00], OpenORB [BCA+] or mCharm [Caz00].

The notion here is to open up the Grid toolkit in a principled way. The initial
target would be the communication infrastructure. A key problem, especially if
considering dynamic adaption, would be how to control the adaptation process.
One way of doing this is to use the notion of adaptation policies, as is used for
the K-Components framework [DC01]. In this framework an adaptation policy
is specified using an extended interface description language. The policy is es-
sentially a declarative language for writing reflective programs that can monitor
and reconfigure programs by modifying the metalevel. Having a policy allows
reasoning and validation of possible adaptations.

Another target would be the service container. Here the focus should be on
an infrastructure for the server side that holds information about the current ser-
vices that containers offer. This infrastructure would check at run time both the
conditions of the containers and whether some service unavailable on a container
is being requested. The aim of the infrastructure would be to dynamically and
transparently transfer the requests to other containers providing the requested
service, as appropriate.

The design of this infrastructure would be based upon the design lessons of
existing reflective middleware. Providing first-class support for dynamic evolu-
tion of Grid applications would enhance the dependability of services because
it allows clients requests to be redirected where they can be honoured, thus
avoiding failures on the client side.

4 Related Work

The most closely related work in the Grid community is Othman et. al. [ODDG]
who use OpenJava to simplify the implementation of an adaptive resource broker.
The adaptive resource broker allows running jobs to be suspended and migrated
to other hosts for execution in order to satisfy a required quality of service. Our
approach differs in that it considers the goals of making Grid toolkits easier to
use and supports dynamic adapation of non-functional concerns.

5 Conclusions

Existing Grid toolkits ease the job of the programmer but could be improved by
removing tangling between application code and toolkit code, and allow dynamic
installation and removal of non-functional concerns at both the application and
infrastructure level. In this paper we have identified related work that applies
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reflection to distributed systems for similar purposes. We propose extending
this work to develop an open Grid toolkit that hides distribution and allows
a programmer to develop an application as if it was centralised rather than
distributed.
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Abstract. The unrelenting pace of change that confronts contempo-
rary software developers compels them to make their applications more
configurable, flexible, and adaptive. In order to achieve this, software de-
signers must provide flexible architectures that can more quickly adapt
to changing requirements. Adaptive-Object Model (AOM) is an archi-
tectural style intended to provide this flexibility by providing a meta-
architecture that allows requirements changes to be performed and im-
mediately reflected at runtime. However, AOMs internal structures are
sometimes difficult to extend and maintain. In this case, we can say
AOM systems are not adaptable, although they are adaptive [1]. This
paper proposes the use of Aspect-Oriented Programming in order to
make AOM systems simpler to evolve, specially regarding the inclusion
of new adaptive requirements.

1 Introduction

Adaptability is an increasingly important requirement of software systems. To
achieve this requirement, software designers must provide flexible architectures
that can quickly adapt to changing requirements. Sometimes, user requirements
are such that the system will even need to adapt at runtime. In those cases,
architectures are designed to adapt to new user requirements by retrieving de-
scriptive information that can be interpreted at runtime. Those are sometimes
called “reflective architectures” or “meta-architectures”.

This paper focuses on a way to enhance a particular kind of reflective architec-
ture, called Adaptive Object-Model (AOM) architecture [2, 3], through the use
of Aspect-Oriented Programming (AOP) [4]. We can make AOMs more flexible
by modularizing the adaptation part of the architecture. This modularization
through the use of AOP can make AOMs more maintainable and adaptable,
? Supported by CNPq.

?? Partially supported by CNPq, process number 521994/96–9.



especially in relation to adaptability requirements. Adaptability here means the
ability to change or be changed to fit varying circumstances, such as require-
ments changes. By using AOM, we organize the code in a way that makes it
easier to adapt to such changes. After this organization, a requirement change
can be performed, for example, by simply replacing the interpreted metadata,
which can be stored on the database or in an XML file. However, AOM systems’
code is usually difficult to understand and maintain [3]. In this case, we can
say AOM systems are not adaptable because it is not easy to include unantici-
pated adaptive requirements on them. This happens because the code, not the
metadata, should change in this case.

The maintainability problems with AOM’s code happen because the adaptive
behavior is often mixed with the business logic and GUI code of the application.
Business classes that provide dynamic properties or behavior usually contain
the code to obtain and interpret the data from a file or database that specifies
the new properties or behavior. This is called code tangling. Besides that, such
code, sometimes related to the same adaptability requirement, may be scattered
throughout many classes, a phenomenon known as code scattering. When this
happens, it is hard to understand and change in the code the points where new
dynamic data or metadata should be obtained.

Aspect-Oriented Programming is a better way to structure Adaptive-Object
Models and implement adaptive applications. For better observing the adapt-
ability implementation problem using only AOM, and how it can be solved com-
bining AOM and AOP, we have gradually implemented some possible adaptive
behaviors on a dictionary application.

The remainder of this paper is organized as follows. The two following sections
briefly present AOM and AOP respectively. In Section 4, we present the benefits
of extending the AOM application by using AOP. Then, Section 5 summarizes
this paper, giving some conclusions about using AOP to improve AOM.

2 AOM Overview

Many systems are developed to solve a specific problem and flexibility is not
included as one of the requirements. Extending or maintaining these types of
systems can be a difficult task. Simple changes can be made by parameteriz-
ing system’s properties that can be read at runtime from initialization files or
databases.

However, parameterizing properties will not work for complex adaptations
such as adding new types of entities or properties. Adaptations can be even
more complex if the system needs to add new behavior in response to a given
property change, or dynamically decide which algorithm to use depending on the
property type. For such adaptations, Adaptive-Object Models has been shown
to be a good solution.

AOM architectures are usually made up of several smaller design patterns,
such as the Composite, Interpreter, Builder, and Strategy [5], along with other
dynamic patterns such as TypeObject [6], Property [7], and RuleObjects [8, 9].
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Most AOM architectures apply the TypeObject and Property patterns together,
which results in an architecture called TypeSquare [2].

By organizing an application using these patterns, we can represent applica-
tion features, attributes and rules (or strategies) as metadata that can be inter-
preted in a running system. Since classes, attributes and relationships (which can
be a kind of property) are represented as metadata in AOM systems, they have
an underlying model based on instances rather than classes. Then, adaptations
to the object-model are made by changing metadata, which can then be reflected
into a running system by instantiating new EntityTypes, PropertyTypes, and
Rules.

The main advantage of AOM systems is ease of change. They can even evolve
to where they allow users to configure and extend their systems “without pro-
gramming” and make the process of changing them quickly. However, there may
be a higher initial cost in developing this kind of system, because it must be as
general as possible in order to improve extensibility and making possible many
sorts of adaptations. Generally, these systems are also difficult to understand
because several classes do not represent business abstractions ; the object-model
is represented in metadata. However, auxiliary Graphical User Interface (GUI)
tools and editors can be used to alleviate this problem. Another problem pre-
sented by the AOM architecture is performance, since it is based on the inter-
pretation of metadata.

So, before deciding to use AOM or not, an analysis of the degree of adapt-
ability must be done. This analysis should consider which parts of the system
really need to be highly adaptive. For instance, if the developed system has to
be a highly configured one, or if the rules or properties of this system might
change often, AOM can be a good choice, even considering the problems pre-
sented above.

3 AOP

Aspect-Oriented Programming (AOP) is a technology intended to provide clear
separation of crosscutting concerns [4]. Its main goal is to make design and code
more modular, meaning the concerns are localized rather than scattered and
have well-defined interfaces with the rest of the system. In this way, AOP solves
the issues raised by some design decisions that are difficult to cleanly capture
in code [10]. Those issues are called aspects, and AOP is intended to provide
appropriate isolation, composition and reuse of the code used to implement those
aspects.

This programming paradigm proposes that computer systems are better pro-
grammed by separately specifying the various concerns (properties or areas of
interest) of a system and some description of their relationships and then, by
using AOP environment, these concerns are composed or weaved together into
a coherent program [11]. This is especially useful when the concerns considered
are crosscutting. Crosscutting concerns are those that correspond to design de-
cisions that involve several objects or operations, and that, without AOP, would
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lead to different places in the code that do the same thing, or do a coordinated
simple thing. Some examples of crosscutting concerns are: logging, distribution,
persistence, security, authentication, performance, transactions integrity, etc.

AspectJ is one of the most widely used AOP languages. It is a general-purpose
aspect-oriented extension to Java [12]. This language supports the concept of join
points, which are well-defined points in the execution flow of the program [13].
It also has a way of identifying particular join points (pointcuts) and change the
application behavior at join points (advice).

4 Using AOP to improve AOMs

In this section, we describe how AOP can solve some of the problems noticed in
the AOM implementation of some adaptive requirements in a dictionary applica-
tion. In order to do that, we have implemented some adaptabilities purely using
AOM and then, implemented them again combining AOM with AOP, through
the Adaptability Aspects [14] pattern. By doing that, we could verify when the
AOP use was appropriate and when it was not. The Adaptability Aspects is an
architectural pattern for structuring adaptive applications using aspects. It was
used here in order to make a better use of AOP.

4.1 Using AOM in the Dictionary

The dictionary application is a cellular phone application that is capable of
translating words from English into Portuguese. It that presents five screens:
presentation, main menu, instructions, info and search screens. The main menu
presents three options: Query, Instructions and More info...; info screen displays
the source and destination translation languages of the dictionary; and in search
screen the search is requested and the translation results are shown.

Considering this simple dictionary application, we have implemented some
adaptability requirements. One of them intends to provide dynamic source and
target translation languages. Another one is able of providing dynamic search
engines for the dictionary, making it able of changing the way it performs a
search (e.g. if on memory, on a server, etc). Another adaptability requirement
is responsible for providing dynamic properties for the dictionary, which can be
shown in info screen or in another application screen where they can be edited.
The property types may change frequently, changing the way they are shown on
the application or even their ability to be edited or not.

To illustrate AOM’s use, we show the implementation of one of the dynamic
requirements presented above, which we call “Dynamic Dictionary Properties”.
In order to implement an adaptation with AOM, we must evaluate which pat-
terns should be used to reorganize the application.

As we have previously seen, the info screen presents two properties of the
application: the source and the destination translation languages. These prop-
erties are implemented as fields of a class called InputSearchData, which is
part of the model of the application considering the MVC pattern. If the user
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requests a new property, the developer may add a new field to this class. How-
ever, the application may need dynamic properties, that may exist or not and
even those the developer cannot anticipate. To provide these properties and to
avoid codification rework when a new property is requested, we can apply the
Property [7] pattern on the dictionary application as shown in Figure 1. Then,
instead of many fields representing different properties, the InputSearchData
class presents a collection of properties that may be stored in a hashtable, for
example.

Fig. 1. Property pattern used in the dictionary application

The TypeObject [6] and Strategy [5] patterns can also be used in addition to
the Property pattern in order to validate the values of the dictionary properties.
Therefore, for each Property, there is a PropertyType instance associated with
it and there are also Strategies for validating dictionary properties. This valida-
tion can be used for determining whether a given Property is editable or not and
whether it should be presented in a given screen, such as a screen for getting
user preferences. Part of the new organization of the application in order to deal
with dynamic properties and strategies related to those properties is illustrated
by Figure 2.

In the case of the dictionary application, we have implemented an interface,
PropertyValidator, and classes implementing the isValidmethod, which eval-
uates if a property is valid according to its type. With such hierarchy, we can
use the Strategy pattern to easily change the property validator, by using the
StrategyObject class. Then, for dynamically changing the validation of the
properties shown on a giving screen (such as info screen), we may simply change
the specificInstanceName attribute of the StrategyObject responsible for
that.

Following the organization presented by Figure 2, dynamic dictionary prop-
erties are obtained from the InputSearchData class. The strategies, properties,
and their types are represented in XML files that change from time to time and
must be interpreted.

There are at least two classes we have implemented that would use the dy-
namic properties managed by the InputSearchData class: the InfoScreen class,
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Fig. 2. Using the Properties, TypeObject and Strategy Pattern on the dictionary

which displays all dictionary properties; and the UserDataScreen, a new screen
responsible for showing dictionary properties that can be edited, such as user
name and password.

Reading in the dynamic data from the XML file is done by using an Adapta-
tion Data Provider module implemented using AOM. This module is part of the
Adaptability Aspects pattern, but can also be used by adaptive systems that do
not use aspects (see [14]). It is responsible for obtaining the dynamic properties,
types and strategies that represent part of the application. The main class in this
module is the AppAOMManager class. Any adaptation data is obtained through
this class.

In order to build the InfoScreen or UserDataScreen, the dictionary dynamic
properties must be obtained from the AppAOMManager and validated, according to
their types, which can be dynamically defined. According to this implementation,
by simply changing the type of a property, or by including a new property in
the metadata that is interpreted, we can dynamically change the application.

This metadata might change frequently and the application might behave
differently according to these changes. Therefore, the Adaptation Data Provider
objects should be reloaded from time to time. Besides that, the dynamic parts
of the application should access this module at certain execution points. For
example, before showing InfoScreen or UserDataScreen, we must rebuild them.
To do so, we may request an update of dictionary properties shown by these
screens.

The adaptability data is requested when some dynamic information is nec-
essary for the application. This can be done during the dictionary application
startup or can be a frequent action performed in several parts of the code. This
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is especially true when we remember that AOM systems are also known for their
ability to immediately adapt to metadata changes [3]. The Observer pattern can
also be used to notify an application that updates to the object-model have been
made.

In our pure AOM implementation of the adaptive dictionary application,
several points of the code call methods to update the application objects due to
changes in the adaptability data. This is a problem known as code scattering. For
example, in order to update dictionary properties according to dynamic data,
we may have to include reload invocations and application object updates before
the InfoScreen or the UserDataScreen are displayed. We might also have to
make calls to the reload invocations after the application startup, at the moment
some classes are instantiated, etc.

As we can see, the DictionaryController class calls methods intended to
obtain new dynamic data and reorganize the application objects and the screens
to be shown. However, this behavior is not directly related to this class business
logic, and can lead to poor maintainability.

For reload operations at certain execution points, we invoke methods from the
InputSearchData class that request data from the Adaptation Data Provider
module. This request also synchronizes some properties and associates validation
strategies to these properties. After the InputSearchData class initialization, we
must also perform some kinds of reloads.

In fact, several problems arise while implementing adaptability requirements
using AOMs or similar techniques and they are not specific of dictionaries.
One of them is code tangling. This happens in the dictionary because the
InputSearchData, or any other class that is supposed to obtain dynamic data,
has to know about synchronization mechanisms that may vary according to the
Adaptability Data Provider module implementation. Besides that, what must
change or not change when dynamic data is obtained may also vary accord-
ing to new requirements. Adaptive applications, especially very dynamic ones,
may change a lot the execution points where they must adapt (obtain new data
and change). Consequently, if we want to change those points, we need to mod-
ify adaptation code scattered throughout many classes and for many versions.
Therefore, code tangling and scattering make the adaptability implementation
hard to change and thus less adaptable. As the adaptability concern generally
crosses many parts of the code, we can say it is a crosscutting concern.

In order to solve those problems and provide a higher degree of reuse and the
ability to easily plug in/out adaptation features, we propose the use of aspects.
Aspects help isolate the configuration of dynamic adaptations and thus make
AOMs more adaptable. To illustrate this, we show in the following how we have
extended the dynamic dictionary properties concern implementation using the
AspectJ [12] language.

4.2 AOP Use

In this section we describe how AOP can solve some of the problems noticed
in the AOM implementation pointed out in the previous section. In order to do
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that, we use some ideas of the Adaptability Aspects pattern. We primarily deal
with the Dynamic Dictionary Properties adaptability requirement, pointing out
the utility of AOP in improving its AOM implementation.

By using aspects we can modularize adaptations and the application exe-
cution points that should trigger them (for example, a given method call or
execution, a field get or set, etc.). An aspect in AspectJ is a modular unit of
crosscutting implementation. As we have previously seen, the configuration of
the adaptations is a crosscutting concern, because it generally crosses many parts
of the code and can make that code difficult to understand. For implementing
this concern in the case of the dynamic properties, we have used an adaptability
aspect called DynamicProperties. It is part of the Adaptability Aspects module
of the Adaptability Aspects pattern. It is responsible for verifying if an adapta-
tion should be performed and then performing the necessary changes, using for
both tasks elements of other pattern modules.

By defining pointcuts, aspects identify collections of points in the execution
flow of a program where behavior changes must happen. In the case of the
DynamicProperties aspect, some of the pointcuts we have defined are called
showingInfoScreen and inputSearchDataCreation.

In the first one, we identify the execution of the showScreen method, from
the DictionaryController class, when the screen to be shown is InfoScreen. A
similar definition is also done for the UserDataScreen. In order to perform some
actions when these execution points are achieved, we must define some advice.
In the advice, as in the pointcut definition, there must be some parameters,
which are used to expose the application context at those execution points.
With a before advice that corresponds to the showingInfoScren pointcut we
may define what must be done before this execution point. The second pointcut
definition illustrated above corresponds to the execution of the InputSearchData
class constructor. By using an after advice, we may define the actions to be
performed after this execution. The auxiliary methods called inside these advice
reload the source of adaptability data and synchronize the current application
objects, or part of them, according to the new data. If we want to change the
adaptation points, or what must be done at those points, we simply change the
pointcuts or the advice declarations respectively. Both are defined in a modular
unit, and the access to the source of dynamic data is confined in the aspect code
(or auxiliary classes used by it).

In AspectJ, as in other AOP languages, there is a process for composing the
base source code or even compiled code with the aspects code. This process is
known as weaving. If the user does not want dynamic data for the dictionary
properties, the aspect responsible for that is simply not provided as input for the
weaving process. If this aspect is provided, the configuration of the adaptability
is localized. So, with aspects, it becomes easier to configure the adaptation.
Therefore, the adaptation itself is adaptable.

There is also an additional benefit: the AOM code and the ways to integrate
it with the normal code are separated. Therefore, we can more easily change the

16 Ayla Dantas, Joseph Yoder, Paulo Borba, and Ralph Johnson

ghoneim
Line




way we want a system to adapt. We can also more easily change or evolve the
non-AOM part of the system.

5 Conclusions

As we could see, adaptability is becoming a common requirement, and imple-
menting it can be hard. Adaptive-Object Models have been, to some extent,
successfully used to implement dynamic systems. Understanding AOMs can help
developers more quickly build systems that are highly flexible, because part of
these systems is represented in metadata that can be easily changed. However,
AOMs sometimes lead to solutions that can be hard to maintain in order to
include new adaptive capabilities or change the code of the existing ones. This
happens because besides reorganizing the application by using some patterns,
it also suggests that the system behavior and dynamic elements must be repre-
sented using metadata, which is interpreted at runtime. This interpretation of
metadata and associated actions are scattered throughout many classes. This
makes the business logic code and GUI code become mixed with the code for
providing the adaptability.

There may also be some business rules which do not need to be adaptive. By
mixing adaptability code with fixed code, code tangling arises. This can lead to
problems while maintaining the system; specifically if an extension to the AOM
is needed.

In order to minimize those problems, and make AOMs more adaptable, we
use Aspect-Oriented Programming. From the previous sections, we could see
that AOP can be useful for introducing adaptability with AOMs. It brings two
main advantages:

– Makes it easier to change the execution points where dynamic data must be
obtained;

– Isolates the adaptability actions from the application business logic and GUI
code.

This is a result of the modularization property provided by AOP through
the use of aspects. In AspectJ, we change the “adaptability points” by giving
new pointcut definitions that generally expose application objects (the pointcut
parameters). Then, we define the adaptability actions by using advice (before,
after or around), which explore the exposed instances in order to change the
application behavior.

By using AOM, we make our applications able to adapt at runtime to users’
or developers’ new requirements. This happens because we represent the parts
of the systems intended to be dynamic in metadata that is interpreted and we
organize the system using some patterns. However, retrieving dynamic data and
updating application objects is a crosscutting concern related to many adapt-
ability requirements. Implementing it using pure OO programming may lead to
code that is difficult to understand and evolve. Therefore, we propose the use of
aspects for modularizing this concern in each adaptability requirement.
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Besides improving AOM implementations, AOP can also be used to imple-
ment some of AOM patterns avoiding direct changes in the application code.
However, in some cases, this may bring maintainability problems, because the
code may become more difficult to understand, as we could see in other adapt-
ability requirement implementation.

By using the Adaptability Aspects pattern, lightweight aspects are used in
order to avoid problems that may result from a bad use of aspects. The aspects
should only be used to avoid code tangling and scattering while implementing
adaptability, and where they allow a better comprehension of the code.

After this work, we conclude that AOM and AOP are a good combination in
order to provide flexible applications that are easy to evolve both by interpreting
metadata or by changing source code. In the latter case, this will happen because
the adaptability configuration will be better isolated.
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Abstract. Software systems today need to dynamically self-adapt against dy-
namic requirement changes. In this paper we describeRAMSES a reflective mid-
dleware whose aim consists of consistently evolving software systems against
runtime changes. This middleware provides the ability to change both structure
and behavior for the base-level system at run-time by using its design information.
The meta-level is composed of cooperating objects, and has been specified by us-
ing a design pattern language. The base objects are controlled by meta-objects
that drive their evolution. The essence ofRAMSES is the ability of extracting the
design data from the base application, and of constraining the dynamic evolution
to stable and consistent systems.

Keywords: Software Evolution, XMI, UML, Reflection, Meta-Objects.

1 Introduction

Many object-oriented information systems today need to dynamically adapt themselves
against runtime changes. Some of the changes such as modify its structure and behav-
ior may cause the base-systems to behave in an unexpected way. Therefore, software
systems need to be capable of dynamically adapting their structure and behavior at run-
time and of checking their consistency to face sudden changes. Software development
asked for the way to modify the base objects at runtime without going to rebuild the
application again. It requires a new approach, which adapts the base application as well
as on advances in software technology. This new perspective reifies the design data of
the base application and by modifying such reification it adapts the base application
against runtime changes.

A topical issue in the software engineering research area consists of producing soft-
ware systems able to adapt themselves to environment changes by adding new and/or
modifying existing functionalities. There are a number of mechanisms for obtaining
adaptability. One of these mechanisms isreflection [6, 2]. A non-stoppable software
systems provide an excellent way to dynamically adapt itself against runtime changes
at its environment. A non-stoppable systems are characterized by long life cycle. Usu-
ally, these systems are deployed to be continuously online for several years. During this
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lifetime we want to be able to dynamically maintain and adapt these systems against
runtime events without bring the whole system to a halt.

We propose an infrastructure to dynamic adapt software systems. In our approach,we
adopt a reflective system [4,5], that allows to render self-adaptable at runtime the base-
level system. The meta-level systems is composed of an interpreter engine for managing
the evolution and validating consistency processes for runtime changes.

The meta-level behavior is described by a family of patterns [3], the meta-level
manages both the evolution and consistency of the base-level system. The cooperative
meta-objects at the meta-level consult the engines (see figure 1), and adapting the reified
objects for dynamic behavior. Changes to the reified system can be made at runtime and
are immediately reflected to its base-components. The evolution and consistency are not
hard-coded, neither are they generated. Instead, we build a reflective framework of the
base-systems that can be automatically self-adapted for any changes to be active long-
life span. Our reflective architecture define two cooperative meta-objects (evolutionary
and consistency) both of them refer to the engine to evolve the system and validate the
consistency of its semantics at runtime.

2 RAMSES Overview

RAMSES (Reflective and Adaptive Middleware for Software Evolution of Systems)
performs two phases to carry our self-adaption. In the first phase, theRAMSES’s meta-
level extracts the design information asXMI schemas from the base application and
it reifies them in the meta-level to constitute the meta-data. Whereas, in the second
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phase,RAMSES’s meta-level plans the dynamic adaptation of the base-level system,
gets the runtime events, evolves the meta-data against the detected event, checks the
consistency, and finally reflects the modified data to the base-level. This infrastructure
is considered to be dynamically adaptive because changes in the execution environment
cause objects, attributes and collaborations to be created and modified at runtime to
achieve new behaviors not previously foreseen by the original application. This goal is
achieved by:

– adopting a reflective architecture which reifies system design information and re-
flects back the changes on the system design;

– manipulating the design information and checking the system consistency against
evolution in the meta-level;

– using configurable rules to govern the system evolution through its design informa-
tion.

Adaptation and validation are respectively driven by a set of rules which define
how to adapt the system according to the detected event and the meaning of system
consistency.

2.1 The Reflective Architecture

To render a system self-adapting3, we encapsulate it in a two-layers reflective architec-
ture as shown in Fig. 1. The base-level is the system that we want to render self-adapting
whereas the meta-level is a second software system which reifies the base-level design
information and plans its evolution when particular events occur. By using a reflective
architecture, thanks to the transparency and separation of concerns properties of reflec-
tion, we can render self-adapting every software system without changing its code.

At the moment, this approach allows two kinds of dynamic evolution:structural
and behavioral evolution. This limitation is due to the fact that we just consider the
following design information related to the base-level system:

– object model, which describes objects and their relationships; this model represents
the structural part of the system;

– sequence diagrams, which trace system operations between objects (inter-object
connection); and

– statecharts, which represent the evolution of the state of each object (intra-object
connection) in the system.

The meta-level is responsible of dynamically adapting the base-level and it is com-
posed of some special meta-objects, calledevolutionary meta-objects. There are two
types of evolutionary meta-objects: theevolutionary and theconsistency checker meta-
objects (see Fig. 1). Their goal consists of consistently evolving the base-level system.
The former is directly responsible for planning the evolution of the base-level through
adding, changing or removing objects, methods, and relations. The latter is directly re-
sponsible for checking the consistency of the planned evolution and of really carrying
out the evolution through the causal connection typical of each reflective system.

3 By the sentenceto render a system self-adapting we mean that such a system is able to change
its behavior and structure in according with external events by itself.

RAMSES: a Reflective Middleware for Software Evolution 23

ghoneim
Line




2.2 Design Information as Meta-Data

Through the causal connection, the base-level system and its design information are rei-
fied intoreification categories in the meta-level. Classic reflection takes care of reifying
the state and every other dynamic aspect of the base-level system, whereas the design
information provides a reification of each design aspect of the base-level system such
as the collaborations among its components. The reification categories content is the
main difference ofRAMSES with respect to standard reflective architectures. Usually,
reifications represent the base-level system behavior and structure not its design infor-
mation. Reification categories are meta-data that represent the base-level system design
information in the meta-level. Both evolutionary and consistency checker meta-objects
directly work on such representatives and not on the real system, this allows a safe
approach to evolution postponing every change after validation checks. As described
in [3] when an external events occur as a reaction, the evolutionary meta-object pro-
poses an evolution to the consistency checker meta-object which validates the proposal
and schedules the adaptation of the base-level system if the proposal is accepted.

2.3 Evolution Planning and Validation

Adaptation and validation are respectively driven by a set of rules which define how
to adapt the system in accordance with the detected event and the meaning of system
consistency.

To give more flexibility to the approach, these rules are not hardwired in the cor-
responding meta-object rather they are passed to a sub-component of the meta-objects
themselves, respectively calledevolutionary and validation engines, which interpret
them. Therefore, each meta-object has two main components: (i) the core which in-
teracts with the rest of the system (e.g., detecting external events/adaptation propos-
als, or manipulating the reification categories/applying the adaptation on the base-level
system) and implementing the meta-object’s basic behavior, and (ii) the engine which
interprets the rules driving the meta-object’s decisions.

The evolutionary meta-object plans the evolution of the base-level system when
an event that requires its adaptation occurs. The evolutionary meta-object passes to its
engine all the data about the occurred event and the entities that could be involved by
the evolution. On this basis, the engine chooses and applies a group of evolutionary
rules that serve to build the plan for evolving the base-level exploiting the reified meta-
data. The evolutionary meta-object proposes the planned evolution to the consistency
checker meta-object which validates its soundness. Similarly to the planning phase, the
consistency checker meta-object demands the validation to its engine that exploits the
validation rules and the base-level’s meta-data. The plan for the evolution is concretized
on the base-level if and only if the consistency checker considers its application sound
otherwise a new plan has to be designed.

3 Benefits and Drawbacks

Our approach to software evolution has the following benefits:
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– evolution is not tailored on a specific software system but depends on its design
information;

– evolution is managed as a nonfunctional features, therefore, can be added to every
kind of software system without modifying it;

– evolution strategy is not hardcoded in the system but it can dynamically change by
substituting the evolutionary and validation rules; and

– RAMSES decreases the complexity of evolution and validation by defining only
one meta-level. That represent the meta-processes of maintaining and evolving the
meta-data.

Unfortunately there are also some drawbacks: i) we need a mechanism for convert-
ing UML diagrams in the correspondingXMI schemas (problem partially overcome by
using Poseidon forUML [1]); ii) decomposing the evolution process in evolution and
consistency validation could be inadequate for evolving systems with tight time con-
straints.

4 Conclusion

We have presented theRAMSES (Reflective and Adaptive Middleware for Software
Evolution of Systems) middleware whose aim consists of self-adapting object-oriented
systems against environmental changes. In this paper we have given an overview of the
whole reflective architecture for dynamically evolving and validating consistency of a
software system. The main features of our infrastructure can be highlighted as follows:
1) it allows to extract the system design information asXMI schemas from base ob-
jects; 2) by usingMOP capability the XMI schemas will be reified to constitute the
meta-data used in the meta-level; 3) both evolution and consistency are managed by the
collaborations between meta-objects. Finally, 4) by using reflection we reflect the mod-
ified design information to the base-level. We are currently working on implementing a
prototype ofRAMSES.
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Abstract. In this paper we present a Model for Dynamic Hyperslices which 
uses a particular Aspect-Oriented (AO) approach – Hyperspaces – for 
decomposition and reflection as a means for composition of software modules. 
This model allows for structured, dynamic, incremental change introduction 
and rollback, thus, supporting run-time evolution yet preserving component 
modularity. The applicability of the model is illustrated through a schema 
adaptation scenario. 

1. Introduction  

Aspect-Oriented software development (AOSD) is a methodology for software 
development with an emphasis on the separation of concerns principle. AOSD takes 
the next step, after OO, in developing well modularised software, by separating the 
crosscutting concerns. A significant part of work in AO community focuses on 
software evolution support [1, 2] as well as dynamic change due to run-time weaving 
of aspects [3-5]. AOSD itself provides new mechanisms, such as joinpoints, pointcuts 
and introductions, that can be used to facilitate dynamic change, but it does not 
explicitly provide any structured methodology to manage and support dynamic 
change in software. 
Such a structure, however, is provided by reflective approaches to software 
development [6, 7].  In reflection the main emphasis is on transparent manipulation of 
the base level via adaptation of the meta level. Meta level is a handle for controlling 
the base. This is particularly useful for “non-invasive” run-time adaptation of the base 
code and dynamic re-configuration using meta-object protocols. 
Thus, we suggest that the meta-object protocols of reflection provide control and 
manipulation mechanism that, in combination with the modularisation and change 
introduction capabilities of AO, could lead to well-modularised, dynamically 
evolvable software systems.  
This approach has been adopted in development of the Dynamic Hyperslices Model 
briefly outlined and illustrated through an example in section 2 of this paper. Some 
implementation-related issues for the model are examined in section 3 and the 
discussion is summarised in section 4. 



2. The model for Dynamic Hyperslices 

2.1 Outline of the model 

The Dynamic Hyperslices model [8, 9] is intended to support the dynamic evolution 
of non-stop systems, i.e. systems that cannot be easily taken offline due to high costs 
of their downtime (e.g. telephone and banking), environmental safety (e.g. nuclear 
plants), loss of human life (e.g. life support systems) and such like. The model uses 
the Hyperspaces approach [10-12] to decompose the software system into “single-
minded” modules (e.g. a module for Health feature of the Person object) and the 
power of reflection [6, 7] along with filters (as discussed in the  Composition Filters 
approach [13]) and architectural connectors [14, 15] for unit composition and run-
time manipulation. 
The Dynamic Hyperslices aims to provide a composition mechanism that allows all 
the primary concerns, decomposed in accordance with the Hyperspaces approach, to 
endure in the composite concerns after composition. 
In the Hyperspaces approach [10-12]  the software is modelled as a set of modules 
(called hyperslices) each of which represents only one single concern. These 
hyperslices are then composed using matching units (e.g. method names) in different 
hyperslices as join-points. Composition-related concerns are not treated as first class 
entities, but are transitory units which integrate with primary hyperslices into a 
composed unit. Composition is a compile-time process and the final composed 
module has no recollection of its composite parts.  
We maintain the decomposition principles of Hyperspaces, but differ in our 
composition approach. We use connectors for composition. Filters form part of our 
composition connectors where connectors connect hyperslices  and not (necessarily) 
complete object classes or (OO) components. Our connectors don’t simply match 
provided/required services, or specify roles for connected components, but rely on a 
dynamically updateable composition strategy to build up functionality of coarser-
grain components (e.g. object classes) from primary hyperslices1, as well as carry out 
the communication between the member hyperslices at run time.   
In short, the model:  

• Uses the Hyperspaces decomposition approach in separating concerns into single-
minded hyperslices (or primary concerns).  

• Requires that an additional dimension for Composition concerns is specified in 
each Hyperspace-type decomposition. This additional dimension contains 
connector-concerns. At the composition stage the connector concerns are used to 
compose other concerns.  

• Utilises a composition connector to integrate any primary/composite concerns. 
Consequently, any interaction between other concerns is channelled through a set 
of connectors.  

                                                           
1  Thus, the composition strategy in the connectors can be perceived as a kind of “merger 

algorithm” for producing higher order artifacts. Here the “merger” is performed through run-
time message manipulation within connectors, without physically merging the hyperslices. 
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• Provides connectors with capability to reflect upon their immediately connected 
concerns, while still keeping these internals hidden from all other connectors and 
hyperslices. 

The Dynamic Hyperslices approach is illustrated using an example of dynamic 
schema adaptation2 in the following sub-section. 

2.2 Illustrative Example 

Dynamic database schema adaptation is desirable since, in database-centric 
environments (for instance in banking sector), downtime of the central database 
system is very costly. Consequently, the ability to seamlessly incorporate change into 
a database schema at run-time promises significant financial gains.   
Figure 1(a) below depicts a certain (oversimplified) Object Database schema. The 
organisation that owns this database has kept records of its clients, the (financial) 
services that it provides and the registrations that its clients have undertaken for the 
provided services (e.g. Instant Savings Accounts). Assume the organisation wants to 
improve its service provision and so intends to encourage the clients to fill in newly 
introduced questionnaires about the services they use. To motivate the clients, for 
each filled in questionnaire the clients registration record will be credited with a free 
quantity of service (e.g. extra 0.1% of interest gained).  

Root

Client Service Registration

Registration

Bool: qCompleted

Root

Service Registration

…
Bool: qCompleted

Questionnaire

Connector:
meregeByName

(CoreShema, 
Questionnaire)

(a) Hyperslice: CoreSchema (b) Hyperslice: Questionnaire (c) Hyperslice: CoreShema_Questionnaire

creditForQuest()

…
creditForQuest();

Questionnaire
Client

fillQuest()

Client

fillQuest()

…
…

…
… …

…
…
…

…
…

…
… …

…

 
Fig. 1. Illustration of the model for Dynamic Hyperslices. 

Using the Hyperspaces decomposition approach, we adopt the existing schema as a 
composite hyperslice CoreSchema (presented in Figure 1.a). Then, we design and 
develop the newly required set of functionality as a separate hyperslice 
Questionnaire (presented on Figure 1.b), that has only those concerns that deal 
with the issues related to the questionnaire. The Questionnaire hypeslice consists 
of newly introduced Questionnaire class, Client class which has only one 
method (fillQuest) to allow clients to fill in the questionnaires, and the 
Registration class which has a Boolean variable qCompleted to indicate 
wheather the questionnaire for the given registration has been completed, and a 
method for crediting the registration with additional free quantity of service for each 
completed questionnaire.  

                                                           
2 More about this subject can be found in [16]. 
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The Connector, depicted as an oval, linking CoreSchema and Questionnaire 
hyperslices is the run-time composition mechanism that combines the separate 
hyperslices into a composite CoreSchema_Questionnaire hyperslice view 
(presented in Figure 1.c).  However, while the general view of the updated schema 
will be that presented on the right of Figure 1 (i.e. part c), the initially independent 
hyperslices for core schema (1.a) and the questionnaire (1.b) will be retained intact as 
presented on the left side of Figure 1 (i.e. parts a, b, and the connector). The 
connector will retain the composition information which leads to the change of the 
schema, allowing for rollback to the previous version, if required. The connector is 
also the communication mechanism between the composed hyperslices as well as 
their clients. 
Thus, in this section we have briefly outlined the possible applicability of the 
Dynamic Hyperslices approach to a database schema evolution problem. We have 
discussed how with the Dynamic Hyperslices approach a coherent view of the 
evolving database schema can be retained, along with the details of the historical 
change (contained in connectors), allowing for rollback, if required. Yet, our approach 
avoids the space usage overheads and coarseness of retained change history, as is the 
case with the traditional schema versioning approaches (when several versions of the 
same schema are kept) [17, 18]. We also avoid the pitfalls of class versioning 
approaches [19, 20] – when a copy of each new version of each class is retained –  
which result in overcomplicated schema and loss of  a single coherent view on it (due 
to many versions of the same class). 

3. Discussion on Implementation Issues  

The Dynamic Hyperslices model is currently under development. In this section, we 
talk about some initial ideas for its implementation. 
As discussed earlier, the composition in our model is carried out through reflective 
adaptation. The partial structure of the meta-object level of the model is presented 
below: 

<<interface>>

Hyperslice

Connector PrimarySlice CompositeSlice

CompositionStrategy CompositionManager
 

Fig. 2. Partial structure of the meta-model for Dynamic Hyperslices 

Figure 2 states that all primary and composite slices and the connectors are 
hyperslices. The connectors, primary, and composite slices can be composed into new 
composite slices. The composition details are provided through the composition 
strategy which is a part of the composition connectors. The composition process is 
monitored and validated by the CompositionManager element of the connectors.  

32 Ruzanna Chitchyan and  Ian Sommerville

ghoneim
Line




The base level (i.e. application) programmer using the Dynamic Hyperslices model 
does not need to be aware of the above meta-level. The link between the base and the 
meta levels is established at load time via an AspectJ aspect which introduces and 
initialises the corresponding reference variables in the base and meta levels.  

MO Client_Core MO Client_Quest.

Composite 
MO Client

Class 
Client_Core

proxy Class 
Client

Class 
Client_Quest.

Obj.Client_Core

Obj.Client_Quest.

proxy Obj. Client

 
Fig. 3. High-level workings of the model for Dynamic Hyperslices. 

The high-level working of the system, also illustrated in Figure 3 above, is as follows:  
• The Base and Meta level link is established at load time, with a meta-object created 

per each loaded class; 
• Composed slices are represented by a proxy class at the base level and a composite 

meta-object at the meta level. Instantiation of a composed class results in 
instantiations of its components; 

• All calls to the base level objects are passed to their meta-objects. The meta-objects 
resolve each calls in accordance with the composition strategy used and filter it 
down the composition chain to the resolved primary slice which executes the call; 

• The topmost composite meta-object refers to the “combined” interface of all 
composition participants. This combined interface is displayed to all clients of the 
composite slice 

The implementation is being undertaken mainly with Java and AspectJ. It is likely 
that byte-code manipulations tools (such as BCEL or Javassist) will also be used. 
While our preferred option is to maintain module integrity all through its life cycle, 
including the run-time, we are aware that in medium to long term this approach will 
have noticeable performance overheads. Consequently we plan to consider various 
optimisation strategies, e.g. guarded integration of “stable” compositions into coarse-
grained slices, with only guard checked for changes, rather then the whole 
composition chain; or permanent integration of certain changes into module structures 
(at the system maintainer’s discretion) to improve performance in critical places. 

Another challenging issue is that of instance adaptation, i.e. how to make objects 
consistent with the evolved classes. For example (going back to our example in 
section 2.2) how will the instances of Client class, created before composition of 
Questionnaire slice, handle requests to fill in questionnaire? Our present intent is to 
use conversion of the objects to the new definitions of their classes with a hyperslice 
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for instance conversion handling. Thus, the instance adaptation strategy itself will be 
evolvable, in correspondence with the evolving schema. 

4. Summary and Future Work 

In the present paper we have suggested that reflection and AO can be used as 
complementary technologies, with reflection particularly well suited for dynamic 
reconfiguration and adaptation and AO as a modularisation mechanism.  
We have employed the above principle in the development of the Dynamic 
Hyperslices model, where we use a particular AO decomposition mechanism (i.e. that 
suggested by the Hyperspaces approach) in combination with a reflection-based 
composition (via our composition connectors). The applicability of this model has 
been illustrated though a schema evolution scenario.  
While the Dynamic Hyperslices model simplifies the change introduction and module 
(i.e. hyperslice) development process, it requires some consideration for the 
complexity of slice composition. However, the proposed model also provides for 
treating the composition concerns themselves as 1st class entities, similar to any other 
slices. Implementation and refinement of the composition mechanism is one of the 
prime tasks to us at the present time. Some other implementation related issues, 
besides those already discussed in section 3, are the development of checks for 
correctness of composition, consideration of ways of incorporating domain-specific 
knowledge into composition process. 
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Abstract. In this paper, we present a solution that allows systems to
remain active while they are evolving. Our approach goes out from the
principle of separated concerns and has two steps. In the first step, we
have to make sure that the system’s evolvable concerns are cleanly sep-
arated. We propose aspect mining and static refactorings for separat-
ing those concerns. In a second step, we allow every concern to evolve
separately. We present a preliminary reflective framework that allows
dynamic evolution of separate concerns.

1 Problem Statement

An intrinsic property of a successful software application is its need to evolve. In
order to keep an existing application up to date, we continuously need to adapt
it. Usually, evolving such an application requires it to be shut down, however,
because updating it at runtime is generally not possible. In some cases, this is
beyond the pale. The unavailability of critical systems, such as web services,
telecommunication switches, banking systems, etc. could have unacceptable fi-
nancial consequences for the companies and their position in the market.

Redundant systems [1] are currently the only solution available to solve this
problem. Their main idea is to provide a critical system with a duplicate, that is
able to take over all functions of the original system whenever this latter is not
available. Although this solution has been proved to work, it still has some disad-
vantages. First of all, redundant systems require extra management concerning
which software version is installed on which duplicate. Second, maintaining the
redundant systems and switching between them can be hard and is often un-
derestimated. What would happen for instance when the switching mechanism
fails? Would we have to make a redundant switching mechanism and another
switching mechanism for switching between the switching systems? Last, dupli-
cate software and hardware devices should be present, which may involve severe
financial issues.

The principle of separation of concerns [2] could provide an improved and
more flexible solution to the problem. Applications developed with this principle
in mind implement every concern in a separate entity. These entities can then be



adapted and substituted without affecting the rest of the application. Depending
on the programming paradigm used, an entity can be a function, an abstract data
type, a class or a component, for example, or even an aspect if we employ aspect-
oriented programming techniques. Whenever an application is decomposed into
cleanly separated entities, its evolution boils down to the addition, the removal
or the modification of such an entity. If such activities can be performed while
the application is running, we call such evolution dynamic software evolution.

In practice, the principle of separation of concerns is not always that easy to
achieve. As it turns out, no matter how well an application is decomposed into
modular entities, some functionality always cross-cuts this modularisation. This
phenomenon is known as the tyranny of the dominant decomposition [3]. As a
consequence, such cross-cutting functionality (often called a concern) can not be
evolved separately, as it affects all other entities in the application.

Although techniques exist for addressing the problem of the dominant de-
composition [4–7], they should be considered too static for supporting dynamic
evolution. In effect, they provide a model in which cross-cutting concerns are
fixed in the application at compile time. To solve this issue, more dynamic tech-
niques should be investigated. Several prototypes of those techniques do exist:
[8, 9], but still lack some dynamic properties as well as practical experience.

2 Towards Separated Concerns

Most currently existing applications do not match with the principle of separa-
tion of concerns. This is a serious problem if we want to allow them to evolve
dynamically. In order to cope with this problem, we should investigate tech-
niques that are able to discover cross-cutting concerns in existing code, as well
as techniques that are able to restructure such code so that it becomes well
modularised.

2.1 Aspect mining

Research in the domain of aspect mining is concerned with the identification of
cross-cutting concerns in existing applications. Although such research is still in
the early stages, several prototype tools have already been developed that sup-
port developers in identifying cross-cutting code. Many of these tools are semi
automatic, which means they require some form of input by the developer [10–
12]. More advanced tools, that are able to identify aspects without human inter-
vention, are appearing as well however [13–15]. Our aim is to study if and how
these techniques can be used for our purposes. One particular shortcoming of
these techniques we already identified is that they do not take into account the
dynamic behaviour of the application under consideration. In order to evolve an
application dynamically, it is important to know which of its parts are weakly or
strongly connected, which communication patterns occur frequently, etc. This is
impossible with current-day aspect mining techniques. We are thus considering
extending one of them with reflectional capabilities, so that we can study and
observe a running application and infer often recurring communication patterns.
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2.2 Object- and aspect-oriented refactoring

Once the cross-cutting concerns have been identified, we need to restructure the
application in order to make it well modularised according to these concerns.
Refactoring techniques, as proposed by [16], allow us to modify the internal
structure of an application while preserving its overall behaviour. Whenever
possible, we will use these refactorings and the appropriate object-oriented fea-
tures to separate concerns cleanly. However, since some concerns may then still
be cross-cutting, our aim also is to investigate the use of refactorings for restruc-
turing an ordinary object-oriented application into an aspect-oriented one. This
may involve extending the already existing refactoring techniques, and defining
completely new refactorings, specifically targeted toward aspects. Preliminary
steps in this direction are taken by [12] and [17].

3 Towards Dynamic Software Evolution

Once we are dealing with well modularized applications – applications with no
cross-cutting concerns – we want to allow every module to evolve separately. In
this section we present a reflection-based framework that will permit that.

3.1 Reflective systems

A reflective system is able to reason about itself by the use of metacomputa-

tions – computations about computations. For permitting that, such a system
is composed out of two levels: the base level, housing the base computations and
the metalevel, housing the metacomputations. Both levels are said to be causally

connected. This means that, from the base level point of view, the application has
access to its representation at the metalevel and that, from the metalevel point
of view, a change of the representation will affect ulterior base computations.
Depending on which part of the representation is accessed, the part describing
the structure of the program, or the part describing its behavior, reflection is
said to be structural or behavioral.

Figure 1 illustrates the causal connection between base and metalevel, and
shows how this can be used in order to change the behavior or the structure
of a base-level application. The left part of the figure shows the architecture of
a certain application that has cleanly separated entities at the base level. The
metalevel houses a representation of this application. The application can use
that in order to reason about itself (introspection). Through manipulations of
that representation (introspection, the application could self-evolve. The center
picture shows that a new entity is added in the metalevel representation of the
application. The right picture shows the propagation of the metalevel change
down to the base level, thus changing the application’s behavior and structure.
Using this approach we can update separated entities of a system without having
to switch off the system, and thus allow dynamic evolution. Still there are several
issues that have to be solved in order to do so.
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Fig. 1. Dynamically updating an entity through metalevel manipulation.

3.2 The evolution framework

We need a platform that provides both structural and behavioral reflection at
runtime and that allows dynamic composition of meta-entities. As a first step,
such entities will be aspects. Since we need structural reflection at runtime, we
are going to experiment with Smalltalk. The behavioral reflection part will have
to be added, based on the ideas of partial behavioral reflection as exposed in [18]
and materialized in the Reflex platform for Java. Finally, we plan to inspire from
the work on EAOP (Event-based Aspect-Oriented Programming.pdf) [9] with re-
gards to dynamic aspect composition facilities. Although targeted to behavioral
issues, Reflex and EAOP underlying ideas can be adapted to deal with structural
changes. First, we definitely retain the idea of a global monitor controlling the
application, and the selective introduction of hooks within base applications. As
long as structural changes are intra-entity – stay locally inside a certain entity
– they are straightforward to allow. If they are inter-entity changes, things will
obviously get more complicated as we will have to keep track of the inter-entity
dependencies. This is an issue that we will have to investigate further.

In a first version of the framework, we plan to apply a two-layered architecture
to allow us to modify the behavior of a running application even when it is
already running. For doing that, we instrument the running application with calls
to the monitor at every point where communication between entities occurs. The
monitor has to keep track of that communication in order to make it possible to
substitute a certain entity. For that, it holds a representation of the application.
During execution, the monitor passes control to the concerned entities (following
the representation), making its presence unnoticeable. This is illustrated in figure
2. When changing a given entity, the monitor will queue all calls to the ’old’ entity
in order to send them to the ’new’ one once in place. Our approach implies that
any evolvable entity has to be referenced by the monitor, and that the monitor
keeps track of entities and inter-entity relations.

3.3 The runtime API

Finally, in order to evolve the application, the user has to change the application’s
representation in the monitor. To that extent, a runtime API will be included
so that the user can interact on-line with the monitor. The functionalities of the
API have to include the addition, the removal and the modification of a system
entity (aspect or functionality). Adding a new entity is done by writing its code,
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Fig. 2. Runtime evolvability by means of a two layered architecture: inter-entity com-
munications (left) are indirected to the monitor (right).

and by registering it in the monitor. Removing an entity is more complex, as
we should make sure that no other entities are dependent of that entity before
actually removing it. If that is however the case, the programmer should be
warned about that. When a certain entity needs to be modified, we have to
write the new entities code, and tell the monitor that it should use the new
entity instead of the old one whenever the old one is referenced by an other
system entity. In this case, there are also some difficulties that arise, since we
should be able to transfer the state from one to another entity. Some formal
definition of the before-after behavior should be established in order to avoid
conflicts.

4 Validation

The opening perspective of our research is that we will allow an application to
evolve dynamically by allowing its composing entities to evolve dynamically. We
deliberately do not restrict ourselves to one specific entity, such as a class in
the Sun JVM Hotswap API, but will consider entities of any kind. As already
mentioned above, such entities can thus be functions, abstract data types, classes,
aspects and so on. As this is a very ambitious perspective, we will try to get as
close as possible to it, by using a step by step approach.

In a first step, we will consider applications that make use of aspect-oriented
technology. Such applications are typically modularized in classes and aspects.
First, we will evolve the aspects of such applications. These are the easiest entities
we can make evolve, as the base application does not have any reference to those
entities. After that, we will focus on the evolution of class entities. This will be a
harder challenge as the application has direct knowledge and references to such
entities.

After that, we should widen our field of action to other programming paradigms
than the object-oriented one as the ultimate goal is to employ the same approach
for all existing programming paradigms. Most of the time will be spent on the
representation of the application in the monitor. Once that is done, the dynamic
evolution capabilities of the program will easily follow.

A Reflective Approach to Dynamic Software Evolution 41

ghoneim
Line




5 Conclusion

This paper presented a two-step solution for allowing systems to evolve dynami-
cally. In a first step, the application’s cross-cutting concerns should be removed,
so that it is well modularized. We proposed aspect mining and static refactoring
techniques to detect and separate the cross-cutting concerns respectively. In a
second step, the well-modularized application should be controlled at the met-
alevel by a monitor with full reflective capabilities. Such a monitor merged the
ideas of EAOP and partial behavioral reflection with the dynamic capabilities of
the Smalltalk language. As such, it allows an application to evolve dynamically.
Moreover, such an application can be of any programming style, object-oriented,
aspect-oriented or any other, as long as it is well modularized.
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Abstract. It is becoming increasingly clear that we are entering a new era in 
systems software. As the age-old tension between structure and performance 
acquiesces, we can finally venture beyond monolithic systems and explore 
alternative modularizations better suited to evolution and adaptation. The 
OASIS project explores the potential of aspects to naturally shape crosscutting 
system concerns as they grow and change. This paper describes ongoing work 
to modularize evolving concerns within high-performance state-of-the-art 
systems software, and outlines some of the major challenges that lie ahead 
within this domain. 

1 Introduction 

With the constant demand for system change and upgrades comes the need to simplify 
and ensure accuracy in this process. As structural boundaries decay, non-local 
modifications compound the cost of system modification. Aspect-Oriented 
Programming (AOP) [7] aims to improve structural boundaries of concerns that are 
inherently crosscutting – no single hierarchical decomposition can localize both the 
crosscutting concern and the concerns it crosscuts. This paper explores the application 
and challenges of an aspect-oriented based solution to the growing problems of 
evolution and adaptation in system infrastructure software. We propose an approach 
that is incremental and organic in nature, intrinsically promoting more natural 
boundaries for change. 

This paper begins with a high-level overview of a recently developed non-
monolithic implementation of garbage collection in Java. Recent results have 
demonstrated that a preliminary separation of concerns into an object hierarchy does 
not compromise, and in fact can be augmented to improve performance relative to 
existing monolithic implementations [1]. The specific ways in which AOP could 
facilitate more cohesive system evolution when applied to domain-specific patterns is 
overviewed, and demonstrated by a sample aspect we have introduced to the system. 
We then extend these results to apply to the problem of adaptability by considering 
how these aspects could better facilitate change when dynamically coupled with 



system state and/or user demands. The precise ways in which we may be able to 
combine modular crosscutting with dynamism to create a more adaptable system are 
discussed. Though recent successes in the area of dynamic aspects provide the 
opportunity to immediately realize evolution of these concerns in a live system [2, 9], 
many challenges in extending this support to infrastructure software remain. The 
paper concludes with an overview of some of these challenges. 

2   Background 

The Jikes Research Virtual Machine (RVM) [5, 6] affords researchers the opportunity 
to experiment with a variety of design alternatives in virtual machine infrastructure. 
The project is open source and written in Java. One of the core system elements that 
stand to receive much attention in this testbed environment is garbage collection 
(GC). State of the art technologies for improving GC performance are still evolving, 
in particular for multiprocessor systems. 

The benefits of GC are well known and have been appreciated for many years in 
many programming languages. GC separates memory management issues from 
program design, in turn increasing reliability and eliminating memory management 
errors. Though GC has improved significantly over the last 10 years, on going work 
aims to further reduce costs and meet application specific demands. Costs not only 
involve performance impact, but also configuration complexity. For example, in 1.4.1 
JDK there are six collection strategies and over a dozen command line options for 
tuning GC [4]. Basic strategies, such as reference counting, mark and sweep, and 
copying between semi-spaces, have been augmented with hybrid strategies, such as 
generational collectors, that treat different areas of the heap with different collection 
algorithms. Collectors not only differ in the way they identify and reclaim 
unreachable objects but they can also significantly differ in the ways they interact 
with user applications and the scheduler. 

3 The Dawn of Modularized, High-Performance GC 

Recently, Blackburn et al. detailed the modularization of a monolithic memory 
management system for Jikes [1].  Their Memory Management Toolkit (MMTk) was 
designed with two goals in mind: flexibility, in support of f uture development, and 
performance, relative to a monolithic implementation and a standard C malloc 
implementation. Results demonstrate that this implementation improves modularity 
without sacrificing performance. In their study they measure modularity of their new 
MMTk by comparing metrics such as lines of code, lack of cohesion of methods 
(LCOM) and cyclomatic complexity with two earlier versions of the RVM.  The 
results show MMTk as the clear winner in all of these comparisons. For example, 
cyclomatic complexity is a measure of branching and looping complexity within a 
method. MMTk displays an average ranging from 1.5 to 5 times lower in this area 
than the previous RVM memory management versions. 
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The performance tests include a comparison of allocation and tracing rates along 
with raw speed comparison.  The tests run on standard benchmarks reveal MMTk has 
better performance overall than its monolithic counterpart. Though one comparison 
shows C outperforming MMTk by 6%, compiler inlining in the MMTk version 
realizes substantial performance gains up to 60% over the C implementation. 

4 OASIS: Shaping Fertile Code 

We have just embarked on the OASIS project, which will take the refactoring of this 
system one step further, modularizing crosscutting concerns within MMTk. We 
believe aspects will not only serve to increase the flexibility of the system, but will 
further facilitate system evolution and research. MMTk can now be used as a 
structured benchmark to measure performance and modularity of an AOP 
implementation against. By using the same techniques used in the comparison of 
MMTk to its monolithic counterpart (LCOM, cyclomatic complexity, etc), the level 
of modularization and performance impact incurred by aspects can be meaningfully 
quantifiably assessed.  

In addition to improving on these metrics, added benefits of an aspect-oriented 
implementation are the semantic and practical value of the explicit relationship 
between crosscutting concerns and the concerns they crosscut.  Though the internal 
structure creates a clearer picture of the system for developers to work with when 
researching new VM techniques, this factoring-out of crosscutting concerns also 
provides developers with the ability to plug/unplug more system elements as 
configuration options. Eventually employing dynamic (runtime) aspects would further 
allow the system to switch GC strategies on-the-fly, at run-time, enabling more 
effective attempts at feedback-based, system-wide optimization. This presents the 
possibility of a system that could dynamically switch collectors dependant on system 
state and/or user input. The following section overviews some of the domain-specific 
design patterns we have started to shape as aspects within MMTk. 

5  Domain-Specific Design Patterns: Shaping Aspects of GC 

Blackburn et al. use design patterns in the development of MMTk for reuse and 
efficiency. Four domain specific design patterns are detailed in [1]. For reuse, a 
pattern for prepare and release phases exploits collection phases to simplify the 
development of new collectors, and a pattern for multiplexed delegation passes on 
collector tasks to appropriate memory management policies. For efficiency, a pattern 
for hot and cold paths optimizes the common path, and a pattern for local and global 
scope minimizes contention and synchronization between multiple collector threads in 
multiprocessor systems. 

The composition of collectors is broken down into three elements: mechanisms, 
policies and plans.  Mechanisms are collector-neutral and shared among collectors. 
Policies manage contiguous regions of virtual memory, and are expressed in terms of 
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mechanisms. Plans define the ways in which collectors are composed, as described in 
terms of policies. 

At a top level, the algorithm used by collectors in MMTk integrates the domain-
specific patterns previously introduced. This is evident by looking at the control flow 
through the stop-the-world superclass, extended by all plans that suspend the system 
while GC takes place. The implementation has three phases: prepare, 
processAllWork, and release. The prepare/release phases are further specialized by 
the multiplexed delegation pattern, divided according to the global and local context 
pattern, and optimized by hot and cold paths. For example, given the simple case of a 
single collector thread on a uniprocessor, the structure of local and global scopes 
within prepare and release phases can be captured by the simple finite state machine 
in Figure 1. 

 

globalPrepare  

localRe lease  

localPrepare  

globalRelease  

 
               prepa re  
Phases 
               release  

         S co pe 
global           local 

 
Figure 1 – Structure of Local and Global Scopes within Prepare and Release Phases. 

All eight plans in the Jikes RVM adhere to this overall structure.  A motivating force 
behind MMTk was to leverage these patterns to ease the evolution of new plans.  For 
example, division into local and global contexts in multiprocessor environments 
separates operations that need to be synchronized (global) from those that do not 
(local).  Though there is always a single global state, threads on different processors 
can manipulate local state concurrently.  This division needs to scale well across 
processors, and may someday be extended to include features such as dynamic 
join/leave of local participants. 

Our experiment to date focuses on the structure of this simple FSM.  Using a standard 
configuration for Jikes, we refactored policy related activities associated with phases 
and scope as an aspect within one plan.  We argue that, in this form, the internal 
structure of each plan’s use of policy becomes unpluggable and clear.  It is 
unpluggable in this form because different combinations of policy can be specified at 
compile time, and clear because the internal structure associated phases, scope, and 
delegation can be coalesced in isolation from the rest of a given plan.  By targeting 
these patterns, aspects can shape system elements identified to be critical during 
evolution.  
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6 Implementation Details 

Figure 2 highlights three of the eight plans in Jikes (copyMS, genRC and refCount) 
and some of the contents of their four of the key abstract methods in the 
StopTheWorldGC class where plans interact with policies: globalPrepare(), 
threadLocalPrepare(), threadLocalRelease() and globalRelease().  In this form, 
similarities and differences between plans with respect to memory management 
policy can be more easily assessed.  Some plans such as genRC and refCount in the 
right half of Figure 2, share the same combination of policies.   

 
When plan is copyMS  
 
and on globalPrepare path 
 copySpace prepare 
 immortalSpace prepare 
 markSweepSpace prepare 
  treadmillSpace prepare 
 
and on threadLocalPrepare path 
 markSweepLocal prepare(markSweepSpace) 
 treadmillLocal prepare(treadmillSpace) 
 
and on threadLocalRelease path 
 markSweepLocal release(markSweepSpace) 
 treadmillLocal release(treadmillSpace) 
 
and on globalRelease path 
 immortalSpace release 
 markSweepSpace release 
  treadmillSpace release 
 
When plan is genRC or refCount 
 
and on globalPrepare path 
 immortalSpace prepare 
 refCount prepare 
 
and on threadLocalPrepare path 
 refCountLocal prepare(refCountSpace) 
 
and on threadLocalRelease path 
 refCountLocal prepare(refCountSpace) 
 
and on globalRelease path 
 immortalSpace prepare 
            refCount prepare 

 

Figure 2 – Combinations of Policies in copyMS, genRC and refCount 

Refactoring this code to re-introduce policy to plan using aspects better exposes 
both the symmetry between prepare/release phases and its interaction with the 
global/local contexts of the protocol.  That is, it better captures the internal structure 
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of policy within a given plan.  Figure 3 shows the implementation of the simple FSM 
model for one plan, copyMS, using AspectJ [8]. 

 
package com.ibm.JikesRVM.memoryManagers.JMTk; 
 
privileged aspect PolicyAspect { 

     
    private final int GLOBAL_PREPARE = 0; 
    private final int LOCAL_PREPARE = 1; 
    private final int LOCAL_RELEASE = 2; 
    private final int GLOBAL_RELEASE = 3;  
    private int state = GLOBAL_PREPARE; 

 
 
    after(Plan p):target(p) && (execution(* Plan.globalPrepare(..)) 
    || execution(* Plan.threadLocalPrepare(..)) 
    || execution(* Plan.threadLocalRelease(..)) 
    || execution(* Plan.globalRelease(..))) { 
 switch(state){ 
     case(GLOBAL_PREPARE): 
  CopySpace.prepare(); 
  Plan.msSpace.prepare(); 
  ImmortalSpace.prepare(); 
  Plan.losSpace.prepare(); 
  state++; 
  break; 
     case(LOCAL_PREPARE): 
  p.ms.prepare(); 
  p.los.prepare(); 
  state++; 
  break;    
     case(LOCAL_RELEASE): 
  p.ms.release(); 
  p.los.release(); 
  state++; 
  break;        
     case(GLOBAL_RELEASE): 
  Plan.losSpace.release(); 
  Plan.msSpace.release(); 
  ImmortalSpace.release(); 
  state = GLOBAL_PREPARE; 
  break; 
 } 
    } 
}     

 

Figure 3 – PolicyAspect.java 

7 Adaptability: Could we do this on-the-fly? 

One problem however, for this experiment and those involving other low-level 
software systems, is that run-time support needs to be highly generic to work with 
multiple different thread or process models.  That is, support for language 
mechanisms such as that associated with control flow, or cflow, needs to be 
independent from any one definition of thread state in order to work with (and within) 
a range of JVMs.  Techniques that exploit meta-data might be effectively applied to 
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inspect system state and adapt the system accordingly.  We believe extensive new 
avenues of research in VM technologies would result if recent successes in dynamic 
aspects, such as those presented in [2, 9], could be extended to apply to system 
infrastructure code as well as to the application domain [3].  

8 Conclusions 

 
Modern systems software need not be monolithic to achieve performance.  As this 
tension between structure and performance subsides, alternative modularizations and 
means of extracting system state can be used to more effectively facilitate evolution 
and adaptation.  OASIS explores the potential of aspects to naturally shape 
crosscutting concerns as they grow and change within system infrastructure software.  
Though the project is in its formative stages, preliminary results targeting domain-
specific patterns have started to uncover the potential advantages and challenges 
within the application of these techniques to the evolution of performance sensitive 
object-oriented software systems.  
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1 Introduction

Modern software should be dynamically evolvable. The onward sweep of technology,
introducing new features, and fixing immortal security holes, drive this evolution. More-
over, practical demands of on-the-fly changes of running applications eagerly encourage
the evolution since the downtime of commercial software directly causes big losses. En-
abling the evolution of software components is a major focus of efforts of the designers
of imperative, static typing, and high-performance languages, such as C++ and Java.

Recently, the ability of Java’s class loaders, which play a central role in runtime
flexibility of Java, has been considered to be insufficient for software evolution. Java
class loaders do not allow reloading classes that have been loaded since to allow reload-
ing a class tends to make several crucial runtime optimizations difficult [6]. Instead,
Java class loaders provide a mechanism for using different versions of a class at the
same time although the use of this mechanism is restricted. This restriction is called the
version barrier.

This paper presents a negligent class loader, which can relax the version barrier
between class loaders for software evolution. The version barrier is a mechanism that
prevents an object of a version of a class from being assigned to a variable of another
version of that class. In Java, if a class definition (i.e. class file) is loaded by different
class loaders, different versions of the class are created and regarded as distinct types.
If two class definitions with the same class name are loaded by different loaders, two
versions of the class are created and they can coexist while they are regarded as distinct
types. The version barrier is a mechanism for guaranteeing that different versions of
a class are different types. Regarding two versions as distinct types is significant for
performance reasons. If not, advantages of being a statically typed language would be
lost.

2 Motivations

First, this section shows some practical examples that bring to us inconvenience of the
current Java class loaders.



2.1 Dynamic aspect weaver

Dynamic AOP (Aspect-Oriented Programming) is receiving interests growing in both
the academia and the industry. Unlike static AOP systems, dynamic AOP systems al-
low dynamically weaving and unweaving an aspect into/from a program. Moreover,
advice and pointcuts can be changed during runtime. These dynamic features extend
the application domain of AOP. Dynamic AOP can shorten the lead time of the edit-
deploy-run cycle of software development. It can also allow using aspects for making
the behavior of application software adaptable to changes of the runtime environment
and requirements.

The version barrier makes it difficult to implement an instance-based dynamic AOP
system. Such a dynamic AOP system allows weaving a different aspect with a particular
instance of a class. A simple implementation of such an AOP system would use multiple
class loaders, each of which loads a different version of a class woven with a different
aspect. However, this implementation approach does not work because instances of
those versions are not compatible because of the version barrier (Figure 2.1). Therefore,
most of dynamic AOP systems adopt complicated implementation techniques such as
static code translation [8] [1], just-in-time hook insertion [11], and modified JVM [9] [2]
although these techniques imply certain performance penalties.
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Fig. 1. Aspects can not be woven into loaded
classes.

Fig. 2. Hot deployment discards all internal
states.

2.2 Hot deployment for application servers

Most of application servers including both commercial (Websphere, Weblogic, etc.)
and open-source (JBoss, Tomcat, etc.) provide the hot deployment functionality, which
enables software components (EJB-JAR, EAR, or WAR package) to be plugged and un-
plugged without restarting application servers. This dramatically improves the produc-
tivity of software development. To be separately deployed and undeployed at runtime,
each component is loaded by a distinct class loader. Thus, a J2EE application can be
dynamically customized per component.

However, if a new version of a component is deployed for software evolution, in-
stances of the new version cannot be exchanged for instances of the old version of that
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component because of the version barrier (Figure 2.1). Such instances are caches, cook-
ies, and session objects and session beans. These instances should be passed to the new
component through the shared container of the application server. This is remarkably
inconvenient in practice. That is to say, J2EE application servers provide hot deploy-
ment but not “hot evolution”.

The version barrier makes it difficult to include a copy of a shared class in every
component. If two components share a class, for example, for exchanging data, each
component should be able to include a copy of that shared class since an ideal com-
ponent should contain all the class files that are necessary for running an application.
However, the version barrier disables exchanging an instance of that shared class be-
tween the two components. To avoid this problem, JBoss provides the UCL (Unified
Class Loader) architecture [7] but this architecture prevents different components from
including different classes with the same name.

3 Negligent class loaders

We propose anegligent class loader (NCL). The NCL can relax the version barrier if
an incoming object is an instance of a class loaded by a sibling class loader specified
by the programmer in advance. Here, a sibling means a class loader sharing the same
parent loader. For example, a NCL allows assigning an instance of class Customer that
has been loaded by a sibling to a variable of Customer loaded by the NCL. To keep
consistency, differences between the two versions of Customer must satisfy the rules
described below.

Naively relaxing the version barrier may cause serious security problems. For ex-
ample, a program may access a non-existing method and then crash the JVM. In fact,
the version barrier of Sun JDK 1.1 was accidentally relaxed and thus it had a security
hole known as the type-spoofing problem first reported by Saraswat [10]. This security
hole was solved by the loader constraint scheme [5], which strengthens the version bar-
rier. To avoid this security problem, runtime type checking is necessary. For example,
dynamically typed languages such as CLOS and Smalltalk do not provide the version
barrier. Since a variable is not statically typed, any type of instance can be assigned
to a variable. For security, these languages perform runtime type checking so that, if
a non-existing method or field is accessed, an exception will be thrown at runtime. A
drawback of this approach is that it requires frequent runtime type checking, which
implies non-negligible performance degradation.

The NCL restricts the relaxation of the version barrier only to the classes loaded by
a sibling class loader so that runtime overheads due to the relaxation will be reduced.
Suppose that a sibling class loader loads a class S and then the NCL loads a class N. The
NCL allows an instance of S to be assigned to a variable of the type N if the following
condition is satisfied:

1. The class S includes all the members such as methods and fields of the class N. The
method bodies can be different between N and S.

2. Or, the class N includes all the members of the class S. In this case, a new class S’
is dynamically generated and a reference in instances of S is changed to indicate
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the internal type information block representing S’ instead of S. S’ is a copy of
S but it also includes the methods and constructors included in N but not in S.
These methods in S’ are called secure handling functions. If they are accessed,
they throw a runtime exception representing illegal access. This is for avoiding
a serious security hole that can be used for buffer overflow attacks. Thereby the
secure execution is guaranteed with respect to N and S as in dynamically typed
languages. Without that substitution of S’ for S, a program written for N may violate
the boundary of the method table in S.

In both the cases, the class N must have the same super class as the class S and it must
not weaken access restriction against the class S. For example, if a method is public in
S, then the method in N must be also public.

The type information block (TIB) referred to by an instance contains a method table
that holds function pointers to a corresponding method body. For secure execution, the
NCL creates the TIB of the class N to be compatible as much as possible with that of the
class S when the class N is loaded. In particular, the order of the method table entries
in the TIB of the class N must be the same as the order in the TIB of the class S with
respect to the methods that both the classes S and N include. Otherwise, for example, a
program written for N might invoke a wrong method body if the targt instance is of S.
The algorithm for constructing the TIB is shown in Figure 3.

In our architecuture, runtime type checks are performed only when thecheckcast

bytecode instruction is executed. Thecheckcast instruction examines the version of an
instance and, if it does not satisfy the condition above, it throws theClassCastException.
To do this, we modify the JVM. Other instructions such asinvokevirtual, getfield
and assignment instructions likeastore, do not have to examine the condition. This is
because the NCL relaxes the version barrier only for sibling class loaders, which satisfy
the bridge-safety property [10]. If this property is satisfied between two class loaders,
instances of a classC loaded by one class loader are always upcast to a class loaded by
their parent class loader before the instances are passed to a class loaded by the other
class loader. For example, the instances will be upcast to a super class or an interface of
the class C, such as theObject class, which is loaded by the parent class loader. Thus
explicit downcast must be executed before those instances are assigned to a variable of
a type loaded by the NCL (Figure 3).

4 Related Work

There are a number of research activities for software evolution. Liang and Bracha [5]
described a programming technique of using an interface type as the type of a vari-
able that can refer to instances of multiple versions of a class. However, this technique
requires programmers to define an interface type for every multi-versioned class and
access instances of the class through the interface type. Hjalmtysson and Gray [3] im-
plemented dynamic classes in C++ by using templates. Their system uses wrapper (or
proxy) classes and methods. This approach does not require runtime system support or
language extensions. However, it implies performance penalties. Malabarbaet al. [6]
modified the JVM to make a class reloadable at runtime. However, it also implies run-
time penalties because of difficulties in performing runtime optimization techniques,
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Fig. 3.Downcast enforced by the bridge safety between the NCL and a sibling class loader.

if S has been already loaded&& S’s loader is a sibling of N’s onethen
for each memberm in S{

if N includes the memberm then
Push the memberm into the type information block of N

else
Push a secure handling function into the type information block of N

end
}

end

Fig. 4.Pseudo code for constructing the internal type information block.

such as method inlining and quick bytecode instructions. The Java2 SDK1.5 will sup-
port the hot swap mechanism with thejava.lang.instrument package. Although it
enables reloading a class to a certain degree, a new version of a class does not include
a method or field that was not included in the previous version.

5 Current State

We are currently implementing a negligible class loader on the IBM Jikes Research
Virtual Machine [4]. We will use this implementation to evaluate the performance over-
heads of our approach. In addition, we will study the proof of the type safety of our
system, and reason about our approach with respect to the Java security architecture.
Furthermore, we have not considered how to correctly handle arrays of multi-versioned
class types.
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Abstract. Components, architecture description languages and aspect-
oriented programming are recognized as new trends in the software en-
gineering of modern applications. They all try to bring solutions for
building more easily complex applications. This paper reports on our
position that aspect-oriented programming can be used both at the com-
ponent and the architecture description level to describe the evolution
of software. This position is validated by a prototype implementation
that extend the existing Fractal component model with some dynamic
aspect-oriented programming features.
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1 Introduction

Ever since the beginning of computer science, programming language designers
have tried to find more and more abstract software artifacts. The goal is to pro-
vide programmers with powerful and safe structures to implement their solutions.
Approaches such as architecture description languages (ADL) [5], component-
based programming (CBP) [11][10] and aspect-oriented programming (AOP) [3]
all go towards that direction. By reifying software assemblies, ADLs provide a
clear view of the ”software map” of the application. CBP promotes modularity
and composability by encapsulating units of code into a capsule that can be de-
ployed, configured, and used through some clearly identified interfaces. Finally
AOP provides a clear way for modularizing crosscutting concerns, i.e. functional-
ities that, with object-oriented programming (OOP) or CBP can not be cleanly
localized in a single unit of code and crosscut several objects or components.

In this paper, we argue that each of the three approaches ADL, CBP and
AOP, address the issue of software evolution. ADL clarifies the way software
entities interact. CBP packages software entities in modules that can be more
easily reused than objects. AOP removes from objects functionalities that are
out of the scope of their primary concern. Our point of view is that ADL, CBP
and AOP, extend object-oriented programming in different ways. Far from being
conflicting, these ways are complementary. In this paper, we present our first



experiment towards a framework that integrates concepts taken from these three
domains. Basically, this framework is based on a component model and provides
an ADL to describe software architectures with crosscutting concerns.

The paper is organized as follows. Section 2 reviews the existing project,
Fractal, on which we based our approach. Sections 3 and 4 present the extensions
we introduce in Fractal to obtain a framework that supports the concepts of
ADL, CBP and AOP. Section 5 presents some related works. Section 6 concludes
this paper and provides our directions for future works.

2 Background

Building a framework that merges the concepts of ADL, CBP and AOP, is a
challenge where many choices are to be made. We can design and implement a
whole framework from scratch, or we can rely on some existing works. Section 5
reviews some of them. In order to obtain a first working prototype, we decided to
start from the Fractal framework [1] and to extend it. Fractal is in our opinion,
the project that is closest to the requirements stated in the previous section. The
remaining of this section presents Fractal, and the next two sections introduce
the way we extended it to support crosscutting concerns.

2.1 The Fractal Component Model & ADL

Many component models such as EJB, .Net or CCM exist and receive much inter-
est from both the academia and the industry. These models are however mainly
dedicated to coarse grained components for information system-like applications.
Classes implementing these components must enforce programming rules, they
must be bundled with XML descriptors, and they need to be executed by ap-
plication servers. They can not thus be handled as easily as objects are handled
by virtual machines. Thus, despite of their wide adoption by the community,
there is a need for a lighter component model, closer to programming language
concepts and that do not require the extra-machinery of the above-mentioned
models. The Fractal component model [1] meets these needs. Further, it comes
with an XML based ADL.

The Fractal component model [1] allows the definition, configuration, dy-
namic reconfiguration and clear separation of functional and non functional con-
cerns. Built as a high level model, it put the stress on modularity and extensi-
bility. The Fractal component model is recursive in the sense that a component
may be primitive, or composite. In the latter case, this is an assembly that con-
tent other primitive or composite components. Components may also be shared
between different composites.

Interfaces play a central role with Fractal. There are two categories of in-
terfaces: business and control. Business interfaces are external access points to
components. Fractal provides client and server interfaces; a server interface re-
ceive operation invocations and a client interface emits operation invocations.
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Thus, a Fractal binding represents a connection between two components (primi-
tive binding) or more (composite binding). The Fractal model is a strongly typed
model. As a consequence, the type of a server interface must be a sub type of the
type of a client interface. As their name suggests it, control interfaces provide a
level of control on the component they are attached to. These interfaces are in
charge of some non-functional properties of the component, for instance its life
cycle management, or the management of its bindings with other components.

2.2 Programming with Fractal

This section illustrates with an example the concepts of the Fractal component
model. The example in figure 1 modelizes a gas station. Each rectangle is a
component. Clients use a gun to fill their tank, and pay at a cash register that
is connected to a bank. Each of these elements is a primitive Fractal compo-
nent. There are two composite components: one for the station and one for the
whole system. Composite components are assemblies of primitive and/or (other)
composite components. The T-s attached to components are Fractal interfaces1.
Arrows are bindings between components: they go from a client interface to a
server interface.

Gun Pump

CashRegister BankClient
main

Station
System

Fig. 1. A gas station with Fractal components.

Fractal provides a Java API to create, introspect and manage the com-
ponents, their interfaces and their bindings. For instance, components can be
started and stopped, and bindings can be created and removed dynamically.
The structural definition of components is provided with an XML ADL. Fig-
ure 2 provides a piece of the architecture definition for the gas station.

3 Rationale for our Project

The software architecture presented in the previous section reifies business de-
pendencies between components. The bindings that have been identified come
1 Only business interfaces are specified in the example. Fractal provides the concept of

control interfaces that provide a level of control on the component there are attached
to.
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<!-- A composite component definition -->

<component name="station">

<!-- The Station component provides (server role) or

requires (client role) interfaces -->

<interface name="gunProvideGas" role="server" signature="station.GunProvideGas"/>

<interface name="bankAuth" role="client" signature="station.BankAuth"/>

<!-- other interfaces -->

<!-- The station component contains the pump, gun & cashRegister components -->

<component name="pump">

<!-- ... -->

</component>

<!-- The Station component interfaces are bound to other interfaces

<binding client="this.cashRegisterUserInterface"

server="cashRegister.cashRegisterUserInterface" />

<binding client="this.gunProvideGas" server="gun.gunProvideGas" />

<!-- other bindings -->

</component>

<!-- .... -->

Fig. 2. The software architecture of the gas station with the Fractal ADL.

from the analysis of the business logic of the application. Based on this logic,
some crosscutting domains may arise when the application evolves, either be-
cause some new unforeseen requirements emerge, or because all the concerns
could not have been addressed at a first stage. For instance, a security domain
may be needed between the CashRegister and the Bank components. This do-
main crosscuts the functional domains that have been identified by the business
analysis (figure 3 illustrates this).

Gun Pump

CashRegister BankClient

main

Station
System

Fig. 3. Crosscutting security concern in the gas station example.

Whereas business assemblies and domains are clearly reified in the architec-
ture description of the Fractal ADL, this is not the case with the crosscutting
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domains: no artifact exists in the Fractal model and ADL to express them. This
is true for Fractal, but this is also true as far as we know, for any other ADL or
component model.

Hence, the purpose of our project is to extend the existing Fractal model and
ADL to take into account crosscutting domains.

4 Extending Fractal to support crosscutting concerns

The extension that we have implemented let us superimpose on an initial business
assembly, a level of assembly that corresponds to a crosscutting domain. Hence
some new bindings need to be set up. For instance, we want to redirect all
outgoing calls from the CashRegister component to perform some encryption
functions, and we want to redirect all incoming calls to the Bank component to
perform a symmetric decryption function (figure 4 illustrates this).

CashRegister Bank

Crypt
AC

Decrypt
AC

interception
controller

interception
controller

EncrDecrComp
SecurityAC

Fig. 4. Aspect component for the security concern.

At this point, we need two elements to implement our extension: we need the
notion of a component that localizes the definition of the crosscutting concern,
and we need a mechanism that weaves the crosscutting concern on a software
architecture. Both elements are described below.

4.1 Aspect Components

An Aspect Components (AC)2 localizes the definition of a crosscutting con-
cern. This is the case of SecurityAC in figure 4. This AC is composed of 3
2 The term Aspect Component comes from our previous project, JAC [6], which is a

framework for dynamic aspect-oriented programming in Java.
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sub-components: 2 of them, CryptAC and DecryptAC, implement the intercep-
tion logic associated with the security concern, and the 3rd one, EncrDecrComp,
provides the mathematical functions that are required to crypt and decrypt mes-
sages. In AspectJ terms, we could say that CryptAC and DecryptAC implement
pointcut descriptors, whereas EncrDecrComp implements two pieces of advice.

The CryptAC and DecryptAC components are method interceptors. CryptAC
intercepts method calls and DecryptAC intercepts method executions. Their
server interface conforms to the AOPAlliance API3. They implement the Method-
Interceptor interface that defines the following method.

public Object invoke( MethodInvocation mi ) throws Throwable;

The invoke method provides the code that must be run before and after the
joinpoint. MethodInvocation provides a proceed method to execute the join-
point. To perform the interception, both CryptAC and DecryptAC rely on an
interception controller provided by the CashRegister and Bank components. This
controller ensures that the outgoing and incoming calls can be reified.

To sum up our approach, a crosscutting concern is implemented with a Frac-
tal component (composite like in our example, or simply primitive) called an
aspect component (AC), that provides at least one MethodInterceptor inter-
face. No other requirement is needed. The remainder of this section focuses on
the way ACs can be woven on top of a software architecture.

4.2 Crosscut bindings

In our approach, weaving an AC is very similar to binding two components to-
gether (except that one of them is an AC, and that the other must provide an
interceptor controller). There are two ways to establish such a binding, that we
call a crosscut binding: either directly, or declaratively with a pointcut expres-
sion.

Direct crosscut binding. Starting from the references of the component to be
aspectized and of the AC, a crosscut binding is directly created between the
two. All methods of the component will then be intercepted by the AC. This
binding is similar to establishing a meta-link relation between a base component
and a meta-component.

Crosscut binding with a pointcut expression. In this case, a pointcut expression
is required. It is composed of three regular expressions that operate on compo-
nent names, interface names, and method names. All methods that match the
three expressions are aspectized by the AC. This weaving is performed by call-
ing a weaveAC method on a root business component. This method recursively
traverses the hierarchy of sub-components of this root component, and finds all
3 AOP Alliance <http://sourceforge.net/projects/aopalliance> is an open-

source initiative to define a common API for AOP framework. The API is imple-
mented by Spring and JAC, and soon by DynAOP.
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the methods that match the pointcut expression. The technique is similar to the
weaving performed by aspect compilers and frameworks.

Note that in both cases, bindings established either directly or with a pointcut
expression, can later on be manipulated dynamically: they can be unbound or
rebound to modify the crosscut policy of the AC. Hence, they are quite similar
to bindings between business components.

5 Related Works

Some recent approaches tried to combine CBP and AOP. This section provides
a quick review of some of them.

A first approach that combines CBP and AOP is JAsCo [9] that extends
the Java bean model by introducing the notions of aspect beans and connectors.
The Aspect bean describes what and where (the notions of advice and pointcut in
AOP) to apply a context independant behavior, using a kind of inner class called
the hook. The connectors are in charge of deploying hooks in a specific context of
application. A great contribution of JAsCo is provided by its connector language
that allows to define a more fine-grained control than AspectJ, on the order the
aspects are executed. Finally, we can notice that the management of hooks and
connectors is completely centralized and handled by a connector registry that
have been recently enhanced through HotSwap and Jutta [8] in order to reduce
the cost that every dynamic AOP approaches suffers from.

DAOP [7] is a dynamic distributed platform where aspects and components
are first-order entities that are composed at runtime by a middleware layer. As
JAsCo approach, the aspect and component management is centralized and all
the information about the architecture and its entities is stored in themiddleware
layer. In a first phase, aspects and components are described with a specific
aspect-component language that allows interfaces, roles and binding definitions.
Then, at runtime components and aspects are concretely bound following the
middleware layer specifications. The original contribution of the DAOP approach
is to give a unique role name to every component and aspect. By this way,
communications are done by giving these role names and not by object references.

Jiazzy [4] is an enhancement of the Java language for large scale binary
components that are separately compiled and externally linked (units). Units
are kind of pre-compiled Java classes container that are of two different types:
atoms (construct from Java classes) or compounds (construct from other atoms
or compounds). New behaviors can be added to methods or fields without editing
the source code, thanks to a mechanism of open classes and open signature that
are based on mixins. To sum up, Jiazzy separate concerns at the granularity of
classes and offers some behavior enhancement with a mechanism of mixins that
is less powerful than the AspectJ approach.

JBoss AOP [2] is a project that provides AOP capabilities to EJB applica-
tions. JBoss AOP allows to modify an application with aspects, to introduce
new features in an application with a mixin mechanism, and to manage some
metadata. Advices are programmed as Java classes implementing an intercep-
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tion API. Pointcuts are defined in XML and associate interceptors with the
application. The weaving is dynamic with JBoss AOP.

6 Conclusion

ADL, component models and AOP are all concerned about software evolution.
Their goal is to empower developers to give them the possibility to build complex
systems. Our position in this paper is that the three approaches are complemen-
tary. However, as far as we know, they have never been put together into one
unified framework. This paper proposes a first step into that direction. We have
extended an existing component model and ADL, Fractal (see section 2) with
some AOP support for crosscutting concerns. We are then able to describe com-
plex component-based software architecture with aspects.

Aspects in our proposal are components called aspect components (AC),
that implement a special meta-interface. Weaving an aspect is then a matter of
establishing bindings between business components and ACs. There are two ways
for establishing such a binding: either directly between a business component and
an AC, or by recursively traversing a hierarchy of composite components and
finding components that match a given pointcut expression. These two ways
unify the meta-link relation of reflective programming and the weaving process
of aspect-oriented programming.

This study served as a proof of concept that merging concepts from ADL,
CBP and AOP can lead to a working prototype. However, many features remain
to be implemented to obtain a more complete development environment: the
pointcut definition language must be enhanced, some API must be defined to
support crosscut introspection and some GUI tools are needed to assist devel-
opers in specifying their crosscutting assemblies. The integration between ADL,
CBP and AOP has been conducted by mapping the concepts of AOP onto the
ones of ADL and CBP. It remains to be seen whether the reverse is also true.
Finally, as with other aspect languages or frameworks, the weaving of an aspect
onto a business application is based on the pointcut expressions. The information
contained in these expressions is rather light, and in all cases only concerns the
structure on the underlying application. Behavioral pointcut expressions could
certainly lead to a more powerful aspect programming environment.
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Abstract. Mechanisms in AOP (aspect-oriented programming) can be
characterized by a JPM (join point model). AOP is effective in unan-
ticipated software evolution because crosscutting concerns can be added
or removed without making invasive modifications on original programs.
However, the effectiveness would be restricted if new crosscutting con-
cerns cannot be described with existing JPMs. Mechanisms for extend-
ing JPMs are needed in order to address the problem. In this paper, an
implementation framework for extending JPMs is proposed. Using the
framework, we can introduce new kinds of JPMs or extend existing JPMs
in the process of software evolution.

1 Introduction

Mechanisms in AOP (aspect-oriented programming) can be characterized by a
JPM (join point model) consisting of the join points, a means of identifying
the join points (pointcuts), and a means of raising effects at the join points
(advice). Crosscutting concerns may not be modularized as aspects without an
appropriate join point definition that covers the interested elements in terms
of the concerns, and a pointcut language that can declaratively identifies the
interested elements. Each of current AOP languages is based on a few fixed set
of JPMs. Many different JPMs have been proposed, and they are still evolving
so that they could better modularize various crosscutting concerns.

AOP is effective in unanticipated software evolution because crosscutting
concerns can be added or removed without making invasive modifications on
original programs. However, the effectiveness would be restricted if new cross-
cutting concerns cannot be described with JPMs supported by current AOP
languages. Mechanisms for extending JPMs are needed in order to address the
problem. Masuhara and Kiczales presented a modeling framework that captures
different JPMs by showing a set of interpreters[7]. We call this the M&K model.
Based on the M&K model, we propose a framework, called X-ASB (eXtensi-
ble Aspect Sand Box), for implementing extensible AOP languages in which
different JPMs can be provided as its extension. The term framework in this
paper indicates provision of common implementations and exposure of program-
ming interfaces for extending base languages. X-ASB is based on contributions



of ASB[1] that is a suite of aspect-oriented interpreters such as PA (pointcuts
and advice as in AspectJ) , TRAV (traversal specifications as in Demeter), and
COMPOSITOR (class hierarchy composition as in Hyper/J). Advantages of X-
ASB are: language developers can easily prototype new or extended JPMs in the
process of software evolution; more than one JPM can be provided at the same
time like combining Demeter-like traversal mechanism in AspectJ-like advice.
Most of current extensible AOP languages allows the programmers to extend
the elements of the JPMs in their language, not to introduce new JPMs. Our
final goal is computational reflection for AOP. We consider facilities of adding
new JPMs or changing existing JPMs from base level languages as reflection for
AOP. The effectiveness in software evolution would be restricted if language de-
velopers must extend JPMs whenever application programmers need new kinds
of JPMs. Reflective mechanisms will address this problem.

In this paper, issues on implementing AOP languages are pointed out in
section 2. In section 3, X-ASB is introduced to tackle the issues. We show a
JPM development process from the viewpoint of software evolution. In section
4, we show advanced topics towards computational reflection for AOP. In section
5, we discuss the effectiveness of X-ASB in software evolution. We introduce some
related work in section 6, and conclude the paper in section 7.

2 Issues on implementing AOP languages

Designing and implementing a new language is not easy. Although extensible
languages, such as computational reflection[6] and metaobject protocols would
be useful for software evolution, providing an extensible AOP language that
covers possible JPMs is not easy because the JPMs are drastically different from
the viewpoint of implementation.

The M&K model shows the semantics of major JPMs by modeling the process
of weaving as taking two programs and coordinating them into a single combined
computation. A critical property of the model is that it describes the join points
as existing in the result of the weaving process rather than being in either of the
input programs. The M&K model explains each aspect-oriented mechanism as
a weaver that is modeled as a tuple of 9 parameters:

< X, X
JP

, A, A
ID

, A
EFF

, B, B
ID

, B
EFF

, META > .

A and B are the languages in which the programs p
A

and p
B

are written. X

is the result domain of the weaving process, which is the third language of a
computation. X

JP
is the join point in X . A

ID
and B

ID
are the means, in the

languages A and B, of identifying elements of X
JP

. A
EFF

and B
EFF

are the
means of effecting semantics at the identified join points. META is an optional
meta-language for parameterizing the weaving process. A weaving process is
defined as a procedure that accepts p

A
, p

B
, and META, and produces either

a computation or a new program. In terms of the M&K model, PA is modeled
as follows: X : execution of combined programs; X

JP
: method calls, field gets,

and field sets; A: class, method, and field declarations; A
ID

: method and field

72 Naoyasu Ubayashi, Hidehiko Masuhara, and Tetsuo Tamai

ghoneim
Line




signatures; A
EFF

: execute method; B: advice declarations with pointcuts; B
ID

:
pointcuts; B

EFF
: execute advice before, after, and around method.

Although the M&K model parameterizes major JPMs, it makes no men-
tion of implementation structures. In the current ASB implementation based
on the M&K model, weavers are developed individually, and there is no com-
mon implementation among these weavers. It is impossible to add new kinds of
JPMs unless the code of each weaver is re-implemented, and code regions to be
modified are scattered. Although several differences among JPMs may make it
difficult to actually implement a single parameterizable procedure, we believe
that there is some kind of implementation structures that can be commonly
applied to major JPMs. In the next section, we propose X-ASB as one of the
common implementation structures.

3 X-ASB: A framework for extending JPMs

There are multiple framework layers for implementing or extending JPMs. The
level 1 framework provides the common implementation for all kinds of JPMs
and programming interfaces that must be implemented by JPM developers. The
interfaces expose hot-spots for extending JPMs. This level gives JPM develop-
ers basic architecture for implementing JPMs. The level 2 framework provides
advanced toolkit for implementing specific weavers such as PA-like weavers and
TRAV-like weavers. Using the toolkit, JPM developers can implement individ-
ual weavers as well as multi-paradigm weavers that support several JPMs. For
example, COMPOSITOR that supports PA-like before/after advice can be im-
plemented. In this section, we explain the overview of the level 1 framework that
is currently provided by X-ASB. We show a JPM development process using the
code skeleton of the PA weaver and the extended PA weaver from the viewpoint
of software evolution.

3.1 X-ASB overview

The overview of X-ASB, which is implemented in Scheme, is shown in Figure 1.
The bottom half is a common implementation provided by X-ASB, and the top
half is a set of programming protocol interfaces that must be implemented by
JPM developers. The common implementation includes a base language inter-
preter, libraries provided for JPM developers, and other common implementa-
tions that are not shown here. Table 1 shows programming protocols as function
names with their parameter name lists. Using the interfaces, a new kind of JPM
can be added to the base language. The interfaces expose hot-spots for defining
and registering join points (no.2), pointcuts (no.3), and advice (no.4, 5, 6, 7)
because a JPM is characterized by these three components. The interfaces also
expose hot-spots for defining a weaver body that mediates these components
(no.1). Table 2 shows X-ASB libraries.

In X-ASB, JPMs can be systematically introduced or extended as follows:
1) define kinds of join points; 2) define kinds of pointcuts; and 3) define a body
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Fig. 1. X-ASB overview

of weaver, and computation at join points. The base language interpreter calls
the functions register-jp, register-pcd, and eval-program implemented by
JPM developers as follows:

(define weaver

(lambda (pgm meta)

(register-jp)

(register-pcd)

(eval-program pgm meta)))

We show a JPM development process using the code skeleton of the PA
weaver that have only method call join point and call pointcut designator.
The PA weaver processes, for example, the following program that calculates
the factorial of n. Calls to procedure fact is declared as a pointcut, and after

advice is executed at the join point corresponding to the pointcut.

(class sample-fact object

(method void init () (super init))

(method int main () (send this fact 6)) ;call method

(method int fact ((int n))

(if (< n 1) 1

(* n (send this fact (- n 1)))))

;pointcut & advice

(after (call fact) (write ’after) (newline)))
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No. Signature Ret val M&K

1. (eval-program pgm meta) none X

2. (register-jp tag generator) none XJP

3. (register-pcd tag evaluator) none XJP

4. (lookup-A-ID jp param) AID AID

5. (lookup-B-ID jp param) BID BID

6. (effect-A A-ID jp param) none AEFF

7. (effect-B B-ID jp thunk param) none BEFF

Table 1. X-ASB programming protocol

No. Signature Ret val

1. (register-one-jp tag generator) none
2. (lookup-jp-generator tag) generator
3. (register-one-pcd tag evaluator) none
4. (pointcut-matches ptc jp) #t or #f
5. (computation-at-jp jp param) none

param: optional information

Table 2. X-ASB library

Step 1: define kinds of join points. First, JPM developers have to define
kinds of join points and the related data structures including an AST (Ab-
stract Syntax Tree) in PA, an object graph in TRAV, and so on. The interface
register-jp and its parameter generator are used in the step 1 (see 1, 1-1, 1-2
in Figure 1). The register-jp interface registers a new kind of join point. Each
join point is managed by the structure composed of a join point tag name and
a generator that generates a join point. In the base language interpreter, there
are several hook-points such as call-method, var-set/get, field-set/get,
if, and so forth. A set of join points can be selected from these hook points.
Crosscutting concerns such as loop structures can be extracted by selecting hook
points concerning control expressions as join points. Crosscutting concerns such
as data flows, on the other hand, can be extracted by selecting data access hook
points. In general, data structures related to join points tend to be different
drastically among JPMs. The generator parameter abstracts differences among
these data structures. The register-one-jp library function helps JPM devel-
opers to implement the register-jp interface. The following is the code skeleton
of the PA weaver.

(define register-jp

(lambda ()

(register-one-jp ’call-method generate-call-jp)))

(define generate-call-jp ...)

Step 2: define kinds of pointcuts. Next, kinds of pointcut designators must
be defined as a boolean function using the register-pcd interface (see 2, 2-1,
2-2 in Figure 1). Each pointcut designator is managed by the structure composed
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of a pointcut tag name and an evaluator that checks whether a current join
point is an element of a pointcut set. The register-one-pcd library function
helps JPM developers to implement the register-pcd interface. The following
is the code skeleton of the PA weaver.

(define register-pcd

(lambda ()

(register-one-pcd ’call call-pcd?)))

(define call-pcd? ...)

; compare method name of pointcut designator

; and method name of method call join point

Step 3: define a body of weaver, and computation at join points. Lastly,
JPM developers have to implement a body of a weaver using the exec-program

interface that corresponds to the X parameter in the M&K model (see 3 in
Figure 1). In the case of the PA weaver, the internal data structure related to
join points is an AST. The eval-program creates an AST, walks it, and checks
if the visited node is registered as a join point. At the method call join point,
the call-method function related to the AST is called. Figure 2 illustrates the
architecture of the PA weaver. The following is the body of the PA weaver.

(define eval-program

(lambda (pgm meta)

(walk-ast (generate-ast pgm meta))))

(define walk-ast

(lambda (ast)

...

; computation at method call join point

(call-method mname obj args)

...))

The computation at the method call join point, the call-method function,
can be defined using the computation-at-jp library function, a generic (tem-
plate) function as shown below (see 5, 6 in Figure 1). The jp parameter (see 4-3
in Figure 1) is an instance of a current join point generated by the generator (see
4-2 in Figure 1) that is registered by register-jp (see 1-2 in Figure 1). The
registered join point generator can be searched using the lookup-jp-generator
library function (see 4, 4-1 in Figure 1). The lookup-A-ID/lookup-B-ID and
effect-A/effect-B interfaces corresponds to A

ID
/B

ID
and A

EFF
/B

EFF
in

the M&K model, respectively. These interfaces must be implemented by JPM
developers. Implementing the interfaces, a new kind of advice can be intro-
duced. In call-method, the call pointcut evaluator call-pcd? is executed in
the pointcut-matches (see 8 in Figure 1) invoked from the lookup-B-ID (see
7 in Figure 1), and the advice executor effect-B is executed.
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Fig. 2. PA weaver overview

;; X-ASB library

(define computation-at-jp

(lambda (jp param)

(let* ((A-ID (lookup-A-ID jp param))

(B-ID (lookup-B-ID jp param)))

(effect-B B-ID jp

(lambda ()

(effect-A A-ID jp param)) param))))

(define pointcut-matches

... search a pointcut evaluators corresponding

to a join point, and execute a found evaluator.)
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;; define computation at call method join point

;; using X-ASB library

(define call-method

(lambda (mname obj args)

(computation-at-jp

((lookup-jp-generator ’call-method) mname obj args)

null))) ; no additional parameter

(define lookup-A-ID ...) ; lookup method

(define lookup-B-ID ...) ; lookup advice

; (check if the join point

; satisfies the pointcut

; conditions

; using pointcut-matches.

; return advice if true.)

(define effect-A ...) ; execute method

(define effect-B ...) ; execute-advice

As shown in step 1, 2, and 3, the PA weaver is constructed modularly us-
ing X-ASB. JPM developers have only to modify specific code regions such as
register-jp and register-pcdwhen a new kind of join point and pointcut are
needed. On the other hand, JPM developers must modify several code regions in
order to add a new JPM element in the case of the current ASB implementation.
We can separate JPM implementations using X-ASB. Separation of implemen-
tation concerns contributes to evolution of JPMs.

3.2 Extending existing weaver

It is desirable that one can extend an existing weaver slightly when JPMs that
the weaver provides are insufficient for describing new kinds of features required
in the process of software evolution. It is relatively easy to deal with this problem
using X-ASB. The following is an example in which the PA weaver is extended
in order to support context-sensitive calling sequences. The example is a com-
munication program in which a protocol —an order of exchanged messages— is
important. This program, written in the base language of X-ASB, separates a
situation in which a protocol error might occur by defining a new kind of pointcut
construct. Suppose that the order of message sequences is <m1, m2, m3>. The
pointcut definition (calling-sequence (not (list ’m1 ’m2 ’m3))) catches
the crosscutting concern that violates the order.

(class sample-protocol-error-detection object

(method int m1 () (...))

(method int m2 () (...))

(method int m2 () (...))

(after (calling-sequence (not (list ’m1 ’m2 ’m3)))

(write ’invalid-calling-sequence) (newline)))

This pointcut designator can be added to the existing PA weaver as follows.
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(define register-pcd

(lambda ()

(register-one-pcd ’calling-sequence

calling-sequence-pcd?)))

(define calling-sequence-pcd? ...)

4 Towards reflection

X-ASB exposes two kinds of programming interfaces for adding JPMs to the
base language. The first is a set of programming interfaces provided for language
developers that implement weavers as shown in section 3. The second is a set of
programming interfaces provided for programmers that develop user applications
and want to add JPMs specific to these applications. In the implementation style
illustrated in subsection 3.2, only language developers can extend the PA weaver.
It would be better for application programmers to be able to add new aspect-
oriented features using X-ASB programming interfaces within the base language,
as follows.

(class sample-calling-sequence object

(method void register-pcd ()

(meta register-one-pcd ’calling-sequence

calling-sequence-pcd?)

(super register-pcd))

(method boolean calling-sequence-pcd? ...)

Application programmers may override the register-pcd method defined
in the object class. To call procedures defined in the framework provided by
X-ASB, programmers may use the meta call. Although the power of the exten-
sion is still limited, this brings to mind the reflective programming. The base
language programming interfaces in X-ASB correspond to metaobject protocols
in reflective OOP languages. Using reflective mechanisms, application program-
mers can extend JPMs in order to deal with unanticipated application-specific
requirements in the process of software evolution.

5 Effectiveness in software evolution

As mentioned in previous sections, X-ASB is effective in unanticipated software
evolution. We may face new kinds of crosscutting concerns, which cannot be
handled by existing JPMs, in the process of software evolution. New kinds of
JPMs will be needed when we face the following situations: 1) we want to extend
existing JPMs slightly in order to adapt to application-specific purposes; 2) we
want to use more than one JPM simultaneously. As an example of the first
case, we showed a JPM development process of the extended PA weaver in
section 3. The extended PA weaver was developed modularly to support context-
sensitive calling sequences that were not provided by the original PA weaver. As
an example of the second case, it may be necessary to combine PA-like JPMs
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with TRAV-like JPMs. This can be realized using the level 2 framework of X-
ASB. Using X-ASB, we can extend new kinds of JPMs according to software
evolution.

6 Related work

Shonle, Lieberherr, and Shah propose an extensible domain-specific AOP lan-
guage XAspect that adopts plug-in mechanisms[8]. Adding a new plug-in mod-
ule, we can use a new kind of aspect-oriented facility. CME (Concern Manipula-
tion Environment)[3], the successor of Hyper/J, adopts an approach similar to
XAspect.

Although pointcut languages play important roles in AOP paradigms, cur-
rent AOP languages do not provide sufficient kinds of pointcut constructs. In an
effort to address this problem, several previous investigations have attempted to
enrich the pointcut constructs. Kiczales emphasizes the necessity of new kinds
of pointcut constructs such as pcflow (predictive control flow) and dflow (data
flow)[5]. Gybels and Brichau point out problems of current pointcut languages
from the viewpoint of the software evolution, and propose robust pattern-based
pointcut constructs using logic programming facilities[4]. These approaches in-
troduce new pointcut constructs in order to deal with new kinds of crosscutting
concerns. However, adopting these approaches, we need to add another pointcut
construct to existing AOP languages whenever we face another kind of problem.
As a consequence, the syntax of AOP languages would become very complex.
Chiba and Nakagawa propose Josh[2] in which programmers can define a new
pointcut construct as a boolean function. Using X-ASB, we can add not only
new pointcut constructs but also new kinds of join points and advice.

7 Conclusion

The paper proposed mechanisms for extending JPMs in order to support unan-
ticipated software evolution. Using X-ASB, we can introduce new kinds of JPMs
when we face new kinds of crosscutting concerns that cannot be handled by
existing JPMs.
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Abstract. In this paper, we have briefly analyzed the aspect-oriented approach
with respect to the software evolution topic. The aim of this analysis is to high-
light the aspect-oriented potentiality for software evolution and its limits. From
our analysis, we can state that actual pointcut definition mechanisms are not
enough expressive to pick out from design information where software evolu-
tion should be applied. We will also give some suggestions about how to improve
the pointcut definition mechanism.

Keywords: AOP, Software Evolution, Design Information, UML, Pointcut
Definition

1 Software Evolution: What is it?

Nowadays a topical issue in the software engineering research area consists of produc-
ing software systems able to adapt themselves to environment changes by adding new
and/or modifying existing functionality. This characteristic is calledsoftware evolution.

The termevolution may, generally, be interpreted and studied from several distinct
points of view. In general software evolution implies to reengineering the design and
the code of software systems. Software evolution and maintenance can be categorized
into [9]: corrective, adaptive, perfective, andpreventative. The criteria that govern this
taxonomy are well identified by the motivations that render necessary the evolution,
e.g., adaptive software evolution is necessary when new functionality are required.

Nonstopping applications with long life span are typical applications that have to
be able to dynamically adapt themselves to sudden and unexpected changes to their
environment. Therefore, the support for run-time adaptive software evolution is a key
aspect of these systems.

Design information provides all the necessary data for governing software evolution
and is often used for manually evolving systems that can be stopped. Object oriented
methodologies for software development, asUML [1], describe the system’s behavior,
architecture and components; all functions in the system are captured by a use-case
model and the dynamic behavior of each use-case is described by scenarios and inter-
action diagrams. Therefore, the automatic reengineering of the design information of



a non-stopping system should represent the perfect tool for dynamically adapting such
kind of of systems.

Unfortunately, design data are difficult to manage automatically but especially it
is difficult to automatically generate working code from the design and inject it in the
running system. In this case, the evolution can be carry out by defining some mecha-
nisms that face the occurred events, manipulate theUML diagrams and then inject such
a changes directly and automatically in the code. As discussed in [2, 3] the diagram
manipulation is feasible by working on theirXMI representation and by using a set of
reconfigurable rules for planning the adaptation but the code injection is still far from
being achieved.

Software evolution that involves a generic system is usually carried out stopping
the system and manually, or with the aid of specific tools, changing the system code
according with the required evolution. On the other hand, a similar approach is not
feasible when the system subjects to the evolution cannot be stopped, e.g., because
provides a critical service as a monitoring system.

Independently of the mechanism adopted for planning the evolution, the evolution
of a nonstopping system requires a mechanism that permits of concreting the evolution
on the running system. In particular this mechanism should be able of i) picking the
code interested by the evolution out of the whole system code, ii) carrying out the
patches required by the planned evolution on the located code.

Both computational reflection [8] and aspect-oriented programming [5] provide
mechanisms (introspection and intercession the former and aspect weaving the latter)
that allow of modifying the behavior and the structure of an application, also of a non-
stopping application. Reflective mechanisms mainly focus their efforts on dynamically
modifying the system on a per object-basis whereas the AOP mechanisms better address
functionality that crosscut the whole implementation of the application. Evolution is a
typical functionality that may crosscut the code of many objects in the system.

2 Why could AOP be useful for Software Evolution?

Aspect oriented programming (AOP) [5] is a designing and programming technique that
takes another step towards increasing the kinds of design concerns that can be cleanly
captured within source code. Its main goal consists of providing systematic means for
the identification, modularization, representation and composition of crosscutting con-
cerns such as security, mobility and real-time constraints. Moreover, the captured as-
pects (both functional and nonfunctional) are separated into well-defined modules that
can be successively composed in the original or in a new application.

Where the tools of OOP are inheritance, encapsulation, and polymorphism, the
components of AOP arejoin points, pointcut, andadvice. Join points represent well-
defined points in a program’s execution, such as method calls, field get and set methods.
Pointcut is a construct that picks out a set of join points based on defined criteria, such
as method names and so on. Pointcuts serve to define an advice. An advice picks out
additional code to be executed before, after, or around join points. Typical implemen-
tations of object-based AOP frameworks insert hooks at the join points. An advice is
executed when the execution reach the corresponding (i.e., picked out by a pointcut)
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join point. AspectJ [7] is one of the most relevant frameworks supporting the AOP
methodology.

AOP can be classified instatic anddynamic AOP. The systems, asAspectJ, com-
pliant to the static approach permit of weaving aspects at compile or load-time. On the
other hand, the dynamic AOP approach allows of dynamically plugging and unplugging
aspects at run-time widening the applicability spectrum of the AOP methodology. The
dynamic AOP approach requires a support middleware at run-time, calledexecution
monitor; the system raises a callback to that middleware to notifies that a hooks has
been encountered. The middleware takes also care of executing the advice.

Many frameworks support or may be used for implementing dynamic AOP, e.g.,
JAC [13], DJ [12], Prose [14], Wool [15] andJMangler [6].

From AOP characteristics, it is fairly evident that AOP is on the way of providing
the necessary tools for instrumenting the code of a nonstopping system, especially when
advices can be run at run-time. Pointcut should be used to pick out a region of the
code involved by the evolution, whereas the advice should define the code evolution
at the corresponding pointcut. Weaving such an aspect on the running system should
either inject new code or manipulate the existing code, allowing the system dynamic
evolution.

Unfortunately, in the evolution case, pointcut definition is an hard job because the
portion of code interested by the adaptation can be scattered around in the code and
not confined in a well-defined area that can be taken back to a method call. As pointed
out by Tom Tourẃe et al. in [17], this problem is due to the poor expressiveness of the
pointcut definition languages provided by the actual AOP frameworks.

The developer has to identify and to specify in the correct way the pointcut. To
pick out the pointcuts, the developer can use, what we calllinguistic pattern matching.
Nowadays, the pointcut definition languages permit to locate where an advice should
be applied by describing the pointcut as a mix of references to linguistic constructs,
such as method call or access to variables, and of generic references to the position,
such as before or after; the result, for example, looks something likeafter the call
of method m. Therefore, it is difficult to define generic, reusable and comprehensible
pointcuts that are not tailored on a specific application. Moreover a similar approach is
not feasible when the pointcut should involve code that spans among several classes, as
in the case of a pointcut describing a collaboration among objects.

3 Towards a Pointcut Definition Driven by UML Diagrams

Several mechanisms for achieving software adaptability have been proposed [18, 11].
The approach that we believe the most promising consists of integrating a reflective
architecture as the one proposed in [3] with an AOP framework. The reflective mid-
dleware has to take care of deciding the extent of the evolution and which code is
affected by such an evolution. Whereas the AOP framework has to dynamically weav-
ing the planned evolution on the join points picked out by the reflective architecture.
Both frameworks should perform their duty manipulating the design information of the
system prone to be adapted.
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It is relatively simple to plan the system evolution by manipulating itsUML dia-
grams and similarly it is quite simple to detect the extent of the code modification and
which objects are affected by them from the design information. On the other hand, to
use design information to pick out a set of pointcut is not so simple because what it
is concisely described by a diagram or a portion of a diagram might be implemented
by many instructions disseminated in several part of the code or, analogously, what it
is abstracted in several entities by the design diagrams can be implemented as a single
entity by the system code. Besides, as discussed in [17], computational patterns, easily
recognizable in a sequence or in a collaboration diagram, are not trappable by actual
pointcut definition languages.
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The above reported portion of sequence diagram describes a quite frequent collabora-
tion among three entities,A, B andC; A asks toC to intercede withB on its behalf, then,
after the successful intercession,A will interact with B. This schema could be used to
describe a control access protocol with an external authenticator. Notwithstanding that,
it is quite simple to understand the computational pattern described by this sequence di-
agram is not so simple to pick out which code realize it, especially on a pattern matching
bases. In fact, the diagram just describe the order and which operation MUST be done,
but nothing is said about which code do that and about whatA is doing while it is wait-
ing an answer fromC. Therefore, the computational pattern expressed in the squared
portion of the reported sequence diagram cannot be picked out by the actual pointcut
definition languages. As stated in [17] something can be done refactoring the code in
order to localize and to encapsulate the code of each entity in a method, but still nothing
can be done to pick out the collaboration among three entities.

Problems related to pointcut definition have been raised by several researchers [17,
4], in all their works they propose to use a more expressive pointcut definition language
mainly based on logic deduction and pattern matching. Notwithstanding the powerful-
ness of their proposals, they cannot deal with the straightforwardness and the abstrac-
tion provided by aUML diagram. A pointcut defined in term ofUML diagrams picks
out portion of code otherwise not identifiable, as explained above. Sillito et al., in [16],
highlighted the importance of usinguse case diagrams in the pointcut definition, our
idea is quite similar but we do not want to define a novel pointcut definition language,
asAspectU, that needs a special interpreter or to be mapped on an existing AOP lan-
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guage, asAspectJ. Rather we would like to extend an existing pointcut language and
act on the weaving mechanism to supportUML-based join points.

Our proposal consists of usingUML diagrams or portion ofUML diagrams to de-
scribe where the advice should be woven. In this way, pointcuts are not tailored on the
program to adapt but they are more general and represent patterns applicable to sev-
eral computational flows. Of course, we will use a textual representation instead of a
graphical one based on theXMI standard [10] to define our pointcuts. Moreover, we
will exploit meta-data code annotations as supported by.NET or Java (version 1.5) to
introduceXMI code, that will play the role of the hooks, in the code to be adapted. An-
notations have the benefit to be supported by standard programming environments and
to be skipped during the normal execution, i.e., in this case, when no aspect is woven
on that annotation; therefore they should not add extra penalties during the execution.

4 Conclusions and Future Work

In this position paper, we have analyzed aspect-oriented development techniques in re-
lation with the software evolution problem. In particular, we have focused our analysis
on the approach to software evolution that we believe the most promising: software
evolution driven by design information. From our examination results that with actual
mechanism for pointcut definition is hard to pick out the code described byUML dia-
grams that with a higher abstraction level. Similar issues related to pointcut definition
have also been raised by other researchers [17, 4]. Our proposal consists of marking
the code with the correspondingUML diagrams (hooks for the weaving mechanism)
and of using such diagrams in the definition of the pointcuts and therefore in helping
to pick out where evolution should take place. In the next, we will extent the pointcut
definition language of an existing AOP framework, asAspectJ, with the possibility
of usingUML diagrams as pointcut as well. Analogously, we will enable the weaving
mechanism to act in conjunction with join points specified by such a kind of pointcuts.
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Abstract. Aspect-Oriented Software Development (AOSD) provides bet-
ter design solutions to problems where Object Oriented Development
produces tangled and scattered designs. Nevertheless, there are still sev-
eral problems for which AOSD is not helpful. An example is the imple-
mentation of some design patterns. While it has been shown that some
of them can be implemented in a domain-independent way by the use of
AOSD [1], there is still a group of them for which current AOSD tech-
niques are of little use. This paper proposes to extend Aspect Oriented
Languages with parametric aspects. This extension can integrate seam-
lessly into Aspect Oriented Languages like AspectJ, and allows to provide
a better design solution for problems for which current AOSD techniques
are of little help, improving software reuse and reducing its complexity,
thus facilitating the software evolution process. Two representative ex-
amples are used in order to expose the proposed extension: the imple-
mentation of the abstract factory pattern in a domain-independent way,
and that of a simple Enterprise Java Bean.

1 Introduction

AOSD solves some of the problems that arise in OO Development [2, 3]. In prob-
lems where OO produces a tangled and scattered design, Aspect Orientation
can achieve a cleaner and more compact design. Nevertheless, the ideas behind
AOSD are in continuous evolution and have not yet been completely developed.
Software engineering properties promoted by the use of AOSD can still be fur-
ther improved in several directions. This paper proposes an extension that allows
to increase software reuse and to decrease software complexity. Software com-
plexity has been identified as one of the main drawbacks for a successful software
evolution process [4]. Thus, we are concerned here with the capability to produce
software systems more suitable for software evolution.

The implementation of GoF design patterns [5] with AO techniques (using
the AspectJ language [6]) has been boarded in [1]. A subset of 12 design patterns
from [5] has been implemented in an abstract way (completely independent of
the domain). This means that pattern implementation can be reused for different
applications of the design pattern to different domains. The rest of the patterns in
[5] cannot be completely implemented in a domain independent way with current
AOSD techniques. It is argued that they are “too abstract” in order to provide a



domain-independent implementation for them [7]. Nevertheless, these problems
for which current AO Languages are not able to provide qualitatively cleaner and
more compact design, still show some regularities and common behaviour. When
software needs to be evolved, these regularities should be taken into account
in the evolution process; and their complexity has an affect on the resulting
complexity of the evolution process.

This paper explores how ideas in parametric types (or genericity) can be
extended to AO languages. A proper combination of both can be powerful enough
to capture some of the regularities that AO languages alone were not able to
capture. Our AO extension allows to decouple these regularities from the part
of the software system that corresponds to the application domain, coding them
only once in an abstract enough way. As a result, the complexity of the latter
can be significantly reduced. As this is mainly the part of software systems that
is subject to software evolution, also the complexity that the software evolution
process shall deal with, can be importantly reduced.

Parametric types (or generics) were introduced to the main stream of the
software industry with the C++ language [8]. Also, several proposals to add
parametric types to the Java language exist [9–13], and the next Java release:
Java SDK 1.5, will allow them [14, 15]. The main idea behind parametric types
is to introduce parameters into type definitions. In this way, regular types can
be defined in two phases: (1) a “generic” type is defined, in which one or more
formal parameters take part, and (2) a regular type can be created as an instance
of the generic type just by replacing (at compile time) the formal parameters by
other types or constants.

Our approach borrows this two-phase definition mechanism for aspects. This
does not only adds genericity ’a la C++’ to AO Languages, but also takes benefit
from AO ideas in order to provide a more powerful genericity that perfectly fits
into the AO approach. The paper also uses two very representative examples in
order to show how this extension helps indeed to produce much more compact
designs.

2 Parametric Aspects Definition

This section describes which constructs do we propose to add to aspect languages
in order to be able to define parametric aspects. Although the proposal is valid
for the aspect oriented approach in general, an extension of AspectJ syntax has
been developed and is used in the provided examples.

Throughout the text, the AbstractFactory GoF design pattern [5] will be
used as an example. This design pattern is one of the patterns for which current
AOSD techniques cannot provide a domain-independent implementation. It will
be shown how the parametric aspect extension proposed here allows to provide
a domain-independent implementation of a restricted version of the Abstract-

Factory pattern, allowing to reuse it from domain to domain. In this way, if the
application domain changes and the software needs to be evolved, the design
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pattern implementation will not take part in the performed changes, remaining
unchanged.

AbstractFactory
createProductA()
createProductB()

ConcreteFactory2
createProductA()
createProductB()

ConcreteFactory1
createProductA()
createProductB()

AbstractProductA

ProductA1 ProductA2

AbstractPrductB

ProductB1 ProductB2

Client

ComponentFactory

AFactory BFactory

Window

AWindow BWindow

ScrollBar

AScrollBar BScrollBar

Button

AButton BButton
AA BB

(b) GUI Component Factory(a) Abstract Factory

Fig. 1. Representation of the AbstractFactory pattern and a simplified implementation
of it for the domain of GUI components.

Figure 1 part (a) shows a representation of the AbstractFactory pattern. The
goal of this pattern is to detach the creational behaviour for classes in a hierarchy
(abstract products) from the hierarchy itself. This allows to provide different
creational strategies (factories) without the need to modify the hierarchy. Part
(b) corresponds to the application of the AbstractFactory pattern to the domain
of GUI components.

The same as parametric types, parametric aspects have a set of formal pa-
rameters attached to its definition. In what follows, we refer to these parameters
as roles, in a similar way to the roles taking part in design patterns. Roles in
parametric aspects may correspond to types (classes), methods, attributes, and
constants. Note that this is different to parametric types, where parameters cor-
respond only to types or constants.

The piece of code in next page shows the implementation of a restricted ver-
sion of the AbstractFactory pattern through a parametric aspect. The following
constructs are part of the syntax extension to AspectJ:

– The roles keyword is used to specify the roles (parameters) taking part
in the parametric aspect. Roles may correspond to classes/types, methods,
attributes, constants, and class sets. From now on we will refer to these
elements with the common name of language objects.

– The generic keyword allows to partially define classes, methods, and other
language objects. These “generic” definitions contain references to roles, and
are not properly defined as regular language objects until the parametric
aspect is instantiated, and the roles are replaced by regular language objects
(see next section). So, these “generic” definitions are indeed skeletons that
will be completed when the aspect is instantiated.

– One skeleton might correspond to multiple definitions when the paramet-
ric aspect is instantiated. When this is possible, the keyword multiple is
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used. AbstractFactoryAspect (see next page) contains one class skeleton
for <ProductSet>Factory. When the parametric aspect is instantiated, this
only definition produces one class definition for every class-set playing the
role ProductSet (see also next section).

– Class sets are defined through the class-set keyword. Class sets will not
have a counterpart in the final program code. Nevertheless, the possibility
to have this kind of roles, and to use them in skeleton definitions will be
shown to be very useful.

– A special expression language is also provided in order to use roles within
generic definitions (skeletons). The expressions are evaluated at weave time
and enclosed between ’<’ and ’>’ symbols. Simple expressions allow just to
refer to roles; and more complex expressions can conveniently traverse the
class hierarchy (see create<AbstractProduct>method definition, and next
section for the explanation). These expressions will be referred from now
on as parametric expressions. Class, method, and attribute names can be a
combination of parametric expressions and text prefixes and suffixes. This
allows to define very powerful skeletons.

abstract aspect AbstractFactoryAspect {

roles AbstractFactory, AbstractProduct, ProductSet;

generic class <AbstractFactory> {

multiple public abstract <AbstractProduct> create<AbstractProduct>();

}

multiple generic class <AbstractProduct>;

multiple generic class-set <ProductSet>;

multiple generic class <ProductSet>Factory extends <AbstractFactory> {

multiple public <AbstractProduct> create<AbstractProduct>() {

return new <subclasses(AbstractProduct) & members(ProductSet)>();

}

}

The definition of AbstractFactoryAspect contains several class-skeleton
definitions: AbstractFactory, AbstractProduct, and <ProductSet>Factory.
Additionally, <AbstractFactory>, and <ProductSet>Factory contain also me-
thod-skeleton definitions for the factory creational methods. All these definitions
may have a total or partial definition inside the parametric aspect. These def-
initions can be further completed when the aspect is instantiated. This allows
language objects playing a given role to be forced to respect a given structure.

3 Aspect Instantiation

Parametric aspects will always be abstract aspects. They can be instantiated
using the extends keyword, resulting in regular aspects that can be used by
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developers as any other concrete aspect in the system. In order to achieve this,
the aspect that instantiates the parametric aspect must provide replacement for
all the roles appearing in it.

All roles must be accordingly replaced by language objects (regular types,
methods, attributes, constants, or class sets). For each one of these language
objects, we say that the language object plays the corresponding role.

The piece of code below shows how AbstractFactoryAspect can be instan-
tiated for the GUI component domain. The resulting ComponentFactoryAspect

only needs to specify the replacement objects for the roles that have been de-
clared in AbstractFactoryAspect. In other situations, additional behaviour
could be provided by the concrete aspect in the usual way.

aspect ComponentFactoryAspect extends AbstractFactoryAspect {

class ComponentFactory plays AbstractFactory;

class Window plays AbstractProduct;

class ScrollBar plays AbstractProduct;

class Button plays AbstractProduct;

class-set A plays ProductSet { AWindow, AScrollBar, AButton; }

class-set B plays ProductSet { BWindow, BScrollBar, BButton; }

}

ComponentFactoryAspect shows how, once the AbstractFactory design pat-

tern is defined as a parametric aspect, applying the pattern to a concrete domain
can easily be done by defining another aspect that fills the gaps corresponding
to the roles for the application domain.

ComponentFactoryAspect replaces the role AbstractFactory by the Compo-
nentFactory class. We say that ComponentFactory plays the AbstractFactory
role. There are three different classes (Window, ScrollBar, and Button) that play
the AbstractProduct role. Two class-sets:A (containing AWindow, AScrollBar,
and AButton) and B (containing BWindow, BScrollBar, and BButton) play the
ProductSet role.

Then, if the application domain changes (for example, a new factory or a
new set of products is needed), and our software system needs to be adapted
to it, only new roles and their specific behaviour must be defined. The abstract
factory design pattern implementation has been completely decoupled from the
application domain code, and can remain unchanged, favouring the software
evolution process requested by the domain change.

Skeleton definitions in the abstract parametric aspect correspond to language
objects. Every one of these language objects has a unique identifier. The unique
identifier of a class is its name and package. The unique identifier of a method is
its name plus the type of its parameters plus the unique identifier of the class that
contains it. The unique identifier of a skeleton definition in the parametric aspect
can contain parametric expressions. In order to produce regular language object
definitions from the skeletons, the parametric expressions that take part in their
unique identifier are evaluated according to the role assignments established in
the concrete aspect. When several language objects play the same role, all the
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possible combinations are generated, and one (class/method/...) definition is
generated for every combination.

Then, as ComponentFactoryAspect declares two ProductSet, two class defi-
nitions would be generated for <ProductSet>Factory: AFactory, and BFactory.
The same happens with method definitions: as there are three classes that play
the AbstractProduct role, three method definitions would be generated for the
create<AbstractProduct>method skeletons in AbstractFactoryAspect. This
would result in three methods for each one of the classes: ComponentFactory,
AFactory, and BFactory. The set of classes and method definitions that would
be generated at weave time is shown below:

class ComponentFactory {

public abstract Window createWindow();

public abstract ScrollBar createScrollBar();

public abstract Button createButton();

}

class AFactory extends ComponentFactory {

public Window createWindow() { return new AWindow(); }

public ScrollBar createScrollBar() { return new AScrollBar(); }

public Button createButton() { return new AButton(); }

}

class BFactory extends ComponentFactory {

public Window createWindow() { return new BWindow(); }

public ScrollBar createScrollBar() { return new BScrollBar(); }

public Button createButton() { return new BButton(); }

}

In order to be able to generate the bodies of the methods in AFactory and
BFactory from just one method skeleton in AbstractFactoryPattern, the para-

metric expression language must be powerful enough. With this goal, a language
is provided that allows to deal with class sets, obtain the superclasses and the
subclasses of a given class, and make intersections and unions of different class
sets. This behaviour is obtained with the use of a few functors (members, sub-

classes, superclasses, subclasses*, and superclasses*) in combination with
set-related operators (& and |). The complete syntax is not shown here for lack
of space. This reduced set of features allows to conviniently traverse the class
hierarchy at weave time.

<subclasses(AbstractProduct) &

members(ProductSet)>

The above parametric expression (extracted from create<AbstractProduct>

method skeleton in AbstractFactoryAspect) computes the intersection of the
subclasses of the class playing the AbstractProduct role and the classes in the
class-set playing the ProductSet role. That is, it computes the concrete product
to be created for a given factory and an abstract product.

As parametric expressions are evaluated at weave time, they cannot deal with
modifications introduced into the class hierarchy through the use of runtime re-
flection. Additionally, the weaving process itself may update also the hierarchy,
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which poses a recursion problem as the evaluation of parametric expressions be-
fore the weaving process might differ from their evaluation after it. The simplest
solution is taken and only the hierarchy before the weaving process is taken into
account.

4 Related Work

The introduction of parametric type ideas into AOSD has also been boarded re-
cently by other researchers. [16] proposes parametric introductions, which allow
to add the classes to which introductions apply as parameters to the introduc-
tion definitions themselves. This allows, for example, to easily implement the
singleton design pattern. The main difference with our approach is that [16]
has as parameters the classes being instrumentalized, whereas in our approach
parameters are one more element in the aspect itself, and might refer to newly
created language objects (classes, methods . . . ). On the other hand, the use
of the parametric expression language provides a very powerful way to define
behavior.

Family Polimorphism [17] addresses a similar problem, although it is not re-
lated to the AOSD approach. Also, [18] combines aspects and frame technology,
with the goal of adding parametrisation and also deeper generalisation capabil-
ities to AOSD systems.

5 Conclussion and Further Work

This paper proposes to extend AOP languages in order to support parametric
aspects. The extension allows to define behaviour in a domain-independent way
for problems for which the existing AO languages are only able to provide an
overall domain-dependent solution. As a consequence, the complexity of the part
of software systems that are dependent on the domain, and the complexity that
the software evolution process must deal with, can be significantly reduced.

An extension of AspectJ with the syntax shown in this paper is currently un-
der development. Additionally, the scope of application of the proposed extension
is being evaluated for other design patterns and also other different problems.

A Appendix. A Second Example: EJB Development

EJB development is a tedious task. Many interfaces with redundant code need
to be developed. This task can be lightened by development environments and
tools. Nevertheless, no solution is provided from the programming language point
of view. The use of parametric aspects could help in avoiding the development
of redundant code, as the code below shows.

abstract aspect EJB {

roles Bean, beanService;
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generic class <Bean> {

generic multiple public <beanService>;

}

interface <Bean>Remote extends javax.ejb.EJBObject {

public <beanService> throws java.rmi.RemoteException;

}

interface <Bean>RemoteHome extends javax.ejb.EJBHome {

<Bean>Remote create() throws java.rmi.RemoteException,

javax.ejb.CreateException;

}

interface <Bean>Local extends javax.ejb.EJBLocalObject {

public <beanService>;

}

interface <Bean>LocalHome extends javax.ejb.EJBLocalHome {

<Bean>Local create() throws javax.ejb.CreateException;

}

}

aspect HelloEJB extends EJB {

class Hello plays Bean {

String hello(String name) plays beanService {

return "Hello "+name+"!";

}

}

}

The EJB aspect definition declares two roles and provides skeletons for all
the interfaces needed to define an EJB. Then, in order to define a simple EJB,
we only need to extend the EJB aspect with a concrete aspect (in the example
above, the HelloEJB aspect), and define the class that plays the Bean role, and
the method that plays the beanService role.
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Abstract. Software evolution is an inevitable process when developing a sys-
tem of any notable size and is the most costly stage in the life cycle of a sys-
tem. Automating parts of this process will reduce the resources required to 
carry out this stage of development. We aim to develop a framework that 
achieves this automated evolution by using Dynamic AOP to encapsulate these 
evolutionary changes and allow them to be applied dynamically at runtime. 
However, a problem with this is being able to reuse these aspects in different 
systems and scenarios. We propose the use of framed aspects to parameterise 
the aspects to generalise them so they can then be customised for a specific use. 

1. Introduction 

Software evolution is an inevitable stage when developing any type of software. Evo-
lution is defined in [16] as “the process of changing a system to maintain its ability to 
survive”. There are three types of maintenance that can be applied to a system: 

• Corrective Maintenance 
• Adaptive Maintenance 
• Perfective Maintenance 
 

Large amounts of time and money are spent on software evolution and so it is desir-
able to reduce the amount of effort required to perform this stage of development. In 
this paper we will outline a framework that will allow a system to evolve certain parts 
of itself automatically and so reduce the effort to maintain the system. The framework 
will concentrate on performing perfective maintenance which is generally considered 
to be maintenance that implements new functional or non-functional requirements. 

The use of dynamic Aspect-Orient Programming (AOP [10]) has been proposed to 
develop an autonomic system in [6]. Autonomic systems [7] are those which are able 
to perform certain levels of maintenance upon themselves and so can evolve dynami-
cally. The properties that dynamic AOP possesses will allow these changes to be well 
encapsulated and applied at run-time without needing the system to be taken off-line. 

Problems in this domain, regarding the reuse of the aspects and creating the as-
pects to be applicable in a variety of different scenarios will arise. Framed aspects 
will allow the parameterisation of each aspect and allow it to be customised to a vari-
ety of systems and scenarios.  



Framed aspects is a new approach that allows for the easy parameterisation of as-
pects. The use of framed aspects has been proposed in previous work [11]. The con-
text set out in [11] was to allow the easy development of software product lines. The 
framed aspects were used to extract common cross-cutting concerns from a particular 
system family and were then parameterised to allow the easy customisation of the 
aspect for a particular version of the system. This process improved the reuse of the 
aspect and reduced development time for later versions. This paper proposes a differ-
ent application of framed aspects which will require extensions being made to their 
behaviour.  

The aim of this paper is to describe the use of Dynamic Framed Aspects – framed 
aspects that can be created and applied dynamically to a running system. The paper 
will illustrate how such a framework could be implemented and will highlight certain 
key issues. 

The structure of the paper is as follows. Section 2 describes in more detail the im-
plementation and use of framed aspects. Section 3 then looks at the use of dynamic 
AOP to implement a dynamically evolvable system and highlights some of the prob-
lems that can arise. Section 4 examines in more detail how dynamic framed aspects 
can be used to overcome the problems encountered. Section 5 will then describe other 
related work and how this work will differ from them. Finally, section 6 concludes 
this report and summarises it. 

2. Framed Aspects 

Framed aspects are the amalgamation of frame technology [3] with AOP.  Frame 
technology, which has its origins in the late 1970s, provides a mechanism for creating 
reusable components by way of meta-variables, code templates, conditional compila-
tion, parameterisation, generation and a specification from a developer.  Generalising 
code and assets in this manner allows them to be reused in different contexts making 
frames ideal for use in the generation of code libraries and software product lines.  
[18] presents a language independent XML based implementation of frame technol-
ogy and has been used in the creation of product lines as diverse as city guide systems 
[19] and UML documents [8].  Typical examples of commands in frames are <set> 
(sets a variable), <select> (selects an option), <adapt> (refines a module with new 
functionality) and <while> (creates a loop around repeating code).   

2.1 Problem with frames 

Frames by themselves cannot encapsulate crosscutting concerns effectively, thus 
future evolutions can lead to changes across frames, effectively limiting the longevity 
of systems and components and giving rise to architectural erosion [17].   Frame 
technology requires that variation points and compositions are done explicitly in the 
code; this can lead to hard to read code.  Utilising frame technology with a suitable 
AO language minimises this disruption by allowing system features, which are often 
crosscutting, to be encapsulated within a single module.  This encapsulation will ease 
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the evolution of the crosscutting concerns,  and combining this with the configuration 
and generalisation properties that frames provide will ease the evolution process fur-
ther still. 

2.2 Using framed aspects 

The Lancaster Frame Processor, a simplified adaptation of frame technology which is 
strongly influenced by XVCL, has been designed to be used with AO from the 
ground up and allows features to be composed together in a non invasive manner.   
[11] describes how a simple cache component can be generalised using frames in 
order to make it reusable. 

 
Fig. 1. Framed aspect composition 

• Framed Aspect – generalised aspect code (via conditional compilation, param-
eterisation etc.). 

• Composition Rules - contains possible legal aspect feature compositions, com-
binations, constraints. The rules are also responsible for controlling how these 
are bound together. 

• Specification - contains the developer’s customisation specifications.  Frame 
commands will consist of setting of meta variables and selecting various op-
tions.  The developer will usually take an incomplete template specification 
and fill in the options and variables s/he wishes to set. 

 
In the framed aspect approach requirements elicited from the analysis phase are mod-
elled into a feature graph based on FODA [9].  From the feature graph it is possible to 
delineate frame boundaries by following rules based on mandatory, alternative and 
optional features of a system or component and from this we can create the aspect 
code. Variation points or ‘hotspots’ are identified and the aspectual code is general-
ised with a suitable frame construct.  Constraints and valid/invalid combinations of 
features are modelled in the composition rules module while the specification module 
supplies a custom specification from the developer. [12] explains the framed aspect 
process and methodology in more detail. 

Specification Composition 
Rules 

 
Framed 
Aspects 

Customised  
Aspect 

Declaration 
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3. Dynamic Software Evolution and Dynamic AOP 

This section will outline the use of dynamic AOP to implement a system capable of 
dynamic evolution, describing the properties this type of system needs to posses and 
why dynamic AOP is suitable for their implementation. First, we will describe how 
dynamic software evolution can be implemented and the benefits it will bring. 

3.1 Dynamic Software Evolution 

As already stated, software evolution is an inevitable task that has to be performed 
when developing a system of any notable size. The aim of the proposed framework is 
to ease some of the burden that this task requires.  

In order to do this we aim to automate some parts of the evolution process by al-
lowing the system itself to decide which available evolution steps are required to keep 
the system operating as intended. As mentioned previously these evolution steps will 
be encapsulated using dynamic AOP, with framing techniques used to parameterise 
them. 

Based on information collected at run-time (collected by monitoring modules re-
garding the current environmental conditions) the system will be able to make deci-
sions about which evolution changes, if any, are required. The information gathered 
will also be used to customise the aspect to suit the current system and conditions. 

Automating this process will provide many benefits to system operators, from im-
proved system availability to lowered running costs. Since such systems can maintain 
themselves dynamically, they do not have to be taken off-line for re-configurations to 
be applied. Also, as human contact is reduced, system availability is improved as 
human error is the most common cause of system failure [4]. Furthermore, as fewer 
maintenance staff are required, the running costs are lower. 

Obviously there are some limitations as to what the proposed framework will be 
able to achieve. For example, the evolutionary changes must be already be thought of 
and pre-programmed but the key point is that it will be the system that decides when 
and where the changes should be applied. If the correct selection of evolutionary 
changes exists in the framework they should be applicable to a number of different 
systems and scenarios. This will reduce development time and improve reuse.  

Large scale changes, such as when entire business goals change will have to be 
managed and applied manually as this is beyond the scope of our framework. We will 
be focussing on small scale perfective maintenance such as switching between algo-
rithms to maintain optimum performance and introducing various functional and non-
functional concerns as they are required. 

3.2 Dynamic AOP 

AOP aims to improve the areas where Object-Oriented Programming (OOP) fails by 
allowing concerns that would normally crosscut a number of objects to be cleanly 
encapsulated in a single element. AOP introduces three concepts: aspects, advice and 

104 Philip Greenwood, Neil Loughran, Lynne Blair, and Awais Rashid

ghoneim
Line




joinpoints. Advice is used to implement the crosscutting concern, joinpoints specify 
the points in the base-code where the advice should be applied and aspects are used to 
encapsulate the advice and joinpoints.  

Dynamic AOP techniques allow aspects to be woven while the system is being 
executed (either at class-load time or run-time). This provides a variety of useful 
features such as being able to introduce entirely new aspects and removing aspects 
already woven. However, certain problems can also arise such as lower performance, 
compatibility issues and security issues.  

The majority of concerns that will require evolution will tend to be crosscutting 
and so dynamic AOP will be suitable for this kind of implementation. The following 
properties of dynamic AOP have been identified as being fundamental for implement-
ing a system able to evolve automatically and dynamically, detail of these can be 
found in [6]: 

• Apply adaptations dynamically 
• Easily remove adaptations 
• Encapsulate adaptations 
• Implement fine-grained changes 
• Apply adaptation to various points in the system 

 
There are currently numerous dynamic AOP techniques such as AspectWerkz [2], 
JAC [13] and Prose [15]. The majority of these techniques support all of the above 
properties but to varying degrees. Whichever technique we choose, we will inevitably 
have to extend it in order to overcome a number of issues; see [6] for a comprehen-
sive list of these problems. The issues that this paper aims to address are: 

• Customising aspect behaviour – developing a mechanism for customising an 
aspect to suit the current needs of the system. The run-time and environment 
conditions of the system will vary greatly over time; the aspect should be 
adaptable to meet these needs. 

• Re-use – as well as being customisable to suit the current conditions, the as-
pects should be applicable to a variety of systems. Each system may have 
methods which perform similar actions but the differing method and fields 
names may prevent an aspect which is suitable to alter the actions of these 
methods from being applied. The use of framed aspects will overcome these 
problems. 

4. Dynamic Framed Aspects 

From the earlier description of framed aspects it is clear that they allow the customi-
sation of the behaviour of the aspects and also improve the reuse of the aspects they 
implement.  

However, the framed aspect specification is currently statically defined and the 
concrete aspects are created from the frames before the aspects are woven to the sys-
tem, normally during the compilation phase. This process prevents changes being 
made to the framed aspects dynamically.  
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In order to implement dynamic framed aspects we propose the use of a dynamic AOP 
language to create the aspects and a mechanism to dynamically create/update the 
aspects depending on the current environmental conditions. 

For our initial prototype we propose to use AspectWerkz as the dynamic AOP 
technique. The reason why AspectWerkz is chosen here is because it is the most fa-
miliar to us at this time. Prose was discounted due its limitations in the types of as-
pects it can create and its overall flexibility. 

Parameterising aspects in AspectWerkz should not pose any problems as the struc-
ture they use is the same as standard Java classes, and Java classes have been success-
fully parameterised in the past using framed aspects. The architecture we envisage 
will be implemented is shown in figure 2. 
 
AspectWerkz Runtime 
The AspectWerkz runtime is responsible for weaving and unweaving the aspects with 
the application base-code. The AspectWerkz runtime must be able to receive aspects 
sent to it from the framed aspect server. 
 
Dynamic Application 
The dynamic application is that which is being controlled by the AspectWerkz run-
time and the application monitor. Using the proposed architecture any application 
should be able to be made dynamic without requiring much modification to the 
source code. 
 
Application Monitor 
This module is responsible for monitoring the current context of the running applica-
tion and then translating this into an aspect request that will be sent to the framed 
aspect server. Initially only physical attributes of the system will be monitored such 
as memory usage, network usage, hard-disk space and processor usage. More detailed 
context information can be gathered later, such as parameter values passed to meth-
ods, field values, etc.  
 
Framed Aspect Server 
The framed aspect server will receive aspect requests from the application monitor. 
From these requests the server will retrieve the framed aspect from a repository and 
then customise it to suit the request received. The concrete aspect will then be sent to 
the AspectWerkz server to be woven to the dynamic application.  
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Fig. 2. The proposed architecture 

Framed Aspect Repository 
This will be used to store all the framed aspects. It is proposed that this will be im-
plemented as a database structure to support querying and fast retrieval. It should also 
be possible to add new framed aspects to introduce new behaviour to the dynamic 
applications that was not available when the system was first started. 
 
Aspect Request 
The aspect request sent to the framed aspect server will contain a set of parameters 
detailing the current conditions of the system and the running environment. This data 
will be used to select an appropriate framed aspect and to create a concrete version of 
it. 

4.1 Problems 

This section will briefly introduce some of the initial problems that we anticipate 
when developing such a framework.  
 
Applying Framed Aspects to the Base-System 
One of the initial problems that we need to overcome is finding a way to mark where 
each aspect can be applied in the system. Each framed aspect implements a different 
crosscutting concern and these concerns may not be applicable at all points in the 
system. For example, a caching aspect does not need to be applied to a method that 
only prints a message to the user.  

The solution we propose for this problem is to allow the programmer to specify a 
configuration file which will allow them to specify all the potential aspects that are 
relevant to the system and all the places where they could be applied. 

However, this could result in complications and a long configuration file being 
specified. To reduce this problem, aspects could be grouped according to the types of 
changes they apply. This will allow the programmer to list types of aspect rather than 
each individual one. Also a GUI would aid the user in the creation of this file. 
 

Framed Aspect 
Server 

AspectWerkz 
Runtime 

Dynamic 
Application 

Application 
Monitor Aspect request 

Framed Aspect 
Repository 

Concrete aspect 
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Framed Aspects Structure 
For this solution to work successfully, each framed aspect will have to be created to 
follow certain conventions so that they can be applied to a variety of different sys-
tems and to make their structure predictable. Currently, framed aspects are largely 
unstructured and can be used to parameterise any part of the aspect. A more con-
strained structure is required so that the dynamic application can be created to ac-
commodate all the potential aspects that may be applied to it. If the system has al-
ready been created then it may need refactoring to be made suitable for the aspects to 
be used.  
 
Monitoring 
The way the framed aspects have been parameterised will affect the information that 
is to be collected. We have to be sure that the information collected from the applica-
tion monitor will be able to ‘fill-in the gaps’ of the framed aspects. From the informa-
tion passed to the framed aspect repository a decision will have be made about which 
is the best framed aspect to use. It is not vital for this decision to be correct as the 
monitor will be able to use the data it has collected to check the aspect has had the 
desired effect; a new aspect can be requested if it has not. The above-mentioned con-
figuration file, used to specify where the aspects need to be applied, will also be used 
to determine where and what needs monitoring. 

4.2 Example 

Suppose a client-server application is having performance problems. The monitoring 
module on the client detects a particular method that is experiencing network conges-
tion when communicating with the server. From the configuration file, the system 
knows that introducing a cache may solve the performance problems. The monitor 
sends a request for a caching aspect, this specification includes what needs to be 
cached and the size the cache should be (this depends on the amount of resources 
available). This information is sent so that an aspect can be created with the correct 
data types and so that it does not use too many resources caching data. The aspect 
server will then create and compile the aspect and send it back to the client where it 
will be woven with the base-system. 

This example, although simple, demonstrates how such a system would operate 
and how it could evolve its behaviour depending on the current system properties. 
Obviously in reality the aspects would have more than two parameters that need to be 
collected and sent to the server, but the principles are the same as in this simple ex-
ample. 
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5. Related Work 

Hot Swap [1] is an autonomic system developed by IBM. A monitoring component is 
used to examine the environment of the Hot Swap system and then requests adapta-
tions to be made. The limitation of Hot Swap is only whole components can be re-
placed; AOP will allow us to make much more fine-grained changes. Additionally the 
replacement components used in Hot Swap need to be entirely pre-programmed, 
whereas the aspects in our solution can be dynamically re-programmed to suit the 
current environmental needs of the system. 

An alternative way system behaviour could be modified is to use a technique 
called adaptive code. Adaptive code can be implemented in a variety of ways, from 
using parameters that are modified at run-time to alter the behaviour, to implementing 
a number of alternative algorithms to perform a certain task and the most appropriate 
can be selected at run-time (see [5]). The biggest drawback of using adaptive code is 
that it is not possible to insert new code or new monitors at run-time. 

In the literature, the implementation of a system which possessed a certain degree 
of dynamic behaviour has also been achieved through the use of Prose [15]. MIDAS 
[14] was created to allow the distribution of aspects in a mobile environment. When-
ever a node entered a particular location, aspects were distributed to it so it would 
behave correctly for that particular location. This is a limited solution in that the sys-
tem is only location aware; we aim to create a framework that can be used in a variety 
of scenarios. 

6. Conclusions 

This paper has proposed a framework which will allow a system to be developed that 
will be able to evolve using a combination of framed aspects and dynamic AOP. 
When combined, the properties these technologies posses will allow aspects to be 
developed with a high degree of flexibility and they will be able to be applied dy-
namically to the system. In previous work the problem of reuse and customising the 
aspects to suit a particular scenario was highlighted as an issue to be resolved; the use 
of framed aspects will achieve this. This work is still in the early stages of develop-
ment but the benefits of using framed aspects in this way are clear and will ease the 
development and implementation of dynamically evolvable systems. 
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Abstract. Design patterns are a standard means to create large software sys-

tems. However, with standard object-oriented techniques, typical implementa-

tions of such patterns are not themselves reusable software entities. Hence, pro-

viding typical implementation of such patterns and connecting them to a piece 

of software needs to be done by hand which is an error-prone process. Aspect 

languages have the potential to change this situation, due to their ability to en-

capsulate elements that crosscut different modules. Still, existing aspect lan-

guages can only express a small number of typical patterns implementations in 

a generally reusable way. In this paper, we point out the limitations of known 

aspect-oriented languages, define the notion of a generic aspect language  

(generAL) and argue that generic aspects are a natural way to achieve reusable 

design pattern implementations. We sketch the main features of one particular 

generic aspect language, LogicAJ, and show how it enables generic implemen-

tations of recurring design pattern implementations. In particular it permits to 

switch easily from one pattern implementation variant to another, which sig-

nificantly eases  the evolution of software. 

1 Introduction 

Design patterns [4] are a standard means of creating large software systems. Cata-

logues like for example [4, 1, 13] permit developers to benefit from the successful 

application of certain design elements for a given problem. This increases the quality 

of software, its comprehensibility and maintainability.  The application of a design 

pattern usually results for a given programming language in a number of typical im-

plementations.  However, with standard object-oriented techniques, such implementa-

tions are not themselves reusable software entities. Hence, applying a certain design 

pattern typically means hand-crafting a number of software elements and embedding 

them into the application, which is a error-prose process. For example, even the typi-

cal implementation of a relatively simple design pattern like Singleton in Java is not 

trivial (cf. [5], pp. 127-133). Furthermore, pattern implementations typically require 

the developer to perform invasive changes of a number of classes in the system.  



Typical implementations of design patterns provide a number of anticipated varia-

tion points: for example the Decorator design pattern [4] permits to add easily new 

functionality to an already decorated object. However, an unanticipated evolution of 

the underlying application is not that easy, because the application’s evolution needs 

to be synchronized with the evolution of the design pattern implementations. This 

kind of needed synchronization is known as the problem of co-evolution of design and 

implementation [16]. Furthermore, changing the implementation of a certain design 

pattern to an alternative implementation is not easy: for example changing from a 

class-based Adapter implementation [4] to an object-based adapter implementation 

requires a number of invasive changes in the code. Such changes are also needed if 

the developer decides to the replace a certain design pattern. For example, the re-

placement of a Decorator implementation with a class-based adapter requires a num-

ber of changes in the code. 

Aspect-oriented software development [9] is a promising approach to tackle the 

previous problems. The application of aspect-oriented languages promises modular 

implementation of typical design patterns, thus reducing the need for invasive non-

local changes. However, it turns out that current aspect-oriented languages do not live 

up to this promise. For example [6] shows that only a number of typical design pat-

tern implementations from the catalogue in [4] can be implemented in a reusable 

manner in the aspect-oriented language AspectJ [10]. [7] discusses two typical exam-

ples of design pattern implementations that cannot be implemented in a reusable way 

in known aspect languages and proposes Sally that supports genericity  for aspect-

oriented languages. 

In this paper we argue for the need of a much stronger degree of genericity to ful-

fill the promise of evolvable pattern implementations. In support of our thesis we pre-

sent the generic aspect language LogicAJ [15], and show how its genericity mecha-

nisms enable reusable and easy to evolve implementations of design pattern variants.   

2 Evolvable Pattern Implementations – Problem 

The problem that we address is the evolution of “patterned” designs and implemen-

tations. In this section we introduce two variants of the decorator pattern and discuss 

the problems that arise if a design starts with the first variant and must later be 

evolved into the second one. A solution based on the design and implementation of 

pattern variants as generic aspects in LogicAJ is presented in the rest of the paper.  

2.1 Example: Variation of Decorator-Based Designs  

The decorator pattern provides a flexible alternative to subclassing. Additional 

functionality can be added to an object dynamically. Fig. 1 shows the UML diagram 

for the basic variant of the decorator1. There are four participant roles in the decorator 

                                                           
1 The variant of the decorator pattern listed in [4] uses inheritance to achieve subtyping between 

the Decorator and the Component at the expense of undesired inheritance of state. Here, we 
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pattern: Component defines an interface for the objects to which additional functional-

ity should be attached. ConcreteComponent classes implement such objects. The 

Decorator aggregates a Component instance and implements the Component interface 

by forwarding messages to this instance. The ConcreteDecorator adds functionality to 

Component. 

 

 

 

ConcreteComponent

m1()

m2(T)

ConcreteComponent

m1()

m2(T)

ConcreteDecorator

m1()

m2(T)

addedMethod()

ConcreteDecorator

m1()

m2(T)

addedMethod()

Decorator

Component

m1()

m2(T)

parent

parent.m1();

super.m1();

addedMethod();

ConcreteComponent

m1()

m2(T)

ConcreteComponent

m1()

m2(T)

m1()

m2(T)

ConcreteDecorator

m1()

m2(T)

addedMethod()

ConcreteDecorator

m1()

m2(T)

addedMethod()

 

ConcreteComponent 

m1() 
m1(Component self) 
m2(T) 
m2(Component self,T) 

Component 

m1() 
m1(Component) 
m2(T) 
m2(Component,T) 

ConcreteComponent 

m1(Component self) 
m2(Component self,T) 

... 

self.m1(self); 
... 

 

Fig. 1 a) Basic Decorator Pattern according to [4]   b) Subsequent evolution of Component. In 

the following sections the parts in red 

will be implemented by a generic aspect. 

Now assume that, in an application built using the decorator pattern, new require-

ments imply the additional need to override the behaviour of a component on a per-

instance basis. This means, that if some other object has own implementations of the 

component’s methods that implementations should be used. One possible solution is 

to use back-references. These can be implemented as an additional parameter (cf. [11, 

8]): every method inside the component gets a new parameter self and every (ex-

plicit or implicit) occurrence of this is replaced by self2. The corresponding de-

sign of Component is illustrated in Fig. 1b. 

However, this design decision implies a synchronization of the design pattern im-

plementation with the new design of Component. Fig. 2 illustrates how the whole 

decorator hierarchy needs to be adapted. Comparison of Fig. 1a and Fig. 2 shows that 

the move from the basic decorator to the one with back references involves extensive 

changes in the design and implementation: 

1. Every method in the Component interface must be extended by an addi-

tional parameter, self, for the back reference to the forwarding object. We 

call such methods delegatee methods.  

2. Delegatee methods must be included in all subtypes of Component. In their 

body, all messages to this must be replaced by messages to self.   

                                                                                                                                           
use a more general variant, in which we only assume that Decorator is a subtype of Compo-

nent. In Java, this is achieved by implementation of the Component interface. In other lan-

guages it would require inheritance from a purely abstract class. 
2 For a thorough discussion of the issues involved in a simulation of object-based overriding via 

back references see [12]. 
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3. Invocations of original methods must be replaced by invocations of delega-

tee methods throughout the program.  

4. For the sake of clients that cannot be adapted, every original method must 

be preserved.  

5. Forwarding methods in Decorator now must pass the correct value of the 

back reference (either this – in an original method, or self – in a delegatee 

method).  

The result of this simple unanticipated evolution is a number of invasive changes 

in a number of different modules: large effort is necessary to keep existing design pat-

tern implementations in sync with other design decisions. In practice, it is almost im-

possible to guarantee such a correct synchronization. 

        

Decorator

Component

m1()

m1(Component)

m2(T)

m2(Component,T)

parent

parent.m1(this);

super.m1(self);

self.m3(self);

m1()

m1(Component self)

m2(T)

m2(Component self, T)

ConcreteDecorator

m1()

m1(Component self)

m3() 

m3(Component self)

ConcreteDecorator

m1()

m1(Component self)

m3() 

m3(Component self)

ConcreteComponent

m1()

m1(Component self)

m2(T)

m2(Component self,T)

ConcreteComponent

m1()

m1(Component self)

m2(T)

m2(Component self,T)

parent.m1(self);...

self.m1(self);

...

...

this.m1();

...

super.m1();

m3();

 

Fig. 2 Decorator Pattern with back reference implemented as an additional method parameter. 

The parts in red are generated by the aspects described in Section … 

3 Towards a Solution – Patterns and Aspects Together 

3.1 Patterns describe generic collaborations  

Design patterns are an effective way to reuse design knowledge. In a highly stan-

dardized way, patterns describe design problems, their context, the forces that influ-

ence potential solutions, a generic solution idea and possible variations of its imple-

mentation. These descriptions are typically provided in two forms, as concrete 

examples and as generic abstractions of designs and related object interactions. The 

generic descriptions of solutions are highly parametric. The names of classes, fields, 

and methods presented in design pattern “solution” sections are never meant literally 

but as indicators of roles that the respective entities play within the pattern. Corre-

spondingly, object interaction diagrams and related method code refer to such role 

names.  
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In order to apply a pattern, a designer must first identify the entities of an applica-

tion that correspond to the roles mentioned in the pattern. Then he may instantiate the 

solution, replacing roles by names of concrete entities.  

Thus, pattern solutions can be viewed as generic descriptions of collaborations 

that are parameterized by the roles of the entities mentioned in the pattern. Corre-

spondingly, a particular application of a pattern in a given software system is an in-

stantiation of the generic collaboration.  

3.2 Aspects describe collaborations 

Aspects come in different shapes and sizes. Put differently, there is a wide variety 

of concepts and systems that call themselves aspect-oriented. Their commonality is 

that all provide ways to express “crosscutting” structure and behaviour in one single 

module called an aspect, filter, hyperslice, etc. Structure and behaviour encapsulated 

in an aspect can range from omnipresent homogeneous behaviour (like logging) to 

very specific behaviour limited to a particular set of cooperating classes.  

The latter case is the one relevant to patterns. Aspect languages have the potential 

to express the essence of pattern implementations, due to their ability to encapsulate 

collaborations. For instance, Hannemann and Kiczales [6] show how 12 of the pat-

terns from [4] can be expressed in AspectJ in a reusable way.  

However, 11 other GoF-patterns have no reusable implementation in AspectJ, in-

cluding often used ones like FactoryMethod, Abstract Factory, Builder, Bridge, 

Adapter, Decorator, Proxy and State. Moreover, some of the reusable versions are 

limited in different ways. For instance, Hanenberg and Unland [7] show that even for 

simple patterns, like Singleton, the reusable AspectJ implementation does not achieve 

the same effects as a manual implementation of the pattern. 

In addition, many solutions are not generally reusable but specific to a particular in-

stantiation of an aspect. Part of the aspect code must be repeated for different instan-

tiations.  

Hanenberg and Unland identify the inability to express context-dependent intro-

ductions as the reason for the problems. As a remedy, they propose “parametric intro-

ductions”, implemented in the aspect language Sally. They show how parametric in-

troductions improve the implementation of patterns like Singleton and enable 

reusable, partial implementations of patterns like Decorator, which could not be han-

dled at all with AspectJ. 

4 Generic Aspects to the Rescue 

In this paper, we start from the observation that the concept of parametric introduc-

tions is basically a first step towards a generic aspect language but still too restricted 

to provide a general solution for reusable pattern implementations. This leads us to 

the conclusion that genericity must be supported uniformly across an aspect language, 

not just for member introductions.  

We define the notion of a generic aspect language and sketch the main features of 

one particular generic aspect language, LogicAJ. Then we show how a pattern that 
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could not be expressed in non-generic aspect languages can be implemented easily. 

The example of the Decorator pattern serves to illustrate basic functionality missing 

from previous approaches, when it comes to reusable and easy to evolve implementa-

tions. Since the same basic functionality is required for other patterns as well, our ar-

guments can be generalized.  

4.1 Generic Aspect Languages 

The common cause of the above-mentioned limitations of AspectJ-based pattern 

implementations is that AspectJ does not provide genericity. Typically, the AspectJ 

solutions refer to fixed names for concrete entities of the base program, where a reus-

able pattern implementation would require role names that can be bound to concrete 

entities when the pattern (resp. aspect) is instantiated. Therefore, the step to reusable 

pattern implementations is the step to generic aspect languages.      

A generic aspect language allows aspects to use logic variables that can range over 

syntactic entities of the host language3. Depending on the host language, these can be 

syntactic elements of Java, C++, C#, etc. or abstractions of messages or events.  

Generic aspect languages can provide different degrees of genericity, depending on 

the range of host language entities that they can match. A fully generic aspect lan-

guage would provide logic variables hat can range over all syntactic entities of the 

host language. In a Java-based fully generic aspect language, for instance, logic vari-

ables could match anything from packages and types down to individual statements, 

modifiers and throws declarations.  

Logic variables have two properties that are essential in our context. First, their 

values cannot be manipulated explicitly. Instead, they are bound to values by the 

evaluation of particular conditions. Conditions that can bind logic variable values are 

contained, for instance, in the joinpoint expressions of AspectJ, hyperslice expres-

sions of HyperJ, and filter expressions of Compose*..  

Second, every mention of the same logic variable name within a scope represents 

the same value. Thus it is possible to refer later to a value matched earlier. In particu-

lar, it is possible to create new code based on previous matches. In this respect, logic 

variables are more expressive than “*” pattern matching (e.g in AspectJ), where two 

occurrences of “*” do not represent the same value.  

The following presentation of LogicAJ illustrates the general principles introduced 

so far. 

                                                           
3 Every aspect language has (at least) one host language. This is the language in which the 

modules to which the aspects refer are written. For instance, the host language of HyperJ, 

AspectJ, Sally, and LogicAJ is Java. Aspect languages like AspectC++ and AspectC# have 

C++ and C# as their target languages. The composition filter model and its incarnation in the 

aspect language Compose* is applicable to many different host languages. Event based AOP 

is an even more generic model, whose host language is an abstract language of events that 

can be mapped to any particular object-oriented programming language. 
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4.2 LogicAJ 

LogicAJ is an extension of AspectJ [10]  by the above concepts. In LogicAJ, logic 

variables can range over Java packages, types, fields, and methods, including method 

signatures and method bodies. Put differently, logic variables can be used in any place 

where in AspectJ aspects it is legal to use packages, types, fields, and methods. Syn-

tactically, logic variables are denoted by names starting with a question mark “?”4.  

 

Generic aspects are particularly useful for expressing crosscutting changes that fol-

low a common structure but differ in the names of created or modified entities. A 

simple example is the use of mock objects. This is a common technique for narrowing 

down the potential sources of a failure during testing. Its essence is the replacement of 

some of the tested classes by mock classes, which provide a fixed expected behavior 

during tests.  

 
usrMng = new UserManager(...);

...

dbMng = new DBManager(...);

MockAspect

usrMng = new UserManagerMock(...);

...

dbMng = new DBManagerMock(...);  
 

Below we show  a LogicAJ implementation of mock objects. The aspect replaces 

each constructor call with a call to the respective constructor of the associated mock 

class, if the mock class exists.  

 
aspect MockAspect { 

 Object around(?mock, ?args, ?class) :  

  // Intercept constructor invocations.  

  // Bind ?class to the name of the instantiated class  

  // and ?args to the argument list of the invocation  

  call(?class.new(..)) && args(?args) && 

  // Check if a class with name ?class+"Mock" exists 

  concat(?class, "Mock", ?mock) && class(?mock) 

 { // return instance of mock class  

  // (includes weave time check for constructor existence) 

  return new ?mock(?args); 

 } 

} 

 

The example illustrates the syntax of logic variables, their binding by the evalua-

tion of conditions, and their use in the assembly of generic advice code. The pointcut 

part of the advice uses three predicates, call, args and concat. The call predicate is 

basically the call pointcut of AspectJ. The args predicate is an extension of the args 

pointcut of AspectJ  in that the logic variable ?args passed as an argument to the 

pointcut can match an entire argument list. Here it matches all arguments of any con-

structor invocation. The semantics of the concat predicate is that the third argument is 

the concatenation of the first and the second. It is used here to create names of mock 

classes by appending the suffix “Mock”. 

Logic variables also enable generic introductions. With generic introductions, the 

members to be introduced and the types into which they should be introduced can be 

determined by the evaluation of predicates. It is also possible to introduce new types. 

Generic introductions basically generalize the concept of advice in AspectJ. This is 

                                                           
4 LogicAJ shares this syntax with Sally [7] and TyRuBa [2, 3]. 
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reflected in their syntax, which is largely advice syntax except for the keyword “in-

troduction” instead of “advice”. We will see various examples of generic introduc-

tions in the next section.   

5  Evolvable Decorator Pattern Implementation – Solution 

In this section we show how the two variants of the decorator pattern introduced in 

Section 2 are modelled in the generic aspect language LogicAJ in a modular and reus-

able way. As we proceed, we identify different classes of limitations of previous ap-

proaches and show in each case how they are overcome in LogicAJ. The examples 

underpin our conclusion that “evolvable pattern implementations need generic as-

pects” and motivate our definition of generic aspect languages. 

5.1 Basic Decorator Pattern in LogicAJ  

This section models a reusable basic variant of the decorator pattern implementa-

tion illustrated in Fig. 1. In the following, we assume that an interface playing the 

Component role and classes playing the ConcreteComponent role exist5, are imple-

mented in plain Java and are used as base classes for the aspects. The class playing 

the role of Decorator is generated by an abstract aspect AbstractDecorator. Classes 
playing the ConcreteDecorator role are created by concrete aspects derived from Ab-
stractDecorator.  

 

5.1.1 The AbstractDecorator Aspect 

This aspect has a double function, as a repository of shared pointcut definitions and 

as the place where the classes playing the role of decorator are created (Fig. 4).  

The decorator pattern can be instantiated multiply in an application. Every instan-

tiation is specific for a particular Component type. In order to express this depend-

ency, the class playing the role of the Decorator in a particular pattern instantiation is 

generated based on the participant Component. Its name is determined by adding the 

postfix Decorator to the name of the interface that plays the Component role. This 

dependency is abstracted in the decorator pointcut. The abstract pointcut compo-
nent must be implemented in a concrete aspect, in order to trigger application of the 

aspect to a particular part of the program. 

                                                           
5 The Component interface could be automatically created by an extract interface refactoring on 

the Concrete Component classes.  
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abstract aspect AbstractDecorator { 

 

 abstract pointcut component(?component); 

 

 pointcut decorator(?decorator) : 

  component(?component) && 

  concat(?component, Decorator, ?decorator); 

 

 introduce(?component, ?decorator) : ... // see Fig. 4 

 

 introduce(?decorator, ?rettype, ?params, ?name) : ... // see Fig. 5 

} 

Fig. 3 AbstractDecorator aspect. Participant roles are abstracted as pointcuts. A Decora-

tor class specific for a particular Component type is generated by two generic introductions. 

5.1.2 Generic Type Introduction for Decorator Role 

The AbstractDecorator aspect creates a class playing the role of the Decorator. 
This is done via a generic type introduction as shown in Fig. 4. Based on the above 

pointcuts, the name of the Component and Decorator is determined and bound to the 

logic variables ?component and ?decorator. Then the ?decorator class is generated 

and declared to be a subtype of ?component. It contains an instance variable parent of 
type ?component to which messages can be forwarded.  
 

 

introduce(?component, ?decorator) : 

  component(?component) && decorator(?decorator)  

{ 

   abstract class ?decorator implements ?component { 

      protected ?component parent; 

   } 

} 

Fig. 4 Generic type introduction 

Note that the generic type introduction, that is, the ability of creating types in an 

aspect and defining their name depending on the current context6, is essential for our 

example. We know of no other aspect language that provides this functionality.       

5.1.3 Generic introduction of forwarding methods 

The next step is the creation of one forwarding method in the Decorator class for 

every method in the Component type7. This is done via a generic introduction. In its 

condition part, it checks for methods that exist in the Component type. Then it creates 

methods with exactly the same signature in the Decorator class. Every created 

method forwards its invocation to the object reachable via the parent reference. The 

                                                           
6  In this case, the context is determined by the value of ?component. 
7 For simplicity, we often identify roles with the classes that play the roles, when the meaning is 

clear from the context. For instance, we simply say Decorator class instead of class that 

plays the Decorator role. For the same reason, we use the role names as class names in all 

diagrams.  
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method creation process is repeated for all values of logic variables that make the 

condition part (the pointcut) true. Thus in the end, the Decorator class will have one 

forwarding method for every method from the Component interface.    

 
 

 

 introduce(?decorator, ?rettype, ?methodName, ?params) : 

  component(?component) && 

  decorator(?decorator) && 

  method(public ?rettype ?compnent.?methodName(?params))  

{ 

  ?rettype ?decorator.?methodName(?params) { 

  parent.?methodName(?params); 

  } 

 

} 

 

Decorator

m1()

m2(T)

Component

m1()

m2(T)

parent.m1();

DecoratorComponent

m1()

m2(T)

Decorator

m1()

m2(T)

Component

m1()

m2(T)

Component

m1()

m2(T)

parent.m1();

DecoratorDecoratorComponent

m1()

m2(T)

Component

m1()

m2(T)

parent

parent

 
 

Fig. 5 Generic introduction of  forwarding methods. 

Without generic introductions it is not possible to write one introduction that cre-

ates different methods depending on the context. In AspectJ, for instance, one needs 

to know the complete signature of the methods to be introduced when writing the as-

pect. Thus, [6] concludes that no reusable implementation of decorator is possible 

with AspectJ. The concept of parametric introductions in [7] is very similar to generic 

introductions. It allows creation of methods with heterogeneous signatures and  ho-

mogeneous implementations in different contexts. However, the ability to create con-

text-dependent signatures and implementations, used above, seems to be unique to 

LogicAJ.  

5.1.4 Instantiation of the pattern 

The variant of the decorator pattern implemented in the AbstractDecorator aspect 
is instanttiated by the creation of a concrete subaspect that supplies the missing point-

cut definition and the implementation of ConcreteDecorator classes (Fig. 6).  
aspect MyComponentDecorator extends AbstractDecorator { 

 

 pointcut component(?component) : equals(?component, MyComponent); 

 

 introduce(?decorator) : decorator(?decorator)  

 { 

  public class ConcreteDecorator1 extends ?decorator { 

   public void m () { /* possibly calling super.m()  */ } 

   public void m3() { /* possibly calling super.m3() */ } 

  } 

  // ... more ConcreteDecorator classes ... 

 } 

} 

Fig. 6 Instantiation of the decorator aspect for MyComponent triggers the creation of the My-

ComponentDecorator class and its subclasses 

Since the implementation of the ConcreteDecorator classes consists almost en-

tirely of plain Java code, one might wonder why we define them in an aspect. The 

reason is that in a base class that does not declare the extends relationship to the 
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?decorator, invocations of super would not compile. Bases classes that declare the 

extends relation, however, would be tightly dependent of the naming convention for 

decorators. The solution in Fig. 6 preserves separate compilation and encapsulates the 

knowledge about decorators in the aspect hierarchy. 

5.2 Decorators With Back References in LogicAJ  

In section 2 we have shown that the manual evolution of an application that uses 

the above implementation variant of the decorator pattern can be extremely costly and 

error-prone. Now we show that the same evolution step can be achieved in LogicAJ 

incrementally, by the definition of further subaspects of AbstractDecorator. The 
main work is performed in the AbstractDecoratorBR aspect. It includes:  

1. Creation of delegatee methods in Component and all its subtypes (via a ge-

neric method introduction).  

2. Replacement of messages to this by messages to self in all delegatee meth-

ods (via a generic around advice).   

3. Replacement of invocations of original methods by invocations of delega-

tee methods throughout the program  (via a generic around advice).  

4. Passing of the correct value of the back reference in Decorator: either this 

– in an original method, or self – in a delegatee method   (via a generic 

around advice).  

5.2.1 Creation of delegatee methods 

For every subtype  ?sub of Component and each method in that subtype, the ge-

neric introduction in Fig. 7 adds to ?sub a method with exactly the same body but an 

additional first parameter, self, of Component type.  
 

 
introduce (?comp, ?sub, ?rettype, ?name, ?params, ?body) : 

  component(?component) && 

  subtype(?component, ?sub) && 

  method(?rettype ?sub.?name(?params) ?body ) 

{ 

  method(?rettype ?sub.?name(?component self, ?params))  

   ?body 

} 

 

 

Component

m1()

m2(T)

Component

m1()

m2(T)

Component

m1()

m1(Component self)

m2(T)

m2(Component self,T)  
 

Fig. 7 Introduction of delegatee methods in all subtypes of Component 

Note that in the above example it is essential that logic variables can also range 

over unnamed entities, in this case over method bodies. We need the ability to pass a 

value for the ?body variable from the method pointcut to the advice in order to copy 

the existing method body into the delegatee method. 
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5.2.2 Replacement of messages to this 

Consistent use of the additional self parameter in the copied method body is en-

forced by the generic advice shown in Fig. 8. For all subtypes ?sub of Component 

it determines within delegatee methods all calls of original methods from Compo-

nent that are invoked on this. These calls are replaced by calls on self, thus ena-
bling execution of the respective method in the self object.  

The advice uses two auxiliary pointcut definitions, withinDelegateeMeth-
odInType and callOfComponentMethodOnThis. The first one defines that we 

are in a delegatee method if the method’s first parameter has type Component and 

there is another method in the same type with the signature resulting from deleting 

the delegatee method’s first parameter 9. The second one selects all invocations of 

original methods from Component and filters those that are invoked on this, using 

the new pointcut receiverIsThis(). It checks whether the message receiver at the 

current joint point is the enclosing instance. The pointcut binds the name and ar-

guments of the filtered method calls to the logic variables ?name and ?args. These 

are used in the advice to generate the new code.   

                                                           
9 In the real implementation one would use additional criteria, e.g. a particular naming scheme 

of delegatee methods, in order to avoid false matches. 
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around(?component self, ?name, ?args) : 

  component(?component) && 

 subtype(?component, ?sub) && 

  withinDelegateeMethodInType(?sub, self) && 

  callOfComponentMethodOnThis(?sub,?name,?args)  

 { 

  self.?name(?args); 

 } 

 

 

m1(Component self) {

this.m1();

...

}

m1(Component self) {

self.m1(self);

...

}

 
 

pointcut withinDelegateeMethodInType(?type, ?type self) : 

  delegateeMethod(?type, ?rettype, ?name, [?comp|?params]) ); 

  withincode(?rettype ?type.?name(?comp self, ..)) ;   

 

pointcut callOfComponentMethodOnThis(?inType, ?name, ?args) : 

  originalMethod(?rettype, ?name, ?params) &&    

  call(public ?rettype ?inType.?name(?params)) && 

  receiverIsThis() && 

 args(?args) ; 

 

pointcut delegateeMethod( ?sub, ?rettype, ?name, [?comp|?params]) : 

  component(?comp) && 

 subtype(?component, ?sub) && 

  method(?rettype ?sub.?name(?params)) && 

 method(?rettype ?sub.?name(?comp self, ?params) ); 

 

pointcut originalMethod(?rettype, ?name, ?params) : 

  component(?comp) && 

  method(?rettype ?comp.?name(?params)) && 

  method(?rettype ?comp.?name(?comp self, ?params) ); 

Fig. 8 Implementation of “self delegation” by replacing messages to “this”. 

5.2.3 Forwarding with passing of back reference 

In order to ensure that the self back reference has the proper value, we must ex-

tend the code of the class that plays the Decorator role. Each of its forwarding 

methods must pass on the current value of self to the parent object. In Fig. 9 the 

forwarding pointcut identifies all places where a method invokes itself on the par-
ent object. The advice adds the self parameter to the forwarding invocation.   
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around(?comp parent, ?comp self, ?name, ?args) : 

 forwarding(?comp parent, ?comp self, ?name, ?args)  

{ 

 parent.?name(self, ?args); 

} 

 

 pointcut forwarding(?comp parent, ?comp self, ?name, ?args): 

 component(?comp) &&  

 decorator(?decor) && 

 withincode(?rettype ?decor.?name(?comp self, ..)) && 

 call(public ?rettype ?decor.?name(?args)) && 

 target(parent) ; 

 
m1(Component self) {

parent.m1();

...

}

m1(Component self) {

parent.m1(self);

...

}

 
 

Fig. 9 Forwarding with passing of back reference 

5.2.4 Use of delegatee methods 

Fig. 10 shows the redirection of the normal method execution to the execution of 

delegatee methods. The entire body of every original method is replaced by an invo-

cation of the method’s delegatee version, with this as the value of the first argu-

ment. This redirection is applied to every subtype of Component. 

 
around(?decorator inst, ?rettype, ?name, ?args) : 

   decorator(?decorator) && 

  subtype(?decorator, ?sub) && 

  originalMethod(?rettype,?name,?params) && //see Fig. 8 

  execution(public ?rettype ?sub.?name(?params)) && 

    this(inst) && 

   args(?args); 

{ 

   inst.?name(inst, ?args); 

} 

 

m1() {

...

}

m1() {

m1(this);

}

 
 

Fig. 10 Redirection of normal method invocations to delegatee methods 

The examples shown in Fig. 8 to Fig. 10 illustrate various cases in which availabil-

ity of generic advice was essential in order to express the intended semantics.  

5.3 Results 

The example studied in this section shows that the adaptation of a decorator-based 

implementation to new requirements can be performed completely at the level of as-

pects. The only change that we need in addition to the implementation of the Ab-
stractDecoratorBR aspect demonstrated above, is to turn the concrete subaspects of 

AbstractDecorator into subaspects of AbstractDecoratorBR. This ensures that after 

the next weaving, the back reference based implementation of the decorator pattern 

will be consistently available in the application instead of the basic one. No single line 

of code has to be changed manually in the base classes to achieve this result.   

Looking back to our small case study from a language designer’s point of view, we 

note that we needed the joint expressiveness of generic type introductions, generic 

member introductions, and generic advice. It was essential that logic variables ranged 
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over all named entities of the host language (from types to arguments) plus some un-

named entities (in the case of method bodies, see Fig. 7).  

We conclude that non-tangled, reusable implementations of patterns and other 

highly parametric concepts require genericity at almost every level of a language. 

Whether full genericity (not yet supported in LogicAJ) is desirable, and more gener-

ally, what is the “right” degree of genericity, are two of the open questions that we 

would like to discuss with the workshop participants. 

6 Conclusions 

Object-oriented design patterns are a standard means to create more dynamic and 

easier to evolve systems. However, with standard object-oriented techniques, pattern 

implementations are not themselves reusable software entities. Therefore, the evolu-

tion of a “patterned” design beyond its anticipated variation points can be arbitrarily 

difficult. Synchronizing the pattern implementation with changes in the design of the 

application, switching to another implementation variant for a particular pattern, and 

combination of multiple patterns within one application typically require extensive 

changes in a design and code base.  

In this paper we have shown that generic aspect languages are a promising solu-

tion. Their characteristic is the use of logic variables for program entities (packages, 

types, fields, methods, parameter lists, argument lists, method bodies, etc.), which en-

ables expressing generic transformations of a program which can be performed sub-

ject to generic conditions.  

In particular, we described LogicAJ, a generic aspect language design for Java that 

provides logic variables ranging from types and packages down to the level of indi-

vidual method invocations, method arguments and method bodies. Using the decora-

tor pattern as an example we have demonstrated the expressive power of the resulting 

language design and in particular, how it fosters reusable and evolvable implementa-

tions.    
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