
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: CCC ooo mmm ppp uuu ttt eee rrr SSS ccc iii eee nnn ccc eee

ISSN 1342-2812

Pseudo Expectation:

A Tool for Analyzing Local Search Algorithms

Osamu Watanabe

Sept. 2004, C–198

Pseudo Expectation:

A Tool for Analyzing Local Search Algorithms

Osamu Watanabe∗

Dept. of Math. and Computing Sciences

Tokyo Institute of Technology, W8-25, Tokyo 152-8552

(watanabe@is.titech.ac.jp)

Research Report C-198

Abstract.

In [WST03], the notion of pseudo expectation has been proposed for analyzing relatively

simple Markov processes, which would be often seen as simple execution models of local

search algorithms. In this paper, we first explain how it is used, and then investigate the

approximation error bound of pseudo expectations.

1 Introduction and Some Example

Pseudo expectation has been proposed [WST03] for analyzing relatively simple Markov

processes, which would be often seen as simple execution models of “local search algo-

rithms”. The technical goal of this paper is to give an error bound for this pseudo expec-

tation by mathematical analysis. But before the analysis, we explain, though briefly, our

motivation of introducing this pseudo expectation and show some example illustrating

how it could be used.

There are many problems that can be formulated as a “constraint satisfaction prob-

lem”, a problem of searching for a solution that satisfies a given set of constraints. Well

known SAT problem, one of the NP-complete problems that have been believed hard to

solve in general, is a typical example of such problems. A “local search” is simple yet an

important algorithmic approach for solving such constraint satisfaction problems. Fig-

ure 1 shows the outline of standard local search algorithms; it is for finding a solution

satisfying all constraints C1, ..., Cm given as an input. (In some situations, for example,

if it is impossible to satisfy all constraints, we usually consider a weaker goal and ask

∗Supported in part by a Grant-in-Aid for Scientific Research on Priority Areas “Statical-Mechanical
Approach to Probabilistic Information Processing” 2002-2005.

1

program LocalSearch;

input: A set of constraints {C1, C2, ..., Cm} on some variables v = v1, ..., vn;

output: A solution (i.e., an assignment to the variables) satisfying all constraints;

v ← some initial assignment (often chosen randomly);

repeat T steps


if all constrains are satisfied then

output the current solution v and halt;

improve solution v by changing the value of one variable vi;

program-end.

Figure 1: Outline of local search algorithms

for a solution satisfying as many constraints as possible.) Though very simple, various

computer experiments have been reported that several constraint satisfaction problems

(including the SAT problem) can be solved well on average under many (obviously not

all) reasonable circumstances. Unfortunately, however, it seems quite difficult to analyze

the behavior (e.g., the average-case performance) of such algorithms, and existing rigor-

ous mathematical analyses are far from verifying observations made through computer

experiments.

As a bridge connecting those experimental results and rigorous analyses, we have

proposed [WST03] an approach for analyzing the average-case behavior of such local al-

gorithms. (A similar approach has been also proposed by S. Cocco and R. Monasson

[CM04].) For a given local search algorithm, the approach takes the following two ap-

proximation steps.

1. Modify the algorithm to a randomized one, and approximate its average execution

by a simple Markov process.

2. Approximate this process, more specifically, its average states by simple probabilistic

recurrence formula — pseudo expectation.

In that paper, the approach has been demonstrated by analyzing some randomized

local search algorithm for solving some constraint satisfaction problem — LDPCC De-

coding Problem [Gal62, Mac99]. But justifications to these two approximation steps have

been left open. The purpose of this paper is to mathematically analyze an error bound

of the pseudo expectation, for giving a justification to the second approximation step.

Example: Local Search for Image Restoration

We explain our approch and how pseudo expectation is used by using some concrete

problem and its algorithm. For our concrete problem, we consider the image restration

problem; that is, recovering the original image from a given image with noise. For example,

from a given image like the left one of Figure 2, our task is to obtain the right one.

Here we consider the following simple situation:

2

restoration
=⇒
⇐=
noise

(by random bit flipping)

Figure 2: An example of our simple image restration

• An image is a 256× 256 pixels (or, bits) of black(1)/white(0).

• Noise is just an i.i.d. flip at each bit, with some fixed flipping probability, say, 0.2

(= 20%).

Thus, our task is simply to determine, for each bit of 256 × 256 bits, whether the

original is 0 or 1. Then one natural idea (for determining each bit) is to look around its

neighbors, and flip the current bit if most of them have the opposite color. The algorithm

of Figure 3, which was suggested by Prof. Kazuyuki Tanaka to the author, is based on

this idea. This can be regarded as a simplified version of the algorithm that Tanaka etal

have investigated [Tan01]. Clearly, this is a local search algorithm, and we consider this

algorithm as our example.

Some explanation on the algorithm may be necessary. In the algorithm (and in the

following discussion), we assume that an image data (with noise) is stored in the array

v[·, ·], where each v[i,j] is called a variable. For each variable v[i,j], its penalty is the

number of horizontal or vertical neighbors with the opposite assignment. Figure 1 shows

examples of assignments of each penalty. (Precisely speaking, the notion of “penalty”

is for the assignment to each variable; but in this paper, we simply say “the penalty of

v[i,j]”, meaning the penalty of the current assignment to the variable v[i,j].)

At each step, the algorithm chooses one variable, which we call a flipped variable,

from those with the highest penalty and flip its value. This local improvement process

is repeated until some condition is fulfilled. Then the important point that we must

determine is when we should stop this repetitions. If we repeated the process too long,

then we would destroying the original image by flipping too many times. Tanaka etal

proposed to use the “boundary length”, the number of pair of adjacent variables with

opposite assignments, and to terminate the process when the boundary length becomes

the original one. The idea behind this is the conjecture that the image gets almost

optimally close to the original at this point. (Here for simplicity, let us use the Hamming

distance, the number of different bits, to measure the closeness of given two images.) One

of the important contributions of their work is to develop a way to estimate this original

boundary length.

Some computer experiments (conducted by the author) suggests that this stopping

condition is reasonable (though not perfect for some images). Choose one of the images

3

program LS ImageRestoration;

input: v[0..255, 0..255], a degraded image data.

output: an image as close as the original one.

repeat


if some stopping condition H holds then halt;

choose one v[i,j] randomly from variables with the highest penalty;

flip the value of v[i,j];

program end.

Figure 3: Local search image restration algorithm

that the stopping condition works well, and let L0 and L(t;N) denote the boundary

length of, respectively, the original image and the image obtained after t steps of the local

search from an input impage degrated by a randomly generated noise data N . Similary,

let H(t;N) denote the Hamming distance from the original after t steps. Then it can be

observed, for most noise N , that both H(t;N) and D(t;N) = |L(t;N)−L0| get decrease

and both takes the minimum almost at the same step t. (Note that in our experiment

we know the random noise and the original image, while they should be unknown to the

algorithm.) Then we might want to analyze how these functions change on average. Our

approach provides a way to give these functions in a relatively simple form.

The first step of our analysis is to regard the execution of the algorithm as a (relatively)

simple Markov process. We start with modifying the algorithm to a fully randomized one.

Note that the algorithm has a deterministic selection; that is, it first selects the set of

variables with the highest penalty (and then choose one of them randomly). We introduce

weights and change this “hard decision” to a “soft decision”, by choosing each variable

randomly with the following probability:

Pr{ a var. of penalty k is chosen } =
w(k)Xk∑4
i=0 w(i)Xi

, (1)

00

0

0

0 10

0

0

0 10

0

1

0 11

0

1

0 11

1

1

0

penalty = 0 penalty = 1 penalty = 2 penalty = 3 penalty = 4

11

1

1

1 11

1

0

1 01

1

0

1 00

1

0

1 00

0

0

1

Figure 4: Examples of assignments with each penalty

4

where, for each i, 0 ≤ i ≤ 4, w(i) and Xi are respectively the weight of each variable with

penalty i and the number of variables of penalty i. By choosing w such that w(0) <<

w(1) << · · · << w(4), we may assume that the modified algorithm executes almost the

same way as the original one.

By this modification we can regard the execution of the algorithm as a Markov process;

but for this, we need a huge state space, i.e., the set of all possible assignments to variables

v[·,·], which is of size 2N , exponential to our size parameter N , the number of pixels.

Our first approximation step is to simulate this algorithm as a Markov process with much

smaller number of states, polynomially bounded by N . For example, we may express

the state of the algorithm by a tuple X = (X0,+, X0,−, ..., X4,+, X4,−), where each Xi,+

(resp., Xi,−) is the number of correctly (resp., incorrectly) assigned variables with penalty

i. Note that each Xi,sg takes an integer in the range [0, N], and one state is determined

by 10 parameters; thus, the size of states is bounded by O(N10), which is still large but

much smaller than 2N .

Consider the simulation of the algorithm with these states. First we note that the

information given by a tuple X is enough to compute the boundary length L(t,N) and

H(t,N); in fact, they can computed as follows.

L(t,N) =
4∑

i=0

i · (Xi,+ + Xi,−)/2, and H(t,N) =
4∑

i=0

Xi,−,

where each Xi,sg is, precisely speaking, a random variable showing the state of the process

at tth step from the initial state determined by the given noise data N . Also recall (1), the

probability of choosing a flipped variable. Again our tuple X is enough for computing this

probability and simulate the random choice of the algorithm. Unfortunately, however, the

information is not enough to simulate (precisely) the effect of flipping to its four adjacent

variables.

For discussing this point, consider the situation that the following flip is made on

some variable v[i,j] at step t.

00

0

0

1 00

0

0

0=⇒

Assume that v[i,j] was incorrectly assigned before the flip. Then, by this flip, its

assignment becomes correct, and its penalty is changed from 4 to 0; hence, X4,− gets

decreased by one, whereas X0,+ gets increased by one. Notice that this flip also causes

the change of penalty at the four adjacent variables of v[i,j]. Suppose, for example,

the penalty of v[i,j-1], the left of v[i,j], was 3 before the flip; then the flip changes

it to 1, which causes the decrement of X3,sg and the increment of X1,sg, where sg is

the correct/incorrect status of v[i,j-1]. Clearly, the status of adjacent variables is not

5

At state X = (X0,+, X0,−, ..., X4,+, X4,−), the process is executed as follows.

(See the text for explanation.)

1. Choose the status (i, sg) of a flipped variable with prob. w(i)Xi,sg/Z.

2. For each direction D ∈ {N, E, S, W},
choose the status (iD, sgD) of the variable adjacent to the flipped variable

with prob. XiD,sgD
/Ni,sg,D.

3. Update X to X + ei,sg + eiN,sgN
+ · · ·+ eiW,sgW

.

Figure 5: Markov process for simulating LS ImageRestoration

given in our simplified state. Our proposal is to choose them uniformly at random from

all possible ones. For example, with probability X3,+/(X1,+ + X1,− + · · ·+ X4,+ + X4,−),

we assume that the variable v[i,j-1] has status (3, +), i.e., it has penalty 3 and it is

correctly assigned. The same choice is made independently for the other three adjacent

variables.

In summary, we consider the Markov process stated in Figure 5. Here Z is the total

weight, i.e., Z =
∑4

i=1 w(i)Xi, of all candidates of flipped variables; on the other hand,

Ni,sg,D is the number of variables that can be adjacent to the direction D of the chosen

flipped variable. Update vectors ei,sg, eiN,sgN
, ... are determined by the algorithm; for

example, e3,+ = (0, 0, 0, +1, 0, 0,−1, 0, 0, 0).

This is our first step approximation. We conjecture that the average execution of a

given algorithm on random inputs can be simulated well to certain extent if sufficiently

large number of parameters are used for describing states. For our image restoration

algorithm, describing states X = (X0,+, X0,−, ..., X4,+, X4,−) by 10 parameters is not fine

enough; but our preliminary experiments (see, e.g., Figure 7) show that the simulation

becomes accurate if we describe a state by (Xi,sg)1≤i≤512,sg∈{+,−}, where each Xi,sg denotes

the number of correctly/incorrectly assigned variables with the ith configuration, like the

one illustrated in Figure 6.

0 0 1

1 0 1

1 0 0

an example

We consider a configuration defined by the assignment to the vari-

able considered and the assignments of all 9 neighboring variables.

Thus, there are 210 = 512 configurations, each of which is given

some index. The left figure shows an example of such configura-

tions.

Figure 6: Variable configuration

Now assume that our first approximation works and the algorithm can be simulated

by a relatively simple Markov process. But it is still hard to define a function, e.g.,

H(t) = E[H(t,N)], the average of H(t,N) for a randomly generated noise N . Our

second approximation step provides a way to obtain such a formula as a simple recurrence

formula.

6

4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

6600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

"rnd.2-10-1.1" using 1:7

Two graphs of H(t,N), the total number of incorrectly assigned variables vs. step t,

for a given input image created from the image of Figure 2 by randomly generated

noise (10%). Solid line: the result of one execution of the algorithm. Dashed line:

the result of one simulation (from the same input) by the simplified Markov process

using states specified by 512× 2 parameters.

Figure 7: Simulation by a simplified Markov process

Let M be a Markov process on the set S of states. Then by definition, we have a

transition function, a function f on S such that

E[S(t+1)|S(t) = s] = f(s)

holds for all s ∈ S, where S(t) is the state of M at the tth step. Now our approach is to

approximate E[S(t)|S(0) = s] as follows.

E[S(t)|S(0) = s] ≈ f t(s). (2)

This righthand side, the value obtained by simply applying f to an initial state s for

t times, is called a pseudo expectation. We propose to use this pseudo expectation for

giving a formula computing an expected state of the algorithm. For example, let g be the

transition function for the Markov process simulating our image restoration algorithm.

(For simplicity, let us use states expressed by 10 parameters.) Then our approach is to

approximate H(t,N) as follows.

H(t,N) ≈
4∑

i=0

(gt(xN))i,−.

7

4500

5000

5500

6000

6500

7000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

"sim9.2-10-1.ave" using 1:2

For the same data used in Figure 7, expectation and pseudo expectation are com-

pared. Solid line: the average of 10 executions of the Markov process on the same

input. Dashed line: the pseudo expectation from the same input.

Figure 8: Expectation and pseudo expectation

where (·)i,− is the component corresponding to the status (i,−), and xN is the initial

state determined by a given noise data N . For obtaining H(t) = E[H(t,N)], we simply

have to average the righthand side over all 10% noise data.

Obviously the pseudo expectation cannot be precise in general, but again, our prelim-

inary experiments (see, e.g., Figure 8) show that it is quite close to the real expectation.

The technical goal of this paper is to estimate the difference, the error of the pseudo ex-

pectation. More specifically, for a general Markov process M and its transition function

defined above, we want to give some upper bound on the following error function, for any

index i.

erri(t, s)
def
= (E[S(t)|S(0) = s])i − (f t(s))i. (3)

Let us summarize the type of transition functions that we would usually expect for

Markov processes simulating local search algorithms. Since we may assume that such

Markov processes follow the description stated in Figure 5, we again use it as our typical

example. Let g be the transition function for the Markov process stated in Figure 5.

8

Then it is easy to see that

g(x) = x +
∑
i,sg

p(i, sg)ei,sg +
∑
D

∑
i,sg,iD,sgD

p(i, sg)q(iD, sgD)eiD,sgD
,

where p(i, sg) =
w(i)xi,sg

Z
, q(iD, sgD) =

xiD,sgD

Ni,sg,D

,

Z =
∑
i,sg

w(i)xi,sg, and Ni,sg,D =
∑

possible iD,sgD

xiD,sgD
.

Note that both q(iD, sgD) and eiD,sgD
depend on D, i, and sg; hence, more precisely, both

q(iD, sgD) and eiD,sgD
should be written as q(D, i, sg, iD, sgD) and eD,i,sg,iD,sgD

.

In general, we may assume that a transition function f is of the following form.

f(x) = x +
∑

j

p(j)ej +
∑

j

∑

k

p(j)q(j, k)ej,k, (4)

where p(j) =
wjxj

Z
, Z =

∑
j

wjxj,

q(j, k) =
xk

Nj,k

, Nj,k =
∑

h∈Aj

xh, and

Aj is the set of variable types that could be affected by the change on a type j variable.

Finally, we remark that the pseudo expectation becomes the real expectation if all

divisors (i.e., Z and Nj’s) defining probabilities were regarded as constants. For example,

for the image restoration algorithm, if we used the same weights for all penalties (including

0 penalty), we would have Z = N at any step; then ignoring the changes on Ni,sg,D, we

can easily see that our pseudo expectation is close to the real one. But as we have seen,

weights are important for simulating hard decisions with soft ones.

2 Error Bound: One-Dimensional Case

We analyze the following simple one-dimensional Markov process and its pseudo expec-

tation.

Markov Process:

Let N and W be given integers. For any state A(t), 0 ≤ A(t) ≤ N , at step t ≥ 0, the

next state A(t+1) is determined as follows.

A(t+1) =

{
A(t) − 1 with prob. p(A(t)), and

A(t) + 1 with prob. q(A(t)),

where q(x) = 1− p(x), and p(x) is defined as follows.

p(x) =
Wx

Wx + (N − x)
=

Wx

N + (W − 1)x
.

9

If W < 1, then we may consider N − A(t) as a state, which uses a weight 1/W > 1.

Thus, without losing generality, we may assume W ≥ 1.

It would be more intuitive if we express a state by a pair (X
(t)
1 , X

(t)
2) of random

variables and interpret X
(t)
i as a number of balls that player i has after the tth step. At

each step t, with probability p(X
(t)
1) player 1 passes one ball (which is selected randomly)

to player 2, and the other way around with probability 1− p(X
(t)
1). Note that the weight

W is given to player 1’s balls, while each ball of player 2 has weight 1. Thus, this is

the simplest case of the Markov process defined in the previous section. Since the total

number of balls, X
(t)
1 + X

(t)
2 , does not change, we can express this process by a single

variable A(t).

Define f(x) as follows:

f(x) = p(x)(x− 1) + q(x)(x + 1) = x + 1− 2Wx

N + (W − 1)x
.

Then we have f(A(t)) = E[A(t+1)|A(t)]. Thus, for any a, 0 ≤ a ≤ N , f t(a) is the pseudo

expectation at the tth step when started from A(0) = a, and the error at the tth step is

defined by

err(t, a) = E[A(t)|A(0) = a]− f t(a).

(We will see below (Lemma 2) that E[A(t)|A(0) = a] ≥ f t(a) for this simple process. In

the following, we will often write simply, e.g., E[A(t)|a] for E[A(t)|A(0) = a].)

Note that p(0) = 0 and p(N) = 1 (hence, f(0) = 1 and f(N) = N − 1). Hence, A(t)

takes values from 0 to N (and so is f(x) if x ∈ [0, N]). Thus, we have an obvious bound

err(t, a) ≤ N . What we would like to show is something significantly smaller than N ;

for example, a constant independent from N (nor W). We will prove the following upper

bound.

Theorem 1. Assume that N ≥ W . Then there are some constants c1 and c2 independent

from N and W such that the following holds for any t and a.

err(t, a) = E[At|a]− f t(a) ≤ c1W + c2.

Remark on the Error in the Limit

Since our process is simple, we can give a precise formula for its stationary distribution1

as follows. (This analysis has been done by Johannes Schneider in his Master’s thesis,

and the proof is omitted here.)

1This Markov process is periodic with period 2. Thus, no stationary distribution exists. In the
following, we consider states at even and odd steps separately. By the “average stationary state”, we
mean the arithmetic mean of the expectations for even and odd steps.

10

Proposition 2. Consider the process starting from A(0) = a. Then we have

lim
h→∞

Pr[A(2h) = m] =

{
2P∞, if both a + m is even, and

0, otherwise.

lim
h→∞

Pr[A(2h+1) = m] =

{
2P∞, if both a + m is odd, and

0, otherwise.

Where

P∞ =
1

2
· (Wm ·N + Wm−1 ·m · (1−W))

N · (1 + W)N−1
·
(

N

m

)
.

The average stationary distribution is then calculated as follows.

Corollary 3.

alim
def
=

lim E[A(2h)|a] + E[A(2h+1)|a]

2
=

N + (W − 1)/2

W + 1
.

On the other hand, the fixed point afix of f is calculated as follows; note that

limt→∞ f t(a) = afix for any a.

afix =
N

W + 1
. (5)

Hence, in the limit, the error of the pseudo expectation is quite small.

lim
t→∞

err(t, a) = alim − afix =
1

2
− 1

W + 1
.

But unfortunately, err(t, a) is not monotone in general, and this is not a general upper

bound.

Proof of Theorem 1

As remarked in the previous section, the pseudo expectation is accurate when W = 1,

because the function f becomes “linear”. Our approach is to estimate the nonlinearity of

f t. More specifically, we introduce the following function, which we call nonlinearity of

f t at x.

dL(t, x) = p(x)f t(x− 1) + q(x)f t(x + 1)− f t
(
p(x)(x− 1) + q(x)(x + 1)

)
,

To make this definition valid at the boundaries, we let f t(−1) = f t(N + 1) = 0. In fact,

it is easy to see that dL(t, 0) = dL(t, N) = 0.

The following relation, though easy to show, by induction, plays a key role in our

analysis.

Lemma 1. For any t ≥ 1 and any a, 0 ≤ a ≤ N ,

err(t, a) = p(a)err(t− 1, a− 1) + q(a)err(t− 1, a + 1) + dL(t− 1, a).

Here and in the following, we let err(t,−1) = err(t, N + 1) = 0.

11

Proof. Consider the state A(1) after the first transition from A(0) = a. Since either

A(1) = a− 1 with probability p(a), or A(1) = a + 1 with probability q(a), we have

E[A(t)|a] = p(a)E[A(t)|A(1) = a− 1] + q(a)E[A(t)|A(1) = a + 1]

= p(a)E[A(t−1)|a− 1] + q(a)E[A(t−1)|a + 1].

On the other hand, we have

f t(a) = f t−1(f(a)) = f t−1
(
p(a)(a− 1) + q(a)(a + 1)

)
.

Then the recurrence formula of the lemma is immediate from these two equations. tu

From this lemma, we have the following bound:

err(t, a) ≤
∑

1≤h≤t−1

max
x∈[N]

dL(h, x). (6)

Recall that dL(h, 0) = dL(h,N) = 0; hence, for the maximum, we only have to consider the

range {1, ..., N−1}. Thus, in the following, by maxx dL(h, x) we mean maxx∈{1,...,N−1} dL(h, x).

In more general, dL(h, x) is estimated not only on integral x; in such a case, we assume

that x is taken from (0, N).

Note the following basic properties of our f t. (Since these properties are proved easily

by simple induction, their proofs are omitted here.)

Fact 1. For any t, the following holds:

(1) both f t(x) and (f t)′(x) are monotone and increasing,

(2) 0 ≤ f t(x) ≤ x, 0 ≤ (f t)′(x) ≤ 1, and

(3) f t+1(x + 1)− f t+1(x− 1) ≤ f t(x + 1)− f t(x− 1) ≤ 2.

From the monotonicity of (f t)′(x), the function f t(x) must be convex, which implies

the following properties.

Lemma 2. The nonlinearity dL(h, x) is nonnegative for any h ≥ 0 and x. Thus, E[At|a] ≥
f t(a) for any t and a.

Let us replace dL(h, x) with a function that is easier to compute. As one can easily

expect, the nonlinearity dL(h, x) can be bounded by the second derivative. But here by

using the monotonicity of fh and (f t)′, we can also prove the following bound. (Since a

more general bound will be proved for Lemma 5, the proof is omitted here.)

Lemma 3. For any h ≥ 0 and x, we have

dL(h, x) ≤ 1

2
((fh)′(x + 1)− (fh)′(x− 1)).

12

Thus, define df(h, x) = (fh)′(x+1)− (fh)′(x−1), and in the following, we will bound

maxx df(h, x). Again unless explicitly stated, we will assume that x ∈ {1, ..., N − 1}, or

x ∈ (0, N) in general. Also h will be a nonnegative integer.

Note first that df(0, x) = (f 0)′(x + 1)− (f 0)′(x− 1) = 0. On the other hand, for any

h ≥ 1, we have the following bound.

df(h, x) = (fh)′(x + 1)− (fh)′(x− 1)

= f ′((fh−1(x + 1))(fh−1)′(x + 1)− f ′((fh−1(x− 1))(fh−1)′(x− 1)

=

(
1− 2WN

(N + (W − 1)fh−1(x + 1))2

)
(fh−1)′(x + 1)

−
(

1− 2WN

(N + (W − 1)fh−1(x− 1))2

)
(fh−1)′(x− 1)

= df(h− 1, x)

(
1− 2WN

(N + (W − 1)fh−1(x + 1))2

)

+ (fh−1)′(x− 1)

(
2WN

(N + (W − 1)fh−1(x− 1))2
− 2WN

(N + (W − 1)fh−1(x + 1))2

)

≤ df(h− 1, x)

(
1− 2WN

(N + (W − 1)fh−1(x + 1))2

)
+

8W 2N · (fh−1)′(x− 1)

(N + (W − 1)fh−1(x− 1))3
.

For the last bound, we used the fact that fh−1(x + 1)− fh−1(x− 1) ≤ 2. Here note that

(fh−1)′(x− 1) ≤ (fh−1)′(x + 1) =
h−1∏
i=0

(
1− 2WN

(N + (W − 1)f i(x + 1))2

)
.

Hence by letting

α(i) = 1− 2WN

(N + (W − 1)f i(x + 1))2
, and β(i) =

8W 2N

(N + (W − 1)f i(x− 1))3
,

we can write the bound as

df(h, x) ≤ α(h− 1)df(h− 1, x) + β(h− 1)
h−2∏
i=0

α(i),

which is in a closed form as follows.

df(h, x) ≤
h−1∑
i=0

(
h−1∏
j=0

α(j)

)
β(i)α(i)−1. (7)

Let us define u(h, x) by the righthand side expression, and in the following, we discuss a

bound for this u(h, x).

Consider any x and h, and let them be fixed for a while. Now we introduce an

important parameter R = N/W , which is larger than equal to 1 when W ≤ N (as

assumed in our theorem). Recall that afix = N/(W + 1) (≈ R) is the fixed point of f ;

13

hence, f i(x−1) gets decreased if x−1 is much larger than R, say, x−1 > 2R. A technical

key of our analysis is to bound terms in u(h, x) by stages depending on f i(x − 1) w.r.t.

R. More specifically, we consider the following K stages, where h0 = 0, K = W − 2, and

hK+1 = h.

i = h0 ∼ h1 − 1 (W − 1)R < f i(x− 1) ≤ WR (= N)

i = h1 ∼ h2 − 1 (W − 2)R < f i(x− 1) ≤ (W − 1)R

i = h2 ∼ h3 − 1 (W − 3)R < f i(x− 1) ≤ (W − 2)R
...

...

i = hK−1 ∼ hK − 1 2R < f i(x− 1) ≤ 3R

i = hK ∼ h− 1 0 ≤ f i(x− 1) ≤ 2R.

Since f i(x − 1) gets decreased if x − 1 > 2R, the sequence h0 ≤ h1 ≤ · · · ≤ hK can

be defined. Note that if x − 1 ≤ cR for some integer c < W , then we would have

h1 = h2 = · · · = hW−c = 0. Similarly, if cR < fh−1(x − 1) ≤ (c + 1)R for some integer

c ≥ 2, then we would have hW−c = hW−c+1 = · · · = hK = h. Thus, these definitions are

valid for all x − 1 and h. For each k, 0 ≤ k ≤ K, let ck = W − k and sk = hk+1 − hk;

sk ≥ 0 is the length of each stage.

Consider any i ∈ {hk, ..., hk+1 − 1} such that (ck − 1)R < f i(x− 1) ≤ ckR holds with

some ck ≥ 3. Then (ck − 1)R < f i(x + 1) ≤ ckR + 2; hence, we have

α(i) = 1− 2WN

(N + (W − 1)f i(x + 1))2
= 1− 2

R(ck + 1 + 2/R)2
≤ 1− 2

R(ck + 3)2
, and

β(i) =
8W 2N

(N + (W − 1)f i(x− 1))3
=

8

(ck − 1)3R2
.

By another simple calculation, we can also show the same bound (with cK = 2) for any i

such that 0 ≤ f i(x− 1) ≤ 2R.

We denote the above bound for α(i) by γ(c). That is, define γ(c) by

γ(c) = 1− 2

R(c + 3)2
.

Then by using the above bounds for α and β, we can bound u(h, x) (the bound of (7)) as

follows. (Recall cK = 2.)

u(h, x) =
K∑

k=0

hk+1−1∑

i=hk

(
h−1∏
j=0

α(j)

)
β(i)α(i)−1 ≤

K∑

k=0

8sk

(ck − 1)3R2

(
K∏

k=0

γ(ck)
sk

)
γ(ck)

−1

≤
K−1∑

k=0

8skγ(2)sK

(ck − 1)3R2
+

8sKγ(2)sK−1

R2
.

Here we used the fact that γ(c) ≤ 1 for any c ≥ 2, which follows from R ≥ 1; this is where

the assumption that W ≤ N is used.

We need some knowledge on the convergence speed of f t. The following simple bound

is enough for our analysis.

14

Fact 2. For any x ∈ (0, N) and for any t, we have

f t(x) ≥ 2R ⇒ f t+1(x) < f t(x)− 1/3.

Now consider the last bound for u(h, x). Note that what is dependent on x is only on

the choice of s0, ..., sK . On the other hand, we know from the above fact that each sk is

at most 3R (except for sK). Thus, we have, for any x,

u(h, x) ≤
K−1∑

k=0

8skγ(2)sK

(ck − 1)3R2
+

8sKγ(2)sK−1

R2
≤ γ(2)s

R

K−1∑

k=0

24

(ck − 1)3
+

8sKγ(2)sK−1

R2

≤ 6γ(2)s

R
+

8sKγ(2)sK−1

R2
,

where s = max(h− 3RW, 0), which choice follows from sK ≥ h− 3R(W − 2) ≥ h− 3RW .

(Note that sK = 0 if h ≤ 3R(W−2).) The last bound is from the fact that 2−3+3−3+· · · <
1/4. Noting that tγ(2)t is increasing for t < 11.5R and decreasing for t ≥ 11.5, we further

have

u(h, x) ≤ 6γ(2)s

R
+





92Rγ(2)11.5R

R2
, if h < (3R(W − 2) + 11.5R, and

8tγ(2)t

R2
, otherwise (here let t = h− 3R(W − 2)).

Therefore, we finally have the following desired bound.

∑

h≥0

max
x

u(h, x) ≤
3RW−1∑

h=0

6

R
+

∑
s≥0

6γ(2)s

R
+

(3R(W − 2) + 1)(92R)γ(2)11.5R

R2
+

∑
t≥0

8tγ(2)t

R2

≤ 18W + 75 + (3 · 92 · e−11.5/12.5)W + 1250 ≤ 128W + 1325.

Bound for Large Weight W

Theorem 1 gives a reasonable bound when W is regarded as a constant. On the other

hand, it would not be satisfiable for large W ; in fact, our above analysis is not applicable

for the case W > N . On the other hand, for the case that W is proportional to N , some

bound is provable by a much simpler argument.

Consider, for example, the case that W = N . Note first that alim ≈ afix ≈ N/W = 1;

that is, from any state, the process converges to 1. In fact, we have

p(x) =
Wx

(N + (W − 1)x)
≈ Nx

N(1 + x)
=

x

1 + x
.

Hence p(x) is close to 1 for large x; this means that for such large x, x gets decreased by

1 almost deterministically. Similarly, since we have

f t(x) = f t−1(x)− 1 +
2Wf t−1(x)

N + (W − 1)f t−1(x)
≈ f t−1(x)− 1 +

2

1 + f t−1(x)
,

15

f t(x) gets decreased almost by 1 from f t−1(x) so long as f t−1(x) is large. Thus, in such

a situation that we may assume that A(t) is large, both the real expectation E[A(t)|a]

and the pseudo expectation f t(a) can be approximated as a − t, and hence, only small

difference would be expected between them. This observation leads us to the following

bound.

Theorem 4. Let α = (W −1)/N > 0. Then there exists a constant c3 independent from

N and W such that the following holds for any t and a.

err(t, a) ≤ c3√
α
·
√

N.

Proof. We may assume that α > 1/N ; otherwise, we can assume that W is small, and

Theorem 1 is applicable. Note that both afix and alim, which can be approximated as 1/α,

are much less than
√

N/α (=
√

αN · (1/α)). Hence, for any initial state a ≤
√

N/α,

and for any t, we certainly have both E[A(t)|a] ≤
√

N/α and f t(a) ≤
√

N/α; that is,

the bound trivially holds with c3 = 1. Thus, we only need to consider the case that the

process starts from some a >
√

N/α.

Consider the following simple Markov process {Xt}t≥0:

for any x >
√

N/α,

Pr[Xt = Xt−1 − 1 |Xt−1 = x } = p0
def
=

√
αN

1 +
√

αN
,

Pr[Xt = Xt−1 + 1 |Xt−1 = x } = 1− p0 =
1

1 +
√

αN
; and

for any x ≤
√

N/α,

Pr[Xt = Xt−1 |Xt−1 = x } = 1.

Note that for any x >
√

N/α, we have

(
Pr[A(t) = A(t−1) − 1 |A(t−1) = x] =

)
= p(x) =

Wx

N + (W − 1)x
≥ αx

1 + αx
>

√
αN

1 +
√

αN
.

Hence it holds that

E[Xt|a] ≥ E[A(t)|a] ≥ f t(a).

On the other hand, since

E[Xt|Xt−1 = x] = x−
√

αN

1 +
√

αN
+

1

1 +
√

αN
= x− 1 +

2

1 +
√

αN
≤ x− 1 +

2√
αN

and f t(x) ≥ f t−1(x)− 1, we have

a− t +
2t√
αN

≥ E[Xt|a] ≥ E[A(t)|a] ≥ f t(a) ≥ a− t.

16

This implies the following bound for any t ≤ N .

err(t, a) = E[A(t)|a]− f t(a) ≤ 2N√
αN

≤ 2

√
N

α
.

On the other hand, if t > N , the above error bound is clearly satisfied because both

E[Xt|a] and f t(x) are smaller than
√

N/α. tu

3 Error Bound: General Case

Although simple, the analysis of the one-dimensional Markov process suggested us a

way to obtain a general error bound. Unfortunately, the detail analysis we did for the

one-dimensional case is impossible for the general case; nevertheless, following the same

approach, we still can get some upper bound under certain conditions.

We begin with clarifying the conditions we will assume in our analysis. For this, let us

recall our general Markov process discussed in Section 1, and define symbols and constants

that will be used below. We consider a Markov process whose state is expressed by a D-

dimensional vector x = (x1, ..., xD), where each xi takes an integer2 value in {0, ..., N},
and we assume that

∑
i xi = N . Let X denote the set of all such vectors; this is the

domain of states of our Markov process. Intuitively, xi is the number of variables of type

i; then wi is the weight of a variable of type i. The transition of our Markov process is

given as (4). Here we specify it a bit more in detail. Let E denote the set of all update

vectors, i.e., ej’s and ej,k’s, where the range of j is {1, ..., D}, and that of k is {1, ..., K}
for some constant K. Define also the following parameters and constants.

wmax = max
j

wj, W =
∑

j

wj, and emax = max
e∈E, j

|(e)j|.

Throughout this section, let t be any nonnegative integer, and let i, j, and k be any

indices, 1 ≤ i, j ≤ D, and 1 ≤ k ≤ K. Also let x be any element of X . By f t
i we denote

a function computing the ith coordinate of f t.

For a given x ∈ X , let N (x) denote the convex hull of x+E def
= {x+e|e ∈ E}, which

we consider as a neighbor of x. In fact, for Markov processes simulating local search

algorithms, we may assume that updates are small; hence, N (x) can be regarded as a

small neighbor in the domain X .

Now we state our conditions.

(1) f t
i is convex on N (x).

(2) The absolute value of the partial derivative
∂f t

j

∂xi
is bounded by some constant cpd.

Hence, for any y ∈ N (x), |f t
i (y)− f t

i (x)| is bounded by some constant cf .

(3) During the execution, total weight Z is larger than cZN for some constant cZ > 0.

2Later in the analysis, we will consider, for xi, any number in [0, N].

17

(4) Each q(j, k) can be regarded as a constant.

Except for the last one, these conditions are reasonable to expect. The last one is for

simplifying our calculation; without it, we need more complicated but tedious calculation,

but it is not essential. In fact, even if q(j, k) is not a constant, it changes very mildly

because q(j, k) = xk/(
∑

h∈Aj
xh) is defined without any weight, and the change of each

xi is small. Under this condition (4), the transition at the ith coordinate can be stated

as follows with some constants aj, 1 ≤ j ≤ D.

fi(x) = xi +

∑
j ajwjxj

Z
. (8)

We will use this for our analysis.

Now we are ready to state our bound.

Theorem 5. Assume that the conditions (1) ∼ (4) hold. Then there are some constants

d1 and d2 such that the following holds for any i, 1 ≤ i ≤ D, t ≤ N/(d1W), and x ∈ X .

erri(t,x) ≤ d2wmax.

Remark. We can choose constants d1 and d2 as follows. (These choices are from rough

estimation, and by more careful analysis, much smaller constants could be chosen.)

d1 = cZ/(4emaxK), and

d2 = ecfcpde
2
maxD log2(DK)/cZ.

The proof follows almost the same outline as the one-dimensional case. In the follow-

ing, consider any i and let it be fixed. As before, we first bound the error by the linearity

of f t
i , which is now defined as follows.

dLi(t, x) =

∣∣∣∣∣
∑

j

∑

k

p(j)q(j, k)f t
i (x + ej + ej,k)− f t

i

(∑
j

∑

k

p(j)q(j, k)(x + ej + ej,k)

)∣∣∣∣∣ .

Then the following bound is provable by an argument almost the same as before.

Lemma 4. For any t ≥ 1 and any x,

erri(t, x) = dLi(t− 1,x) +
∑

j

∑

k

p(j)q(j, k)erri(t− 1,x + ej + ej,k).

Then we have the following bound.

erri(t, x) ≤
∑

1≤u≤t−1

max
y

dLi(u, y). (9)

Hence, our goal is to bound dLi(t, x), and for this, we prove the following lemma corre-

sponding to Lemma 3.

18

Lemma 5. Let f be any function from X to R. For any x in X , and for any e1 and e2

such that both x + e1 and x + e2 belong to X , suppose that the following function F is

convex on [0, 1].

F (α) = f(x + e1 + α(e2 − e1)).

Then for any p1 and p2 such that p1, p2 ≥ 0 and p1 + p2 = 1, we have

dL
def
= |(p1f(x + e1) + p2f(x + e2))− f(x + e)| ≤ 1

4
(F ′(1)− F ′(0)),

Proof. We prove for the case that (p1f(x + e1) + p2f(x + e2))− f(x + e) > 0. Because

F is convex, we have

f(x + e) = F (p2) ≥ F (0) + p2F
′(0), and

f(x + e) = F (1− p1) ≥ F (1)− p1F
′(1).

Hence

dL = (p1f(x + e1) + p2f(x + e2))− f(x + e)

≤ (p1f(x + e1) + p2f(x + e2))− (p1(F (0) + p2F
′(0)) + p2(F (1)− p1F

′(1)))

≤ p1p2(F
′(1)− F ′(0)) ≤ 1

4
(F ′(1)− F ′(0)).

tu

Before using this lemma, we define the following value for each x.

dfmaxi(t, x) = max
h

max
u,v∈N (x)

∣∣∣∣
∂

∂xh

f t
i (u)− ∂

∂xh

f t
i (v)

∣∣∣∣ . (10)

Now we are ready to state the following corollary.

Corollary 6. For any t ≥ 1 and x, we have

dLi(t, x) ≤ Demax log2(DK)

2
dfmaxi(x).

Proof. We prove by a small example. Suppose that dLi(t,x) is defined by

dLi(t, x) =
4∑

i=k

pkf
t
i (x + ek)− f t

i

(
4∑

i=k

pk(x + ek)

)
> 0.

Let q1 = p1 + p2 and q2 = p3 + p4, and introduce the following vectors.

e12 =
p1

q1

e1 +
p2

q1

e2, and e34 =
p3

q2

e3 +
p3

q2

e4.

Note that

f t
i (q1(x + e12) + q2(x + e34)) = f t

i

(
4∑

i=k

pk(x + ek)

)
. (11)

19

First by using Lemma 5, we derive

q1f
t
i (x + e12) + q2f

t
i (x + e34)− f t

i (q1(x + e12) + q2(x + e34)) ≤ 1

4
(F ′(1)− F ′(0)),

where F (α) = f t
i (x + e12 + α(e34 − e12)). Note that

F ′(0) =
∑

j

∂

∂xj

f t
i (x + e12) · (e34 − e12)j, and

F ′(1) =
∑

j

∂

∂xj

f t
i (x + e34) · (e34 − e12)j.

Thus,

F ′(1)− F ′(0) =
∑

j

(
∂

∂xj

f t
i (x + e12)− ∂

∂xj

f t
i (x + e34)

)
· (e34 − e12)j

≤ D · dfmaxi(t, x) · (2emax) = (2Demax) · dfmaxi(t,x).

That is,

q1f
t
i (x+e12)+q2f

t
i (x+e34)−f t

i (q1(x+e12)+q2(x+e34)) ≤ Demax

2
·dfmaxi(t, x). (12)

Then from (11) and (12), we have

4∑

i=k

pkf
t
i (x + ek)− f t

i

(
4∑

i=k

pk(x + ek)

)

≤
4∑

i=k

pkf
t
i (x + ek)− (q1f

t
i (x + e12) + q2f

t
i (x + e34)) +

Demax

2
· dfmaxi(t, x).

On the other hand, note that

x + e12 =
p1

q1

(x + e1) +
p2

q1

(x + e2), and x + e34 =
p3

q2

(x + e3) +
p4

q2

(x + e4).

Then we have the following by the same argument.

q1

(
p1

q1

f t
i (x + e1) +

p2

q1

f t
i (x + e2)− f t

i (x + e12)

)
≤ q1 · Demax

2
· dfmaxi(t,x), and

q2

(
p3

q2

f t
i (x + e3) +

p4

q2

f t
i (x + e4)− f t

i (x + e34)

)
≤ q2 · Demax

2
· dfmaxi(t,x).

Thus,

dLi(t, x) ≤ (1 + q1 + q2) · Demax

2
· dfmaxi(t, x) =

2Demax

2
· dfmaxi(t, x).

In general, noting that there are at most DK terms in general, it is easy to derive the

bound of the lemma. tu

20

Finally our task is to bound dfmaxi(t,x). Let ∆t denote this bound (for t). For the

analysis, we use the equation (8). From this equation, it is not so hard to see that the

bound is easier if the maximum of (10) is achieved by some h 6= i. Thus, we consider

below the hardest case, i.e., the case h = i. Furthermore, assume that u and v ∈ N (x)

define dfmaxi(t, x). That is, we bound dfmaxi(t, x) for the case

dfmaxi(t,x) =
∂

∂xi

f t
i (u)− ∂

∂xi

f t
i (v).

Also we assume that ∆t = dfmaxi(t,x), and for any s < t, it holds inductively that ∆s is

a bound for dfmaxj(s, x) for all j.

Let us derive a formula for ∂
∂xi

f t
i (u). Here again we follow the same outline as before,

and use the inductive definition of the partial derivative. That is, we use the following.

∂

∂xi

f t
i (u) =

∑

h

∂

∂xh

fi(f
t−1(u)) · ∂

∂xi

f t−1
h (u).

By computing ∂fi

∂xi
= 1 + · · · from (8), we further have

∂

∂xi

f t
i (u) =

∂

∂xi

f t−1
h (u) +

∑

h

wh

∑
j(ah − aj)wjûj

Z(û)2
· ∂

∂xi

f t−1
h (u),

where û = f t−1(u), ûj = (û)j, and Z(û) =
∑

j wjûj, i.e., the total weight computed from

f t−1(u). We have a similar formula for ∂
∂xi

f t
i (v); for this one, v̂ = f t−1(v), v̂j = (v̂)j,

and Z(v̂) =
∑

j wj v̂j are used.

Now we have

dfmaxi(t, x) =

(
∂

∂xi

f t−1
h (u)− ∂

∂xi

f t−1
h (v)

)

+
∑

h

wh

(∑
j(ah − aj)wjûj

Z(û)2
· ∂

∂xi

f t−1
h (u)−

∑
j(ah − aj)wj v̂j

Z(v̂)2
· ∂

∂xi

f t−1
h (v)

)

≤ ∆t−1 +
∑

h

wh

∑
j(ah − aj)wjûj

Z(û)2
·∆t−1

+
∑

h

wh

(∑
j(ah − aj)wjûj

Z(û)2
−

∑
j(ah − aj)wj v̂j

Z(v̂)2

)
· ∂

∂xi

f t−1
h (v)

≤ ∆t−1

(
1 +

aW

Z(û)

)
+

∑

h

wh · acfW

Z(v̂)2
· cpd ≤ ∆t−1

(
1 +

aW

cZN

)
+

acfcpdW
2

(cZN)2
.

Here constants are those defined in conditions (1) ∼ (4). On the other hand, a = max |ah−
aj|, which is at most 4emaxK.

By solving this recurrence, we obtain

∆t ≤ ∆1

(
1 +

aW

cZN

)t

+
acfcpdW

c2
ZN

(
1 +

aW

cZN

)t

.

21

Since ∆1 is bounded by 2aemaxwmaxW/(cZN)2, we have (a bit roughly)

∆t ≤ a(cfcpd + 2emax)wmaxW

c2
ZN

(
1 +

aW

cZN

)t

≤ e(2cfcpdemax)aW · wmax

c2
ZN

,

for any t ≤ (cZN/aW).

Finally, with the bound of Corollary 6 and equation (9), we have

erri(t, x) ≤ (ecfcpde
2
maxD log2(DK))wmax

cZ

,

while t ≤ cZN/aW .

4 Concluding Remarks

We have shown that some approximation error bounds for the pseudo expectation. When

W is small, i.e., it is regarded as a constant, the bound of Theorem 1 (and also of

Theorem 5 for the general case) would be reasonable. On the other hand, for the one-

dimensional case, some o(N) bound is also provable (i.e., Theorem 4) for the case that

W is proportional to N ; altogether the error can be bounded by o(N). We, however,

conjecture that the error could be bounded by a much smaller function, maybe, a constant

independent from N and W .

Notice that the argument of Theorem 1 could be called a mechanical approach, because

no statistical property of the process is used. On the otherhand, we would expect some

strong concentration [TN03], which may be helpful to get a tighter bound. For the one-

dimensional case, since the model is simple, one may expect to solve the formula for the

expected state completely by solving a corresponding differential equation. Unfortunately,

though, a straightforward application of such method only provides us o(N) bound, and

more careful consideration may be necessary to obtain a better bound.

Acknowledgments

A part of the work has been done jointly with Y. Niikura and J. Schneider as their Master

thesis projects. I would like to thank them for their collaboration. Also I would like to

thank H. Takahashi, K. Tanaka, and R. Monasson, for their interest to this work and

various useful suggestions. In particular, I thank to K. Tanaka for teaching me the image

restoration algorithm, and to R. Monasson for pointing out the idea leading me to the

proof of Theorem 4.

References

[Gal62] R.G. Gallager, Low density parity check codes, IRE Trans. Inform. Theory,

IT-8(21), 21–28, 1962.

22

[Mac99] D. MacKay, Good error-correcting codes based on very sparse matrices, IEEE

Trans. Inform. Theory, IT-45(2), 399–431, 1999.

[CM04] S. Cocco and R. Monasson, Heuristic average-case analysis of the backtrack

resolution of random 3-satisfiability instances, Theoret. Comput. Sci. 320(2-3),

345–372, 2004.

[TN03] H. Takahashi and Y. Niikura, An extension of Azuma-Hoeffding inequalities

and its application to an analysis of randomized local search algorithms, in

Proc. Workshop IBIS2003, 177–181, 2003.

[Tan01] K. Tanaka, Maximum marginal likelihood estimation and constrained optimiza-

tion in image restoration, J. Japanese Society of Aritificial Intelligence, 16(2)，
246–258，2001.

[WST03] O. Watanabe, T. Sawai, and H. Takahashi, Analysis of a randomized local search

algorithm for LDPCC decoding problem, in Proc. SAGA’03, Lecture Notes in

Comp. Sci. 2827,50–60, 2003.

23

